1
|
Paulus J, Sewald N. Small molecule- and peptide-drug conjugates addressing integrins: A story of targeted cancer treatment. J Pept Sci 2024; 30:e3561. [PMID: 38382900 DOI: 10.1002/psc.3561] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2023] [Revised: 11/15/2023] [Accepted: 11/16/2023] [Indexed: 02/23/2024]
Abstract
Targeted cancer treatment should avoid side effects and damage to healthy cells commonly encountered during traditional chemotherapy. By combining small molecule or peptidic ligands as homing devices with cytotoxic drugs connected by a cleavable or non-cleavable linker in peptide-drug conjugates (PDCs) or small molecule-drug conjugates (SMDCs), cancer cells and tumours can be selectively targeted. The development of highly affine, selective peptides and small molecules in recent years has allowed PDCs and SMDCs to increasingly compete with antibody-drug conjugates (ADCs). Integrins represent an excellent target for conjugates because they are overexpressed by most cancer cells and because of the broad knowledge about native binding partners as well as the multitude of small-molecule and peptidic ligands that have been developed over the last 30 years. In particular, integrin αVβ3 has been addressed using a variety of different PDCs and SMDCs over the last two decades, following various strategies. This review summarises and describes integrin-addressing PDCs and SMDCs while highlighting points of great interest.
Collapse
Affiliation(s)
- Jannik Paulus
- Organic and Bioorganic Chemistry, Faculty of Chemistry, Bielefeld University, Bielefeld, Germany
| | - Norbert Sewald
- Organic and Bioorganic Chemistry, Faculty of Chemistry, Bielefeld University, Bielefeld, Germany
| |
Collapse
|
2
|
He T, Giacomini D, Tolomelli A, Baiula M, Gentilucci L. Conjecturing about Small-Molecule Agonists and Antagonists of α4β1 Integrin: From Mechanistic Insight to Potential Therapeutic Applications. Biomedicines 2024; 12:316. [PMID: 38397918 PMCID: PMC10887150 DOI: 10.3390/biomedicines12020316] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2023] [Revised: 01/18/2024] [Accepted: 01/25/2024] [Indexed: 02/25/2024] Open
Abstract
Integrins are heterodimeric cell-surface receptors that regulate cell-cell adhesion and cellular functions through bidirectional signaling. On the other hand, anomalous trafficking of integrins is also implicated in severe pathologies as cancer, thrombosis, inflammation, allergies, and multiple sclerosis. For this reason, they are attractive candidates as drug targets. However, despite promising preclinical data, several anti-integrin drugs failed in late-stage clinical trials for chronic indications, with paradoxical side effects. One possible reason is that, at low concentration, ligands proposed as antagonists may also act as partial agonists. Hence, the comprehension of the specific structural features for ligands' agonism or antagonism is currently of the utmost interest. For α4β1 integrin, the situation is particularly obscure because neither the crystallographic nor the cryo-EM structures are known. In addition, very few potent and selective agonists are available for investigating the mechanism at the basis of the receptor activation. In this account, we discuss the physiological role of α4β1 integrin and the related pathologies, and review the few agonists. Finally, we speculate on plausible models to explain agonism vs. antagonism by comparison with RGD-binding integrins and by analysis of computational simulations performed with homology or hybrid receptor structures.
Collapse
Affiliation(s)
- Tingting He
- Department of Chemistry “G. Ciamician”, University of Bologna, Via Gobetti 83, Ue4, 40129 Bologna, Italy; (T.H.); (D.G.); (A.T.)
| | - Daria Giacomini
- Department of Chemistry “G. Ciamician”, University of Bologna, Via Gobetti 83, Ue4, 40129 Bologna, Italy; (T.H.); (D.G.); (A.T.)
| | - Alessandra Tolomelli
- Department of Chemistry “G. Ciamician”, University of Bologna, Via Gobetti 83, Ue4, 40129 Bologna, Italy; (T.H.); (D.G.); (A.T.)
| | - Monica Baiula
- Department of Pharmacology and Biotechnology (FABIT), University of Bologna, Via Irnerio 48, 40126 Bologna, Italy;
| | - Luca Gentilucci
- Department of Chemistry “G. Ciamician”, University of Bologna, Via Gobetti 83, Ue4, 40129 Bologna, Italy; (T.H.); (D.G.); (A.T.)
- Health Sciences & Technologies (HST) CIRI, University of Bologna, Via Tolara di Sopra 41/E, 40064 Ozzano Emilia, Italy
| |
Collapse
|
3
|
Baiula M, Anselmi M, Musiani F, Ghidini A, Carbone J, Caligiana A, Maurizio A, Spampinato S, Gentilucci L. Design, Pharmacological Characterization, and Molecular Docking of Minimalist Peptidomimetic Antagonists of α 4β 1 Integrin. Int J Mol Sci 2023; 24:ijms24119588. [PMID: 37298541 DOI: 10.3390/ijms24119588] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2023] [Revised: 05/17/2023] [Accepted: 05/26/2023] [Indexed: 06/12/2023] Open
Abstract
Integrin receptors mediate cell-cell interactions via the recognition of cell-adhesion glycoproteins, as well as via the interactions of cells with proteins of the extracellular matrix, and upon activation they transduce signals bi-directionally across the cell membrane. In the case of injury, infection, or inflammation, integrins of β2 and α4 families participate in the recruitment of leukocytes, a multi-step process initiated by the capturing of rolling leukocytes and terminated by their extravasation. In particular, α4β1 integrin is deeply involved in leukocyte firm adhesion preceding extravasation. Besides its well-known role in inflammatory diseases, α4β1 integrin is also involved in cancer, being expressed in various tumors and showing an important role in cancer formation and spreading. Hence, targeting this integrin represents an opportunity for the treatment of inflammatory disorders, some autoimmune diseases, and cancer. In this context, taking inspiration from the recognition motives of α4β1 integrin with its natural ligands FN and VCAM-1, we designed minimalist α/β hybrid peptide ligands, with our approach being associated with a retro strategy. These modifications are expected to improve the compounds' stability and bioavailability. As it turned out, some of the ligands were found to be antagonists, being able to inhibit the adhesion of integrin-expressing cells to plates coated with the natural ligands without inducing any conformational switch and any activation of intracellular signaling pathways. An original model structure of the receptor was generated using protein-protein docking to evaluate the bioactive conformations of the antagonists via molecular docking. Since the experimental structure of α4β1 integrin is still unknown, the simulations might also shed light on the interactions between the receptor and its native protein ligands.
Collapse
Affiliation(s)
- Monica Baiula
- Department of Pharmacy and Biotechnology, University of Bologna, Via Irnerio 48, 40126 Bologna, Italy
| | - Michele Anselmi
- Department of Chemistry "G. Ciamician", University of Bologna, Via Selmi 2, 40126 Bologna, Italy
| | - Francesco Musiani
- Laboratory of Bioinorganic Chemistry, Department of Pharmacy and Biotechnology, University of Bologna, Viale Fanin 40, 40126 Bologna, Italy
| | - Alessia Ghidini
- Department of Chemistry "G. Ciamician", University of Bologna, Via Selmi 2, 40126 Bologna, Italy
| | - Jacopo Carbone
- Department of Chemistry "G. Ciamician", University of Bologna, Via Selmi 2, 40126 Bologna, Italy
| | - Alberto Caligiana
- Department of Molecular Biology, Cell Biology and Biochemistry, Brown University, Providence, RI 02912, USA
| | - Andrea Maurizio
- Department of Pharmacy and Biotechnology, University of Bologna, Via Irnerio 48, 40126 Bologna, Italy
| | - Santi Spampinato
- Department of Pharmacy and Biotechnology, University of Bologna, Via Irnerio 48, 40126 Bologna, Italy
| | - Luca Gentilucci
- Department of Chemistry "G. Ciamician", University of Bologna, Via Selmi 2, 40126 Bologna, Italy
- Health Sciences & Technologies (HST) CIRI, University of Bologna, 40064 Ozzano Emilia, Italy
| |
Collapse
|
4
|
Anselmi M, Baiula M, Spampinato S, Artali R, He T, Gentilucci L. Design and Pharmacological Characterization of α 4β 1 Integrin Cyclopeptide Agonists: Computational Investigation of Ligand Determinants for Agonism versus Antagonism. J Med Chem 2023; 66:5021-5040. [PMID: 36976921 PMCID: PMC10108353 DOI: 10.1021/acs.jmedchem.2c02098] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/30/2023]
Abstract
α4β1 integrin is a cell adhesion receptor deeply involved in the migration and accumulation of leukocytes. Therefore, integrin antagonists that inhibit leukocytes recruitment are currently regarded as a therapeutic opportunity for the treatment of inflammatory disorder, including leukocyte-related autoimmune diseases. Recently, it has been suggested that integrin agonists capable to prevent the release of adherent leukocytes might serve as therapeutic agents as well. However, very few α4β1 integrin agonists have been discovered so far, thus precluding the investigation of their potential therapeutic efficacy. In this perspective, we synthesized cyclopeptides containing the LDV recognition motif found in the native ligand fibronectin. This approach led to the discovery of potent agonists capable to increase the adhesion of α4 integrin-expressing cells. Conformational and quantum mechanics computations predicted distinct ligand-receptor interactions for antagonists or agonists, plausibly referable to receptor inhibition or activation.
Collapse
Affiliation(s)
- Michele Anselmi
- Department of Chemistry "G. Ciamician", University of Bologna, Via Selmi 2, 40126 Bologna, Italy
| | - Monica Baiula
- Department of Pharmacy and Biotechnology, University of Bologna, Via Irnerio 48, 40126, Bologna, Italy
| | - Santi Spampinato
- Department of Pharmacy and Biotechnology, University of Bologna, Via Irnerio 48, 40126, Bologna, Italy
| | | | - Tingting He
- Department of Chemistry "G. Ciamician", University of Bologna, Via Selmi 2, 40126 Bologna, Italy
| | - Luca Gentilucci
- Department of Chemistry "G. Ciamician", University of Bologna, Via Selmi 2, 40126 Bologna, Italy
- Health Sciences & Technologies (HST) CIRI, University of Bologna, Via Tolara di Sopra 41/E, 40064 Ozzano Emilia, Italy
| |
Collapse
|
5
|
Fernandez A, Asbell P, Roy N. Emerging therapies targeting eosinophil-mediated inflammation in chronic allergic conjunctivitis. Ocul Surf 2022; 26:191-196. [PMID: 35970432 DOI: 10.1016/j.jtos.2022.08.004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2022] [Revised: 08/04/2022] [Accepted: 08/09/2022] [Indexed: 12/01/2022]
Abstract
Ocular allergy remains a significant burden to the population while the treatment for the severe, chronic forms of allergic conjunctivitis remains largely limited to non-specific immunosuppressants. Eosinophils are central to the pathophysiology and sustaining the immunologic response found in the chronic forms of ocular allergy such as vernal keratoconjunctivitis and atopic keratoconjunctivitis. Several mediators of eosinophil recruitment, chemotaxis, adhesion, activation, and survival have been identified that offer potential therapeutic targets for ocular allergy. Based on preclinical and clinical data available in both ocular and non-ocular allergy studies, these emerging therapies warrant further investigation in reducing the severity of disease in patients with chronic ocular allergy.
Collapse
Affiliation(s)
- Andrew Fernandez
- University of Tennessee Health Sciences Center, Memphis, TN, USA
| | - Penny Asbell
- University of Tennessee Health Sciences Center, Memphis, TN, USA
| | - Neeta Roy
- University of Tennessee Health Sciences Center, Memphis, TN, USA; Now Affiliated with Weill Cornell Medical College, New York, New York, USA.
| |
Collapse
|
6
|
Design of α/β-Hybrid Peptide Ligands of α4β1 Integrin Equipped with a Linkable Side Chain for Chemoselective Biofunctionalization of Microstructured Materials. Biomedicines 2021; 9:biomedicines9111737. [PMID: 34829965 PMCID: PMC8615975 DOI: 10.3390/biomedicines9111737] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2021] [Revised: 11/16/2021] [Accepted: 11/17/2021] [Indexed: 12/22/2022] Open
Abstract
Arg-Gly-Asp (RGD)-binding integrins, e.g., αvβ3, αvβ1, αvβ5 integrins, are currently regarded as privileged targets for the delivery of diagnostic and theranostic agents, especially in cancer treatment. In contrast, scarce attention has been paid so far to the diagnostic opportunities promised by integrins that recognize other peptide motifs. In particular, α4β1 integrin is involved in inflammatory, allergic, and autoimmune diseases, therefore, it represents an interesting therapeutic target. Aiming at obtaining simple, highly stable ligands of α4β1 integrin, we designed hybrid α/β peptidomimetics carrying linkable side chains for the expedient functionalization of biomaterials, nano- and microparticles. We identified the prototypic ligands MPUPA-(R)-isoAsp(NHPr)-Gly-OH (12) and MPUPA-Dap(Ac)-Gly-OH (13) (MPUPA, methylphenylureaphenylacetic acid; Dap, 2,3-diamino propionic acid). Modification of 12 and 13 by introduction of flexible linkers at isoAsp or Dap gave 49 and 50, respectively, which allowed for coating with monolayers (ML) of flat zeolite crystals. The resulting peptide–zeolite MLs were able to capture selectively α4β1 integrin-expressing cells. In perspective, the α4β1 integrin ligands identified in this study can find applications for preparing biofunctionalized surfaces and diagnostic devices to control the progression of α4β1 integrin-correlated diseases.
Collapse
|
7
|
Baiula M, Cirillo M, Martelli G, Giraldi V, Gasparini E, Anelli AC, Spampinato SM, Giacomini D. Selective Integrin Ligands Promote Cell Internalization of the Antineoplastic Agent Fluorouracil. ACS Pharmacol Transl Sci 2021; 4:1528-1542. [PMID: 34661072 PMCID: PMC8506610 DOI: 10.1021/acsptsci.1c00094] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2021] [Indexed: 02/08/2023]
Abstract
Drug conjugates consisting of an antineoplastic drug and a targeting receptor ligand could be effective to overcome the heavy side effects of unselective anticancer agents. To address this need, we report here the results of a project aimed to study agonist and antagonist integrin ligands as targeting head of molecular cargoes for the selective delivery of 5-fluorouracil (5-FU) to cancer or noncancer cells. Initially, two fluorescent β-lactam-based integrin ligands were synthesized and tested for an effective and selective internalization mediated by α4β1 or α5β1 integrins in Jurkat and K562 cells, respectively. No cellular uptake was observed for both fluorescent compounds in HEK293 noncancerous control cells. Afterward, three conjugates composed of the β-lactam-based integrin ligand, suitable linkers, and 5-FU were realized. The best compound E, acting as α5β1 integrin agonist, is able to selectively deliver 5-FU into tumor cells, successfully leading to cancer cell death.
Collapse
Affiliation(s)
- Monica Baiula
- Department
of Pharmacy and Biotechnology, University
of Bologna, Via Irnerio, 48, 40126, Bologna, Italy
| | - Martina Cirillo
- Department
of Chemistry “G. Ciamician”, University of Bologna, Via Selmi 2, 40126 Bologna, Italy
| | - Giulia Martelli
- Department
of Chemistry “G. Ciamician”, University of Bologna, Via Selmi 2, 40126 Bologna, Italy
| | | | - Elisa Gasparini
- Department
of Chemistry “G. Ciamician”, University of Bologna, Via Selmi 2, 40126 Bologna, Italy
| | | | - Santi Mario Spampinato
- Department
of Pharmacy and Biotechnology, University
of Bologna, Via Irnerio, 48, 40126, Bologna, Italy
| | - Daria Giacomini
- Department
of Chemistry “G. Ciamician”, University of Bologna, Via Selmi 2, 40126 Bologna, Italy
| |
Collapse
|
8
|
Sartori A, Bugatti K, Portioli E, Baiula M, Casamassima I, Bruno A, Bianchini F, Curti C, Zanardi F, Battistini L. New 4-Aminoproline-Based Small Molecule Cyclopeptidomimetics as Potential Modulators of α 4β 1 Integrin. Molecules 2021; 26:molecules26196066. [PMID: 34641610 PMCID: PMC8512764 DOI: 10.3390/molecules26196066] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2021] [Revised: 10/01/2021] [Accepted: 10/04/2021] [Indexed: 02/01/2023] Open
Abstract
Integrin α4β1 belongs to the leukocyte integrin family and represents a therapeutic target of relevant interest given its primary role in mediating inflammation, autoimmune pathologies and cancer-related diseases. The focus of the present work is the design, synthesis and characterization of new peptidomimetic compounds that are potentially able to recognize α4β1 integrin and interfere with its function. To this aim, a collection of seven new cyclic peptidomimetics possessing both a 4-aminoproline (Amp) core scaffold grafted onto key α4β1-recognizing sequences and the (2-methylphenyl)ureido-phenylacetyl (MPUPA) appendage, was designed, with the support of molecular modeling studies. The new compounds were synthesized through SPPS procedures followed by in-solution cyclization maneuvers. The biological evaluation of the new cyclic ligands in cell adhesion assays on Jurkat cells revealed promising submicromolar agonist activity in one compound, namely, the c[Amp(MPUPA)Val-Asp-Leu] cyclopeptide. Further investigations will be necessary to complete the characterization of this class of compounds.
Collapse
Affiliation(s)
- Andrea Sartori
- Department of Food and Drug, University of Parma, Parco Area delle Scienze 27/A, 43124 Parma, Italy; (A.S.); (K.B.); (E.P.); (A.B.); (C.C.); (F.Z.)
| | - Kelly Bugatti
- Department of Food and Drug, University of Parma, Parco Area delle Scienze 27/A, 43124 Parma, Italy; (A.S.); (K.B.); (E.P.); (A.B.); (C.C.); (F.Z.)
| | - Elisabetta Portioli
- Department of Food and Drug, University of Parma, Parco Area delle Scienze 27/A, 43124 Parma, Italy; (A.S.); (K.B.); (E.P.); (A.B.); (C.C.); (F.Z.)
| | - Monica Baiula
- Department of Pharmacy and Biotechnology, University of Bologna, Via Irnerio 48, 40126 Bologna, Italy; (M.B.); (I.C.)
| | - Irene Casamassima
- Department of Pharmacy and Biotechnology, University of Bologna, Via Irnerio 48, 40126 Bologna, Italy; (M.B.); (I.C.)
| | - Agostino Bruno
- Department of Food and Drug, University of Parma, Parco Area delle Scienze 27/A, 43124 Parma, Italy; (A.S.); (K.B.); (E.P.); (A.B.); (C.C.); (F.Z.)
| | - Francesca Bianchini
- Department of Experimental and Clinical Biomedical Sciences, University of Florence, Viale G.B. Morgagni 50, 50134 Firenze, Italy;
| | - Claudio Curti
- Department of Food and Drug, University of Parma, Parco Area delle Scienze 27/A, 43124 Parma, Italy; (A.S.); (K.B.); (E.P.); (A.B.); (C.C.); (F.Z.)
| | - Franca Zanardi
- Department of Food and Drug, University of Parma, Parco Area delle Scienze 27/A, 43124 Parma, Italy; (A.S.); (K.B.); (E.P.); (A.B.); (C.C.); (F.Z.)
| | - Lucia Battistini
- Department of Food and Drug, University of Parma, Parco Area delle Scienze 27/A, 43124 Parma, Italy; (A.S.); (K.B.); (E.P.); (A.B.); (C.C.); (F.Z.)
- Correspondence: ; Tel.: +39-0521-906040
| |
Collapse
|
9
|
Mrugacz M, Bryl A, Falkowski M, Zorena K. Integrins: An Important Link between Angiogenesis, Inflammation and Eye Diseases. Cells 2021; 10:1703. [PMID: 34359873 PMCID: PMC8305893 DOI: 10.3390/cells10071703] [Citation(s) in RCA: 30] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2021] [Revised: 07/02/2021] [Accepted: 07/04/2021] [Indexed: 12/25/2022] Open
Abstract
Integrins belong to a group of cell adhesion molecules (CAMs) which is a large group of membrane-bound proteins. They are responsible for cell attachment to the extracellular matrix (ECM) and signal transduction from the ECM to the cells. Integrins take part in many other biological activities, such as extravasation, cell-to-cell adhesion, migration, cytokine activation and release, and act as receptors for some viruses, including severe acute respiratory syndrome-related coronavirus 2 (SARS-CoV-2). They play a pivotal role in cell proliferation, migration, apoptosis, tissue repair and are involved in the processes that are crucial to infection, inflammation and angiogenesis. Integrins have an important part in normal development and tissue homeostasis, and also in the development of pathological processes in the eye. This review presents the available evidence from human and animal research into integrin structure, classification, function and their role in inflammation, infection and angiogenesis in ocular diseases. Integrin receptors and ligands are clinically interesting and may be promising as new therapeutic targets in the treatment of some eye disorders.
Collapse
Affiliation(s)
- Małgorzata Mrugacz
- Department of Ophthalmology and Eye Rehabilitation, Medical University of Bialystok, 15-089 Bialystok, Poland;
| | - Anna Bryl
- Department of Ophthalmology and Eye Rehabilitation, Medical University of Bialystok, 15-089 Bialystok, Poland;
| | | | - Katarzyna Zorena
- Department of Immunobiology and Environmental Microbiology, Medical University of Gdansk, 80-211 Gdansk, Poland;
| |
Collapse
|
10
|
Singh RB, Liu L, Yung A, Anchouche S, Mittal SK, Blanco T, Dohlman TH, Yin J, Dana R. Ocular redness - II: Progress in development of therapeutics for the management of conjunctival hyperemia. Ocul Surf 2021; 21:66-77. [PMID: 34000363 DOI: 10.1016/j.jtos.2021.05.004] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2020] [Revised: 05/11/2021] [Accepted: 05/12/2021] [Indexed: 11/30/2022]
Abstract
Conjunctival hyperemia is one of the most common causes for visits to primary care physicians, optometrists, ophthalmologists, and emergency rooms. Despite its high incidence, the treatment options for patients with conjunctival hyperemia are restricted to over-the-counter drugs that provide symptomatic relief due to short duration of action, tachyphylaxis and rebound redness. As our understanding of the immunopathological pathways causing conjunctival hyperemia expands, newer therapeutic targets are being discovered. These insights have also contributed to the development of animal models for mimicking the pathogenic changes in microvasculature causing hyperemia. Furthermore, this progress has catalyzed the development of novel therapeutics that provide efficacious, long-term relief from conjunctival hyperemia with minimal adverse effects.
Collapse
Affiliation(s)
- Rohan Bir Singh
- Laboratory of Corneal Immunology, Transplantation and Regeneration, Schepens Eye Research Institute, Massachusetts Eye and Ear, Department of Ophthalmology, Harvard Medical School, Boston, MA, USA
| | - Lingjia Liu
- Laboratory of Corneal Immunology, Transplantation and Regeneration, Schepens Eye Research Institute, Massachusetts Eye and Ear, Department of Ophthalmology, Harvard Medical School, Boston, MA, USA
| | - Ann Yung
- Laboratory of Corneal Immunology, Transplantation and Regeneration, Schepens Eye Research Institute, Massachusetts Eye and Ear, Department of Ophthalmology, Harvard Medical School, Boston, MA, USA
| | - Sonia Anchouche
- Laboratory of Corneal Immunology, Transplantation and Regeneration, Schepens Eye Research Institute, Massachusetts Eye and Ear, Department of Ophthalmology, Harvard Medical School, Boston, MA, USA; Faculty of Medicine, McGill University, Montreal, Quebec, Canada
| | - Sharad K Mittal
- Laboratory of Corneal Immunology, Transplantation and Regeneration, Schepens Eye Research Institute, Massachusetts Eye and Ear, Department of Ophthalmology, Harvard Medical School, Boston, MA, USA
| | - Tomas Blanco
- Laboratory of Corneal Immunology, Transplantation and Regeneration, Schepens Eye Research Institute, Massachusetts Eye and Ear, Department of Ophthalmology, Harvard Medical School, Boston, MA, USA
| | - Thomas H Dohlman
- Laboratory of Corneal Immunology, Transplantation and Regeneration, Schepens Eye Research Institute, Massachusetts Eye and Ear, Department of Ophthalmology, Harvard Medical School, Boston, MA, USA
| | - Jia Yin
- Laboratory of Corneal Immunology, Transplantation and Regeneration, Schepens Eye Research Institute, Massachusetts Eye and Ear, Department of Ophthalmology, Harvard Medical School, Boston, MA, USA
| | - Reza Dana
- Laboratory of Corneal Immunology, Transplantation and Regeneration, Schepens Eye Research Institute, Massachusetts Eye and Ear, Department of Ophthalmology, Harvard Medical School, Boston, MA, USA.
| |
Collapse
|
11
|
Baiula M, Spampinato S. Experimental Pharmacotherapy for Dry Eye Disease: A Review. J Exp Pharmacol 2021; 13:345-358. [PMID: 33790661 PMCID: PMC8001578 DOI: 10.2147/jep.s237487] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2020] [Accepted: 03/11/2021] [Indexed: 01/22/2023] Open
Abstract
Dry eye disease (DED) is a complex multifactorial disease showing heterogenous symptoms, including dryness, photophobia, ocular discomfort, irritation and burning but also pain. These symptoms can affect visual function leading to restrictions in daily life activities and reduction in work productivity with a consequently high impact on quality of life. Several pathological mechanisms contribute to the disease: evaporative water loss leads to impairment and loss of tear homeostasis inducing either directly or indirectly to inflammation, in a self-perpetuating vicious cycle. Dysregulated ocular immune responses result in ocular surface damage, which further contributes to DED pathogenesis. Currently, DED treatment is based on a flexible stepwise approach to identify the most beneficial intervention. Although most of the available treatments may control to a certain extent some signs and symptoms of DED, they show significant limitations and do not completely address the needs of patients suffering from DED. This review provides an overview of the emerging experimental therapies for DED. Several promising therapeutic strategies are under development with the aim of dampening inflammation and restoring the homeostasis of the ocular surface microenvironment. Results from early phase clinical trials, testing the effects of EnaC blockers, TRPM8 agonist or mesenchymal stem cells in DED patients, are especially awaited to demonstrate their therapeutic value for the treatment of DED. Moreover, the most advanced experimental strategies in the pipeline for DED, tivanisiran, IL-1R antagonist EBI-005 and SkQ1, are being tested in Phase III clinical trials, still ongoing. Nevertheless, although promising results, further studies are still needed to confirm efficacy and safety of the new emerging therapies for DED.
Collapse
Affiliation(s)
- Monica Baiula
- Department of Pharmacy and Biotechnology, University of Bologna, Bologna, Italy
| | - Santi Spampinato
- Department of Pharmacy and Biotechnology, University of Bologna, Bologna, Italy
| |
Collapse
|
12
|
Baiula M, Caligiana A, Bedini A, Zhao J, Santino F, Cirillo M, Gentilucci L, Giacomini D, Spampinato S. Leukocyte Integrin Antagonists as a Novel Option to Treat Dry Age-Related Macular Degeneration. Front Pharmacol 2021; 11:617836. [PMID: 33584300 PMCID: PMC7878375 DOI: 10.3389/fphar.2020.617836] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2020] [Accepted: 12/30/2020] [Indexed: 11/28/2022] Open
Abstract
Age-related macular degeneration (AMD) is a complex multifactorial degenerative disease that leads to irreversible blindness. AMD affects the macula, the central part of the retina responsible for sharp central vision. Retinal pigment epithelium (RPE) is the main cellular type affected in dry AMD. RPE cells form a monolayer between the choroid and the neuroretina and are in close functional relationship with photoreceptors; moreover, RPE cells are part of the blood retina barrier that is disrupted in ocular diseases such as AMD. During ocular inflammation lymphocytes and macrophages are recruited, contact RPE and produce pro-inflammatory cytokines, which play an important role in AMD pathogenesis. The interaction between RPE and immune cells is mediated by leukocyte integrins, heterodimeric transmembrane receptors, and adhesion molecules, including VCAM-1 and ICAM-1. Within this frame, this study aimed to characterize RPE-leukocytes interaction and to investigate any potentially beneficial effects induced by integrin antagonists (DS-70, MN27 and SR714), developed in previous studies. ARPE-19 cells were co-cultured for different incubation times with Jurkat cells and apoptosis and necrosis levels were analyzed by flow cytometry. Moreover, we measured the mRNA levels of the pro-inflammatory cytokine IL-1β and the expression of adhesion molecules VCAM-1 and ICAM-1. We found that RPE-lymphocyte interaction increased apoptosis and necrosis levels in RPE cells and the expression of IL-1β. This interaction was mediated by the binding of α4β1 and αLβ2 integrins to VCAM-1 and ICAM-1, respectively. The blockade of RPE-lymphocyte interaction with blocking antibodies highlighted the pivotal role played by integrins. Therefore, α4β1 and αLβ2 integrin antagonists were employed to disrupt RPE-lymphocyte crosstalk. Small molecule integrin antagonists proved to be effective in reducing RPE cell death and expression of IL-1β, demonstrating that integrin antagonists could protect RPE cells from detrimental effects induced by the interaction with immune cells recruited to the retina. Overall, the leukocyte integrin antagonists employed in the present study may represent a novel opportunity to develop new drugs to fight dry AMD.
Collapse
Affiliation(s)
- Monica Baiula
- Laboratory of Cellular and Molecular Pharmacology, Department of Pharmacy and Biotechnology, University of Bologna, Bologna, Italy
| | - Alberto Caligiana
- Laboratory of Cellular and Molecular Pharmacology, Department of Pharmacy and Biotechnology, University of Bologna, Bologna, Italy
| | - Andrea Bedini
- Laboratory of Cellular and Molecular Pharmacology, Department of Pharmacy and Biotechnology, University of Bologna, Bologna, Italy
| | - Junwei Zhao
- Department of Chemistry "G. Ciamician", University of Bologna, Bologna, Italy
| | - Federica Santino
- Department of Chemistry "G. Ciamician", University of Bologna, Bologna, Italy
| | - Martina Cirillo
- Laboratory of Design and Synthesis of Biologically Active Compounds, Department of Chemistry "G. Ciamician", University of Bologna, Bologna, Italy
| | - Luca Gentilucci
- Department of Chemistry "G. Ciamician", University of Bologna, Bologna, Italy
| | - Daria Giacomini
- Laboratory of Design and Synthesis of Biologically Active Compounds, Department of Chemistry "G. Ciamician", University of Bologna, Bologna, Italy
| | - Santi Spampinato
- Laboratory of Cellular and Molecular Pharmacology, Department of Pharmacy and Biotechnology, University of Bologna, Bologna, Italy.,Specilization School of Hospital Pharmacy, Department of Pharmacy and Biotechnology, University of Bologna, Bologna, Italy
| |
Collapse
|
13
|
Sharif NA. Discovery to Launch of Anti-allergy (Emadine; Patanol/Pataday/Pazeo) and Anti-glaucoma (Travatan; Simbrinza) Ocular Drugs, and Generation of Novel Pharmacological Tools Such as AL-8810. ACS Pharmacol Transl Sci 2020; 3:1391-1421. [PMID: 33344909 DOI: 10.1021/acsptsci.0c00137] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2020] [Indexed: 02/07/2023]
Abstract
The eye and eyesight are exquistly designed and are precious, and yet we often take them for granted. Good vision is critical for our long-term survival and for humanity's enduring progress. Unfortunately, since ocular diseases do not culminate in life-and-death scenarios, awareness of the plight of millions of people suffering from such eye ailments is not publicized as other diseases. However, losing eyesight or falling victim to visual impairment is a frightening outlook for most people. Glaucoma, a collection of chronic optic neuropathies, of which the most prevalent form, primary open-angle glaucoma (POAG), is the second leading cause of irreversible blindness. POAG currently afflicts >70 million people worldwide and is an insidious, progressive, silent thief of sight that is asymptomatic. On the other hand, allergic conjunctivitis (AC), and the associated rhinitis ("hay-fever"), frequently victimizes a huge number of people worldwide, especially during seasonal changes. While not life-threatening, sufferers of AC soon learn the value of drugs to treat their signs and symptoms of AC as they desire rapid relief to overcome the ocular itching/pain, redness, and tearing AC causes. Herein, I will describe the collective efforts of many researchers whose industrious, diligent, and dedicated team work resulted in the discovery, biochemical/pharmacological characterization, development and eventual launch of drugs to treat AC (e.g., olopatadine [Patanol/Pataday/Pazeo] and emedastine [Emedine]), and for treating ocular hypertension and POAG (e.g., travoprost [Travatan ] and Simbrinza). This represents a personal perspective.
Collapse
Affiliation(s)
- Najam A Sharif
- Department of Pharmacology & Neuroscience University of North Texas Health Science Center, Fort Worth, Texas 76107, United States
| |
Collapse
|
14
|
Zhao J, Santino F, Giacomini D, Gentilucci L. Integrin-Targeting Peptides for the Design of Functional Cell-Responsive Biomaterials. Biomedicines 2020; 8:E307. [PMID: 32854363 PMCID: PMC7555639 DOI: 10.3390/biomedicines8090307] [Citation(s) in RCA: 41] [Impact Index Per Article: 8.2] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2020] [Revised: 08/21/2020] [Accepted: 08/23/2020] [Indexed: 01/17/2023] Open
Abstract
Integrins are a family of cell surface receptors crucial to fundamental cellular functions such as adhesion, signaling, and viability, deeply involved in a variety of diseases, including the initiation and progression of cancer, of coronary, inflammatory, or autoimmune diseases. The natural ligands of integrins are glycoproteins expressed on the cell surface or proteins of the extracellular matrix. For this reason, short peptides or peptidomimetic sequences that reproduce the integrin-binding motives have attracted much attention as potential drugs. When challenged in clinical trials, these peptides/peptidomimetics let to contrasting and disappointing results. In the search for alternative utilizations, the integrin peptide ligands have been conjugated onto nanoparticles, materials, or drugs and drug carrier systems, for specific recognition or delivery of drugs to cells overexpressing the targeted integrins. Recent research in peptidic integrin ligands is exploring new opportunities, in particular for the design of nanostructured, micro-fabricated, cell-responsive, stimuli-responsive, smart materials.
Collapse
Affiliation(s)
| | | | | | - Luca Gentilucci
- Department of Chemistry “G. Ciamician”, University of Bologna, via Selmi 2, 40126 Bologna, Italy; (J.Z.); (F.S.); (D.G.)
| |
Collapse
|
15
|
Baiula M, Greco R, Ferrazzano L, Caligiana A, Hoxha K, Bandini D, Longobardi P, Spampinato S, Tolomelli A. Integrin-mediated adhesive properties of neutrophils are reduced by hyperbaric oxygen therapy in patients with chronic non-healing wound. PLoS One 2020; 15:e0237746. [PMID: 32810144 PMCID: PMC7433869 DOI: 10.1371/journal.pone.0237746] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2020] [Accepted: 07/31/2020] [Indexed: 12/30/2022] Open
Abstract
In recent years, several studies suggested that the ability of hyperbaric oxygen therapy (HBOT) to promote healing in patients with diabetic ulcers and chronic wounds is due to the reduction of inflammatory cytokines and to a significant decrease in neutrophils recruitment to the damaged area. α4 and β2 integrins are receptors mediating the neutrophil adhesion to the endothelium and the comprehension of the effects of hyperbaric oxygenation on their expression and functions in neutrophils could be of great importance for the design of novel therapeutic protocols focused on anti-inflammatory agents. In this study, the α4 and β2 integrins' expression and functions have been evaluated in human primary neutrophils obtained from patients with chronic non-healing wounds and undergoing a prolonged HBOT (150 kPa per 90 minutes). The effect of a peptidomimetic α4β1 integrin antagonist has been also analyzed under these conditions. A statistically significant decrease (68%) in β2 integrin expression on neutrophils was observed during the treatment with HBO and maintained one month after the last treatment, while α4 integrin levels remained unchanged. However, cell adhesion function of both neutrophilic integrins α4β1 and β2 was significantly reduced 70 and 67%, respectively), but α4β1 integrin was still sensitive to antagonist inhibition in the presence of fibronectin, suggesting that a combined therapy between HBOT and integrin antagonists could have greater antinflammatory efficacy.
Collapse
Affiliation(s)
- Monica Baiula
- Department of Pharmacy and Biotechnology, Alma Mater Studiorum - University of Bologna, Bologna, Italy
| | - Roberto Greco
- Department of Chemistry “Giacomo Ciamician”, Alma Mater Studiorum -University of Bologna, Bologna, Italy
| | - Lucia Ferrazzano
- Department of Chemistry “Giacomo Ciamician”, Alma Mater Studiorum -University of Bologna, Bologna, Italy
| | - Alberto Caligiana
- Department of Pharmacy and Biotechnology, Alma Mater Studiorum - University of Bologna, Bologna, Italy
| | | | | | | | - Santi Spampinato
- Department of Pharmacy and Biotechnology, Alma Mater Studiorum - University of Bologna, Bologna, Italy
| | - Alessandra Tolomelli
- Department of Chemistry “Giacomo Ciamician”, Alma Mater Studiorum -University of Bologna, Bologna, Italy
| |
Collapse
|
16
|
Allergic conjunctivitis in children: current understanding and future perspectives. Curr Opin Allergy Clin Immunol 2020; 20:507-515. [DOI: 10.1097/aci.0000000000000675] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023]
|
17
|
Hossain IT, Sanghi P, Manzouri B. Pharmacotherapeutic management of atopic keratoconjunctivitis. Expert Opin Pharmacother 2020; 21:1761-1769. [PMID: 32602382 DOI: 10.1080/14656566.2020.1786534] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/24/2022]
Abstract
INTRODUCTION Atopic keratoconjunctivitis (AKC) is a form of allergic eye disease that can have sight threating implications. Prevalence is underestimated due to scarce published data and treatment is expanding as a result of limitations of current strategies. This article aims to provide an up-to-date overview of AKC and summarize current and upcoming management. AREAS COVERED The authors provide history, immunopathogenesis, and summary of the clinical manifestations of AKC as well as presenting a review of the evidence in relation to treatment options including mast cell stabilizers, antihistamines, corticosteroids, and immunomodulatory drugs based on clinical trials. Future trends, drug targets, and novel delivery drug systems are also highlighted in this review. EXPERT OPINION Previously established treatment strategies of AKC had relied on corticosteroids, but the side effects of long-term therapy resulted in the expansion into the use of immunomodulatory drugs such as tacrolimus and ciclosporin. However, these too provide limited success due to the suboptimal structural properties of the current molecules. The ideal molecule should generate maximum permeability across the multi-layered structure of the cornea, be able to be formulated into eye drops for ease of application with minimal dosing and for maximal clinical effect.
Collapse
Affiliation(s)
- Ibtesham T Hossain
- Department of Ophthalmology, Queens Hospital, Barking Havering and Redbridge University Hospitals NHS Trust , Romford, UK
| | - Priyanka Sanghi
- Department of Ophthalmology, Queens Hospital, Barking Havering and Redbridge University Hospitals NHS Trust , Romford, UK
| | - Bita Manzouri
- Department of Ophthalmology, Queens Hospital, Barking Havering and Redbridge University Hospitals NHS Trust , Romford, UK
| |
Collapse
|
18
|
Baiula M, Spampinato S, Gentilucci L, Tolomelli A. Novel Ligands Targeting α 4β 1 Integrin: Therapeutic Applications and Perspectives. Front Chem 2019; 7:489. [PMID: 31338363 PMCID: PMC6629825 DOI: 10.3389/fchem.2019.00489] [Citation(s) in RCA: 48] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2019] [Accepted: 06/25/2019] [Indexed: 12/13/2022] Open
Abstract
Among the other members of the adhesion molecules' family, α4β1 integrin, a heterodimeric receptor, plays a crucial role in inflammatory diseases, cancer development, metastasis and stem cell mobilization or retention. In many cases, its function in pathogenesis is not yet completely understood and investigations on ligand binding and related stabilization of active/inactive conformations still represent an important goal. For this reason, starting from the highlight of α4β1 functions in human pathologies, we report an overview of synthetic α4β1 integrin ligands under development as potential therapeutic agents. The small molecule library that we have selected represents a collection of lead compounds. These molecules are the object of future refinement in academic and industrial research, in order to achieve a fine tuning of α4β1 integrin regulation for the development of novel agents against pathologies still eluding an effective solution.
Collapse
Affiliation(s)
- Monica Baiula
- Department of Pharmacy and Biotechnology, University of Bologna, Bologna, Italy
| | - Santi Spampinato
- Department of Pharmacy and Biotechnology, University of Bologna, Bologna, Italy
| | - Luca Gentilucci
- Department of Chemistry “G. Ciamician,” University of Bologna, Bologna, Italy
| | | |
Collapse
|
19
|
De Marco R, Zhao J, Greco A, Ioannone S, Gentilucci L. In-Peptide Synthesis of Imidazolidin-2-one Scaffolds, Equippable with Proteinogenic or Taggable/Linkable Side Chains, General Promoters of Unusual Secondary Structures. J Org Chem 2019; 84:4992-5004. [DOI: 10.1021/acs.joc.8b03055] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Affiliation(s)
- Rossella De Marco
- Department of Chemistry “G. Ciamician”, University of Bologna, via Selmi 2, 40126 Bologna, Italy
| | - Junwei Zhao
- Department of Chemistry “G. Ciamician”, University of Bologna, via Selmi 2, 40126 Bologna, Italy
| | - Arianna Greco
- Department of Chemistry “G. Ciamician”, University of Bologna, via Selmi 2, 40126 Bologna, Italy
| | - Simone Ioannone
- Department of Chemistry “G. Ciamician”, University of Bologna, via Selmi 2, 40126 Bologna, Italy
| | - Luca Gentilucci
- Department of Chemistry “G. Ciamician”, University of Bologna, via Selmi 2, 40126 Bologna, Italy
| |
Collapse
|
20
|
Abstract
PURPOSE OF REVIEW The purpose of this article is to review treatment advances in ocular allergy that include the treatment of the various signs and symptoms of the allergic inflammatory response of the ocular surface. RECENT FINDINGS Recent studies have demonstrated improved pharmacological effect of topical agents with artificial tears and cold compresses; brimonidine, a new ophthalmic decongestant which has demonstrated decreased rebound conjunctivitis; and potential use of contact lens and other novel delivery instruments to increase medication retention time. Currently, there have been limited advances in novel ophthalmic treatments. Non-pharmacological interventions have demonstrated in a randomized control study that artificial tears and the use cold compresses alone or in combination with ophthalmic antihistamines can enhance the effectiveness of a traditional pharmacological therapy. The primary advances have been the start of head-to-head studies comparing various agents actively being used in the treatment of ocular allergy. In addition, there has been increasing interest in the development of novel delivery systems to increase residence time of pharmacological agents in the ocular surface such as nanoparticles, microfilms; examining novel pathways of controlling the allergic inflammatory response of the ocular surface such as modulation of cytokines, transcription factors, and immunophilins.
Collapse
Affiliation(s)
- Leonard Bielory
- Department of Medicine and Ophthalmology, Hackensack Meridian School of Medicine at Seton Hall University, Nutley, NJ, USA.
- Department of Medicine, Thomas Jefferson University Sidney Kimmel School of Medicine, Philadelphia, PA, USA.
- Rutgers University Center of Environmental Prediction, New Brunswick, NJ, USA.
- , Springfield, USA.
| | | |
Collapse
|
21
|
Li H, Huang SY, Shi FH, Gu ZC, Zhang SG, Wei JF. α 4β 7 integrin inhibitors: a patent review. Expert Opin Ther Pat 2018; 28:903-917. [PMID: 30444683 DOI: 10.1080/13543776.2018.1549227] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
INTRODUCTION The α4β7 integrin is heterodimeric cell surface receptors expressed on most leukocytes. Mucosal addressing cell adhesion molecule 1(MAdCAM-1) is an exclusive ligand for α4β7 integrin. Areas covered: This article will highlight the progress that has been made in the discovery and development of α4β7 integrin inhibitors, and their use in the treatment of inflammatory bowel diseases, multiple sclerosis, asthma, hepatic disorders, human immunodeficiency virus, allergic conjunctivitis and type 1 diabetes. Expert opinion: α4β7 integrin inhibitors have attracted much interest for their clinical implication. Natalizumab and Vedolizumab are monoclonal antibodies (mAbs) successfully utilized clinically. Natalizumab is a mAbs of α4-subunit blocking both α4β1 and α4β7 integrin. Vedolizumab selectively targets the α4β7 integrin. Several mAbs are still in the process of research and development. Among these mAbs, etrolizumab selectively against the β7-subunit and AMG-181 specifically against the α4β7 integrin are the most promising anti-α4β7 integrin antibodies. Despite the unclear development stage of TR-14035 and R411, several low molecular compounds show bright future of further development, such as AJM300 and CDP323. In addition, results from laboratory data show that peptide inhibitors, such as peptide X, are effective α4β7 integrin inhibitors.
Collapse
Affiliation(s)
- Hao Li
- a Department of Pharmacy , Shanghai Children's Medical Center, Shanghai Jiao Tong University School of Medicine , Shanghai , China
| | - Shi-Ying Huang
- a Department of Pharmacy , Shanghai Children's Medical Center, Shanghai Jiao Tong University School of Medicine , Shanghai , China
| | - Fang-Hong Shi
- b Department of Pharmacy, Renji Hospital , School of Medicine, Shanghai Jiao Tong University , Shanghai , China
| | - Zhi-Chun Gu
- b Department of Pharmacy, Renji Hospital , School of Medicine, Shanghai Jiao Tong University , Shanghai , China
| | - Shun-Guo Zhang
- a Department of Pharmacy , Shanghai Children's Medical Center, Shanghai Jiao Tong University School of Medicine , Shanghai , China
| | - Ji-Fu Wei
- c Research Division of Clinical Pharmacology , Τhe First Affiliated Hospital of Nanjing Medical University , Nanjing , China
| |
Collapse
|
22
|
Dattoli SD, Baiula M, De Marco R, Bedini A, Anselmi M, Gentilucci L, Spampinato S. DS-70, a novel and potent α 4 integrin antagonist, is an effective treatment for experimental allergic conjunctivitis in guinea pigs. Br J Pharmacol 2018; 175:3891-3910. [PMID: 30051467 DOI: 10.1111/bph.14458] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2017] [Revised: 07/12/2018] [Accepted: 07/13/2018] [Indexed: 12/19/2022] Open
Abstract
BACKGROUND AND PURPOSE Allergic conjunctivitis is an eye inflammation that involves the infiltration of immune cells into the conjunctiva via cell surface-adhesion receptors, such as integrin α4 β1 . These receptors interact with adhesion molecules expressed on the conjunctival endothelium and may be a target to treat this disease. We synthesized DS-70, a novel α/β-peptidomimetic α4 integrin antagonist, to prevent the conjunctival infiltration of immune cells and clinical symptoms in a model of allergic conjunctivitis. EXPERIMENTAL APPROACH In vitro, DS-70 was pharmacologically characterized using a scintillation proximity procedure to measure its affinity for α4 β1 integrin, and its effect on cell adhesion mediated by different integrins was also evaluated. The effects of DS-70 on vascular cell adhesion molecule-1 (VCAM-1)-mediated degranulation of a human mast cell line and an eosinophilic cell line, which both express α4 β1 , and on VCAM-1-mediated phosphorylation of ERK 1/2 in Jurkat E6.1 cells were investigated. Effects of DS-70 administered in the conjunctival fornix of ovalbumin-sensitized guinea pigs were evaluated. KEY RESULTS DS-70 bound to integrin α4 β1 with nanomolar affinity, prevented the adhesion of α4 integrin-expressing cells, antagonized VCAM-1-mediated degranulation of mast cells and eosinophils and ERK 1/2 phosphorylation. Only 20% was degraded after an 8 h incubation with serum. DS-70 dose-dependently reduced the clinical symptoms of allergic conjunctivitis, conjunctival α4 integrin expression and conjunctival levels of chemokines and cytokines in ovalbumin-sensitized guinea pigs. CONCLUSIONS AND IMPLICATIONS These findings highlight the role of α4 integrin in allergic conjunctivitis and suggest that DS-70 is a potential treatment for this condition.
Collapse
Affiliation(s)
| | - Monica Baiula
- Department of Pharmacy and Biotechnology, University of Bologna, Bologna, Italy
| | - Rossella De Marco
- Department of Chemistry "G. Ciamician", University of Bologna, Bologna, Italy
| | - Andrea Bedini
- Department of Pharmacy and Biotechnology, University of Bologna, Bologna, Italy
| | - Michele Anselmi
- Department of Chemistry "G. Ciamician", University of Bologna, Bologna, Italy
| | - Luca Gentilucci
- Department of Chemistry "G. Ciamician", University of Bologna, Bologna, Italy
| | - Santi Spampinato
- Department of Pharmacy and Biotechnology, University of Bologna, Bologna, Italy
| |
Collapse
|