1
|
Smimmo M, Casale V, Casillo GM, Mitidieri E, d'Emmanuele di Villa Bianca R, Bello I, Schettino A, Montanaro R, Brancaleone V, Indolfi C, Cirino G, Di Lorenzo A, Bucci M, Panza E, Vellecco V. Hydrogen sulfide dysfunction in metabolic syndrome-associated vascular complications involves cGMP regulation through soluble guanylyl cyclase persulfidation. Biomed Pharmacother 2024; 174:116466. [PMID: 38552439 DOI: 10.1016/j.biopha.2024.116466] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2023] [Revised: 03/14/2024] [Accepted: 03/15/2024] [Indexed: 05/01/2024] Open
Abstract
Here, by using in vitro and ex vivo approaches, we elucidate the impairment of the hydrogen sulfide (H2S) pathway in vascular complications associated with metabolic syndrome (MetS). In the in vitro model simulating hyperlipidemic/hyperglycemic conditions, we observe significant hallmarks of endothelial dysfunction, including eNOS/NO signaling impairment, ROS overproduction, and a reduction in CSE-derived H2S. Transitioning to an ex vivo model using db/db mice, a genetic MetS model, we identify a downregulation of CBS and CSE expression in aorta, coupled with a diminished L-cysteine-induced vasorelaxation. Molecular mechanisms of eNOS/NO signaling impairment, dissected using pharmacological and molecular approaches, indicate an altered eNOS/Cav-1 ratio, along with reduced Ach- and Iso-induced vasorelaxation and increased L-NIO-induced contraction. In vivo treatment with the H2S donor Erucin ameliorates vascular dysfunction observed in db/db mice without impacting eNOS, further highlighting a specific action on smooth muscle component rather than the endothelium. Analyzing the NO signaling pathway in db/db mice aortas, reduced cGMP levels were detected, implicating a defective sGC/cGMP signaling. In vivo Erucin administration restores cGMP content. This beneficial effect involves an increased sGC activity, due to enzyme persulfidation observed in sGC overexpressed cells, coupled with PDE5 inhibition. In conclusion, our study demonstrates a pivotal role of reduced cGMP levels in impaired vasorelaxation in a murine model of MetS involving an impairment of both H2S and NO signaling. Exogenous H2S supplementation through Erucin represents a promising alternative in MetS therapy, targeting smooth muscle cells and supporting the importance of lifestyle and nutrition in managing MetS.
Collapse
Affiliation(s)
- M Smimmo
- Department of Pharmacy, School of Medicine and Surgery, University of Naples Federico II, Naples, Italy
| | - V Casale
- Department of Pharmacy, School of Medicine and Surgery, University of Naples Federico II, Naples, Italy
| | - G M Casillo
- Department of Pharmacy, School of Medicine and Surgery, University of Naples Federico II, Naples, Italy
| | - E Mitidieri
- Department of Pharmacy, School of Medicine and Surgery, University of Naples Federico II, Naples, Italy
| | | | - I Bello
- Department of Pharmacy, School of Medicine and Surgery, University of Naples Federico II, Naples, Italy
| | - A Schettino
- Department of Pharmacy, School of Medicine and Surgery, University of Naples Federico II, Naples, Italy
| | - R Montanaro
- Department of Science, University of Basilicata, Potenza, Italy
| | - V Brancaleone
- Department of Science, University of Basilicata, Potenza, Italy
| | - C Indolfi
- Department of Molecular Medicine and Medical Biotechnology, School of Medicine and Surgery, University of Naples Federico II, Naples 80131, Italy
| | - G Cirino
- Department of Pharmacy, School of Medicine and Surgery, University of Naples Federico II, Naples, Italy
| | - A Di Lorenzo
- Department of Pathology and Laboratory Medicine Center for Vascular Biology, Weill Cornell Medical College, Cornell University, New York, USA
| | - M Bucci
- Department of Pharmacy, School of Medicine and Surgery, University of Naples Federico II, Naples, Italy.
| | - E Panza
- Department of Pharmacy, School of Medicine and Surgery, University of Naples Federico II, Naples, Italy
| | - V Vellecco
- Department of Pharmacy, School of Medicine and Surgery, University of Naples Federico II, Naples, Italy
| |
Collapse
|
2
|
Tao BB, Zhu Q, Zhu YC. Mechanisms Underlying the Hydrogen Sulfide Actions: Target Molecules and Downstream Signaling Pathways. Antioxid Redox Signal 2024; 40:86-109. [PMID: 37548532 DOI: 10.1089/ars.2023.0401] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 08/08/2023]
Abstract
Significance: As a new important gas signaling molecule like nitric oxide (NO) and carbon dioxide (CO), hydrogen sulfide (H2S), which can be produced by endogenous H2S-producing enzymes through l-cysteine metabolism in mammalian cells, has attracted wide attention for long. H2S has been proved to play an important regulatory role in numerous physiological and pathophysiological processes. However, the deep mechanisms of those different functions of H2S still remain uncertain. A better understanding of the mechanisms can help us develop novel therapeutic strategies. Recent Advances: H2S can play a regulating role through various mechanisms, such as regulating epigenetic modification, protein expression levels, protein activity, protein localization, redox microenvironment, and interaction with other gas signaling molecules such as NO and CO. In addition to discussing the molecular mechanisms of H2S from the above perspectives, this article will review the regulation of H2S on common signaling pathways in the cells, including the phosphoinositide 3-kinase (PI3K)/protein kinase B (Akt), mitogen-activated protein kinase (MAPK), Janus kinase (JAK)/signal transducer, and activator of transcription (STAT) signaling pathway. Critical Issues: Although there are many studies on the mechanism of H2S, little is known about its direct target molecules. This article will also review the existing reports about them. Furthermore, the interaction between direct target molecules of H2S and the downstream signaling pathways involved also needs to be clarified. Future Directions: An in-depth discussion of the mechanism of H2S and the direct target molecules will help us achieving a deeper understanding of the physiological and pathophysiological processes regulated by H2S, and lay a foundation for developing new clinical therapeutic drugs in the future. Innovation: This review focuses on the regulation of H2S on signaling pathways and the direct target molecules of H2S. We also provide details on the underlying mechanisms of H2S functions from the following aspects: epigenetic modification, regulation of protein expression levels, protein activity, protein localization, redox microenvironment, and interaction with other gas signaling molecules such as NO and CO. Further study of the mechanisms underlying H2S will help us better understand the physiological and pathophysiological processes it regulates, and help develop new clinical therapeutic drugs in the future. Antioxid. Redox Signal. 40, 86-109.
Collapse
Affiliation(s)
- Bei-Bei Tao
- Shanghai Key Laboratory of Bioactive Small Molecules, Department of Physiology and Pathophysiology, School of Basic Medical Sciences, Fudan University Shanghai Medical College, Shanghai, China
| | - Qi Zhu
- Shanghai Key Laboratory of Bioactive Small Molecules, Department of Physiology and Pathophysiology, School of Basic Medical Sciences, Fudan University Shanghai Medical College, Shanghai, China
| | - Yi-Chun Zhu
- Shanghai Key Laboratory of Bioactive Small Molecules, Department of Physiology and Pathophysiology, School of Basic Medical Sciences, Fudan University Shanghai Medical College, Shanghai, China
| |
Collapse
|
3
|
Yadav P, Chen DB, Kumar S. Region-Specific and Pregnancy-Enhanced Vasodilator Effects of Hydrogen Sulfide. OBSTETRICS AND GYNECOLOGY RESEARCH 2023; 6:309-316. [PMID: 38288009 PMCID: PMC10824528 DOI: 10.26502/ogr0145] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Indexed: 01/31/2024]
Abstract
Hydrogen sulfide (H2S) is a cardiovascular signaling molecule that causes vasodilation in vascular smooth muscle cells, but its mechanism is unclear. We examined how H2S affects mesenteric and uterine arteries without endothelium in nonpregnant and pregnant rats and the underlying mechanisms. H2S donors GYY4137 and NaHS relaxed uterine arteries more than mesenteric arteries in both pregnant and nonpregnant rats. GYY4137 and NaHS caused greater relaxation in the uterine artery of pregnant versus nonpregnant rats. High extracellular K+ abolished NaHS relaxation in pregnant uterine arteries, indicating potassium channel involvement. NaHS relaxation was unaffected by voltage-gated potassium channel blockers, reduced by ATP-sensitive potassium channel blockers, and abolished by calcium-activated potassium (BKCa) channel blockers. Thiol-reductant dithiothreitol also prevented NaHS relaxation. Thus, H2S has region-specific and pregnancy-enhanced vasodilator effects in the uterine arteries, mainly mediated by BKCa channels and sulfhydration.
Collapse
Affiliation(s)
- Pankaj Yadav
- Department of Comparative Biosciences, School of Veterinary Medicine, University of Wisconsin, Madison, Wisconsin, United States of America
| | - Dong-Bao Chen
- Department of Obstetrics & Gynecology, University of California, Irvine, California, United States of America
| | - Sathish Kumar
- Department of Comparative Biosciences, School of Veterinary Medicine, University of Wisconsin, Madison, Wisconsin, United States of America
- Department of Obstetrics and Gynecology, School of Medicine and Public Health, University of Wisconsin, Madison, Wisconsin, United States of America
| |
Collapse
|
4
|
Testai L, Montanaro R, Flori L, Pagnotta E, Vellecco V, Gorica E, Ugolini L, Righetti L, Brancaleone V, Bucci M, Piragine E, Martelli A, Di Cesare Mannelli L, Ghelardini C, Calderone V. Persulfidation of mitoKv7.4 channels contributes to the cardioprotective effects of the H 2S-donor Erucin against ischemia/reperfusion injury. Biochem Pharmacol 2023; 215:115728. [PMID: 37524208 DOI: 10.1016/j.bcp.2023.115728] [Citation(s) in RCA: 7] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2023] [Revised: 07/28/2023] [Accepted: 07/28/2023] [Indexed: 08/02/2023]
Abstract
BACKGROUND Hydrogen sulfide (H2S) is a gasotransmitter deeply involved in cardiovascular homeostasis and implicated in the myocardial protection against ischemia/reperfusion. The post-translational persulfidation of cysteine residues has been identified as the mechanism through which H2S regulates a plethora of biological targets. Erucin (ERU) is an isothiocyanate produced upon hydrolysis of the glucosinolate glucoerucin, presents in edible plants of Brassicaceae family, such as Eruca sativa Mill., and it has emerged as a slow and long-lasting H2S-donor. AIM In this study the cardioprotective profile of ERU has been investigated and the action mechanism explored, focusing on the possible role of the recently identified mitochondrial Kv7.4 (mitoKv7.4) potassium channels. RESULTS Interestingly, ERU showed to release H2S and concentration-dependently protected H9c2 cells against H2O2-induced oxidative damage. Moreover, in in vivo model of myocardial infarct ERU showed protective effects, reducing the extension of ischemic area, the levels of troponin I and increasing the amount of total AnxA1, as well as co-related inflammatory outcomes. Conversely, the pre-treatment with XE991, a blocker of Kv7.4 channels, abolished them. In isolated cardiac mitochondria ERU exhibited the typical profile of a mitochondrial potassium channels opener, in particular, this isothiocyanate produced a mild depolarization of mitochondrial membrane potential, a reduction of calcium accumulation into the matrix and finally a flow of potassium ions. Finally, mitoKv7.4 channels were persulfidated in ERU-treated mitochondria. CONCLUSIONS ERU modulates the cardiac mitoKv7.4 channels and this mechanism may be relevant for cardioprotective effects.
Collapse
Affiliation(s)
- L Testai
- Department of Pharmacy, University of Pisa, 56120-Pisa, Italy; Interdepartmental Research Center Nutrafood "Nutraceuticals and Food for Health", University of Pisa, Pisa, Italy; Interdepartmental Research Centre of Ageing Biology and Pathology, University of Pisa, Pisa, Italy.
| | - R Montanaro
- Department of Science, University of Basilicata, 85100, Potenza, Italy
| | - L Flori
- Department of Pharmacy, University of Pisa, 56120-Pisa, Italy
| | - E Pagnotta
- CREA-Council for Agricultural Research and Economics, Research Centre for Cereal and Industrial Crops, via di Corticella 133, 40128 Bologna, Italy
| | - V Vellecco
- Department of Pharmacy, University of Naples Federico II, 80131 Naples, Italy
| | - E Gorica
- Department of Pharmacy, University of Pisa, 56120-Pisa, Italy
| | - L Ugolini
- CREA-Council for Agricultural Research and Economics, Research Centre for Cereal and Industrial Crops, via di Corticella 133, 40128 Bologna, Italy
| | - L Righetti
- CREA-Council for Agricultural Research and Economics, Research Centre for Cereal and Industrial Crops, via di Corticella 133, 40128 Bologna, Italy
| | - V Brancaleone
- Department of Science, University of Basilicata, 85100, Potenza, Italy
| | - M Bucci
- Department of Pharmacy, University of Naples Federico II, 80131 Naples, Italy
| | - E Piragine
- Department of Pharmacy, University of Pisa, 56120-Pisa, Italy
| | - A Martelli
- Department of Pharmacy, University of Pisa, 56120-Pisa, Italy; Interdepartmental Research Center Nutrafood "Nutraceuticals and Food for Health", University of Pisa, Pisa, Italy; Interdepartmental Research Centre of Ageing Biology and Pathology, University of Pisa, Pisa, Italy
| | - L Di Cesare Mannelli
- Department of Neuroscience, Psychology, Drug Research and Child Health-Neurofarba-Pharmacology and Toxicology Section, University of Florence, Florence, Italy
| | - C Ghelardini
- Department of Neuroscience, Psychology, Drug Research and Child Health-Neurofarba-Pharmacology and Toxicology Section, University of Florence, Florence, Italy
| | - V Calderone
- Department of Pharmacy, University of Pisa, 56120-Pisa, Italy; Interdepartmental Research Center Nutrafood "Nutraceuticals and Food for Health", University of Pisa, Pisa, Italy; Interdepartmental Research Centre of Ageing Biology and Pathology, University of Pisa, Pisa, Italy
| |
Collapse
|
5
|
Piragine E, Citi V, Lawson K, Calderone V, Martelli A. Regulation of blood pressure by natural sulfur compounds: Focus on their mechanisms of action. Biochem Pharmacol 2022; 206:115302. [PMID: 36265595 DOI: 10.1016/j.bcp.2022.115302] [Citation(s) in RCA: 16] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2022] [Revised: 10/10/2022] [Accepted: 10/11/2022] [Indexed: 12/14/2022]
Abstract
Natural sulfur compounds are emerging as therapeutic options for the management of hypertension and prehypertension. They are mainly represented by polysulfides from Alliaceae (i.e., garlic) and isothiocyanates from Brassicaceae (or crucifers). The beneficial cardiovascular effects of these compounds, especially garlic polysulfides, are well known and widely reported both in preclinical and clinical studies. However, only a few authors have linked the ability of natural sulfur compounds to induce vasorelaxation and subsequent antihypertensive effects with their ability to release hydrogen sulfide (H2S) in biological tissue. H2S is an endogenous gasotransmitter involved in vascular tone regulation. Some cardiovascular diseases, such as hypertension, are associated with lower plasma H2S levels. Consequently, exogenous sources of H2S (H2S donors) have been designed and synthesized or identified among secondary plant metabolites as potential therapeutic options. In addition to antioxidant effects due to its chemical properties as a reducing agent, H2S induces vasorelaxation by interacting with a range of molecular targets. The mechanisms of action accounting for H2S-induced vasodilation include opening of vascular potassium channels (such as ATP-sensitive (KATP) and voltage-operated (Kv7) channels), inhibition of 5-phosphodiesterase (5-PDE), and activation of vascular endothelial growth factor receptor-2 (VEGFR-2). These effects may be attributed to H2S-induced S-persulfidation (or S-sulfhydration), which is a posttranslational modification of cysteine residues of many types of proteins resulting in structural and functional alterations (activation/inhibition). Thus, H2S donors, such as natural sulfur compounds, are promising antihypertensive agents with novel mechanisms of action.
Collapse
Affiliation(s)
- Eugenia Piragine
- Department of Pharmacy, University of Pisa, Via Bonanno 6, 56126 Pisa, Italy
| | - Valentina Citi
- Department of Pharmacy, University of Pisa, Via Bonanno 6, 56126 Pisa, Italy
| | - Kim Lawson
- Biomolecular Sciences Research Centre, Sheffield Hallam University, Sheffield S1 1WB, UK
| | - Vincenzo Calderone
- Department of Pharmacy, University of Pisa, Via Bonanno 6, 56126 Pisa, Italy; Interdepartmental Research Center "Nutrafood: Nutraceutica e Alimentazione per la Salute", University of Pisa, 56126 Pisa, Italy; Interdepartmental Research Center "Biology and Pathology of Ageing", University of Pisa, 56126 Pisa, Italy
| | - Alma Martelli
- Department of Pharmacy, University of Pisa, Via Bonanno 6, 56126 Pisa, Italy; Interdepartmental Research Center "Nutrafood: Nutraceutica e Alimentazione per la Salute", University of Pisa, 56126 Pisa, Italy; Interdepartmental Research Center "Biology and Pathology of Ageing", University of Pisa, 56126 Pisa, Italy.
| |
Collapse
|
6
|
Liu XY, Qian LL, Wang RX. Hydrogen Sulfide-Induced Vasodilation: The Involvement of Vascular Potassium Channels. Front Pharmacol 2022; 13:911704. [PMID: 35721210 PMCID: PMC9198332 DOI: 10.3389/fphar.2022.911704] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2022] [Accepted: 05/02/2022] [Indexed: 12/21/2022] Open
Abstract
Hydrogen sulfide (H2S) has been highlighted as an important gasotransmitter in mammals. A growing number of studies have indicated that H2S plays a key role in the pathophysiology of vascular diseases and physiological vascular homeostasis. Alteration in H2S biogenesis has been reported in a variety of vascular diseases and H2S supplementation exerts effects of vasodilation. Accumulating evidence has shown vascular potassium channels activation is involved in H2S-induced vasodilation. This review aimed to summarize and discuss the role of H2S in the regulation of vascular tone, especially by interaction with different vascular potassium channels and the underlying mechanisms.
Collapse
Affiliation(s)
- Xiao-Yu Liu
- Department of Cardiology, Wuxi People's Hospital Affiliated to Nanjing Medical University, Wuxi, China
| | - Ling-Ling Qian
- Department of Cardiology, Wuxi People's Hospital Affiliated to Nanjing Medical University, Wuxi, China
| | - Ru-Xing Wang
- Department of Cardiology, Wuxi People's Hospital Affiliated to Nanjing Medical University, Wuxi, China
| |
Collapse
|
7
|
Cirino G, Szabo C, Papapetropoulos A. Physiological roles of hydrogen sulfide in mammalian cells, tissues and organs. Physiol Rev 2022; 103:31-276. [DOI: 10.1152/physrev.00028.2021] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
H2S belongs to the class of molecules known as gasotransmitters, which also includes nitric oxide (NO) and carbon monoxide (CO). Three enzymes are recognized as endogenous sources of H2S in various cells and tissues: cystathionine g-lyase (CSE), cystathionine β-synthase (CBS) and 3-mercaptopyruvate sulfurtransferase (3-MST). The current article reviews the regulation of these enzymes as well as the pathways of their enzymatic and non-enzymatic degradation and elimination. The multiple interactions of H2S with other labile endogenous molecules (e.g. NO) and reactive oxygen species are also outlined. The various biological targets and signaling pathways are discussed, with special reference to H2S and oxidative posttranscriptional modification of proteins, the effect of H2S on channels and intracellular second messenger pathways, the regulation of gene transcription and translation and the regulation of cellular bioenergetics and metabolism. The pharmacological and molecular tools currently available to study H2S physiology are also reviewed, including their utility and limitations. In subsequent sections, the role of H2S in the regulation of various physiological and cellular functions is reviewed. The physiological role of H2S in various cell types and organ systems are overviewed. Finally, the role of H2S in the regulation of various organ functions is discussed as well as the characteristic bell-shaped biphasic effects of H2S. In addition, key pathophysiological aspects, debated areas, and future research and translational areas are identified A wide array of significant roles of H2S in the physiological regulation of all organ functions emerges from this review.
Collapse
Affiliation(s)
- Giuseppe Cirino
- Department of Pharmacy, School of Medicine, University of Naples Federico II, Naples, Italy
| | - Csaba Szabo
- Chair of Pharmacology, Section of Medicine, University of Fribourg, Switzerland
| | - Andreas Papapetropoulos
- Laboratory of Pharmacology, Faculty of Pharmacy, National and Kapodistrian University of Athens, Athens, Greece & Clinical, Experimental Surgery and Translational Research Center, Biomedical Research Foundation of the Academy of Athens, Greece
| |
Collapse
|
8
|
Vellecco V, Panza E, Bibli SI, Casillo GM, Raucci F, Manzo OL, Smimmo M, Villani R, Cavezza MR, Fleming I, d'Emmanuele di Villa Bianca R, Maione F, Cirino G, Bucci M. Phosphodiesterases S-sulfhydration contributes to human skeletal muscle function. Pharmacol Res 2022; 177:106108. [PMID: 35121122 DOI: 10.1016/j.phrs.2022.106108] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/06/2021] [Revised: 01/26/2022] [Accepted: 01/28/2022] [Indexed: 01/08/2023]
Abstract
The increase in intracellular calcium is influenced by cyclic nucleotides (cAMP and cGMP) content, which rating is governed by phosphodiesterases (PDEs) activity.Despite it has been demonstrated a beneficial effect of PDEs inhibitors in different pathological conditions involving SKM, not much is known on the role exerted by cAMP-cGMP/PDEs axis in human SKM contractility. Here, we show that Ssulfhydration of PDEs modulates human SKM contractility in physiological and pathological conditions. Having previously demonstrated that, in the rare human syndrome Malignant Hyperthermia (MH), there is an overproduction of hydrogen sulfide (H 2S) within SKM contributing to hyper-contractility, here we have used MH negative diagnosed biopsies (MHN) as healthy SKM, and MH susceptible diagnosed biopsies (MHS) as a pathological model of SKM hypercontractility. The study has been performed on MHS and MHN human biopsies after diagnosis has been made and on primary SKM cells derived from both MHN and MHS biopsies. Our data demonstrate that in normal conditions PDEs are S-sulfhydrated in both quadriceps' biopsies and primary SKM cells. This post translational modification (PTM) negatively regulates PDEs activity with consequent increase of both cAMP and cGMP levels. In hypercontractile biopsies, due to an excessive H2S content, there is an enhanced Ssulfhydration of PDEs that further increases cyclic nucleotides levels contributing to SKM hyper-contractility. Thus, the identification of a new endogenous PTM modulating PDEs activity represents an advancement in SKM physiopathology understanding.
Collapse
Affiliation(s)
- Valentina Vellecco
- Department of Pharmacy, School of Medicine and Surgery, University of Naples Federico II-, Via D. Montesano, 49, 80131 Naples, Italy
| | - Elisabetta Panza
- Department of Pharmacy, School of Medicine and Surgery, University of Naples Federico II-, Via D. Montesano, 49, 80131 Naples, Italy
| | - Sofia-Iris Bibli
- Institute for Vascular Signalling, Centre for Molecular Medicine, Goethe University, Frankfurt am Main, Germany; German Center of Cardiovascular Research (DZHK), Partner site RheinMain, Frankfurt am Main, Germany
| | - Gian Marco Casillo
- Department of Pharmacy, School of Medicine and Surgery, University of Naples Federico II-, Via D. Montesano, 49, 80131 Naples, Italy
| | - Federica Raucci
- Department of Pharmacy, School of Medicine and Surgery, University of Naples Federico II-, Via D. Montesano, 49, 80131 Naples, Italy
| | - Onorina Laura Manzo
- Department of Pharmacy, School of Medicine and Surgery, University of Naples Federico II-, Via D. Montesano, 49, 80131 Naples, Italy; Center for Vascular Biology, Department of Pathology and Laboratory Medicine, Weill Cornell Medical College, Cornell University, New York, New York, USA
| | - Martina Smimmo
- Department of Pharmacy, School of Medicine and Surgery, University of Naples Federico II-, Via D. Montesano, 49, 80131 Naples, Italy
| | - Romolo Villani
- U.O.C. Terapia Intensiva Grandi Ustionati (T.I.G.U.) Azienda Ospedaliera di Rilievo Nazionale "A. Cardarelli"
| | | | - Ingrid Fleming
- Institute for Vascular Signalling, Centre for Molecular Medicine, Goethe University, Frankfurt am Main, Germany; German Center of Cardiovascular Research (DZHK), Partner site RheinMain, Frankfurt am Main, Germany
| | | | - Francesco Maione
- Department of Pharmacy, School of Medicine and Surgery, University of Naples Federico II-, Via D. Montesano, 49, 80131 Naples, Italy
| | - Giuseppe Cirino
- Department of Pharmacy, School of Medicine and Surgery, University of Naples Federico II-, Via D. Montesano, 49, 80131 Naples, Italy
| | - Mariarosaria Bucci
- Department of Pharmacy, School of Medicine and Surgery, University of Naples Federico II-, Via D. Montesano, 49, 80131 Naples, Italy.
| |
Collapse
|
9
|
Corvino A, Citi V, Fiorino F, Frecentese F, Magli E, Perissutti E, Santagada V, Calderone V, Martelli A, Gorica E, Brogi S, Colombo FF, Capello CN, Araujo Ferreira HH, Rimoli MG, Sodano F, Rolando B, Pavese F, Petti A, Muscará MN, Caliendo G, Severino B. H 2S donating corticosteroids: Design, synthesis and biological evaluation in a murine model of asthma. J Adv Res 2022; 35:267-277. [PMID: 35024201 PMCID: PMC8721254 DOI: 10.1016/j.jare.2021.05.008] [Citation(s) in RCA: 20] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2021] [Revised: 04/27/2021] [Accepted: 05/17/2021] [Indexed: 12/13/2022] Open
Abstract
Introduction Hydrogen sulfide (H2S) is a fundamental biological endogenous gas-mediator in the respiratory system. It regulates pivotal patho-physiological processes such as oxidative stress, pulmonary circulation, airway tone and inflammation. Objectives We herein describe the design and synthesis of molecular hybrids obtained by the condensation of several corticosteroids with different hydrogen sulfide releasing moieties. Methods All the molecules are characterized for their ability to release H2S both via amperometric approach and using a fluorescent probe. The chemical stability of the newly synthesized hybrid molecules has been investigated at differing pH values and in human serum. Results Prednisone-TBZ hybrid (compound 7) was selected for further evaluations. The obtained results from the in vitro and in vivo studies clearly show evidence in favor of the anti-inflammatory properties of the released H2S. Conclusions The protective effect on airway remodeling makes the hybrid Prednisone-TBZ (compound 7) as a promising therapeutic option in reducing allergic asthma symptoms and exacerbations.
Collapse
Affiliation(s)
- Angela Corvino
- Department of Pharmacy, School of Medicine, University of Naples «Federico II», Via D. Montesano, 49, 80131 Napoli, Italy
| | - Valentina Citi
- Department of Pharmacy, University of Pisa, via Bonanno, 6, I-56126 Pisa, Italy
| | - Ferdinando Fiorino
- Department of Pharmacy, School of Medicine, University of Naples «Federico II», Via D. Montesano, 49, 80131 Napoli, Italy
| | - Francesco Frecentese
- Department of Pharmacy, School of Medicine, University of Naples «Federico II», Via D. Montesano, 49, 80131 Napoli, Italy
| | - Elisa Magli
- Department of Pharmacy, School of Medicine, University of Naples «Federico II», Via D. Montesano, 49, 80131 Napoli, Italy
| | - Elisa Perissutti
- Department of Pharmacy, School of Medicine, University of Naples «Federico II», Via D. Montesano, 49, 80131 Napoli, Italy
| | - Vincenzo Santagada
- Department of Pharmacy, School of Medicine, University of Naples «Federico II», Via D. Montesano, 49, 80131 Napoli, Italy
| | - Vincenzo Calderone
- Department of Pharmacy, University of Pisa, via Bonanno, 6, I-56126 Pisa, Italy
| | - Alma Martelli
- Department of Pharmacy, University of Pisa, via Bonanno, 6, I-56126 Pisa, Italy
| | - Era Gorica
- Department of Pharmacy, University of Pisa, via Bonanno, 6, I-56126 Pisa, Italy
| | - Simone Brogi
- Department of Pharmacy, University of Pisa, via Bonanno, 6, I-56126 Pisa, Italy
| | | | | | | | - Maria Grazia Rimoli
- Department of Pharmacy, School of Medicine, University of Naples «Federico II», Via D. Montesano, 49, 80131 Napoli, Italy
| | - Federica Sodano
- Department of Drug Science and Technology, University of Torino, Via Pietro Giuria, 9, 10125 Torino, Italy
| | - Barbara Rolando
- Department of Drug Science and Technology, University of Torino, Via Pietro Giuria, 9, 10125 Torino, Italy
| | - Francesca Pavese
- Genetic S.p.A., Via della Monica, 26 – 84083 Castel San Giorgio (SA), Italy
| | - Antonio Petti
- Genetic S.p.A., Via della Monica, 26 – 84083 Castel San Giorgio (SA), Italy
| | - Marcelo Nicolás Muscará
- Department of Pharmacology, Institute of Biomedical Sciences, University of Sao Paulo, São Paulo 05508-000, SP, Brazil
| | - Giuseppe Caliendo
- Department of Pharmacy, School of Medicine, University of Naples «Federico II», Via D. Montesano, 49, 80131 Napoli, Italy
| | - Beatrice Severino
- Department of Pharmacy, School of Medicine, University of Naples «Federico II», Via D. Montesano, 49, 80131 Napoli, Italy
| |
Collapse
|
10
|
Panza E, Vellecco V, Iannotti FA, Paris D, Manzo OL, Smimmo M, Mitilini N, Boscaino A, de Dominicis G, Bucci M, Di Lorenzo A, Cirino G. Duchenne's muscular dystrophy involves a defective transsulfuration pathway activity. Redox Biol 2021; 45:102040. [PMID: 34174560 PMCID: PMC8246642 DOI: 10.1016/j.redox.2021.102040] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2021] [Revised: 05/20/2021] [Accepted: 06/07/2021] [Indexed: 12/19/2022] Open
Abstract
Duchenne muscular dystrophy (DMD) is the most frequent X chromosome-linked disease caused by mutations in the gene encoding for dystrophin, leading to progressive and unstoppable degeneration of skeletal muscle tissues. Despite recent advances in the understanding of the molecular processes involved in the pathogenesis of DMD, there is still no cure. In this study, we aim at investigating the potential involvement of the transsulfuration pathway (TSP), and its by-end product namely hydrogen sulfide (H2S), in primary human myoblasts isolated from DMD donors and skeletal muscles of dystrophic (mdx) mice. In myoblasts of DMD donors, we demonstrate that the expression of key genes regulating the H2S production and TSP activity, including cystathionine γ lyase (CSE), cystathionine beta-synthase (CBS), 3 mercaptopyruvate sulfurtransferase (3-MST), cysteine dioxygenase (CDO), cysteine sulfonic acid decarboxylase (CSAD), glutathione synthase (GS) and γ -glutamylcysteine synthetase (γ-GCS) is reduced. Starting from these findings, using Nuclear Magnetic Resonance (NMR) and quantitative Polymerase Chain Reaction (qPCR) we show that the levels of TSP-related metabolites such as methionine, glycine, glutathione, glutamate and taurine, as well as the expression levels of the aforementioned TSP related genes, are significantly reduced in skeletal muscles of mdx mice compared to healthy controls, at both an early (7 weeks) and overt (17 weeks) stage of the disease. Importantly, the treatment with sodium hydrosulfide (NaHS), a commonly used H2S donor, fully recovers the impaired locomotor activity in both 7 and 17 old mdx mice. This is an effect attributable to the reduced expression of pro-inflammatory markers and restoration of autophagy in skeletal muscle tissues. In conclusion, our study uncovers a defective TSP pathway activity in DMD and highlights the role of H2S-donors for novel and safe adjuvant therapy to treat symptoms of DMD.
Collapse
Affiliation(s)
- E Panza
- Department of Pharmacy, School of Medicine and Surgery, University of Naples Federico II, Naples, Italy
| | - V Vellecco
- Department of Pharmacy, School of Medicine and Surgery, University of Naples Federico II, Naples, Italy
| | - F A Iannotti
- Institute of Biomolecular Chemistry (ICB), National Research Council (CNR), Pozzuoli (NA), Italy
| | - D Paris
- Institute of Biomolecular Chemistry (ICB), National Research Council (CNR), Pozzuoli (NA), Italy
| | - O L Manzo
- Department of Pharmacy, School of Medicine and Surgery, University of Naples Federico II, Naples, Italy; Center for Vascular Biology, Department of Pathology and Laboratory Medicine, Weill Cornell Medical College, Cornell University, New York, NY, USA
| | - M Smimmo
- Department of Pharmacy, School of Medicine and Surgery, University of Naples Federico II, Naples, Italy
| | - N Mitilini
- UOSC, Pathological Anatomy, A. Cardarelli Hospital, Naples, Italy
| | - A Boscaino
- UOSC, Pathological Anatomy, A. Cardarelli Hospital, Naples, Italy
| | - G de Dominicis
- UOSC, Pathological Anatomy, A. Cardarelli Hospital, Naples, Italy
| | - M Bucci
- Department of Pharmacy, School of Medicine and Surgery, University of Naples Federico II, Naples, Italy.
| | - A Di Lorenzo
- Center for Vascular Biology, Department of Pathology and Laboratory Medicine, Weill Cornell Medical College, Cornell University, New York, NY, USA
| | - G Cirino
- Department of Pharmacy, School of Medicine and Surgery, University of Naples Federico II, Naples, Italy
| |
Collapse
|
11
|
Zhang Y, Masters L, Wang Y, Wu L, Pei Y, Guo B, Parissenti A, Lees SJ, Wang R, Yang G. Cystathionine gamma-lyase/H 2 S signaling facilitates myogenesis under aging and injury condition. FASEB J 2021; 35:e21511. [PMID: 33826201 DOI: 10.1096/fj.202002675r] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2020] [Revised: 02/10/2021] [Accepted: 02/22/2021] [Indexed: 12/19/2022]
Abstract
Hydrogen sulfide (H2 S) can be endogenously produced and belongs to the class of signaling molecules known as gasotransmitters. Cystathionine gamma-lyase (CSE)-derived H2 S is implicated in the regulation of cell differentiation and the aging process, but the involvements of the CSE/H2 S system in myogenesis upon aging and injury have not been explored. In this study, we demonstrated that CSE acts as a major H2 S-generating enzyme in skeletal muscles and is significantly down-regulated in aged skeletal muscles in mice. CSE deficiency exacerbated the age-dependent sarcopenia and cardiotoxin-induced injury/regeneration in mouse skeletal muscle, possibly attributed to inefficient myogenesis. In contrast, supplement of NaHS (an H2 S donor) induced the expressions of myogenic genes and promoted muscle regeneration in mice. In vitro, incubation of myoblast cells (C2C12) with H2 S promoted myogenesis, as evidenced by the inhibition of cell cycle progression and migration, altered expressions of myogenic markers, elongation of myoblasts, and formation of multinucleated myotubes. Myogenesis was also found to upregulate CSE expression, while blockage of CSE/H2 S signaling resulted in a suppression of myogenesis. Mechanically, H2 S significantly induced the heterodimer formation between MEF2c and MRF4 and promoted the binding of MEF2c/MRF4 to myogenin promoter. MEF2c was S-sulfhydrated at both cysteine 361 and 420 in the C-terminal transactivation domain, and blockage of MEF2c S-sulfhydration abolished the stimulatory role of H2 S on MEF2c/MRF4 heterodimer formation. These findings support an essential role for H2 S in maintaining myogenesis, presenting it as a potential candidate for the prevention of age-related sarcopenia and treatment of muscle injury.
Collapse
Affiliation(s)
- Yanjie Zhang
- Department of Chemistry and Biochemistry, Laurentian University, Sudbury, ON, Canada.,Cardiovascular and Metabolic Research Unit, Laurentian University, Sudbury, ON, Canada
| | - Laura Masters
- Department of Chemistry and Biochemistry, Laurentian University, Sudbury, ON, Canada.,Cardiovascular and Metabolic Research Unit, Laurentian University, Sudbury, ON, Canada
| | - Yuehong Wang
- Department of Chemistry and Biochemistry, Laurentian University, Sudbury, ON, Canada.,Cardiovascular and Metabolic Research Unit, Laurentian University, Sudbury, ON, Canada
| | - Lingyun Wu
- Cardiovascular and Metabolic Research Unit, Laurentian University, Sudbury, ON, Canada.,School of Human Kinetics, Laurentian University, Sudbury, ON, Canada.,Health Science North Research Institute, Sudbury, ON, Canada
| | - Yanxi Pei
- School of Life Science, Shanxi University, Taiyuan, China
| | - Baoqing Guo
- Department of Chemistry and Biochemistry, Laurentian University, Sudbury, ON, Canada.,Health Science North Research Institute, Sudbury, ON, Canada
| | - Amadeo Parissenti
- Department of Chemistry and Biochemistry, Laurentian University, Sudbury, ON, Canada.,Health Science North Research Institute, Sudbury, ON, Canada
| | - Simon J Lees
- Northern Ontario School of Medicine, Thunder Bay, ON, Canada
| | - Rui Wang
- Department of Biology, York University, Toronto, ON, Canada
| | - Guangdong Yang
- Department of Chemistry and Biochemistry, Laurentian University, Sudbury, ON, Canada.,Cardiovascular and Metabolic Research Unit, Laurentian University, Sudbury, ON, Canada
| |
Collapse
|
12
|
Hydrogen Sulfide (H 2S) and Polysulfide (H 2S n) Signaling: The First 25 Years. Biomolecules 2021; 11:biom11060896. [PMID: 34208749 PMCID: PMC8235506 DOI: 10.3390/biom11060896] [Citation(s) in RCA: 60] [Impact Index Per Article: 20.0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2021] [Revised: 06/14/2021] [Accepted: 06/14/2021] [Indexed: 02/07/2023] Open
Abstract
Since the first description of hydrogen sulfide (H2S) as a toxic gas in 1713 by Bernardino Ramazzini, most studies on H2S have concentrated on its toxicity. In 1989, Warenycia et al. demonstrated the existence of endogenous H2S in the brain, suggesting that H2S may have physiological roles. In 1996, we demonstrated that hydrogen sulfide (H2S) is a potential signaling molecule, which can be produced by cystathionine β-synthase (CBS) to modify neurotransmission in the brain. Subsequently, we showed that H2S relaxes vascular smooth muscle in synergy with nitric oxide (NO) and that cystathionine γ-lyase (CSE) is another producing enzyme. This study also opened up a new research area of a crosstalk between H2S and NO. The cytoprotective effect, anti-inflammatory activity, energy formation, and oxygen sensing by H2S have been subsequently demonstrated. Two additional pathways for the production of H2S with 3-mercaptopyruvate sulfurtransferase (3MST) from l- and d-cysteine have been identified. We also discovered that hydrogen polysulfides (H2Sn, n ≥ 2) are potential signaling molecules produced by 3MST. H2Sn regulate the activity of ion channels and enzymes, as well as even the growth of tumors. S-Sulfuration (S-sulfhydration) proposed by Snyder is the main mechanism for H2S/H2Sn underlying regulation of the activity of target proteins. This mini review focuses on the key findings on H2S/H2Sn signaling during the first 25 years.
Collapse
|
13
|
Abramavicius S, Petersen AG, Renaltan NS, Prat-Duran J, Torregrossa R, Stankevicius E, Whiteman M, Simonsen U. GYY4137 and Sodium Hydrogen Sulfide Relaxations Are Inhibited by L-Cysteine and K V7 Channel Blockers in Rat Small Mesenteric Arteries. Front Pharmacol 2021; 12:613989. [PMID: 33841145 PMCID: PMC8032876 DOI: 10.3389/fphar.2021.613989] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2020] [Accepted: 02/12/2021] [Indexed: 01/23/2023] Open
Abstract
Donors of H2S may be beneficial in treating cardiovascular diseases where the plasma levels of H2S are decreased. Therefore, we investigated the mechanisms involved in relaxation of small arteries induced by GYY4137 [(4-methoxyphenyl)-morpholin-4-yl-sulfanylidene-sulfido-λ5-phosphane;morpholin-4-ium], which is considered a slow-releasing H2S donor. Sulfides were measured by use of 5,5′-dithiobis-(2-nitro benzoic acid), and small rat mesenteric arteries with internal diameters of 200–250 µm were mounted in microvascular myographs for isometric tension recordings. GYY4137 produced similar low levels of sulfides in the absence and the presence of arteries. In U46619-contracted small mesenteric arteries, GYY4137 (10−6–10–3 M) induced concentration-dependent relaxations, while a synthetic, sulfur-free, GYY4137 did not change the vascular tone. L-cysteine (10−6–10–3 M) induced only small relaxations reaching 24 ± 6% at 10–3 M. Premixing L-cysteine (10–3 M) with Na2S and GYY4137 decreased Na2S relaxation and abolished GYY4137 relaxation, an effect prevented by an nitric oxide (NO) synthase inhibitor, L-NAME (Nω-nitro-L-arginine methyl ester). In arteries without endothelium or in the presence of L-NAME, relaxation curves for GYY4137 were rightward shifted. High extracellular K+ concentrations decreased Na2S and abolished GYY4137 relaxation suggesting potassium channel-independent mechanisms are also involved Na2S relaxation while potassium channel activation is pivotal for GYY4137 relaxation in small arteries. Blockers of large-conductance calcium-activated (BKCa) and voltage-gated type 7 (KV7) potassium channels also inhibited GYY4137 relaxations. The present findings suggest that L-cysteine by reaction with Na2S and GYY4137 and formation of sulfides, inhibits relaxations by these compounds. The low rate of release of H2S species from GYY4137 is reflected by the different sensitivity of these relaxations towards high K+ concentration and potassium channel blockers compared with Na2S. The perspective is that the rate of release of sulfides plays an important for the effects of H2S salt vs. donors in small arteries, and hence for a beneficial effect of GYY4137 for treatment of cardiovascular disease.
Collapse
Affiliation(s)
- Silvijus Abramavicius
- Department of Biomedicine, Pulmonary and Cardiovascular Pharmacology, Aarhus University, Aarhus, Denmark.,Institute of Physiology and Pharmacology, Lithuanian University of Health Sciences, Kaunas, Lithuania
| | - Asbjørn G Petersen
- Department of Biomedicine, Pulmonary and Cardiovascular Pharmacology, Aarhus University, Aarhus, Denmark
| | - Nirthika S Renaltan
- Department of Biomedicine, Pulmonary and Cardiovascular Pharmacology, Aarhus University, Aarhus, Denmark
| | - Judit Prat-Duran
- Department of Biomedicine, Pulmonary and Cardiovascular Pharmacology, Aarhus University, Aarhus, Denmark
| | | | - Edgaras Stankevicius
- Institute of Cardiology, Lithuanian University of Health Sciences, Kaunas, Lithuania
| | | | - Ulf Simonsen
- Department of Biomedicine, Pulmonary and Cardiovascular Pharmacology, Aarhus University, Aarhus, Denmark
| |
Collapse
|
14
|
Vellecco V, Martelli A, Bibli IS, Vallifuoco M, Manzo OL, Panza E, Citi V, Calderone V, de Dominicis G, Cozzolino C, Basso EM, Mariniello M, Fleming I, Mancini A, Bucci M, Cirino G. Anomalous K v 7 channel activity in human malignant hyperthermia syndrome unmasks a key role for H 2 S and persulfidation in skeletal muscle. Br J Pharmacol 2020; 177:810-823. [PMID: 31051045 PMCID: PMC7024712 DOI: 10.1111/bph.14700] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2018] [Revised: 02/05/2019] [Accepted: 04/16/2019] [Indexed: 12/19/2022] Open
Abstract
BACKGROUND AND PURPOSE Human malignant hyperthermia (MH) syndrome is induced by volatile anaesthetics and involves increased levels of cystathionine β-synthase (CBS)-derived H2 S within skeletal muscle. This increase contributes to skeletal muscle hypercontractility. Kv 7 channels, expressed in skeletal muscle, may be a molecular target for H2 S. Here, we have investigated the role of Kv 7 channels in MH. EXPERIMENTAL APPROACH Skeletal muscle biopsies were obtained from MH-susceptible (MHS) and MH-negative (MHN) patients. Immunohistochemistry, RT-PCR, Western blot, and in vitro contracture test (IVCT) were carried out. Development and characterization of primary human skeletal muscle cells (PHSKMC) and evaluation of cell membrane potential were also performed. The persulfidation state of Kv 7 channels and polysulfide levels were measured. KEY RESULTS Kv 7 channels were similarly expressed in MHN and MHS biopsies. The IVCT revealed an anomalous contractility of MHS biopsies following exposure to the Kv 7 channel opener retigabine. Incubation of negative biopsies with NaHS, prior to retigabine addition, led to an MHS-like positive response. MHS-derived PHSKMC challenged with retigabine showed a paradoxical depolarizing effect, compared with the canonical hyperpolarizing effect. CBS expression and activity were increased in MHS biopsies, resulting in a major polysulfide bioavailability. Persulfidation of Kv 7.4 channels was significantly higher in MHS than in MHN biopsies. CONCLUSIONS AND IMPLICATIONS In skeletal muscle of MHS patients, CBS-derived H2 S induced persulfidation of Kv 7 channels. This post-translational modification switches the hyperpolarizing activity into depolarizing. This mechanism can contribute to the pathological skeletal muscle hypercontractility typical of MH syndrome. LINKED ARTICLES This article is part of a themed section on Hydrogen Sulfide in Biology & Medicine. To view the other articles in this section visit http://onlinelibrary.wiley.com/doi/10.1111/bph.v177.4/issuetoc.
Collapse
Affiliation(s)
- Valentina Vellecco
- Department of Pharmacy, School of MedicineUniversity of Naples Federico IINaplesItaly
| | | | - Iris Sofia Bibli
- Institute for Vascular Signalling, Centre for Molecular MedicineGoethe University Frankfurt am MainFrankfurt am MainGermany
- German Center of Cardiovascular Research (DZHK), partner site RheinMainFrankfurt am MainGermany
| | | | - Onorina L. Manzo
- Department of Pharmacy, School of MedicineUniversity of Naples Federico IINaplesItaly
| | - Elisabetta Panza
- Department of Pharmacy, School of MedicineUniversity of Naples Federico IINaplesItaly
| | | | | | | | | | | | | | - Ingrid Fleming
- Institute for Vascular Signalling, Centre for Molecular MedicineGoethe University Frankfurt am MainFrankfurt am MainGermany
- German Center of Cardiovascular Research (DZHK), partner site RheinMainFrankfurt am MainGermany
| | | | - Mariarosaria Bucci
- Department of Pharmacy, School of MedicineUniversity of Naples Federico IINaplesItaly
| | - Giuseppe Cirino
- Department of Pharmacy, School of MedicineUniversity of Naples Federico IINaplesItaly
| |
Collapse
|
15
|
Papapetropoulos A, Wallace JL, Wang R. From primordial gas to the medicine cabinet. Br J Pharmacol 2020; 177:715-719. [PMID: 31726475 PMCID: PMC7024704 DOI: 10.1111/bph.14929] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
Abstract
LINKED ARTICLES This article is part of a themed section on Hydrogen Sulfide in Biology & Medicine. To view the other articles in this section visit http://onlinelibrary.wiley.com/doi/10.1111/bph.v177.4/issuetoc.
Collapse
Affiliation(s)
| | | | - Rui Wang
- York UniversityTorontoOntarioCanada
| |
Collapse
|