1
|
Takayama K, Mori K, Sasaki Y, Taguchi A, Taniguchi A, Miyazato M, Hayashi Y. Discovery of a Pentapeptide Antagonist to Human Neuromedin U Receptor 1. ACS Med Chem Lett 2024; 15:885-891. [PMID: 38894927 PMCID: PMC11181499 DOI: 10.1021/acsmedchemlett.4c00091] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2024] [Revised: 05/15/2024] [Accepted: 05/21/2024] [Indexed: 06/21/2024] Open
Abstract
Neuromedin U (NMU) activates two types of receptors (NMUR1 and NMUR2), and the former is mainly expressed in the peripheral tissues, including the intestinal tract and lung tissues. Since NMUR1 contributes to the promotion of type 2 inflammation in these tissues, it is a potential target to suppress inflammatory responses. However, promising antagonist candidates for human NMUR1 have not yet been developed. Here we successfully identified pentapeptide antagonist 9a through a structure-activity relationship study based on hexapeptide lead 1. Its antagonistic activity against human NMUR1 was 10 times greater than that against NMUR2. This is a breakthrough in the development of NMUR1-selective antagonists. Although 9a was relatively stable in the plasma, the C-terminal amide was rapidly degraded to the carboxylic acid by the serum endopeptidase thrombin, which acted as an amidase. This basic information would aid in sample handling in future biological evaluations.
Collapse
Affiliation(s)
- Kentaro Takayama
- Laboratory
of Environmental Biochemistry, Kyoto Pharmaceutical
University, 5 Misasaginakauchi-cho, Yamashina, Kyoto 607-8414, Japan
- Department
of Medicinal Chemistry, Tokyo University
of Pharmacy and Life Sciences, 1432-1 Horinouchi, Hachioji, Tokyo 192-0392, Japan
| | - Kenji Mori
- Department of Cardiac
Physiology and Department of Biochemistry, National Cerebral
and Cardiovascular Center Research
Institute, 6-1 Kishibe-Shimmachi, Suita, Osaka 564-8565, Japan
| | - Yu Sasaki
- Department
of Medicinal Chemistry, Tokyo University
of Pharmacy and Life Sciences, 1432-1 Horinouchi, Hachioji, Tokyo 192-0392, Japan
| | - Akihiro Taguchi
- Department
of Medicinal Chemistry, Tokyo University
of Pharmacy and Life Sciences, 1432-1 Horinouchi, Hachioji, Tokyo 192-0392, Japan
| | - Atsuhiko Taniguchi
- Department
of Medicinal Chemistry, Tokyo University
of Pharmacy and Life Sciences, 1432-1 Horinouchi, Hachioji, Tokyo 192-0392, Japan
| | - Mikiya Miyazato
- Department of Cardiac
Physiology and Department of Biochemistry, National Cerebral
and Cardiovascular Center Research
Institute, 6-1 Kishibe-Shimmachi, Suita, Osaka 564-8565, Japan
| | - Yoshio Hayashi
- Department
of Medicinal Chemistry, Tokyo University
of Pharmacy and Life Sciences, 1432-1 Horinouchi, Hachioji, Tokyo 192-0392, Japan
| |
Collapse
|
2
|
Narumi T, Toyama D, Fujimoto J, Kyan R, Sato K, Mori K, Pearson JT, Mase N, Takayama K. Amide-to-chloroalkene substitution for overcoming intramolecular acyl transfer challenges in hexapeptidic neuromedin U receptor 2 agonists. Chem Commun (Camb) 2024; 60:3563-3566. [PMID: 38465405 DOI: 10.1039/d3cc06197c] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/12/2024]
Abstract
CPN-116 is a peptidic agonist that activates human neuromedin U receptor type 2 (NMUR2) but suffers from chemical instability due to inherent backbone isomerization on the Dap residue. To address this, a Leu-Dap-type (Z)-chloroalkene dipeptide isostere was synthesized diastereoselectively as a surrogate of the Leu-Dap peptide bond to develop a (Z)-chloroalkene analogue of CPN-116. The synthesized CPN-116 analogue is stable in 1.0 M phosphate buffer (pH 7.4) without backbone isomerization and can activate NMUR2 with similar potency to CPN-116 at nM concentrations (EC50 = 1.0 nM).
Collapse
Affiliation(s)
- Tetsuo Narumi
- Graduate School of Science and Technology, Shizuoka University, 3-5-1 Johoku, Hamamatsu, Shizuoka, 432-8561, Japan.
- Department of Applied Chemistry and Biochemical Engineering, Faculty of Engineering, Shizuoka University, Shizuoka 432-8561, Japan
- Course of Applied Chemistry and Biochemical Engineering, Department of Engineering, Graduate School of Integrated Science and Technology, Shizuoka University, 3-5-1 Johoku, Hamamatsu, Shizuoka 432-8561, Japan
- Research Institute of Green Science and Technology, Shizuoka University, 3-5-1 Johoku, Hamamatsu, Shizuoka 432-8561, Japan
| | - Daichi Toyama
- Graduate School of Science and Technology, Shizuoka University, 3-5-1 Johoku, Hamamatsu, Shizuoka, 432-8561, Japan.
| | - Junko Fujimoto
- Department of Applied Chemistry and Biochemical Engineering, Faculty of Engineering, Shizuoka University, Shizuoka 432-8561, Japan
| | - Ryuji Kyan
- Course of Applied Chemistry and Biochemical Engineering, Department of Engineering, Graduate School of Integrated Science and Technology, Shizuoka University, 3-5-1 Johoku, Hamamatsu, Shizuoka 432-8561, Japan
| | - Kohei Sato
- Graduate School of Science and Technology, Shizuoka University, 3-5-1 Johoku, Hamamatsu, Shizuoka, 432-8561, Japan.
- Department of Applied Chemistry and Biochemical Engineering, Faculty of Engineering, Shizuoka University, Shizuoka 432-8561, Japan
- Course of Applied Chemistry and Biochemical Engineering, Department of Engineering, Graduate School of Integrated Science and Technology, Shizuoka University, 3-5-1 Johoku, Hamamatsu, Shizuoka 432-8561, Japan
- Research Institute of Green Science and Technology, Shizuoka University, 3-5-1 Johoku, Hamamatsu, Shizuoka 432-8561, Japan
| | - Kenji Mori
- Department of Cardiac Physiology, National Cerebral and Cardiovascular Center Research Institute, 6-1 Kishibe-Shimmachi, Suita, Osaka 564-8565, Japan
| | - James T Pearson
- Department of Cardiac Physiology, National Cerebral and Cardiovascular Center Research Institute, 6-1 Kishibe-Shimmachi, Suita, Osaka 564-8565, Japan
| | - Nobuyuki Mase
- Graduate School of Science and Technology, Shizuoka University, 3-5-1 Johoku, Hamamatsu, Shizuoka, 432-8561, Japan.
- Department of Applied Chemistry and Biochemical Engineering, Faculty of Engineering, Shizuoka University, Shizuoka 432-8561, Japan
- Course of Applied Chemistry and Biochemical Engineering, Department of Engineering, Graduate School of Integrated Science and Technology, Shizuoka University, 3-5-1 Johoku, Hamamatsu, Shizuoka 432-8561, Japan
- Research Institute of Green Science and Technology, Shizuoka University, 3-5-1 Johoku, Hamamatsu, Shizuoka 432-8561, Japan
| | - Kentaro Takayama
- Laboratory of Environmental Biochemistry, Kyoto Pharmaceutical University, 5 Misasaginakauchi-cho, Yamashina, Kyoto 607-8414, Japan
| |
Collapse
|
3
|
Nomoto A, Suzuki Y, Morito K, Nagasawa K, Takayama K. Suppressive Effects of Neuromedin U Receptor 2-Selective Peptide Agonists on Appetite and Prolactin Secretion in Mice. ACS Med Chem Lett 2024; 15:376-380. [PMID: 38505846 PMCID: PMC10945547 DOI: 10.1021/acsmedchemlett.3c00541] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2023] [Revised: 01/11/2024] [Accepted: 02/09/2024] [Indexed: 03/21/2024] Open
Abstract
Neuromedin U receptor 2 (NMUR2), which is expressed in the central nervous system (CNS) including the hypothalamus, has been noted as a therapeutic target against obesity. We previously reported that intranasal administration of CPN-219, a NMUR2-selective hexapeptide agonist, suppresses body weight gain in mice; however, there is no detailed information regarding its CNS effects. Recently, in addition to appetite suppression, stress responses and regulation of prolactin (PRL) secretion have also attracted attention. NMUR2 expressed in the hypothalamic tuberoinfundibular dopaminergic neurons has emerged as an alternative target for treating hyperprolactinemia. Here, CPN-219 decreased food intake up to 24 h after administration at a dose of 200 nmol, resulting in body weight gain suppression, although grooming and anxiety-like behaviors were transiently induced. Interestingly, the restraint stress-induced increase in plasma PRL levels was significantly suppressed at a lower dose of 20 nmol, indicating the potential for drug development as an anti-PRL agent of NMUR2-selective agonists.
Collapse
Affiliation(s)
- Asuka Nomoto
- Laboratory of Environmental Biochemistry, Kyoto Pharmaceutical University, 5 Misasaginakauchi-cho, Yamashina, Kyoto 607-8414, Japan
| | - Yui Suzuki
- Laboratory of Environmental Biochemistry, Kyoto Pharmaceutical University, 5 Misasaginakauchi-cho, Yamashina, Kyoto 607-8414, Japan
| | - Katsuya Morito
- Laboratory of Environmental Biochemistry, Kyoto Pharmaceutical University, 5 Misasaginakauchi-cho, Yamashina, Kyoto 607-8414, Japan
| | - Kazuki Nagasawa
- Laboratory of Environmental Biochemistry, Kyoto Pharmaceutical University, 5 Misasaginakauchi-cho, Yamashina, Kyoto 607-8414, Japan
| | - Kentaro Takayama
- Laboratory of Environmental Biochemistry, Kyoto Pharmaceutical University, 5 Misasaginakauchi-cho, Yamashina, Kyoto 607-8414, Japan
| |
Collapse
|
4
|
Dodonova SA, Zhidkova EM, Kryukov AA, Valiev TT, Kirsanov KI, Kulikov EP, Budunova IV, Yakubovskaya MG, Lesovaya EA. Synephrine and Its Derivative Compound A: Common and Specific Biological Effects. Int J Mol Sci 2023; 24:17537. [PMID: 38139366 PMCID: PMC10744207 DOI: 10.3390/ijms242417537] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2023] [Revised: 12/12/2023] [Accepted: 12/13/2023] [Indexed: 12/24/2023] Open
Abstract
This review is focused on synephrine, the principal phytochemical found in bitter orange and other medicinal plants and widely used as a dietary supplement for weight loss/body fat reduction. We examine different aspects of synephrine biology, delving into its established and potential molecular targets, as well as its mechanisms of action. We present an overview of the origin, chemical composition, receptors, and pharmacological properties of synephrine, including its anti-inflammatory and anti-cancer activity in various in vitro and animal models. Additionally, we conduct a comparative analysis of the molecular targets and effects of synephrine with those of its metabolite, selective glucocorticoid receptor agonist (SEGRA) Compound A (CpdA), which shares a similar chemical structure with synephrine. SEGRAs, including CpdA, have been extensively studied as glucocorticoid receptor activators that have a better benefit/risk profile than glucocorticoids due to their reduced adverse effects. We discuss the potential of synephrine usage as a template for the synthesis of new generation of non-steroidal SEGRAs. The review also provides insights into the safe pharmacological profile of synephrine.
Collapse
Affiliation(s)
- Svetlana A. Dodonova
- Research Institute of Experimental Medicine, Department of Pathophysiology, Kursk State Medical University, 305041 Kursk, Russia; (S.A.D.); (A.A.K.)
| | - Ekaterina M. Zhidkova
- Department of Chemical Carcinogenesis, N.N. Blokhin National Medical Research Center of Oncology, 115478 Moscow, Russia; (E.M.Z.); (T.T.V.); (K.I.K.); (M.G.Y.)
| | - Alexey A. Kryukov
- Research Institute of Experimental Medicine, Department of Pathophysiology, Kursk State Medical University, 305041 Kursk, Russia; (S.A.D.); (A.A.K.)
| | - Timur T. Valiev
- Department of Chemical Carcinogenesis, N.N. Blokhin National Medical Research Center of Oncology, 115478 Moscow, Russia; (E.M.Z.); (T.T.V.); (K.I.K.); (M.G.Y.)
| | - Kirill I. Kirsanov
- Department of Chemical Carcinogenesis, N.N. Blokhin National Medical Research Center of Oncology, 115478 Moscow, Russia; (E.M.Z.); (T.T.V.); (K.I.K.); (M.G.Y.)
- Faculty of Oncology, Ryazan State Medical University Named after Academician I.P. Pavlov, 390026 Ryazan, Russia
| | - Evgeny P. Kulikov
- Laboratory of Single Cell Biology, Russian University of People’s Friendship (RUDN) University, 117198 Moscow, Russia;
| | - Irina V. Budunova
- Department of Dermatology, Northwestern University, Chicago, IL 60611, USA;
| | - Marianna G. Yakubovskaya
- Department of Chemical Carcinogenesis, N.N. Blokhin National Medical Research Center of Oncology, 115478 Moscow, Russia; (E.M.Z.); (T.T.V.); (K.I.K.); (M.G.Y.)
- Faculty of Oncology, Ryazan State Medical University Named after Academician I.P. Pavlov, 390026 Ryazan, Russia
| | - Ekaterina A. Lesovaya
- Department of Chemical Carcinogenesis, N.N. Blokhin National Medical Research Center of Oncology, 115478 Moscow, Russia; (E.M.Z.); (T.T.V.); (K.I.K.); (M.G.Y.)
- Faculty of Oncology, Ryazan State Medical University Named after Academician I.P. Pavlov, 390026 Ryazan, Russia
- Laboratory of Single Cell Biology, Russian University of People’s Friendship (RUDN) University, 117198 Moscow, Russia;
| |
Collapse
|
5
|
Kleyner R, Ung N, Arif M, Marchi E, Amble K, Gavin M, Madrid R, Lyon G. ITPR1-associated spinocerebellar ataxia with craniofacial features-additional evidence for germline mosaicism. Cold Spring Harb Mol Case Stud 2023; 9:a006303. [PMID: 37821226 PMCID: PMC10815276 DOI: 10.1101/mcs.a006303] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2023] [Accepted: 10/02/2023] [Indexed: 10/13/2023] Open
Abstract
Inositol 1,4,5-triphosphate receptor type 1 (ITPR1) is an endoplasmic reticulum-bound intracellular inositol triphosphate receptor involved in the regulation of intracellular calcium. Pathogenic variants in ITPR1 are associated with spinocerebellar ataxia (SCA) types 15/16 and 29 and have recently been implicated in a facial microsomia syndrome. In this report, we present a family with three affected individuals found to have a heterozygous missense c.800C > T (predicted p.Thr267Met) who present clinically with a SCA29-like syndrome. All three individuals presented with varying degrees of ataxia, developmental delay, and apparent intellectual disability, as well as craniofacial involvement-an uncommon finding in patients with SCA29. The variant was identified using clinical exome sequencing and validated with Sanger sequencing. It is presumed to be inherited via parental germline mosaicism. We present our findings to provide additional evidence for germline mosaic inheritance of SCA29, as well as to expand the clinical phenotype of the syndrome.
Collapse
Affiliation(s)
- Robert Kleyner
- Department of Human Genetics, NYS Institute for Basic Research in Developmental Disabilities, Staten Island, New York 10314, USA
- Department of Neurological Surgery, Renaissance School of Medicine at Stony Brook University, Stony Brook, New York 11794-8122, USA
| | - Nathaniel Ung
- Department of Human Genetics, NYS Institute for Basic Research in Developmental Disabilities, Staten Island, New York 10314, USA
| | - Mohammad Arif
- Department of Human Genetics, NYS Institute for Basic Research in Developmental Disabilities, Staten Island, New York 10314, USA
- Division of Cytogenetics and Molecular Pathology, North Shore University Hospital, Manhasset, New York 11030, USA
| | - Elaine Marchi
- Department of Human Genetics, NYS Institute for Basic Research in Developmental Disabilities, Staten Island, New York 10314, USA
| | - Karen Amble
- George A. Jervis Clinic, NYS Institute for Basic Research in Developmental Disabilities, Staten Island, New York 10314, USA
| | - Maureen Gavin
- George A. Jervis Clinic, NYS Institute for Basic Research in Developmental Disabilities, Staten Island, New York 10314, USA
| | - Ricardo Madrid
- George A. Jervis Clinic, NYS Institute for Basic Research in Developmental Disabilities, Staten Island, New York 10314, USA
| | - Gholson Lyon
- Department of Human Genetics, NYS Institute for Basic Research in Developmental Disabilities, Staten Island, New York 10314, USA;
- George A. Jervis Clinic, NYS Institute for Basic Research in Developmental Disabilities, Staten Island, New York 10314, USA
- Biology PhD Program, The Graduate Center, The City University of New York, New York, New York 10016, USA
| |
Collapse
|
6
|
Pałasz A, Worthington JJ, Filipczyk Ł, Saganiak K. Pharmacomodulation of brain neuromedin U signaling as a potential therapeutic strategy. J Neurosci Res 2023; 101:1728-1736. [PMID: 37496289 DOI: 10.1002/jnr.25234] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2023] [Revised: 06/08/2023] [Accepted: 07/14/2023] [Indexed: 07/28/2023]
Abstract
Neuromedin U (NMU) belongs to a family of multifunctional neuropeptides that modulate the activity of several neural networks of the brain. Acting via metabotropic receptor NMUR2, NMU plays a role in the regulation of multiple systems, including energy homeostasis, stress responses, circadian rhythms, and endocrine signaling. The involvement of NMU signaling in the central regulation of important neurophysiological processes and its disturbances is a potential target for pharmacological modulation. Number of preclinical studies have proven that both modified NMU analogues such as PASR8-NMU or F4R8-NMU and designed NMUR2 agonists, for example, CPN-116, CPN-124 exhibit a distinct pharmacological activity especially when delivered transnasally. Their application can potentially be useful in the more convenient and safe treatment of obesity, eating disorders, Alzheimer's disease-related memory impairment, alcohol addiction, and sleep disturbances. Accumulating findings suggest that pharmacomodulation of the central NMU signaling may be a promising strategy in the treatment of several neuropsychiatric disorders.
Collapse
Affiliation(s)
- Artur Pałasz
- Department of Histology, Faculty of Medical Sciences in Katowice, Medical University of Silesia, Katowice, Poland
| | - John J Worthington
- Division of Biomedical and Life Sciences, Faculty of Health and Medicine, Lancaster University, Lancaster, UK
| | - Łukasz Filipczyk
- Department of Histology, Faculty of Medical Sciences in Katowice, Medical University of Silesia, Katowice, Poland
| | - Karolina Saganiak
- Department of Anatomy, Collegium Medicum, Jagiellonian University, Kraków, Poland
| |
Collapse
|
7
|
Botticelli L, Micioni Di Bonaventura E, Del Bello F, Giorgioni G, Piergentili A, Quaglia W, Bonifazi A, Cifani C, Micioni Di Bonaventura MV. The neuromedin U system: Pharmacological implications for the treatment of obesity and binge eating behavior. Pharmacol Res 2023; 195:106875. [PMID: 37517560 DOI: 10.1016/j.phrs.2023.106875] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/20/2023] [Revised: 07/25/2023] [Accepted: 07/28/2023] [Indexed: 08/01/2023]
Abstract
Neuromedin U (NMU) is a bioactive peptide produced in the gut and in the brain, with a role in multiple physiological processes. NMU acts by binding and activating two G protein coupled receptors (GPCR), the NMU receptor 1 (NMU-R1), which is predominantly expressed in the periphery, and the NMU receptor 2 (NMU-R2), mainly expressed in the central nervous system (CNS). In the brain, NMU and NMU-R2 are consistently present in the hypothalamus, commonly recognized as the main "feeding center". Considering its distribution pattern, NMU revealed to be an important neuropeptide involved in the regulation of food intake, with a powerful anorexigenic ability. This has been observed through direct administration of NMU and by studies using genetically modified animals, which revealed an obesity phenotype when the NMU gene is deleted. Thus, the development of NMU analogs or NMU-R2 agonists might represent a promising pharmacological strategy to treat obese individuals. Furthermore, NMU has been demonstrated to influence the non-homeostatic aspect of food intake, playing a potential role in binge eating behavior. This review aims to discuss and summarize the current literature linking the NMU system with obesity and binge eating behavior, focusing on the influence of NMU on food intake and the neuronal mechanisms underlying its anti-obesity properties. Pharmacological strategies to improve the pharmacokinetic profile of NMU will also be reported.
Collapse
Affiliation(s)
- Luca Botticelli
- School of Pharmacy, Pharmacology Unit, University of Camerino, via Madonna delle Carceri, 9, Camerino 62032, Italy
| | | | - Fabio Del Bello
- School of Pharmacy, Medicinal Chemistry Unit, University of Camerino, via Madonna delle Carceri, Camerino 62032, Italy
| | - Gianfabio Giorgioni
- School of Pharmacy, Medicinal Chemistry Unit, University of Camerino, via Madonna delle Carceri, Camerino 62032, Italy
| | - Alessandro Piergentili
- School of Pharmacy, Medicinal Chemistry Unit, University of Camerino, via Madonna delle Carceri, Camerino 62032, Italy
| | - Wilma Quaglia
- School of Pharmacy, Medicinal Chemistry Unit, University of Camerino, via Madonna delle Carceri, Camerino 62032, Italy
| | - Alessandro Bonifazi
- Medicinal Chemistry Section, Molecular Targets and Medications Discovery Branch, National Institute on Drug Abuse, Intramural Research Program, National Institutes of Health, 333 Cassell Drive, Baltimore, MD 21224, United States
| | - Carlo Cifani
- School of Pharmacy, Pharmacology Unit, University of Camerino, via Madonna delle Carceri, 9, Camerino 62032, Italy.
| | | |
Collapse
|
8
|
Regulation of feeding and therapeutic application of bioactive peptides. Pharmacol Ther 2022; 239:108187. [DOI: 10.1016/j.pharmthera.2022.108187] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2022] [Revised: 03/25/2022] [Accepted: 04/07/2022] [Indexed: 10/18/2022]
|
9
|
Mehrotra S, Lam S, Glenn E, Hymel D, Sanford CA, Liu Q, Herich J, Wulff BS, Meek TH. Unanticipated Characteristics of a Selective, Potent Neuromedin-U Receptor 2 Agonist. ACS BIO & MED CHEM AU 2022; 2:370-375. [PMID: 37102164 PMCID: PMC10125376 DOI: 10.1021/acsbiomedchemau.2c00016] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 04/28/2023]
Abstract
Neuromedin-U (NMU) mediates several physiological functions via its two cognate receptors, NMUR1 and NMUR2. Disentangling the individual roles of each receptor has largely been undertaken through the use of transgenic mice bearing a deletion in one of the two receptors or by testing native molecules (NMU or its truncated version NMU-8) in a tissue-specific manner, in effect, taking advantage of the distinct receptor expression profiles. These strategies have proved quite useful despite the inherent limitations of overlapping receptor roles and potential compensatory influences of germline gene deletion. With these considerations in mind, the availability of potent, selective NMU compounds with appropriate pharmacokinetic profiles would advance the capabilities of investigators undertaking such efforts. Here, we evaluate a recently reported NMUR2-selective peptide (compound 17) for its in vitro potency (mouse and human), binding affinity, murine pharmacokinetic properties, and in vivo effects. Despite being designed as an NMUR2 agonist, our results show compound 17 unexpectedly binds but does not have functional activity on NMUR1, thereby acting as an R1 antagonist while simultaneously being a potent NMUR2 agonist. Furthermore, evaluation of compound 17 across all known and orphan G-protein-coupled receptors demonstrates multiple receptor partners beyond NMUR2/R1 binding. These properties need to be appreciated for accurate interpretation of results generated using this molecule and may limit the broader ability of this particular entity in disentangling the physiological role of NMU receptor biology.
Collapse
Affiliation(s)
- Suneet Mehrotra
- Novo
Nordisk Research Center, 530 Fairview Avenue North #5000, Seattle, Washington 98109, United States
| | - Sebastian Lam
- Novo
Nordisk Research Center, 530 Fairview Avenue North #5000, Seattle, Washington 98109, United States
| | - Elizabeth Glenn
- Novo
Nordisk Research Center, 530 Fairview Avenue North #5000, Seattle, Washington 98109, United States
| | - David Hymel
- Novo
Nordisk Research Center, 530 Fairview Avenue North #5000, Seattle, Washington 98109, United States
| | - Christina A. Sanford
- Novo
Nordisk Research Center, 530 Fairview Avenue North #5000, Seattle, Washington 98109, United States
| | - Qingyuan Liu
- Novo
Nordisk Research Center, 530 Fairview Avenue North #5000, Seattle, Washington 98109, United States
| | - John Herich
- Novo
Nordisk Research Center, 530 Fairview Avenue North #5000, Seattle, Washington 98109, United States
| | - Birgitte S. Wulff
- Novo
Nordisk Global Obesity and Liver Disease Research, Novo Nordisk Park 1, 2760 Måløv, Denmark
| | - Thomas H. Meek
- Transformational
Research Unit, Novo Nordisk Research Center
Oxford, Roosevelt Drive, Oxford OX3 7FZ, United Kingdom
| |
Collapse
|
10
|
Takayama K. Peptide Tool-Driven Functional Elucidation of Biomolecules Related to Endocrine System and Metabolism. Chem Pharm Bull (Tokyo) 2022; 70:413-419. [PMID: 35650039 DOI: 10.1248/cpb.c22-00048] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
The enhancement of basic research based on biomolecule-derived peptides has the potential to elucidate their biological function and lead to the development of new drugs. In this review, two biomolecules, namely "neuromedin U (NMU)" and "myostatin," are discussed. NMU, a neuropeptide first isolated from the porcine spinal cord, non-selectively activates two types of receptors (NMUR1 and NMUR2) and displays a variety of physiological actions, including appetite suppression. The development of receptor-selective regulators helps elucidate each receptor's detailed biological roles. A structure-activity relationship (SAR) study was conducted to achieve this purpose using the amidated C-terminal core structure of NMU for receptor activation. Through obtaining receptor-selective hexapeptide agonists, molecular functions of the core structure were clarified. Myostatin is a negative regulator of skeletal muscle growth and has attracted attention as a target for treating atrophic muscle disorders. Although the protein inhibitors, such as antibodies and receptor-decoys have been developed, the inhibition by smaller molecules, including peptides, is less advanced. Focusing on the inactivation mechanism by prodomain proteins derived from myostatin-precursor, a first mid-sized α-helical myostatin-inhibitory peptide (23-mer) was identified from the mouse sequence. The detailed SAR study based on this peptide afforded the structural requirements for effective inhibition. The subsequent computer simulation proposed the docking mode at the activin type I receptor binding site of myostatin. The resulting development of potent inhibitors suggested the existence of a more appropriate binding mode linked to their β-sheet forming properties, suggesting that further investigations might be needed.
Collapse
Affiliation(s)
- Kentaro Takayama
- Department of Environmental Biochemistry, Kyoto Pharmaceutical University
| |
Collapse
|
11
|
Structural insights into the peptide selectivity and activation of human neuromedin U receptors. Nat Commun 2022; 13:2045. [PMID: 35440625 PMCID: PMC9019041 DOI: 10.1038/s41467-022-29683-w] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2021] [Accepted: 03/16/2022] [Indexed: 01/14/2023] Open
Abstract
Neuromedin U receptors (NMURs), including NMUR1 and NMUR2, are a group of Gq/11-coupled G protein-coupled receptors (GPCRs). NMUR1 and NMUR2 play distinct, pleiotropic physiological functions in peripheral tissues and in the central nervous system (CNS), respectively, according to their distinct tissue distributions. These receptors are stimulated by two endogenous neuropeptides, neuromedin U and S (NMU and NMS) with similar binding affinities. NMURs have gathered attention as potential drug targets for obesity and inflammatory disorders. Specifically, selective agonists for NMUR2 in peripheral tissue show promising long-term anti-obesity effects with fewer CNS-related side effects. However, the mechanisms of peptide binding specificity and receptor activation remain elusive. Here, we report four cryo-electron microscopy structures of Gq chimera-coupled NMUR1 and NMUR2 in complexes with NMU and NMS. These structures reveal the conserved overall peptide-binding mode and the mechanism of peptide selectivity for specific NMURs, as well as the common activation mechanism of the NMUR subfamily. Together, these findings provide insights into the molecular basis of the peptide recognition and offer an opportunity for the design of the selective drugs targeting NMURs. Neuromedin U receptors (NMURs) are potential drug targets for obesity and inflammatory disorders. Here, the authors report structural basis for neuromedin recognition and activation mechanism of NMURs.
Collapse
|
12
|
Yuan Y, Wang H, He J, Sun H, Zhu D, Bi Y. Peripheral Administration of NMU Promotes White Adipose Tissue Beiging and Improves Glucose Tolerance. Int J Endocrinol 2021; 2021:6142096. [PMID: 34422045 PMCID: PMC8373479 DOI: 10.1155/2021/6142096] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/20/2021] [Revised: 06/25/2021] [Accepted: 07/21/2021] [Indexed: 11/18/2022] Open
Abstract
PURPOSE Targeting white adipose tissue (WAT) beiging has been proposed as an effective way to increase thermogenesis and improve glucose metabolism. Neuromedin U (NMU) is a neuropeptide that could increase energy expenditure, while its effects on WAT beiging and glucose homeostasis remain to be investigated. METHODS Male C57BL/6 mice were fed with high fat diet (HFD) to induce obesity and hyperglycemia and then treated with chronic subcutaneous injection of NMU. Body weight and food intake were recorded daily. After 14 days of injection, intraperitoneal glucose tolerance tests and 18F-fluorodeoxyglucose micro-positron emission tomography/computed tomography (18F-FDG micro-PET/CT) scans were conducted. Subcutaneous WAT (sWAT) and interscapular brown adipose tissue were collected for the evaluation of adipocyte size, expression of uncoupling protein 1 (Ucp1), and other thermogenic-related genes. Stromal vascular fraction of subcutaneous WAT was extracted for the measurement of type 2 innate lymphocytes (ILC2s) proportions. RESULTS Glucose tolerance was markedly improved by peripherally administered NMU. Micro-PET/CT suggested that NMU promoted WAT beiging, which was further confirmed by haematoxylin and eosin (H&E) staining and immunohistochemistry. In diet-induced-obese (DIO) mice, NMU activated thermogenic-related genes in WAT. In addition, NMU stimulated ILC2s in the stromal vascular fraction of WAT. CONCLUSION Taken together, our study indicates that peripheral administration of NMU is a potential therapeutic strategy for the promotion of WAT beiging and the improvement of impaired glucose tolerance.
Collapse
Affiliation(s)
- Yue Yuan
- Department of Endocrinology, Affiliated Drum Tower Hospital, Medical School of Nanjing University, Nanjing, China
| | - Hongdong Wang
- Department of Endocrinology, Affiliated Drum Tower Hospital, Medical School of Nanjing University, Nanjing, China
| | - Jielei He
- Department of Endocrinology, Affiliated Drum Tower Hospital, Medical School of Nanjing University, Nanjing, China
| | - Haixiang Sun
- Department of Endocrinology, Affiliated Drum Tower Hospital, Medical School of Nanjing University, Nanjing, China
| | - Dalong Zhu
- Department of Endocrinology, Affiliated Drum Tower Hospital, Medical School of Nanjing University, Nanjing, China
| | - Yan Bi
- Department of Endocrinology, Affiliated Drum Tower Hospital, Medical School of Nanjing University, Nanjing, China
| |
Collapse
|
13
|
Design and synthesis of peptidic partial agonists of human neuromedin U receptor 1 with enhanced serum stability. Bioorg Med Chem Lett 2020; 30:127436. [PMID: 32721452 DOI: 10.1016/j.bmcl.2020.127436] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2020] [Revised: 07/17/2020] [Accepted: 07/21/2020] [Indexed: 11/23/2022]
Abstract
Neuromedin U (NMU) activates two receptors (NMUR1 and NMUR2) and is a promising candidate for development of drugs to combat obesity. Previously, we obtained hexapeptides as selective full NMUR agonists. Development of a partial agonist which mildly activates receptors is an effective strategy which lead to an understanding of the functions of NMU receptors. In 2014, we reported hexapeptide 3 (CPN-124) as an NMUR1-selective partial agonist but its selectivity and serum stability were unsatisfactory. Herein, we report the development of a hexapeptide-type partial agonist (8, CPN-223) based on a peptide (3) but with higher NMUR1-selectivity and enhanced serum stability. A structure-activity relationship study of synthetic pentapeptide derivatives suggested that a hexapeptide is a minimum structure consistent with both good NMUR1-selective agonistic activity and serum stability.
Collapse
|
14
|
De Prins A, Allaoui W, Medrano M, Van Eeckhaut A, Ballet S, Smolders I, De Bundel D. Effects of neuromedin U-8 on stress responsiveness and hypothalamus-pituitary-adrenal axis activity in male C57BL/6J mice. Horm Behav 2020; 121:104666. [PMID: 31899262 DOI: 10.1016/j.yhbeh.2019.104666] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/31/2019] [Revised: 11/29/2019] [Accepted: 12/24/2019] [Indexed: 01/31/2023]
Abstract
Neuromedin U (NMU) is a highly conserved neuropeptide that has been implicated in the stress response. To better understand how it influences various aspects of the stress response, we studied the effects of intracerebroventricular NMU-8 administration on stress-related behavior and activity of the hypothalamus-pituitary-adrenal (HPA) axis in male C57BL/6J mice. We investigated these NMU-8 effects when mice remained in their home cage and when they were challenged by exposure to forced swim stress. NMU-8 administration resulted in increased grooming behavior in mice that remained in their home cage and in a significant increase in c-Fos immunoreactivity in the paraventricular hypothalamus (PVH) and arcuate nucleus (ARC). Surprisingly, NMU-8 administration significantly decreased plasma corticosterone concentrations. Furthermore, NMU-8 administration increased immobility in the forced swim test in both naïve mice and mice that were previously exposed to swim stress. The effect of NMU-8 on c-Fos immunoreactivity in the PVH was dependent on previous exposure to swim stress given that we observed no significant changes in mice exposed for the first time to swim stress. In contrast, in the ARC we observed a significant increase in c-Fos immunoreactivity regardless of previous stress exposure. Interestingly, NMU-8 administration also significantly decreased plasma corticosterone concentrations in mice that were exposed to single forced swim stress, while this effect was no longer observed when mice were exposed to forced swim stress for a second time. Taken together, our data indicate that NMU-8 regulates stress responsiveness and suggests that its effects depend on previous stress exposure.
Collapse
Affiliation(s)
- An De Prins
- Department of Pharmaceutical Chemistry, Drug Analysis and Drug Information, Center for Neurosciences (C4N), Vrije Universiteit Brussel, Laarbeeklaan 103, 1090 Brussels, Belgium
| | - Wissal Allaoui
- Department of Pharmaceutical Chemistry, Drug Analysis and Drug Information, Center for Neurosciences (C4N), Vrije Universiteit Brussel, Laarbeeklaan 103, 1090 Brussels, Belgium
| | - Mireia Medrano
- Department of Pharmaceutical Chemistry, Drug Analysis and Drug Information, Center for Neurosciences (C4N), Vrije Universiteit Brussel, Laarbeeklaan 103, 1090 Brussels, Belgium
| | - Ann Van Eeckhaut
- Department of Pharmaceutical Chemistry, Drug Analysis and Drug Information, Center for Neurosciences (C4N), Vrije Universiteit Brussel, Laarbeeklaan 103, 1090 Brussels, Belgium
| | - Steven Ballet
- Research Group of Organic Chemistry, Departments of Chemistry and Bioengineering Sciences, Vrije Universiteit Brussel, Pleinlaan 2, 1050 Brussels, Belgium
| | - Ilse Smolders
- Department of Pharmaceutical Chemistry, Drug Analysis and Drug Information, Center for Neurosciences (C4N), Vrije Universiteit Brussel, Laarbeeklaan 103, 1090 Brussels, Belgium
| | - Dimitri De Bundel
- Department of Pharmaceutical Chemistry, Drug Analysis and Drug Information, Center for Neurosciences (C4N), Vrije Universiteit Brussel, Laarbeeklaan 103, 1090 Brussels, Belgium.
| |
Collapse
|
15
|
Takayama K, Mori K, Tanaka A, Sasaki Y, Sohma Y, Taguchi A, Taniguchi A, Sakane T, Yamamoto A, Miyazato M, Minamino N, Kangawa K, Hayashi Y. A chemically stable peptide agonist to neuromedin U receptor type 2. Bioorg Med Chem 2020; 28:115454. [PMID: 32247748 DOI: 10.1016/j.bmc.2020.115454] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2020] [Revised: 03/19/2020] [Accepted: 03/20/2020] [Indexed: 12/28/2022]
Abstract
Neuromedin U (NMU) is a peptide with appetite suppressive activity and other physiological activities via activation of the NMU receptors NMUR1 and NMUR2. In 2014, we reported the first NMUR2 selective agonist, 3-cyclohexylpropionyl-Leu-Leu-Dap-Pro-Arg-Asn-NH2 (CPN-116). However, we found that CPN-116 in phosphate buffer is unstable because of Nα-to-Nβ acyl migration at the Dap residue. In this study, the chemical stability of CPN-116 was evaluated under various conditions, and it was found to be relatively stable in buffers such as HEPES and MES. We also performed a structure-activity relationship study to obtain an NMUR2-selective agonist with improved chemical stability. Consequently, CPN-219 bearing a Dab residue in place of Dap emerged as a next-generation hexapeptidic NMUR2 agonist.
Collapse
Affiliation(s)
- Kentaro Takayama
- Department of Medicinal Chemistry, Tokyo University of Pharmacy and Life Sciences, Hachioji, Tokyo 192-0392, Japan; Department of Environmental Biochemistry, Kyoto Pharmaceutical University, 5 Misasaginakauchi-cho, Yamashina, Kyoto 607-8414, Japan.
| | - Kenji Mori
- Department of Biochemistry, National Cerebral and Cardiovascular Center Research Institute, 6-1 Kishibe-Shimmachi, Suita, Osaka 564-8565, Japan
| | - Akiko Tanaka
- Laboratory of Pharmaceutical Technology, Kobe Pharmaceutical University, 4-19-1 Motoyamakitamachi, Higashinada, Kobe, Hyogo 658-8558, Japan
| | - Yu Sasaki
- Department of Medicinal Chemistry, Tokyo University of Pharmacy and Life Sciences, Hachioji, Tokyo 192-0392, Japan
| | - Yuko Sohma
- Department of Medicinal Chemistry, Tokyo University of Pharmacy and Life Sciences, Hachioji, Tokyo 192-0392, Japan
| | - Akihiro Taguchi
- Department of Medicinal Chemistry, Tokyo University of Pharmacy and Life Sciences, Hachioji, Tokyo 192-0392, Japan
| | - Atsuhiko Taniguchi
- Department of Medicinal Chemistry, Tokyo University of Pharmacy and Life Sciences, Hachioji, Tokyo 192-0392, Japan
| | - Toshiyasu Sakane
- Laboratory of Pharmaceutical Technology, Kobe Pharmaceutical University, 4-19-1 Motoyamakitamachi, Higashinada, Kobe, Hyogo 658-8558, Japan
| | - Akira Yamamoto
- Department of Biopharmaceutics, Kyoto Pharmaceutical University, 5 Misasaginakauchi-cho, Yamashina, Kyoto 607-8414, Japan
| | - Mikiya Miyazato
- Department of Biochemistry, National Cerebral and Cardiovascular Center Research Institute, 6-1 Kishibe-Shimmachi, Suita, Osaka 564-8565, Japan
| | - Naoto Minamino
- Omics Research Center, National Cerebral and Cardiovascular Center, 6-1 Kishibe-Shimmachi, Suita, Osaka 564-8565, Japan
| | - Kenji Kangawa
- Department of Biochemistry, National Cerebral and Cardiovascular Center Research Institute, 6-1 Kishibe-Shimmachi, Suita, Osaka 564-8565, Japan
| | - Yoshio Hayashi
- Department of Medicinal Chemistry, Tokyo University of Pharmacy and Life Sciences, Hachioji, Tokyo 192-0392, Japan.
| |
Collapse
|
16
|
Ensho T, Maruyama K, Qattali AW, Yasuda M, Uemura R, Murakami N, Nakahara K. Comparison of glucose tolerance between wild-type mice and mice with double knockout of neuromedin U and neuromedin S. J Vet Med Sci 2019; 81:1305-1312. [PMID: 31341114 PMCID: PMC6785621 DOI: 10.1292/jvms.19-0320] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023] Open
Abstract
Recently, it has been proposed that neuromedin U (NMU) is "decretin", which suppresses insulin secretion from the pancreas in vitro. Here we examined the possible involvement of NMU in insulin secretion in vivo by comparing the plasma glucose and insulin levels of wild-type mice with those of double knockout (D-KO) of the NMU and neuromedin S (NMS) genes, as NMS binds to the neuromedin U receptor. If NMU is, in fact, "decretin", which inhibits insulin secretion from the pancreas, then NMU-deficient mice might result in higher plasma insulin levels than is the case in wild-type mice, or injection of NMU lead to suppression of plasma insulin level. In this study, we found that the fasting plasma level of insulin was not increased in D-KO mice. Glucose tolerance tests revealed no significant difference in plasma insulin levels between wild-type mice and D-KO mice under non-fasting conditions. After peripheral injection of NMU, plasma glucose and insulin levels did not show any significant changes in either wild-type or D-KO mice. Glucose tolerance testing after 3 weeks of high fat feeding revealed no significant difference in plasma insulin levels during 60 min after glucose injection between wild-type and D-KO mice. These results suggest that even if NMU is a decretin candidate, its physiological involvement in suppression of insulin secretion may be very minor in vivo.
Collapse
Affiliation(s)
- Takuya Ensho
- Department of Veterinary Physiology, Faculty of Agriculture, University of Miyazaki, 1-1, Gakuenkibanadainishi, Miyazaki-shi, Miyazaki 889-2192, Japan
| | - Keisuke Maruyama
- Department of Veterinary Physiology, Faculty of Agriculture, University of Miyazaki, 1-1, Gakuenkibanadainishi, Miyazaki-shi, Miyazaki 889-2192, Japan
| | - Abdul Wahid Qattali
- Department of Veterinary Physiology, Faculty of Agriculture, University of Miyazaki, 1-1, Gakuenkibanadainishi, Miyazaki-shi, Miyazaki 889-2192, Japan
| | - Masahiro Yasuda
- Department of Veterinary Anatomy, Faculty of Agriculture, University of Miyazaki, 1-1, Gakuenkibanadainishi, Miyazaki-shi, Miyazaki 889-2192, Japan
| | - Ryoko Uemura
- Department of Veterinary Domestic animal Hygienics, Faculty of Agriculture, 1-1, Gakuenkibanadainishi, Miyazaki-shi, Miyazaki 889-2192, Japan
| | - Noboru Murakami
- Department of Veterinary Physiology, Faculty of Agriculture, University of Miyazaki, 1-1, Gakuenkibanadainishi, Miyazaki-shi, Miyazaki 889-2192, Japan
| | - Keiko Nakahara
- Department of Veterinary Physiology, Faculty of Agriculture, University of Miyazaki, 1-1, Gakuenkibanadainishi, Miyazaki-shi, Miyazaki 889-2192, Japan
| |
Collapse
|
17
|
Han M, Xu Y, Yuan J, Zhu Y, Zhou J, Liu L, Li X, Zhang H. Circulating neuromedin U levels are similar in subjects with NGT and newly diagnosed T2DM and do not correlate with insulin secretion. Diabetes Res Clin Pract 2019; 151:163-168. [PMID: 31004673 DOI: 10.1016/j.diabres.2019.04.020] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/20/2018] [Revised: 02/05/2019] [Accepted: 04/12/2019] [Indexed: 11/29/2022]
Abstract
AIMS Neuromedin U (NMU), a highly conserved peptide, is implicated in energy homeostasis and is involved in regulating insulin secretion as a decretin hormone in animals. However, there have been no reports on the relationship between NMU and type 2 diabetes mellitus (T2DM). The aim of this study was to investigate circulating NMU concentrations in healthy subjects and T2DM patients and to evaluate the association between serum NMU levels and glucose-stimulated insulin secretion. METHODS We used ELISA to analyze NMU concentrations in blood samples from newly diagnosed T2DM patients (n = 57) and age-, sex- and BMI-matched healthy control subjects (n = 50). Anthropometric parameters, oral glucose tolerance, glycosylated hemoglobin, blood lipids, insulin sensitivity, and insulin secretion were measured. RESULTS No difference was observed in serum NMU levels between control subjects and newly diagnosed T2DM patients (p = 0.788). The oral glucose tolerance test (OGTT) results indicated that serum NMU concentrations did not change and did not correlate with insulin levels at fasting and 1 h, 2 h and 3 h after glucose load in both healthy controls and newly diagnosed T2DM patients. CONCLUSION Circulating NMU concentrations were similar in control subjects and newly diagnosed T2DM patients and were not associated with glucose-stimulated insulin secretion. Serum NMU is not a human decretin hormone and may not play a role in the pathogenesis of T2DM.
Collapse
Affiliation(s)
- Mingzhu Han
- Department of Endocrinology, Seventh People's Hospital of Shanghai University of Traditional Chinese Medicine, Shanghai 200137, China
| | - Yanhong Xu
- Department of Endocrinology, Seventh People's Hospital of Shanghai University of Traditional Chinese Medicine, Shanghai 200137, China
| | - Jing Yuan
- Department of Statistics, Shandong Institute of Business and Technology, Yantai 264005, China
| | - Yi Zhu
- Department of Endocrinology, Seventh People's Hospital of Shanghai University of Traditional Chinese Medicine, Shanghai 200137, China
| | - Jianhua Zhou
- Department of Endocrinology, Seventh People's Hospital of Shanghai University of Traditional Chinese Medicine, Shanghai 200137, China
| | - Lu Liu
- Department of Endocrinology, Seventh People's Hospital of Shanghai University of Traditional Chinese Medicine, Shanghai 200137, China
| | - Xiaohua Li
- Department of Endocrinology, Seventh People's Hospital of Shanghai University of Traditional Chinese Medicine, Shanghai 200137, China.
| | - Hongli Zhang
- Department of Endocrinology, Seventh People's Hospital of Shanghai University of Traditional Chinese Medicine, Shanghai 200137, China.
| |
Collapse
|
18
|
Nagai H, Kaisho T, Yokoyama K, Asakawa T, Fujita H, Matsumiya K, Noguchi J, Tsuchimori K, Nishizawa N, Kanematsu-Yamaki Y, Dote K, Inooka H, Sakamoto JI, Ohtaki T, Asami T, Takekawa S. Differential effects of selective agonists of neuromedin U1 and U2 receptors in obese and diabetic mice. Br J Pharmacol 2017; 175:359-373. [PMID: 29057457 DOI: 10.1111/bph.14077] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2017] [Revised: 10/13/2017] [Accepted: 10/15/2017] [Indexed: 01/11/2023] Open
Abstract
BACKGROUND AND PURPOSE Neuromedin U (NmU) may be a novel target for obesity treatment owing to its anorectic and energy expenditure enhancing effects. Although two receptors, NMU1 and NMU2, are both responsible for the NmU-mediated anti-obesity effects, the receptor agonist with the most appropriate profiles for treating obesity and diabetes in terms of efficacy and safety is as yet unknown. Thus, we developed and evaluated novel NMU1/2 receptor-selective agonists. EXPERIMENTAL APPROACH Efficacy and safety were assessed in mice with diet-induced obesity (DIO) and those with leptin-deficient diabetes (ob/ob) through repeated peripheral administration of selective agonists to NMU1 (NMU-6102) and NMU2 (NMU-2084), along with non-selective NMU1/2 agonists (NMU-0002 and NMU-6014). We also performed immunohistochemistry for c-Fos protein expression in the brain to probe their mechanisms of action. KEY RESULTS Although both non-selective NMU1/2 agonists and the NMU2-selective agonist had high efficacy compared with the NMU1-selective agonist, only the NMU2-selective agonist led to relatively low adverse effects, such as diarrhoea, in DIO mice. However, the non-selective NMU1/2 agonist and the NMU1-selective agonist, but not the NMU2-selective agonist, were effective in diabetic ob/ob mice. Mechanistically, NMU2-selective agonists preferentially activate pro-opiomelanocortin neurons in the hypothalamic arcuate nucleus but not in the paraventricular nucleus. CONCLUSIONS AND IMPLICATIONS These results suggest that an NMU2 receptor-selective agonist may be a well-balanced drug for the treatment of obesity and that an NMU1 receptor-selective agonist may also be beneficial for treating obesity and diabetes once its side effects are minimized.
Collapse
Affiliation(s)
- Hiroaki Nagai
- Research, Takeda Pharmaceutical Company Limited, Fujisawa, Japan
| | - Tomoko Kaisho
- Research, Takeda Pharmaceutical Company Limited, Fujisawa, Japan
| | - Kotaro Yokoyama
- Research, Takeda Pharmaceutical Company Limited, Fujisawa, Japan
| | - Tomoko Asakawa
- Research, Takeda Pharmaceutical Company Limited, Fujisawa, Japan
| | - Hisashi Fujita
- Research, Takeda Pharmaceutical Company Limited, Fujisawa, Japan
| | - Kouta Matsumiya
- Research, Takeda Pharmaceutical Company Limited, Fujisawa, Japan
| | - Jiro Noguchi
- Research, Takeda Pharmaceutical Company Limited, Fujisawa, Japan
| | - Kazue Tsuchimori
- Research, Takeda Pharmaceutical Company Limited, Fujisawa, Japan
| | - Naoki Nishizawa
- Research, Takeda Pharmaceutical Company Limited, Fujisawa, Japan
| | | | - Katsuko Dote
- Research, Takeda Pharmaceutical Company Limited, Fujisawa, Japan
| | - Hiroshi Inooka
- Research, Takeda Pharmaceutical Company Limited, Fujisawa, Japan
| | | | - Tetsuya Ohtaki
- Research, Takeda Pharmaceutical Company Limited, Fujisawa, Japan
| | - Taiji Asami
- Research, Takeda Pharmaceutical Company Limited, Fujisawa, Japan
| | - Shiro Takekawa
- Research, Takeda Pharmaceutical Company Limited, Fujisawa, Japan
| |
Collapse
|