1
|
Wu CY, Chen Y, Chen MT, Fu TT, Liu J, Liu FF, Xu CJ, Li WS, Li BL, Jiang ZP, Rao Y, Huang L. Natural linoleic acid from marine fungus Eutypella sp. F0219 blocks KEAP1/NRF2 interaction and ameliorates MASLD by targeting FABP4. Free Radic Biol Med 2024; 224:630-643. [PMID: 39299527 DOI: 10.1016/j.freeradbiomed.2024.09.019] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/08/2024] [Revised: 08/28/2024] [Accepted: 09/12/2024] [Indexed: 09/22/2024]
Abstract
Ectopic lipid accumulation induced lipotoxicity plays a crucial role in exacerbating the development of metabolic dysfunction-associated steatotic liver disease (MASLD), which affects over 30 % of the worldwide population and 85 % of the obese population. The growing demand for effective therapeutic agents highlights the need for high-efficacy lipotoxicity ameliorators and relevant therapeutic targets in the fight against MASLD. This study aimed to discover natural anti-lipotoxic and anti-MASLD candidates and elucidate the underlying mechanism and therapeutic targets. Utilizing palmitic acid (PA)-induced HepG-2 and primary mouse hepatocyte models, we identified linoleic acid (HN-002), a ligand of fatty acid binding protein 4 (FABP4), from the marine fungus Eutypella sp. F0219. HN-002 dose-dependently prevented lipid overload-induced hepatocyte damage and lipid accumulation, inhibited fatty acid esterification, and ameliorated oxidative stress. These beneficial effects were associated with improvements in mitochondrial adaptive oxidation. HN-002 treatment enhanced lipid transport into mitochondria and oxidation, inhibited mitochondrial depolarization, and reduced mitochondrial ROS (mtROS) level in PA-treated hepatocytes. Mechanistically, HN-002 treatment disrupted the interaction between KEAP1 and NRF2, leading to NRF2 deubiquitylation and nuclear translocation, which activated beneficial metabolic regulation. In vivo, HN-002 treatment (20 mg/kg/per 2 days, i. p.) for 25 days effectively reversed hepatic steatosis and liver injury in the fast/refeeding plus high-fat/high-cholesterol diet induced MASLD mice. These therapeutic effects were associated with enhanced mitochondrial adaptive oxidation and activation of NRF2 signaling in the liver. These data suggest that HN-002 would be an interesting candidate for MASLD by improving mitochondrial oxidation via the FABP4/KEAP1/NRF2 axis. The discovery offers new insights into developing novel anti- MASLD agents derived from marine sources.
Collapse
Affiliation(s)
- Chen-Yan Wu
- Key Laboratory of Tropical Biological Resources of Ministry of Education, School of Pharmaceutical Sciences, Hainan University, Haikou, 570200, China
| | - Yue Chen
- Key Laboratory of Tropical Biological Resources of Ministry of Education, School of Pharmaceutical Sciences, Hainan University, Haikou, 570200, China
| | - Meng-Ting Chen
- Key Laboratory of Tropical Biological Resources of Ministry of Education, School of Pharmaceutical Sciences, Hainan University, Haikou, 570200, China
| | - Ting-Ting Fu
- Key Laboratory of Tropical Biological Resources of Ministry of Education, School of Pharmaceutical Sciences, Hainan University, Haikou, 570200, China
| | - Jin Liu
- Key Laboratory of Tropical Biological Resources of Ministry of Education, School of Pharmaceutical Sciences, Hainan University, Haikou, 570200, China
| | - Fei-Fei Liu
- Key Laboratory of Tropical Biological Resources of Ministry of Education, School of Pharmaceutical Sciences, Hainan University, Haikou, 570200, China
| | - Cong-Jun Xu
- Key Laboratory of Tropical Biological Resources of Ministry of Education, School of Pharmaceutical Sciences, Hainan University, Haikou, 570200, China
| | - Wan-Shan Li
- Key Laboratory of Tropical Medicinal Resource Chemistry of Ministry of Education and Key Laboratory of Tropical Medicinal Plant Chemistry of Hainan Province, College of Chemistry and Chemical Engineering, Hainan Normal University, Haikou, 571158, China
| | - Bao-Li Li
- Key Laboratory of Tropical Biological Resources of Ministry of Education, School of Pharmaceutical Sciences, Hainan University, Haikou, 570200, China
| | - Zhong-Ping Jiang
- Key Laboratory of Tropical Biological Resources of Ministry of Education, School of Pharmaceutical Sciences, Hainan University, Haikou, 570200, China.
| | - Yong Rao
- Key Laboratory of Tropical Biological Resources of Ministry of Education, School of Pharmaceutical Sciences, Hainan University, Haikou, 570200, China.
| | - Ling Huang
- Key Laboratory of Tropical Biological Resources of Ministry of Education, School of Pharmaceutical Sciences, Hainan University, Haikou, 570200, China.
| |
Collapse
|
2
|
Cheng J, Yan G, Tan W, Qin Z, Xie Q, Liu Y, Li Y, Chen J, Yang X, Chen J, Su Z, Xie J. Berberine alleviates fructose-induced hepatic injury via ADK/AMPK/Nrf2 pathway: A novel insight. Biomed Pharmacother 2024; 179:117361. [PMID: 39243432 DOI: 10.1016/j.biopha.2024.117361] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2024] [Revised: 08/21/2024] [Accepted: 08/26/2024] [Indexed: 09/09/2024] Open
Abstract
Berberine (BBR) is a major active component of traditional Chinese medicine Rhizoma Coptidis and Cortex Phellodendri, which have been frequently used to treat liver diseases. Oxidative stress and inflammation are two pivotal hepatic pathological hallmarks. This study aimed to explore the potential effect and underlying mechanism of BBR on fructose-induced rat liver injury model, and hepatocyte damage in HepG2 and BRL-3A cells. Our results indicated that BBR effectively reversed fructose-induced body weight gain, glucose intolerance, and insulin resistance, observably attenuated abnormal histopathological alterations and ameliorated serum activities of ALT and AST. In vivo and in vitro, BBR significantly alleviated the secretion of pro-inflammatory cytokines IL-6 and TNF-α, and elevated levels of anti-inflammatory cytokine IL-10. BBR also attenuated oxidative stress by markedly decreasing intracellular contents of ROS and MDA, and increasing SOD enzymatic activity and GSH level. Furthermore, BBR substantially upregulated the protein expression of Nrf2, HO-1 and p-AMPK, and the fluorescence level of p-AMPK. In addition, BBR significantly increased the level of AMP, the ratio of AMP/ATP, and promoted the expression of ADK. Nevertheless, siADK abolished the benefits exerted by BBR on HepG2 and BRL-3A cells. Conclusively, the hepatoprotective effect of BBR was believed to be intimately associated with anti-inflammatory and antioxidant action mediated, at least partially, via ADK/AMPK/Nrf2 signaling. This work provided further support for the traditional application of Rhizoma Coptidis and Cortex Phellodendri in liver protection and might shed novel dimension to the clinical application of BBR, providing a promising lead compound for drug design.
Collapse
Affiliation(s)
- Juanjuan Cheng
- School of Pharmaceutical Sciences, Guangzhou University of Chinese Medicine, Guangzhou 510006, PR China; Shenzhen Key Laboratory of Hospital Chinese Medicine Preparation, Shenzhen Traditional Chinese Medicine Hospital, The Fourth Clinical Medical College of Guangzhou University of Chinese Medicine, Shenzhen 518033, PR China
| | - Guangtao Yan
- School of Pharmaceutical Sciences, Guangzhou University of Chinese Medicine, Guangzhou 510006, PR China
| | - Wenwen Tan
- School of Pharmaceutical Sciences, Guangzhou University of Chinese Medicine, Guangzhou 510006, PR China
| | - Zehui Qin
- School of Pharmaceutical Sciences, Guangzhou University of Chinese Medicine, Guangzhou 510006, PR China
| | - Qingfeng Xie
- The Second Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangzhou 510120, PR China; Li Ke Ancient Chinese medicine & Qi Yu-ru Academic Experience Inheritance Studio, Guangdong Provincial Hospital of Chinese Medicine, Guangzhou 510006, PR China; Dongguan Institute of Guangzhou University of Chinese Medicine, Dongguan 523808, PR China
| | - Yuhong Liu
- School of Pharmaceutical Sciences, Guangzhou University of Chinese Medicine, Guangzhou 510006, PR China
| | - Yucui Li
- School of Pharmaceutical Sciences, Guangzhou University of Chinese Medicine, Guangzhou 510006, PR China
| | - Jiannan Chen
- School of Pharmaceutical Sciences, Guangzhou University of Chinese Medicine, Guangzhou 510006, PR China
| | - Xiaobo Yang
- The Second Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangzhou 510120, PR China; State Key Laboratory of Dampness Syndrome of Chinese Medicine, The Second Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangzhou 510120, PR China; Guangdong Provincial Key Laboratory of Clinical Research on Traditional Chinese Medicine Syndrome, Guangzhou 510120, PR China
| | - Jianping Chen
- Shenzhen Key Laboratory of Hospital Chinese Medicine Preparation, Shenzhen Traditional Chinese Medicine Hospital, The Fourth Clinical Medical College of Guangzhou University of Chinese Medicine, Shenzhen 518033, PR China.
| | - Ziren Su
- School of Pharmaceutical Sciences, Guangzhou University of Chinese Medicine, Guangzhou 510006, PR China.
| | - Jianhui Xie
- The Second Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangzhou 510120, PR China; State Key Laboratory of Dampness Syndrome of Chinese Medicine, The Second Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangzhou 510120, PR China; Guangdong Provincial Key Laboratory of Clinical Research on Traditional Chinese Medicine Syndrome, Guangzhou 510120, PR China.
| |
Collapse
|
3
|
Meng D, Chang M, Dai X, Kuang Q, Wang G. GTPBP8 mitigates nonalcoholic steatohepatitis (NASH) by depressing hepatic oxidative stress and mitochondrial dysfunction via PGC-1α signaling. Free Radic Biol Med 2024:S0891-5849(24)00691-9. [PMID: 39341301 DOI: 10.1016/j.freeradbiomed.2024.09.044] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/26/2024] [Revised: 09/15/2024] [Accepted: 09/25/2024] [Indexed: 10/01/2024]
Abstract
Nonalcoholic steatohepatitis (NASH) is emerging as a major cause of liver transplantation and hepatocellular carcinoma (HCC). Regrettably, its pathological mechanisms are still not fully comprehended. GTP-binding protein 8 (GTPBP8), belonging to the GTP-binding protein superfamily, assumes a crucial role in RNA metabolism, cell proliferation, differentiation, and signal transduction. Its aberrant expression is associated with oxidative stress and mitochondrial dysfunctions. Nevertheless, its specific functions and mechanisms of action, particularly in NASH, remain elusive. In our current study, we initially discovered that human hepatocytes L02 displayed evident mitochondrial respiratory anomaly, mitochondrial damage, and dysfunction upon treatment with palmitic acids and oleic acids (PO), accompanied by significantly reduced GTPBP8 expression levels through RNA-Seq, RT-qPCR, western blotting, and immunofluorescence assays. We then demonstrated that GTPBP8 overexpression mediated by adenovirus vector (Ad-GTPBP8) markedly attenuate lipid accumulation, inflammatory response, and mitochondrial impair and dysfunction in hepatocytes stimulated by PO. Conversely, adenovirus vector-mediated GTPBP8 knockdown (Ad-shGTPBP8) significantly accelerated lipid deposition, inflammation and mitochondrial damage in PO-treated hepatocytes in vitro. Furthermore, we constructed an in vivo NASH murine model by giving a 16-week high fat high cholesterol diet (HFHC) diet to hepatocyte specific GTPBP8-knockout (GTPBP8HKO) mice. We firstly found that HFHC feeding led to metabolic disorder in mice, including high body weight, blood glucose and insulin levels, and liver dysfunctions, which were accelerated in these NASH mice with GTPBP8 deficiency in hepatocytes. Consistently, GTPBP8HKO remarkably exacerbated the progression of NASH phenotypes induced by HFHC, as proved by the anabatic lipid accumulation, inflammation, fibrosis and reactive oxygen species (ROS) production in liver tissues, which could be largely attributed to the severe mitochondrial damage and dysfunction. Mechanistically, we further identified that GTPBP8 interacted with peroxisome proliferator-activated receptor γ coactivator 1α (PGC-1α) in hepatocytes. Importantly, the hepaprotective effects of GTPBP8 against mitochondrial dysfunction, oxidative stress and inflammation was largely dependent on PGC-1α expression. Collectively, GTPBP8 may exert a protective role in the progression of NASH, and targeting the GTPBP8/PGC-1α axis may represent a potential strategy for NASH treatment by improving mitochondrial functions.
Collapse
Affiliation(s)
- Dongxiao Meng
- Department of Gastroenterology, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan 250021, PR China
| | - Minghui Chang
- Tumor Research and Therapy Center, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan 250021, PR China
| | - Xianling Dai
- Key Laboratory of Biorheological Science and Technology (Chongqing University), Ministry of Education, College of Bioengineering, Chongqing University, Chongqing 400030, PR China
| | - Qin Kuang
- Key Laboratory of Biorheological Science and Technology (Chongqing University), Ministry of Education, College of Bioengineering, Chongqing University, Chongqing 400030, PR China
| | - Guangchuan Wang
- Department of Gastroenterology, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan 250021, PR China.
| |
Collapse
|
4
|
Su R, Fu HL, Zhang QX, Wu CY, Yang GY, Wu JJ, Cao WJ, Liu J, Jiang ZP, Xu CJ, Rao Y, Huang L. Amplifying hepatic L-aspartate levels suppresses CCl 4-induced liver fibrosis by reversing glucocorticoid receptor β-mediated mitochondrial malfunction. Pharmacol Res 2024; 206:107294. [PMID: 38992851 DOI: 10.1016/j.phrs.2024.107294] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/27/2024] [Revised: 06/20/2024] [Accepted: 07/03/2024] [Indexed: 07/13/2024]
Abstract
Liver fibrosis is a determinant-stage process of many chronic liver diseases and affected over 7.9 billion populations worldwide with increasing demands of ideal therapeutic agents. Discovery of active molecules with anti-hepatic fibrosis efficacies presents the most attacking filed. Here, we revealed that hepatic L-aspartate levels were decreased in CCl4-induced fibrotic mice. Instead, supplementation of L-aspartate orally alleviated typical manifestations of liver injury and fibrosis. These therapeutic efficacies were alongside improvements of mitochondrial adaptive oxidation. Notably, treatment with L-aspartate rebalanced hepatic cholesterol-steroid metabolism and reduced the levels of liver-impairing metabolites, including corticosterone (CORT). Mechanistically, L-aspartate treatment efficiently reversed CORT-mediated glucocorticoid receptor β (GRβ) signaling activation and subsequent transcriptional suppression of the mitochondrial genome by directly binding to the mitochondrial genome. Knockout of GRβ ameliorated corticosterone-mediated mitochondrial dysfunction and hepatocyte damage which also weakened the improvements of L-aspartate in suppressing GRβ signaling. These data suggest that L-aspartate ameliorates hepatic fibrosis by suppressing GRβ signaling via rebalancing cholesterol-steroid metabolism, would be an ideal candidate for clinical liver fibrosis treatment.
Collapse
Affiliation(s)
- Rui Su
- Key Laboratory of Tropical Biological Resources of Ministry of Education, School of Pharmaceutical Sciences, Hainan University, Haikou 570100, China
| | - Hui-Ling Fu
- Key Laboratory of Tropical Biological Resources of Ministry of Education, School of Pharmaceutical Sciences, Hainan University, Haikou 570100, China
| | - Qian-Xue Zhang
- Key Laboratory of Tropical Biological Resources of Ministry of Education, School of Pharmaceutical Sciences, Hainan University, Haikou 570100, China
| | - Chen-Yan Wu
- Key Laboratory of Tropical Biological Resources of Ministry of Education, School of Pharmaceutical Sciences, Hainan University, Haikou 570100, China
| | - Guan-Yu Yang
- Key Laboratory of Tropical Biological Resources of Ministry of Education, School of Pharmaceutical Sciences, Hainan University, Haikou 570100, China
| | - Jun-Jie Wu
- Key Laboratory of Tropical Biological Resources of Ministry of Education, School of Pharmaceutical Sciences, Hainan University, Haikou 570100, China
| | - Wen-Jie Cao
- Key Laboratory of Tropical Biological Resources of Ministry of Education, School of Pharmaceutical Sciences, Hainan University, Haikou 570100, China
| | - Jin Liu
- Key Laboratory of Tropical Biological Resources of Ministry of Education, School of Pharmaceutical Sciences, Hainan University, Haikou 570100, China
| | - Zhong-Ping Jiang
- Key Laboratory of Tropical Biological Resources of Ministry of Education, School of Pharmaceutical Sciences, Hainan University, Haikou 570100, China
| | - Cong-Jun Xu
- Key Laboratory of Tropical Biological Resources of Ministry of Education, School of Pharmaceutical Sciences, Hainan University, Haikou 570100, China
| | - Yong Rao
- Key Laboratory of Tropical Biological Resources of Ministry of Education, School of Pharmaceutical Sciences, Hainan University, Haikou 570100, China.
| | - Ling Huang
- Key Laboratory of Tropical Biological Resources of Ministry of Education, School of Pharmaceutical Sciences, Hainan University, Haikou 570100, China.
| |
Collapse
|
5
|
Feng X, Ma R, Wang Y, Tong L, Wen W, Mu T, Tian J, Yu B, Gu Y, Zhang J. Non-targeted metabolomics identifies biomarkers in milk with high and low milk fat percentage. Food Res Int 2024; 179:113989. [PMID: 38342531 DOI: 10.1016/j.foodres.2024.113989] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2023] [Revised: 12/30/2023] [Accepted: 01/05/2024] [Indexed: 02/13/2024]
Abstract
Milk is widely recognized as an important food source with health benefits. Different consumer groups have different requirements for the content and proportion of milk fat; therefore, it is necessary to investigate the differential metabolites and their regulatory mechanisms in milk with high and low milk fat percentages (MFP). In this study, untargeted metabolomics was performed on milk samples from 13 cows with high milk fat percentage (HF) and 13 cows with low milk fat percentage (LF) using ultra-high performance liquid chromatography coupled with mass spectrometry (UHPLC-MS/MS). Forty-eight potential differentially labeled compounds were screened using the orthogonal partial least squares-discriminant analysis (OPLS-DA) combined with the weighted gene co-expression network analysis (WGCNA) method. Amino acid metabolism was the key metabolic pathway with significant enrichment of L-histidine, 5-oxoproline, L-aspartic acid, and L-glutamic acid. The negative correlation with MFP differentiated the HF and LF groups. To further determine the potential regulatory role of these amino acids on milk fat metabolism, the expression levels of marker genes in the milk fat synthesis pathway were explored. It was noticed that L-histidine reduced milk fat concentration primarily by inhibiting the triglycerides (TAG) synthesis pathway. L-aspartic acid and L-glutamic acid inhibited milk fat synthesis through the fatty acid de novo and TAG synthesis pathways. This study provides new insights into the mechanism underlying milk fat synthesis and milk quality improvement.
Collapse
Affiliation(s)
- Xiaofang Feng
- College of Animal Science and Technology, Ningxia University, Yinchuan 750021, China
| | - Ruoshuang Ma
- College of Animal Science and Technology, Ningxia University, Yinchuan 750021, China
| | - Ying Wang
- College of Animal Science and Technology, Ningxia University, Yinchuan 750021, China
| | - Lijia Tong
- College of Animal Science and Technology, Ningxia University, Yinchuan 750021, China
| | - Wan Wen
- Animal Husbandry Extension Station, Yinchuan, China
| | - Tong Mu
- School of Life Science, Yan'an University, Yanan 716000, China
| | - Jia Tian
- Animal Husbandry Extension Station, Yinchuan, China
| | - Baojun Yu
- College of Animal Science and Technology, Ningxia University, Yinchuan 750021, China
| | - Yaling Gu
- College of Animal Science and Technology, Ningxia University, Yinchuan 750021, China
| | - Juan Zhang
- College of Animal Science and Technology, Ningxia University, Yinchuan 750021, China.
| |
Collapse
|
6
|
Mohamed MAE, Rihan S, Elbakry MMM, Moselhy SS. Molecular docking targeting autophagy pathway mediate abrogation of NASH by specific functional foods: update review. Nat Prod Res 2024:1-24. [PMID: 38362886 DOI: 10.1080/14786419.2024.2316328] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2023] [Accepted: 02/05/2024] [Indexed: 02/17/2024]
Abstract
Autophagy is a very well-conserved self-digestive mechanism that transports unwanted or disposable cytoplasmic debris to lysosomes for destruction, including misfolded proteins and damaged organelles. Advanced liver illnesses can develop from the prevalent clinical condition known as non-alcoholic steatohepatitis (NASH). There is no effective treatment, is still unclear. Therefore, in order to create novel therapeutics, it is necessary to comprehend the pathogenic pathways causing disease onset and progression. Natural components from medicinal plants are currently the subject of a larger number of studies since they provide fresh promise for NASH. This review provided an overview of the aetiology of NASH, in addition the role of natural products as alternative or complementary therapeutic agent for management of NASH via autophagy induction. It was concluded that, alternative and complementary supplement of natural functional food as Arabica coffee that rich with chlorogenic acid targeting autophagy mechanism mediate amelioration effect of NASH.
Collapse
Affiliation(s)
| | - Shaimaa Rihan
- Biochemistry Department, Faculty of Science, Ain Shams University, Cairo, Egypt
| | - Mustafa M M Elbakry
- Biochemistry Department, Faculty of Science, Ain Shams University, Cairo, Egypt
- Faculty of Biotechnology, October University for Modern Sciences and Arts, Cairo, Egypt
| | - Said S Moselhy
- Biochemistry Department, Faculty of Science, Ain Shams University, Cairo, Egypt
| |
Collapse
|
7
|
Yao H, Hu Y, Tong H, Shi S. Dimethylglycine Alleviates Metabolic Dysfunction-Associated Fatty Liver Disease by Improving the Circulating Estrogen Level via Gut Staphylococcus. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2024; 72:2708-2717. [PMID: 38131116 DOI: 10.1021/acs.jafc.3c07075] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/23/2023]
Abstract
Our previous study screened out dietary 0.1% dimethylglycine (DMG), which had beneficial effects on egg production and fat deposition in laying hens during the late laying period. In this paper, it was further found that dietary DMG alleviated fatty liver disease and enhanced lipid deposited into the yolk while promoting hepatic lipid transport. There are intestinal estrogen-metabolizing bacteria (EBM) having β-glucuronase (GUS) activity that regulates the content of circulating estrogen (E2) in mammals. There were 39 related bacteria found in laying hens, and DMG increased E2 in blood, Staphylococcus abundance among EBM and GUS activity in cecum chyme. Interfered in situ, Staphylococcus with GUS activity was proved the target bacteria for DMG. Furthermore, E2 could modify hepatic lipid deposition through promoting lipid transport by the steatosis LMH model. These perspectives confirm that DMG, mediated by Staphylococcus, alleviates the restriction of hepatic lipid transport due to reduced levels of E2 in laying hens.
Collapse
Affiliation(s)
- Hong Yao
- Jiangsu Institute of Poultry Science, Yangzhou, Jiangsu 225125, China
| | - Yan Hu
- Jiangsu Institute of Poultry Science, Yangzhou, Jiangsu 225125, China
| | - Haibing Tong
- Jiangsu Institute of Poultry Science, Yangzhou, Jiangsu 225125, China
| | - Shourong Shi
- Jiangsu Institute of Poultry Science, Yangzhou, Jiangsu 225125, China
| |
Collapse
|
8
|
Rao Y, Su R, Wu C, Chai X, Li J, Yang G, Wu J, Fu T, Jiang Z, Guo Z, Xu C, Huang L. Identification of a natural PLA2 inhibitor from the marine fungus Aspergillus sp. c1 for MAFLD treatment that suppressed lipotoxicity by inhibiting the IRE-1 α/XBP-1s axis and JNK signaling. Acta Pharm Sin B 2024; 14:304-318. [PMID: 38261820 PMCID: PMC10792964 DOI: 10.1016/j.apsb.2023.08.032] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2023] [Revised: 08/03/2023] [Accepted: 08/24/2023] [Indexed: 01/25/2024] Open
Abstract
Lipotoxicity is a pivotal factor that initiates and exacerbates liver injury and is involved in the development of metabolic-associated fatty liver disease (MAFLD). However, there are few reported lipotoxicity inhibitors. Here, we identified a natural anti-lipotoxicity candidate, HN-001, from the marine fungus Aspergillus sp. C1. HN-001 dose- and time- dependently reversed palmitic acid (PA)-induced hepatocyte death. This protection was associated with IRE-1α-mediated XBP-1 splicing inhibition, which resulted in suppression of XBP-1s nuclear translocation and transcriptional regulation. Knockdown of XBP-1s attenuated lipotoxicity, but no additional ameliorative effect of HN-001 on lipotoxicity was observed in XBP-1s knockdown hepatocytes. Notably, the ER stress and lipotoxicity amelioration was associated with PLA2. Both HN-001 and the PLA2 inhibitor MAFP inhibited PLA2 activity, reduced lysophosphatidylcholine (LPC) level, subsequently ameliorated lipotoxicity. In contrast, overexpression of PLA2 caused exacerbation of lipotoxicity and weakened the anti-lipotoxic effects of HN-001. Additionally, HN-001 treatment suppressed the downstream pro-apoptotic JNK pathway. In vivo, chronic administration of HN-001 (i.p.) in mice alleviated all manifestations of MAFLD, including hepatic steatosis, liver injury, inflammation, and fibrogenesis. These effects were correlated with PLA2/IRE-1α/XBP-1s axis and JNK signaling suppression. These data indicate that HN-001 has therapeutic potential for MAFLD because it suppresses lipotoxicity, and provide a natural structural basis for developing anti-MAFLD candidates.
Collapse
Affiliation(s)
- Yong Rao
- Key Laboratory of Tropical Biological Resources of Ministry of Education, School of Pharmaceutical Sciences, Hainan University, Haikou 570200, China
| | - Rui Su
- Key Laboratory of Tropical Biological Resources of Ministry of Education, School of Pharmaceutical Sciences, Hainan University, Haikou 570200, China
| | - Chenyan Wu
- Key Laboratory of Tropical Biological Resources of Ministry of Education, School of Pharmaceutical Sciences, Hainan University, Haikou 570200, China
| | - Xingxing Chai
- Laboratory Animal Center of Guangdong Medical University, Dongguan 523808, China
| | - Jinjian Li
- School of Pharmaceutical Sciences, Guangdong Provincial Key Laboratory of New Drug Design and Evaluation, Sun Yat-sen University, Guangzhou 510275, China
| | - Guanyu Yang
- Key Laboratory of Tropical Biological Resources of Ministry of Education, School of Pharmaceutical Sciences, Hainan University, Haikou 570200, China
| | - Junjie Wu
- Key Laboratory of Tropical Biological Resources of Ministry of Education, School of Pharmaceutical Sciences, Hainan University, Haikou 570200, China
| | - Tingting Fu
- Key Laboratory of Tropical Biological Resources of Ministry of Education, School of Pharmaceutical Sciences, Hainan University, Haikou 570200, China
| | - Zhongping Jiang
- Key Laboratory of Tropical Biological Resources of Ministry of Education, School of Pharmaceutical Sciences, Hainan University, Haikou 570200, China
| | - Zhikai Guo
- Hainan Key Laboratory of Tropical Microbe Resources, Institute of Tropical Bioscience and Biotechnology, Chinese Academy of Tropical Agricultural Sciences & Key Laboratory for Biology and Genetic Resources of Tropical Crops of Hainan Province, Hainan Institute for Tropical Agricultural Resources, Haikou 571101, China
| | - Congjun Xu
- Key Laboratory of Tropical Biological Resources of Ministry of Education, School of Pharmaceutical Sciences, Hainan University, Haikou 570200, China
| | - Ling Huang
- Key Laboratory of Tropical Biological Resources of Ministry of Education, School of Pharmaceutical Sciences, Hainan University, Haikou 570200, China
| |
Collapse
|
9
|
Hou Y, Zhao X, Wang Y, Li Y, Chen C, Zhou X, Jin J, Ye J, Li D, Gan L, Wu R. Oleuropein-Rich Jasminum Grandiflorum Flower Extract Regulates the LKB1-PGC-1α Axis Related to the Attenuation of Hepatocellular Lipid Dysmetabolism. Nutrients 2023; 16:58. [PMID: 38201888 PMCID: PMC10780778 DOI: 10.3390/nu16010058] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2023] [Revised: 12/12/2023] [Accepted: 12/21/2023] [Indexed: 01/12/2024] Open
Abstract
Diets() rich in fat are a major() cause() of metabolic disease(), and nutritional() food has been widely() used() to counteract the metabolic disorders such() as obesity() and fatty() liver(). The present study investigated the effects of oleuropein-enriched extract() from Jasminum grandiflorum L. flowers (OLE-JGF) in high-fat diet() (HFD)-fed mice and oleic acid() (OA)-treated AML-12 cells. Treatment() of HFD-fed mice with 0.6% OLE-JGF for 8 weeks significantly reduced body and liver() weights, as well as attenuating lipid dysmetabolism and hepatic steatosis. OLE-JGF administration() prominently suppressed the mRNA expressions() of monocyte chemoattractant protein()-1 (MCP-1) and cluster of differentiation 68 (CD68), and it also downregulated acetyl-CoA carboxylase (ACC) and fatty() acid() synthase (FAS) as well as sterol-regulatory-element()-binding protein() (SREBP-1c) in the liver(). Meanwhile, mitochondrial DNA and uncoupling protein() 2 (UCP2) were upregulated along with the increased expression() of mitochondrial biogenic promoters including liver() kinase B1 (LKB1), peroxisome proliferator-activated receptor-γ coactivator-1α (PGC-1α), nuclear() factor()-erythroid-derived 2-like 2 (Nrf2), and mitochondrial transcription factor() A (Tfam), but did not change AMP-activated protein() kinase (AMPK) in liver(). The lipid droplets were decreased significantly after treatment() with 80 μM oleuropein for 24 h in OA-induced AML-12 cells. Furthermore, oleuropein significantly inhibited ACC mRNA expression() and upregulated LKB1, PGC-1α, and Tfam mRNA levels, as well as increasing the binding level of LKB1 to PGC-1α promoter in OA-induced cells. These findings indicate() that OLE-JGF reduces hepatic lipid deposition in HFD-fed mice, as well as the fact that OA-induced liver() cells may be partly() attributed to upregulation of the LKB1-PGC-1α axis, which mediates hepatic lipogenesis and mitochondrial biogenesis. Our study provides a scientific() basis() for the benefits and potential() use() of the J. grandiflorum flower as a food supplement() for the prevention() and treatment() of metabolic disease().
Collapse
Affiliation(s)
- Yajun Hou
- School of Pharmacy and Food Engineering, Wuyi University, Jiangmen 529020, China; (Y.H.); (X.Z.); (Y.W.); (Y.L.); (C.C.); (X.Z.); (J.J.); (J.Y.); (D.L.); (L.G.)
- International Healthcare Innovation Institute (Jiangmen), Jiangmen 529040, China
| | - Xuan Zhao
- School of Pharmacy and Food Engineering, Wuyi University, Jiangmen 529020, China; (Y.H.); (X.Z.); (Y.W.); (Y.L.); (C.C.); (X.Z.); (J.J.); (J.Y.); (D.L.); (L.G.)
| | - Yalin Wang
- School of Pharmacy and Food Engineering, Wuyi University, Jiangmen 529020, China; (Y.H.); (X.Z.); (Y.W.); (Y.L.); (C.C.); (X.Z.); (J.J.); (J.Y.); (D.L.); (L.G.)
| | - Yapeng Li
- School of Pharmacy and Food Engineering, Wuyi University, Jiangmen 529020, China; (Y.H.); (X.Z.); (Y.W.); (Y.L.); (C.C.); (X.Z.); (J.J.); (J.Y.); (D.L.); (L.G.)
| | - Caihong Chen
- School of Pharmacy and Food Engineering, Wuyi University, Jiangmen 529020, China; (Y.H.); (X.Z.); (Y.W.); (Y.L.); (C.C.); (X.Z.); (J.J.); (J.Y.); (D.L.); (L.G.)
| | - Xiu Zhou
- School of Pharmacy and Food Engineering, Wuyi University, Jiangmen 529020, China; (Y.H.); (X.Z.); (Y.W.); (Y.L.); (C.C.); (X.Z.); (J.J.); (J.Y.); (D.L.); (L.G.)
| | - Jingwei Jin
- School of Pharmacy and Food Engineering, Wuyi University, Jiangmen 529020, China; (Y.H.); (X.Z.); (Y.W.); (Y.L.); (C.C.); (X.Z.); (J.J.); (J.Y.); (D.L.); (L.G.)
- International Healthcare Innovation Institute (Jiangmen), Jiangmen 529040, China
| | - Jiming Ye
- School of Pharmacy and Food Engineering, Wuyi University, Jiangmen 529020, China; (Y.H.); (X.Z.); (Y.W.); (Y.L.); (C.C.); (X.Z.); (J.J.); (J.Y.); (D.L.); (L.G.)
| | - Dongli Li
- School of Pharmacy and Food Engineering, Wuyi University, Jiangmen 529020, China; (Y.H.); (X.Z.); (Y.W.); (Y.L.); (C.C.); (X.Z.); (J.J.); (J.Y.); (D.L.); (L.G.)
- International Healthcare Innovation Institute (Jiangmen), Jiangmen 529040, China
| | - Lishe Gan
- School of Pharmacy and Food Engineering, Wuyi University, Jiangmen 529020, China; (Y.H.); (X.Z.); (Y.W.); (Y.L.); (C.C.); (X.Z.); (J.J.); (J.Y.); (D.L.); (L.G.)
- International Healthcare Innovation Institute (Jiangmen), Jiangmen 529040, China
| | - Rihui Wu
- School of Pharmacy and Food Engineering, Wuyi University, Jiangmen 529020, China; (Y.H.); (X.Z.); (Y.W.); (Y.L.); (C.C.); (X.Z.); (J.J.); (J.Y.); (D.L.); (L.G.)
- International Healthcare Innovation Institute (Jiangmen), Jiangmen 529040, China
| |
Collapse
|
10
|
Tian R, Yang J, Wang X, Liu S, Dong R, Wang Z, Yang Z, Zhang Y, Cai Z, Yang H, Hu Y, She ZG, Li H, Zhou J, Zhang XJ. Honokiol acts as an AMPK complex agonist therapeutic in non-alcoholic fatty liver disease and metabolic syndrome. Chin Med 2023; 18:30. [PMID: 36932412 PMCID: PMC10024454 DOI: 10.1186/s13020-023-00729-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2022] [Accepted: 02/15/2023] [Indexed: 03/19/2023] Open
Abstract
BACKGROUND Non-alcoholic fatty liver (NAFLD) and its related metabolic syndrome have become major threats to human health, but there is still a need for effective and safe drugs to treat these conditions. Here we aimed to identify potential drug candidates for NAFLD and the underlying molecular mechanisms. METHODS A drug repositioning strategy was used to screen an FDA-approved drug library with approximately 3000 compounds in an in vitro hepatocyte model of lipid accumulation, with honokiol identified as an effective anti-NAFLD candidate. We systematically examined the therapeutic effect of honokiol in NAFLD and metabolic syndrome in multiple in vitro and in vivo models. Transcriptomic examination and biotin-streptavidin binding assays were used to explore the underlying molecular mechanisms, confirmed by rescue experiments. RESULTS Honokiol significantly inhibited metabolic syndrome and NAFLD progression as evidenced by improved hepatic steatosis, liver fibrosis, adipose inflammation, and insulin resistance. Mechanistically, the beneficial effects of honokiol were largely through AMPK activation. Rather than acting on the classical upstream regulators of AMPK, honokiol directly bound to the AMPKγ1 subunit to robustly activate AMPK signaling. Mutation of honokiol-binding sites of AMPKγ1 largely abolished the protective capacity of honokiol against NAFLD. CONCLUSION These findings clearly demonstrate the beneficial effects of honokiol in multiple models and reveal a previously unappreciated signaling mechanism of honokiol in NAFLD and metabolic syndrome. This study also provides new insights into metabolic disease treatment by targeting AMPKγ1 subunit-mediated signaling activation.
Collapse
Affiliation(s)
- Ruifeng Tian
- Department of Cardiology,Renmin Hospital; School of Basic Medical Science, Wuhan University, Wuhan, 430060, China.,Institute of Model Animal of Wuhan University, Wuhan, 430071, China
| | - Jinjie Yang
- Department of Cardiology,Renmin Hospital; School of Basic Medical Science, Wuhan University, Wuhan, 430060, China.,Institute of Model Animal of Wuhan University, Wuhan, 430071, China
| | - Xiaoming Wang
- Department of Cardiology,Renmin Hospital; School of Basic Medical Science, Wuhan University, Wuhan, 430060, China.,Institute of Model Animal of Wuhan University, Wuhan, 430071, China
| | - Shuaiyang Liu
- Department of Cardiology,Renmin Hospital; School of Basic Medical Science, Wuhan University, Wuhan, 430060, China.,Institute of Model Animal of Wuhan University, Wuhan, 430071, China
| | - Ruixiang Dong
- Department of Cardiology,Renmin Hospital; School of Basic Medical Science, Wuhan University, Wuhan, 430060, China.,Institute of Model Animal of Wuhan University, Wuhan, 430071, China
| | - Zhenya Wang
- Department of Cardiology,Renmin Hospital; School of Basic Medical Science, Wuhan University, Wuhan, 430060, China.,Institute of Model Animal of Wuhan University, Wuhan, 430071, China
| | - Zifeng Yang
- Department of Cardiology,Renmin Hospital; School of Basic Medical Science, Wuhan University, Wuhan, 430060, China.,Institute of Model Animal of Wuhan University, Wuhan, 430071, China
| | - Yingping Zhang
- School of Pharmacy, Bengbu Medical College, Bengbu, 233030, China
| | - Zhiwei Cai
- Institute of Model Animal of Wuhan University, Wuhan, 430071, China
| | - Hailong Yang
- Gannan Innovation and Translational Medicine Research Institute, Gannan Medical University, Ganzhou, 341000, China.,Key Laboratory of Prevention and Treatment of Cardiovascular and Cerebrovascular Diseases, Ministry of Education, Gannan Medical University, Ganzhou, 341000, China
| | - Yufeng Hu
- Gannan Innovation and Translational Medicine Research Institute, Gannan Medical University, Ganzhou, 341000, China.,Key Laboratory of Prevention and Treatment of Cardiovascular and Cerebrovascular Diseases, Ministry of Education, Gannan Medical University, Ganzhou, 341000, China
| | - Zhi-Gang She
- Department of Cardiology,Renmin Hospital; School of Basic Medical Science, Wuhan University, Wuhan, 430060, China.,Institute of Model Animal of Wuhan University, Wuhan, 430071, China
| | - Hongliang Li
- Department of Cardiology,Renmin Hospital; School of Basic Medical Science, Wuhan University, Wuhan, 430060, China. .,Institute of Model Animal of Wuhan University, Wuhan, 430071, China. .,Gannan Innovation and Translational Medicine Research Institute, Gannan Medical University, Ganzhou, 341000, China. .,Key Laboratory of Prevention and Treatment of Cardiovascular and Cerebrovascular Diseases, Ministry of Education, Gannan Medical University, Ganzhou, 341000, China. .,Medical Science Research Center, Zhongnan Hospital of Wuhan University, Wuhan, 430071, China.
| | - Junjie Zhou
- Gannan Innovation and Translational Medicine Research Institute, Gannan Medical University, Ganzhou, 341000, China. .,Key Laboratory of Prevention and Treatment of Cardiovascular and Cerebrovascular Diseases, Ministry of Education, Gannan Medical University, Ganzhou, 341000, China.
| | - Xiao-Jing Zhang
- Department of Cardiology,Renmin Hospital; School of Basic Medical Science, Wuhan University, Wuhan, 430060, China. .,Institute of Model Animal of Wuhan University, Wuhan, 430071, China.
| |
Collapse
|
11
|
Tian Z, Wang X, Han T, Sun C. Selegiline ameliorated dyslipidemia and hepatic steatosis in high-fat diet mice. Int Immunopharmacol 2023; 117:109901. [PMID: 36822098 DOI: 10.1016/j.intimp.2023.109901] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2022] [Revised: 02/06/2023] [Accepted: 02/13/2023] [Indexed: 02/25/2023]
Abstract
Certain monoamine oxidase (MAO) inhibitors exhibit beneficial effects, such as reducing adiposity and metabolic disorders; however, their effects on hepatic lipid metabolism have not been revealed. This study aimed to investigate the effects of a selective MAO-B inhibitor, selegiline, on dyslipidemia and hepatic steatosis in mice induced by a high-fat diet (HFD). Administration of selegiline (0.6 mg/kg body weight) by intraperitoneal injection was found to reduce HFD-induced body weight gain and increases in liver and adiposity coefficients, blood lipids and fatty acid levels. Furthermore, selegiline dramatically reduced the total triglyceride (TG) and cholesterol (TC) levels and lipid accumulation in the livers of HFD-fed mice and palmitic acid (PA)-treated AML-12 hepatocytes. In vivo and in vitro results indicated that selegiline protects against HFD- and PA-induced hepatic inflammation by reducing the expression of proinflammatory cytokines, namely IL-6, TNF-α, IL-1β, and IL-1α. Additionally, selegiline exhibited antioxidative effects on HFD and PA exposure in mouse liver and AML-12 cells by decreasing the levels of reactive oxygen species (ROS) and malonaldehyde (MDA) and increasing superoxide dismutase (SOD) activity. Further study showed that selegiline administration mitigated the expression of Srebf-1, Fasn, and Acaca and downregulated the expression of Cpt-1 and Pparα in HFD-fed mouse livers and PA-treated AML-12 cells. In conclusion, our findings suggest that selegiline exerts protective effects against HFD-induced dyslipidemia and hepatic steatosis, which may be related to an improved inflammatory response, oxidative stress, and hepatic lipid metabolism.
Collapse
Affiliation(s)
- Zhen Tian
- National Key Discipline Laboratory, Department of Nutrition and Food Hygiene, School of Public Health, Harbin Medical University, Harbin, PR China
| | - Xinyue Wang
- National Key Discipline Laboratory, Department of Nutrition and Food Hygiene, School of Public Health, Harbin Medical University, Harbin, PR China
| | - Tianshu Han
- National Key Discipline Laboratory, Department of Nutrition and Food Hygiene, School of Public Health, Harbin Medical University, Harbin, PR China.
| | - Changhao Sun
- National Key Discipline Laboratory, Department of Nutrition and Food Hygiene, School of Public Health, Harbin Medical University, Harbin, PR China.
| |
Collapse
|
12
|
Ding J, Wu L, Zhu G, Zhu J, Luo P, Li Y. HADHA alleviates hepatic steatosis and oxidative stress in NAFLD via inactivation of the MKK3/MAPK pathway. Mol Biol Rep 2023; 50:961-970. [PMID: 36376538 PMCID: PMC9889437 DOI: 10.1007/s11033-022-07965-2] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2022] [Accepted: 09/22/2022] [Indexed: 11/16/2022]
Abstract
BACKGROUND Nonalcoholic fatty liver disease (NAFLD) is a liver metabolic syndrome and still lacks effective treatments because the molecular mechanism underlying the development of NAFLD is not completely understood. We investigated the role of Hydroxyl CoA dehydrogenase alpha subunit (HADHA) in the pathogenesis of NAFLD. METHODS HADHA expression was detected both in NAFLD cell and mice, and knockdown of HADHA in free fatty acids (FFA)-treated L02 or overexpression of HADHA in high fat diet (HFD)-fed mice was used to detected the influence of HADHA on hepatic steatosis, mitochondrial dysfunction, and oxidative stress by regulating of MKK3/MAPK signaling. RESULTS Our data revealed that HADHA expression was decreased in FFA-treated L02 cells and in HFD-fed mice. Knockdown of HADHA markedly aggravated hepatic steatosis, inflammation and oxidative stress in FFA-treated L02 cells, which was associated with the activation of MKK3/MAPK signalling pathways. Moreover, oxidative stress and liver lesions were improved in NAFLD mice by upregulation of HADHA. Importantly, we demonstrated that overexpression of HADHA inhibited the expression of p-MAPK in NAFLD mice, reducing lipid accumulation and steatosis. CONCLUSION HADHA may function as a protective factor in the progression of NAFLD by alleviating abnormal metabolism and oxidative stress by suppressing MKK3/MAPK signalling pathway activation, providing a new target for the treatment of NAFLD.
Collapse
Affiliation(s)
- Jiexia Ding
- Department of Infectious Diseases, Affiliated Hangzhou First People's Hospital, Zhejiang University School of Medicine, No. 261 Huansha Road, 310003, Hangzhou, Zhejiang Province, China.
| | - Lili Wu
- Department of Oncology, Ruian City People's Hospital, 325200, Rui'an, China
| | - Guoxian Zhu
- Department of Infectious Diseases, Affiliated Hangzhou First People's Hospital, Zhejiang University School of Medicine, No. 261 Huansha Road, 310003, Hangzhou, Zhejiang Province, China
| | - Jing Zhu
- Department of Infectious Diseases, Affiliated Hangzhou First People's Hospital, Zhejiang University School of Medicine, No. 261 Huansha Road, 310003, Hangzhou, Zhejiang Province, China
| | - Pingping Luo
- Department of Infectious Diseases, Affiliated Hangzhou First People's Hospital, Zhejiang University School of Medicine, No. 261 Huansha Road, 310003, Hangzhou, Zhejiang Province, China
| | - Youming Li
- Department of Gastroenterology, Zhejiang University School of Medicine First Affiliated Hospital, 310003, Hangzhou, China
| |
Collapse
|
13
|
Vergoten G, Bailly C. Molecular modeling of alkaloids bouchardatine and orirenierine binding to sirtuin-1 (SIRT1). DIGITAL CHINESE MEDICINE 2022. [DOI: 10.1016/j.dcmed.2022.10.004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
|
14
|
Ding J, Xia C, Cen P, Li S, Yu L, Zhu J, Jin J. MiR-103-3p promotes hepatic steatosis to aggravate nonalcoholic fatty liver disease by targeting of ACOX1. Mol Biol Rep 2022; 49:7297-7305. [PMID: 35606603 PMCID: PMC9304065 DOI: 10.1007/s11033-022-07515-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2022] [Accepted: 04/25/2022] [Indexed: 01/18/2023]
Abstract
BACKGROUND Nonalcoholic fatty liver disease (NAFLD) is a major risk factor for hepatocellular carcinoma, and alterations in miRNA expression are related to the development of NAFLD. However, the role of miRNAs in regulating the development of NAFLD is still poorly understood. METHODS We used qRT-PCR to detect the level of miR-103-3p in both cell and mouse models of NAFLD. Biochemical assays, DCF-DA assays, Oil red O staining and HE staining were used to detect the role of miR-103-3p in NAFLD development. Target genes of miR-103-3p were predicted using the TargetScan database and verified by qRT-PCR, western blot and dual-luciferase assays. RESULTS The expression of miR-103-3p increased in both NAFLD model cells and liver tissues from the NAFLD mouse model. Inhibition of miR-103-3p significantly alleviated the accumulation of lipid droplets in free fatty acid-treated L02 cells and liver tissues from mice with NAFLD. Inhibition of miR-103-3p reduced the contents of H2O2, TG, ALT, and AST and ROS production while increasing the ATP content. Moreover, the miR-103-3p antagomir alleviated liver tissue lesions in mice with NAFLD. Further studies identified ACOX1, a key enzyme for the oxidation and decomposition of fatty acids, as a direct target of miR-103-3p. CONCLUSIONS These findings identified a negative regulatory mechanism between ACOX1 and miR-103-3p that promotes the pathogenesis of NAFLD and suggested that inhibition of miR-103-3p may be a potential treatment strategy for NAFLD.
Collapse
Affiliation(s)
- Jiexia Ding
- Department of Infectious Diseases, Affiliated Hangzhou First People's Hospital, Zhejiang University School of Medicine, No. 261 Huansha Road, Hangzhou, 310003, Zhejiang Province, China
| | - Caixia Xia
- Department of Infectious Diseases, Affiliated Hangzhou First People's Hospital, Zhejiang University School of Medicine, No. 261 Huansha Road, Hangzhou, 310003, Zhejiang Province, China
| | - Panpan Cen
- Department of Infectious Diseases, Affiliated Hangzhou First People's Hospital, Zhejiang University School of Medicine, No. 261 Huansha Road, Hangzhou, 310003, Zhejiang Province, China
| | - Siying Li
- Department of Infectious Diseases, Affiliated Hangzhou First People's Hospital, Zhejiang University School of Medicine, No. 261 Huansha Road, Hangzhou, 310003, Zhejiang Province, China
| | - Lifei Yu
- Department of Infectious Diseases, Affiliated Hangzhou First People's Hospital, Zhejiang University School of Medicine, No. 261 Huansha Road, Hangzhou, 310003, Zhejiang Province, China
| | - Jing Zhu
- Department of Infectious Diseases, Affiliated Hangzhou First People's Hospital, Zhejiang University School of Medicine, No. 261 Huansha Road, Hangzhou, 310003, Zhejiang Province, China.
| | - Jie Jin
- Department of Infectious Diseases, Affiliated Hangzhou First People's Hospital, Zhejiang University School of Medicine, No. 261 Huansha Road, Hangzhou, 310003, Zhejiang Province, China.
| |
Collapse
|
15
|
Hu W, Yan G, Ding Q, Cai J, Zhang Z, Zhao Z, Lei H, Zhu YZ. Update of Indoles: Promising molecules for ameliorating metabolic diseases. Biomed Pharmacother 2022; 150:112957. [PMID: 35462330 DOI: 10.1016/j.biopha.2022.112957] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2022] [Revised: 03/30/2022] [Accepted: 04/11/2022] [Indexed: 11/15/2022] Open
Abstract
Obesity and metabolic disorders have gradually become public health-threatening problems. The metabolic disorder is a cluster of complex metabolic abnormalities which are featured by dysfunction in glucose and lipid metabolism, and results from the increasing prevalence of visceral obesity. With the core driving factor of insulin resistance, metabolic disorder mainly includes type 2 diabetes mellitus (T2DM), micro and macro-vascular diseases, non-alcoholic fatty liver disease (NAFLD), dyslipidemia, and the dysfunction of gut microbiota. Strategies and therapeutic attention are demanded to decrease the high risk of metabolic diseases, from lifestyle changes to drug treatment, especially herbal medicines. Indole is a parent substance of numerous bioactive compounds, and itself can be produced by tryptophan catabolism to stimulate glucagon-like peptide-1 (GLP-1) secretion and inhibit the development of obesity. In addition, in heterocycles drug discovery, the indole scaffold is primarily found in natural compounds with versatile biological activity and plays a prominent role in drug molecules synthesis. In recent decades, plenty of natural or synthesized indole deriviatives have been investigated and elucidated to exert effects on regulating glucose hemeostasis and lipd metabolism. The aim of this review is to trace and emphasize the compounds containing indole scaffold that possess immense potency on preventing metabolic disorders, particularly T2DM, obesity and NAFLD, along with the underlying molecular mechanisms, therefore facilitate a better comprehension of their druggability and application in metabolic diseases.
Collapse
Affiliation(s)
- Wei Hu
- State Key Laboratory of Quality Research in Chinese Medicine, Faculty of Chinese Medicine and School of Pharmacy, Macau University of Science and Technology, Macau, China
| | - Guanyu Yan
- Department of Allergy and Clinical Immunology, National Center for Respiratory Medicine, The First Affiliated Hospital of Guangzhou Medical University, National Clinical Research Center for Respiratory Disease, State Key Laboratory of Respiratory Disease, Guangzhou Institute of Respiratory Health, Guangzhou, China
| | - Qian Ding
- State Key Laboratory of Quality Research in Chinese Medicine, Faculty of Chinese Medicine and School of Pharmacy, Macau University of Science and Technology, Macau, China
| | - Jianghong Cai
- State Key Laboratory of Quality Research in Chinese Medicine, Faculty of Chinese Medicine and School of Pharmacy, Macau University of Science and Technology, Macau, China
| | - Zhongyi Zhang
- State Key Laboratory of Quality Research in Chinese Medicine, Faculty of Chinese Medicine and School of Pharmacy, Macau University of Science and Technology, Macau, China
| | - Ziming Zhao
- State Key Laboratory of Quality Research in Chinese Medicine, Faculty of Chinese Medicine and School of Pharmacy, Macau University of Science and Technology, Macau, China
| | - Heping Lei
- Guangdong Provincial Key Laboratory of Coronary Heart Disease Prevention, Guangdong Cardiovascular Institute, Guangdong Provincial People's Hospital, Guangdong Academy of Medical Sciences, Guangzhou, China.
| | - Yi Zhun Zhu
- State Key Laboratory of Quality Research in Chinese Medicine, Faculty of Chinese Medicine and School of Pharmacy, Macau University of Science and Technology, Macau, China; Shanghai Key Laboratory of Bioactive Small Molecules, School of Pharmacy, Fudan University, Shanghai, China.
| |
Collapse
|
16
|
Liang J, Gu L, Liu X, Yan X, Bi X, Fan X, Zhou J, Lu S, Luo L, Yin Z. L-theanine prevents progression of nonalcoholic hepatic steatosis by regulating hepatocyte lipid metabolic pathways via the CaMKKβ-AMPK signaling pathway. Nutr Metab (Lond) 2022; 19:29. [PMID: 35428314 PMCID: PMC9013079 DOI: 10.1186/s12986-022-00664-6] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2021] [Accepted: 03/22/2022] [Indexed: 11/26/2022] Open
Abstract
Background L-theanine, a non-protein amino acid was found principally in the green tea, has been previously shown to exhibit potent anti-obesity property and hepatoprotective effect. Herein, we investigated the effects of L-theanine on alleviating nonalcoholic hepatic steatosis in vitro and in vivo, and explored the underlying molecular mechanism. Methods In vitro, HepG2 and AML12 cells were treated with 500 μM oleic acid (OA) or treated with OA accompanied by L-theanine. In vivo, C57BL/6J mice were fed with normal control diet (NCD), high‐fat diet (HFD), or HFD along with L-theanine for 16 weeks. The levels of triglycerides (TG), accumulation of lipid droplets and the expression of genes related to hepatocyte lipid metabolic pathways were detected in vitro and in vivo. Results Our data indicated that, in vivo, L-theanine significantly reduced body weight, hepatic steatosis, serum levels of alanine transaminase (ALT), aspartate transaminase (AST), TG and LDL cholesterol (LDL-C) in HFD-induced nonalcoholic fatty liver disease (NAFLD) mice. In vitro, L-theanine also significantly alleviated OA induced hepatocytes steatosis. Mechanic studies showed that L-theanine significantly inhibited the nucleus translocation of sterol regulatory element binding protein 1c (SREBP-1c) through AMPK-mTOR signaling pathway, thereby contributing to the reduction of fatty acid synthesis. We also identified that L-theanine enhanced fatty acid β-oxidation by increasing the expression of peroxisome proliferator–activated receptor α (PPARα) and carnitine palmitoyltransferase-1 A (CPT1A) through AMP-activated protein kinase (AMPK). Furthermore, our study indicated that L-theanine can active AMPK through its upstream kinase Calmodulin-dependent protein kinase kinase-β (CaMKKβ). Conclusions Taken together, our findings suggested that L-theanine alleviates nonalcoholic hepatic steatosis by regulating hepatocyte lipid metabolic pathways via the CaMKKβ-AMPK signaling pathway. Supplementary Information The online version contains supplementary material available at 10.1186/s12986-022-00664-6.
Collapse
Affiliation(s)
- Juanjuan Liang
- Jiangsu Province Key Laboratory for Molecular and Medical Biotechnology, College of Life Science, Nanjing Normal University, No. 1 Wenyuan Road, Nanjing, 210046, Jiangsu, People's Republic of China
| | - Lili Gu
- Jiangsu Province Key Laboratory for Molecular and Medical Biotechnology, College of Life Science, Nanjing Normal University, No. 1 Wenyuan Road, Nanjing, 210046, Jiangsu, People's Republic of China
| | - Xianli Liu
- Jiangsu Province Key Laboratory for Molecular and Medical Biotechnology, College of Life Science, Nanjing Normal University, No. 1 Wenyuan Road, Nanjing, 210046, Jiangsu, People's Republic of China
| | - Xintong Yan
- Jiangsu Province Key Laboratory for Molecular and Medical Biotechnology, College of Life Science, Nanjing Normal University, No. 1 Wenyuan Road, Nanjing, 210046, Jiangsu, People's Republic of China
| | - Xiaowen Bi
- Jiangsu Province Key Laboratory for Molecular and Medical Biotechnology, College of Life Science, Nanjing Normal University, No. 1 Wenyuan Road, Nanjing, 210046, Jiangsu, People's Republic of China
| | - Xirui Fan
- Jiangsu Province Key Laboratory for Molecular and Medical Biotechnology, College of Life Science, Nanjing Normal University, No. 1 Wenyuan Road, Nanjing, 210046, Jiangsu, People's Republic of China
| | - Jinyi Zhou
- Jiangsu Province Key Laboratory for Molecular and Medical Biotechnology, College of Life Science, Nanjing Normal University, No. 1 Wenyuan Road, Nanjing, 210046, Jiangsu, People's Republic of China
| | - Shuai Lu
- Jiangsu Province Key Laboratory for Molecular and Medical Biotechnology, College of Life Science, Nanjing Normal University, No. 1 Wenyuan Road, Nanjing, 210046, Jiangsu, People's Republic of China
| | - Lan Luo
- State Key Laboratory of Pharmaceutical Biotechnology, School of Life Sciences, Nanjing University, Nanjing, 210023, Jiangsu, People's Republic of China.
| | - Zhimin Yin
- Jiangsu Province Key Laboratory for Molecular and Medical Biotechnology, College of Life Science, Nanjing Normal University, No. 1 Wenyuan Road, Nanjing, 210046, Jiangsu, People's Republic of China.
| |
Collapse
|
17
|
Qin R, Zhao Q, Han B, Zhu HP, Peng C, Zhan G, Huang W. Indole-Based Small Molecules as Potential Therapeutic Agents for the Treatment of Fibrosis. Front Pharmacol 2022; 13:845892. [PMID: 35250597 PMCID: PMC8888875 DOI: 10.3389/fphar.2022.845892] [Citation(s) in RCA: 19] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2021] [Accepted: 01/19/2022] [Indexed: 12/17/2022] Open
Abstract
Indole alkaloids are widely distributed in nature and have been particularly studied because of their diverse biological activities, such as anti-inflammatory, anti-tumor, anti-bacterial, and anti-oxidant activities. Many kinds of indole alkaloids have been applied to clinical practice, proving that indole alkaloids are beneficial scaffolds and occupy a crucial position in the development of novel agents. Fibrosis is an end-stage pathological condition of most chronic inflammatory diseases and is characterized by excessive deposition of fibrous connective tissue components, ultimately resulting in organ dysfunction and even failure with significant morbidity and mortality. Indole alkaloids and indole derivatives can alleviate pulmonary, myocardial, renal, liver, and islet fibrosis through the suppression of inflammatory response, oxidative stress, TGF-β/Smad pathway, and other signaling pathways. Natural indole alkaloids, such as isorhynchophylline, evodiamine, conophylline, indirubin, rutaecarpine, yohimbine, and vincristine, are reportedly effective in organ fibrosis treatment. In brief, indole alkaloids with a wide range of pharmacological bioactivities are important candidate drugs for organ fibrosis treatment. The present review discusses the potential of natural indole alkaloids, semi-synthetic indole alkaloids, synthetic indole derivatives, and indole-contained metabolites in organ fibrosis treatment.
Collapse
Affiliation(s)
- Rui Qin
- State Key Laboratory of Southwestern Chinese Medicine Resources, Hospital of Chengdu University of Traditional Chinese Medicine, School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Qian Zhao
- State Key Laboratory of Southwestern Chinese Medicine Resources, Hospital of Chengdu University of Traditional Chinese Medicine, School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Bo Han
- State Key Laboratory of Southwestern Chinese Medicine Resources, Hospital of Chengdu University of Traditional Chinese Medicine, School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Hong-Ping Zhu
- State Key Laboratory of Southwestern Chinese Medicine Resources, Hospital of Chengdu University of Traditional Chinese Medicine, School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, China
- Antibiotics Research and Re-Evaluation Key Laboratory of Sichuan Province, Sichuan Industrial Institute of Antibiotics, Chengdu University, Chengdu, China
| | - Cheng Peng
- State Key Laboratory of Southwestern Chinese Medicine Resources, Hospital of Chengdu University of Traditional Chinese Medicine, School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Gu Zhan
- State Key Laboratory of Southwestern Chinese Medicine Resources, Hospital of Chengdu University of Traditional Chinese Medicine, School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, China
- *Correspondence: Wei Huang, ; Gu Zhan,
| | - Wei Huang
- State Key Laboratory of Southwestern Chinese Medicine Resources, Hospital of Chengdu University of Traditional Chinese Medicine, School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, China
- *Correspondence: Wei Huang, ; Gu Zhan,
| |
Collapse
|
18
|
Cui N, Li H, Dun Y, Ripley-Gonzalez JW, You B, Li D, Liu Y, Qiu L, Li C, Liu S. Exercise inhibits JNK pathway activation and lipotoxicity via macrophage migration inhibitory factor in nonalcoholic fatty liver disease. Front Endocrinol (Lausanne) 2022; 13:961231. [PMID: 36147562 PMCID: PMC9485555 DOI: 10.3389/fendo.2022.961231] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/04/2022] [Accepted: 08/15/2022] [Indexed: 01/04/2023] Open
Abstract
The macrophage migration inhibitory factor (MIF) expressed in hepatocytes can limit steatosis during obesity. Lipotoxicity in nonalcoholic fatty liver disease is mediated in part by the activation of the stress kinase JNK, but whether MIF modulates JNK in lipotoxicity is unknown. In this study, we investigated the role of MIF in regulating JNK activation and high-fat fostered liver lipotoxicity during simultaneous exercise treatment. Fifteen mice were equally divided into three groups: normal diet, high-fat diet, and high-fat and exercise groups. High-fat feeding for extended periods elicited evident hyperlipemia, liver steatosis, and cell apoptosis in mice, with inhibited MIF and activated downstream MAPK kinase 4 phosphorylation and JNK. These effects were then reversed following prescribed swimming exercise, indicating that the advent of exercise could prevent liver lipotoxicity induced by lipid overload and might correlate to the action of modulating MIF and its downstream JNK pathway. Similar detrimental effects of lipotoxicity were observed in in vitro HepG2 cells palmitic acid treatment. Suppressed JNK reduced the hepatocyte lipotoxicity by regulating the BCL family, and the excess JNK activation could also be attenuated through MIF supplementation or exacerbated by MIF siRNA administration. The results found suggest that exercise reduces lipotoxicity and inhibits JNK activation by modulating endogenous hepatic MIF in NAFLD. These findings have clinical implications for the prevention and intervention of patients with immoderate diet evoked NAFLD.
Collapse
Affiliation(s)
- Ni Cui
- Division of Cardiac Rehabilitation, Department of Physical Medicine and Rehabilitation, Xiangya Hospital of Central South University, Changsha, China
| | - Hui Li
- Division of Cardiac Rehabilitation, Department of Physical Medicine and Rehabilitation, Xiangya Hospital of Central South University, Changsha, China
| | - Yaoshan Dun
- Division of Cardiac Rehabilitation, Department of Physical Medicine and Rehabilitation, Xiangya Hospital of Central South University, Changsha, China
- National Clinical Research Center for Geriatric Disorders, Xiangya Hospital of Central South University, Changsha, China
- Division of Preventive Cardiology, Department of Cardiovascular Medicine, Mayo Clinic, Rochester, MN, United States
| | - Jeffrey W. Ripley-Gonzalez
- Division of Cardiac Rehabilitation, Department of Physical Medicine and Rehabilitation, Xiangya Hospital of Central South University, Changsha, China
| | - Baiyang You
- Division of Cardiac Rehabilitation, Department of Physical Medicine and Rehabilitation, Xiangya Hospital of Central South University, Changsha, China
- National Clinical Research Center for Geriatric Disorders, Xiangya Hospital of Central South University, Changsha, China
| | - Dezhao Li
- Division of Cardiac Rehabilitation, Department of Physical Medicine and Rehabilitation, Xiangya Hospital of Central South University, Changsha, China
| | - Yuan Liu
- Division of Cardiac Rehabilitation, Department of Physical Medicine and Rehabilitation, Xiangya Hospital of Central South University, Changsha, China
| | - Ling Qiu
- Division of Cardiac Rehabilitation, Department of Physical Medicine and Rehabilitation, Xiangya Hospital of Central South University, Changsha, China
| | - Cui Li
- Division of Cardiac Rehabilitation, Department of Physical Medicine and Rehabilitation, Xiangya Hospital of Central South University, Changsha, China
| | - Suixin Liu
- Division of Cardiac Rehabilitation, Department of Physical Medicine and Rehabilitation, Xiangya Hospital of Central South University, Changsha, China
- National Clinical Research Center for Geriatric Disorders, Xiangya Hospital of Central South University, Changsha, China
- *Correspondence: Suixin Liu,
| |
Collapse
|
19
|
Role of the mTOR-autophagy-ER stress pathway in high fructose-induced metabolic-associated fatty liver disease. Acta Pharmacol Sin 2022; 43:10-14. [PMID: 33731774 PMCID: PMC8724298 DOI: 10.1038/s41401-021-00629-0] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2020] [Accepted: 02/15/2021] [Indexed: 02/07/2023] Open
Abstract
Metabolic-associated fatty liver disease (MAFLD) is the most common metabolic disease with a global prevalence of 25%. While MAFLD is serious and incurable at the later stage, it can be controlled or reversed at the early stage of hepatosteatosis originating from unhealthy diets. Recent laboratory evidence implicates a critical role of the mammalian target of rapamycin (mTOR)-autophagy signaling pathway in the pathogenesis of MAFLD induced by a high-fructose diet mimicking the overconsumption of sugar in humans. This review discusses the possible molecular mechanisms of mTOR-autophagy-endoplasmic reticulum (ER) stress in MAFLD. Based on careful analysis of recent studies, we suggest possible new therapeutic concepts or targets that can be explored for the discovery of new anti-MAFLD drugs.
Collapse
|
20
|
Wang X, Liang Z, Xiang H, Li Y, Chen S, Lu H. LKB1 Regulates Vascular Macrophage Functions in Atherosclerosis. Front Pharmacol 2021; 12:810224. [PMID: 34975507 PMCID: PMC8714937 DOI: 10.3389/fphar.2021.810224] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2021] [Accepted: 11/29/2021] [Indexed: 11/13/2022] Open
Abstract
Liver kinase B1 (LKB1) is known to shape the regulation of macrophage function by participating in multiple processes including cell metabolism, growth, and polarization. However, whether LKB1 also affects the functional plasticity of macrophages in atherosclerosis has not attracted much attention. Abnormal macrophage function is a pathophysiological hallmark of atherosclerosis, characterized by the formation of foam cells and the maintenance of vascular inflammation. Mounting evidence supports that LKB1 plays a vital role in the regulation of macrophage function in atherosclerosis, including affecting lipid metabolism reprogramming, inflammation, endoplasmic reticulum stress, and autophagy in macrophages. Thus, decreased expression of LKB1 in atherosclerosis aggravates vascular injury by inducing excessive lipid deposition in macrophages and the formation of foam cells. To systematically understand the role and potential mechanism of LKB1 in regulating macrophage functions in atherosclerosis, this review summarizes the relevant data in this regard, hoping to provide new ideas for the prevention and treatment of atherosclerosis.
Collapse
Affiliation(s)
- Xuewen Wang
- Health Management Center, The Third Xiangya Hospital of Central South University, Changsha, China
- Department of Cardiology, The Third Xiangya Hospital of Central South University, Changsha, China
| | - Ziwei Liang
- Department of Clinical Laboratory, Yueyang people’s Hospital, Yueyang, China
| | - Hong Xiang
- Center for Experimental Medicine, The Third Xiangya Hospital of Central South University, Changsha, China
| | - Yanqiu Li
- Health Management Center, The Third Xiangya Hospital of Central South University, Changsha, China
| | - Shuhua Chen
- Department of Biochemistry, School of Life Sciences of Central South University, Changsha, China
- Correspondence: Hongwei Lu, ; Shuhua Chen,
| | - Hongwei Lu
- Health Management Center, The Third Xiangya Hospital of Central South University, Changsha, China
- Department of Cardiology, The Third Xiangya Hospital of Central South University, Changsha, China
- Center for Experimental Medicine, The Third Xiangya Hospital of Central South University, Changsha, China
- Correspondence: Hongwei Lu, ; Shuhua Chen,
| |
Collapse
|
21
|
Rao Y, Li C, Hu YT, Xu YH, Song BB, Guo SY, Jiang Z, Zhao DD, Chen SB, Tan JH, Huang SL, Li QJ, Wang XJ, Zhang YJ, Ye JM, Huang ZS. A novel HSF1 activator ameliorates nonalcoholic steatohepatitis by stimulating mitochondrial adaptive oxidation. Br J Pharmacol 2021; 179:1411-1432. [PMID: 34783017 DOI: 10.1111/bph.15727] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2021] [Revised: 10/09/2021] [Accepted: 10/12/2021] [Indexed: 11/29/2022] Open
Abstract
BACKGROUND AND PURPOSE Nonalcoholic steatohepatitis (NASH) is the more severe form of metabolic associated fatty liver disease (MAFLD), and no pharmacologic treatment approved as yet. Identification of novel therapeutic targets and their agents are critical to overcome the current inadequacy of drug treatment for NASH. EXPERIMENTAL APPROACH The correlation between heat shock factor 1 (HSF1) levels and the development of NASH and the target genes of HSF1 in hepatocyte were revealed by chromatin-immunoprecipitation sequencing. The effects and mechanisms of SYSU-3d in alleviating NASH were examined in relevant cell models and mouse models (the Ob/Ob mice, high-fat and high-cholesterol diet, the methionine-choline deficient diet fed mice). The drug-like properties of SYSU-3d in vivo were evaluated. KEY RESULTS HSF1 is progressively reduced with mitochondrial dysfunction in NASH pathogenesis and activation of this transcription factor by its newly-identified activator SYSU-3d efficiently ameliorated all manifestations of NASH in mice. When activated, the phosphorylated HSF1 (Ser326) translocated to nucleus and bound to the promoter of peroxisome proliferator-activated receptor γ coactivator-1α (PGC-1α) to induce mitochondrial biogenesis, thus increasing mitochondrial adaptive oxidation and inhibiting oxidative stress. The deletion of HSF1 and PGC-1α or recovery of HSF1 in HSF1-deficiency cells revealed the HSF1/PGC-1α metabolic axis mainly responsible for the anti-NASH effects of SYSU-3d independent of adenosine 5'-monophosphate (AMP)-activated protein kinase (AMPK). CONCLUSION AND IMPLICATIONS Activation of HSF1 is a practicable therapeutic approach for NASH treatment via the HSF1/PGC-1α/mitochondrial axis, and SYSU-3d would take into consideration as a potential candidate for the treatment of NASH.
Collapse
Affiliation(s)
- Yong Rao
- School of Pharmaceutical Sciences, Guangdong Provincial Key Laboratory of New Drug Design and Evaluation, Sun Yat-Sen University, Guangzhou, Guangdong, China
| | - Chan Li
- School of Pharmaceutical Sciences, Guangdong Provincial Key Laboratory of New Drug Design and Evaluation, Sun Yat-Sen University, Guangzhou, Guangdong, China
| | - Yu-Tao Hu
- School of Pharmaceutical Sciences, Guangdong Provincial Key Laboratory of New Drug Design and Evaluation, Sun Yat-Sen University, Guangzhou, Guangdong, China
| | - Yao-Hao Xu
- School of Pharmaceutical Sciences, Guangdong Provincial Key Laboratory of New Drug Design and Evaluation, Sun Yat-Sen University, Guangzhou, Guangdong, China
| | - Bing-Bing Song
- School of Pharmaceutical Sciences, Guangdong Provincial Key Laboratory of New Drug Design and Evaluation, Sun Yat-Sen University, Guangzhou, Guangdong, China
| | - Shi-Yao Guo
- School of Pharmaceutical Sciences, Guangdong Provincial Key Laboratory of New Drug Design and Evaluation, Sun Yat-Sen University, Guangzhou, Guangdong, China
| | - Zhi Jiang
- School of Pharmaceutical Sciences, Guangdong Provincial Key Laboratory of New Drug Design and Evaluation, Sun Yat-Sen University, Guangzhou, Guangdong, China
| | - Dan-Dan Zhao
- School of Pharmaceutical Sciences, Guangdong Provincial Key Laboratory of New Drug Design and Evaluation, Sun Yat-Sen University, Guangzhou, Guangdong, China
| | - Shuo-Bin Chen
- School of Pharmaceutical Sciences, Guangdong Provincial Key Laboratory of New Drug Design and Evaluation, Sun Yat-Sen University, Guangzhou, Guangdong, China
| | - Jia-Heng Tan
- School of Pharmaceutical Sciences, Guangdong Provincial Key Laboratory of New Drug Design and Evaluation, Sun Yat-Sen University, Guangzhou, Guangdong, China
| | - Shi-Liang Huang
- School of Pharmaceutical Sciences, Guangdong Provincial Key Laboratory of New Drug Design and Evaluation, Sun Yat-Sen University, Guangzhou, Guangdong, China
| | - Qing-Jiang Li
- School of Pharmaceutical Sciences, Guangdong Provincial Key Laboratory of New Drug Design and Evaluation, Sun Yat-Sen University, Guangzhou, Guangdong, China
| | - Xiao-Jun Wang
- Sunshine Lake Pharma Co., Ltd, Dongguan, Guangdong, China
| | - Ying-Jun Zhang
- Sunshine Lake Pharma Co., Ltd, Dongguan, Guangdong, China
| | - Ji-Ming Ye
- School of Biotechnology and Health Sciences, Wuyi University, Jiangmen, Guangdong, China
| | - Zhi-Shu Huang
- School of Pharmaceutical Sciences, Guangdong Provincial Key Laboratory of New Drug Design and Evaluation, Sun Yat-Sen University, Guangzhou, Guangdong, China
| |
Collapse
|
22
|
Wang Z, Little N, Chen J, Lambesis KT, Le KT, Han W, Scott AJ, Lu J. Immunogenic camptothesome nanovesicles comprising sphingomyelin-derived camptothecin bilayers for safe and synergistic cancer immunochemotherapy. NATURE NANOTECHNOLOGY 2021; 16:1130-1140. [PMID: 34385682 PMCID: PMC8855709 DOI: 10.1038/s41565-021-00950-z] [Citation(s) in RCA: 89] [Impact Index Per Article: 22.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/08/2020] [Accepted: 06/28/2021] [Indexed: 05/02/2023]
Abstract
Despite the enormous therapeutic potential of immune checkpoint blockade (ICB), it benefits only a small subset of patients. Some chemotherapeutics can switch 'immune-cold' tumours to 'immune-hot' to synergize with ICB. However, safe and universal therapeutic platforms implementing such immune effects remain scarce. We demonstrate that sphingomyelin-derived camptothecin nanovesicles (camptothesomes) elicit potent granzyme-B- and perforin-mediated cytotoxic T lymphocyte (CTL) responses, potentiating PD-L1/PD-1 co-blockade to eradicate subcutaneous MC38 adenocarcinoma with developed memory immunity. In addition, camptothesomes improve the pharmacokinetics and lactone stability of camptothecin, avoid systemic toxicities, penetrate deeply into the tumour and outperform the antitumour efficacy of Onivyde. Camptothesome co-load the indoleamine 2,3-dioxygenase inhibitor indoximod into its interior using the lipid-bilayer-crossing capability of the immunogenic cell death inducer doxorubicin, eliminating clinically relevant advanced orthotopic CT26-Luc tumours and late-stage B16-F10-Luc2 melanoma, and achieving complete metastasis remission when combined with ICB and folate targeting. The sphingomyelin-derived nanotherapeutic platform and doxorubicin-enabled transmembrane transporting technology are generalizable to various therapeutics, paving the way for transformation of the cancer immunochemotherapy paradigm.
Collapse
Affiliation(s)
- Zhiren Wang
- Skaggs Pharmaceutical Sciences Center, Department of Pharmacology & Toxicology, College of Pharmacy, The University of Arizona, Tucson, AZ, USA
| | - Nicholas Little
- Skaggs Pharmaceutical Sciences Center, Department of Pharmacology & Toxicology, College of Pharmacy, The University of Arizona, Tucson, AZ, USA
| | - Jiawei Chen
- Skaggs Pharmaceutical Sciences Center, Department of Pharmacology & Toxicology, College of Pharmacy, The University of Arizona, Tucson, AZ, USA
| | - Kevin Tyler Lambesis
- Skaggs Pharmaceutical Sciences Center, Department of Pharmacology & Toxicology, College of Pharmacy, The University of Arizona, Tucson, AZ, USA
| | - Kimberly Thi Le
- Skaggs Pharmaceutical Sciences Center, Department of Pharmacology & Toxicology, College of Pharmacy, The University of Arizona, Tucson, AZ, USA
| | - Weiguo Han
- Skaggs Pharmaceutical Sciences Center, Department of Pharmacology & Toxicology, College of Pharmacy, The University of Arizona, Tucson, AZ, USA
| | - Aaron James Scott
- NCI-Designated University of Arizona Comprehensive Cancer Center, Tucson, AZ, USA
- Division of Hematology and Oncology, Department of Medicine, College of Medicine, The University of Arizona, Tucson, AZ, USA
| | - Jianqin Lu
- Skaggs Pharmaceutical Sciences Center, Department of Pharmacology & Toxicology, College of Pharmacy, The University of Arizona, Tucson, AZ, USA.
- NCI-Designated University of Arizona Comprehensive Cancer Center, Tucson, AZ, USA.
- BIO5 Institute, The University of Arizona, Tucson, AZ, USA.
- Southwest Environmental Health Sciences Center, The University of Arizona, Tucson, AZ, USA.
| |
Collapse
|
23
|
Fouda S, Khan A, Chan S, Mahzari A, Zhou X, Qin C, Vlahos R, Ye JM. Exposure to cigarette smoke precipitates simple hepatosteatosis to NASH in high-fat diet fed mice by inducing oxidative stress. Clin Sci (Lond) 2021; 135:2103-2119. [PMID: 34427662 PMCID: PMC8436265 DOI: 10.1042/cs20210628] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2021] [Revised: 08/23/2021] [Accepted: 08/24/2021] [Indexed: 12/11/2022]
Abstract
Consumption of diet rich in fat and cigarette smoking (CS) are independent risk factors of non-alcoholic steatohepatitis (NASH), and they often occur together in some populations. The present study investigated the mechanisms of high-fat diet (HFD) and CS, individually and in combination, on the pathogenesis of NASH in mice. C57BL/6 male mice were subjected to either a low-fat chow (CH) or HFD with or without mainstream CS-exposure (4 cigarettes/day, 5 days/ week for 14 weeks). HFD alone caused hepatosteatosis (2.5-fold increase in TG content) and a significant increase in 3-nitrotyrisine (by ∼40-fold) but without an indication of liver injury, inflammation or fibrosis. CS alone in CH-fed mice increased in Tnfα expression and macrophage infiltration by 2-fold and relatively less increase in 3-nitrotyrosine (18-fold). Combination of HFD and CS precipitated hepatosteatosis to NASH reflected by exacerbated makers of liver inflammation and fibrosis which were associated with much severe liver oxidative stress (90-fold increase in 3-nitrotyrisine along with 6-fold increase in carbonylated proteins and 56% increase in lipid oxidations). Further studies were performed to administer the antioxidant tempol to CS exposed HFD mice and the results showed that the inhibition of liver oxidative stress prevented inflammatory and fibrotic changes in liver despite persisting hepatosteatosis. Our findings suggest that oxidative stress is a key mechanism underlying CS-promoted progression of simple hepatosteatosis to NASH. Targeting hepatic oxidative stress may be a viable strategy in halting the progression of metabolic associated fatty liver disease.
Collapse
Affiliation(s)
- Sherouk Fouda
- School of Health and Biomedical Sciences, RMIT University, Melbourne, VIC, Australia
| | - Anwar Khan
- School of Health and Biomedical Sciences, RMIT University, Melbourne, VIC, Australia
| | - Stanley M.H. Chan
- School of Health and Biomedical Sciences, RMIT University, Melbourne, VIC, Australia
| | - Ali Mahzari
- School of Health and Biomedical Sciences, RMIT University, Melbourne, VIC, Australia
- Department of Laboratory Medicine, Faculty of Applied Medical Sciences, Albaha University, Albaha 65527, Saudi Arabia
| | - Xiu Zhou
- School of Health and Biomedical Sciences, RMIT University, Melbourne, VIC, Australia
| | - Cheng Xue Qin
- Faculty of Pharmacy and Pharmaceutical Sciences, Monash University, VIC, Australia
| | - Ross Vlahos
- School of Health and Biomedical Sciences, RMIT University, Melbourne, VIC, Australia
| | - Ji-Ming Ye
- School of Health and Biomedical Sciences, RMIT University, Melbourne, VIC, Australia
| |
Collapse
|
24
|
Liu G, Cui Z, Gao X, Liu H, Wang L, Gong J, Wang A, Zhang J, Ma Q, Huang Y, Piao G, Yuan H. Corosolic acid ameliorates non-alcoholic steatohepatitis induced by high-fat diet and carbon tetrachloride by regulating TGF-β1/Smad2, NF-κB, and AMPK signaling pathways. Phytother Res 2021; 35:5214-5226. [PMID: 34213784 DOI: 10.1002/ptr.7195] [Citation(s) in RCA: 23] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2020] [Revised: 05/20/2021] [Accepted: 05/24/2021] [Indexed: 01/08/2023]
Abstract
Hawthorn (Crataegus pinnatifida Bunge. var. major) is an edible and medicinal fruit that is very common in food and traditional Chinese medicine. Corosolic acid (CA), a pentacyclic triterpenoid, which is an active component of hawthorn (Crataegus pinnatifida Bunge. var. major), has been exhibiting various pharmacological activities such as antidiabetic, antibacterial, anticancer, antiinflammatory, and antioxidant effects. The study aimed to evaluate the effect of CA on non-alcoholic steatohepatitis (NASH) in mice induced by 60 kcal% high-fat diet (HFD) and carbon tetrachloride (CCl4 ). CA lowered liver index and serum AST, ALT, TG, and TC levels compared to those in the model group. Histological analyses of the liver tissues of mice treated with CA revealed significantly decreased number of lipid droplets and alleviated inflammation and fibrosis. CA inhibited the transcripts of pro-fibrogenic markers (including α-SMA, collagen I, and TIMP-1) and the levels of pro-inflammatory cytokines (including TNF-α, IL-1β, caspase-1, and IL-6) associated with hepatic fibrosis, and NF-κB translocation and TGF-β1/Smad2 and AMPK pathways. In addition, CA reduced lipid accumulation via the regulation of AMPK and NF-κB activation in FFA-induced steatotic HepG2 cells. CA also decreased α-SMA, collagen I expressions, and Smad2 phosphorylation, which were reduced by TGF-β1 treatment in LX2 cells. Our results suggested that CA ameliorated NASH through regulating TGF-β1/Smad2, NF-κB, and AMPK signaling pathways, and CA could be developed as a potential health functional food or therapeutic agent for NASH patients.
Collapse
Affiliation(s)
- Guancheng Liu
- College of Pharmacy, Yanbian University, Jilin, China
| | - Zhe Cui
- Department of Pharmacy, Yanbian University Hospital, Jilin, China
| | - Xiaoyan Gao
- College of Pharmacy, Yanbian University, Jilin, China
| | - Huizhe Liu
- College of Pharmacy, Yanbian University, Jilin, China
| | - Linghe Wang
- College of Integration Science, Yanbian University, Jilin, China
| | - Jinyan Gong
- College of Pharmacy, Yanbian University, Jilin, China
| | - Ao Wang
- College of Pharmacy, Yanbian University, Jilin, China
| | - Jianxiu Zhang
- College of Pharmacy, Yanbian University, Jilin, China
| | - Qianqian Ma
- College of Pharmacy, Yanbian University, Jilin, China
| | - Yuan Huang
- Department of Gastroenterology, Yanbian University Hospital, Jilin, China
| | - Guangchun Piao
- College of Pharmacy, Yanbian University, Jilin, China.,Key Laboratory of Natural Medicines of the Changbai Mountain, Ministry of Education, Yanbian University, Jilin, China
| | - Haidan Yuan
- College of Pharmacy, Yanbian University, Jilin, China.,College of Integration Science, Yanbian University, Jilin, China.,Key Laboratory of Natural Medicines of the Changbai Mountain, Ministry of Education, Yanbian University, Jilin, China
| |
Collapse
|
25
|
Rao Y, Kuang Z, Li C, Guo S, Xu Y, Zhao D, Hu Y, Song B, Jiang Z, Ge Z, Liu X, Li C, Chen S, Ye J, Huang Z, Lu Y. Gut Akkermansia muciniphila ameliorates metabolic dysfunction-associated fatty liver disease by regulating the metabolism of L-aspartate via gut-liver axis. Gut Microbes 2021; 13:1-19. [PMID: 34030573 PMCID: PMC8158032 DOI: 10.1080/19490976.2021.1927633] [Citation(s) in RCA: 125] [Impact Index Per Article: 31.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/07/2020] [Revised: 04/27/2021] [Accepted: 04/30/2021] [Indexed: 02/04/2023] Open
Abstract
The gut bacterium Akkermansia muciniphila has been increasingly recognized for its therapeutic potential in treating metabolic disorders, including obesity, diabetes, and metabolicdysfunction-associated fatty liver disease (MAFLD). However, its underlying mechanism involved in its well-known metabolic actions needs further evaluation. The present study explored the therapeutic effect and mechanism of A. muciniphila in intervening MAFLD by using a high-fat and high-cholesterol (HFC) diet induced obese mice model. Mice treated with A. muciniphila efficiently reversed MAFLD in the liver, such as hepatic steatosis, inflammatory, and liver injury. These therapeutic effects persisted after long-term drug withdrawal and were slightly weakened in the antibiotics-treated obese mice. A. muciniphila treatment efficiently increased mitochondrial oxidation and bile acid metabolism in the gut-liver axis, ameliorated oxidative stress-induced cell apoptosis in gut, leading to the reshaping of the gut microbiota composition. These metabolic improvements occurred with increased L-aspartate levels in the liver that transported from the gut. The administration of L-aspartate in vitro or in mice displayed the similar beneficial metabolic effects mentioned above and efficiently ameliorated MAFLD. Together, these data indicate that the anti-MAFLD activity of A. muciniphila correlated with lipid oxidation and improved gut-liver interactions through regulating the metabolism of L-aspartate. A. muciniphila could be a potential agent for clinical intervention in MAFLD.
Collapse
Affiliation(s)
- Yong Rao
- School of Pharmaceutical Sciences, Guangdong Provincial Key Laboratory of New Drug Design and Evaluation, Sun Yat-sen University, Guangzhou, China
| | - Zhiqi Kuang
- Run Ze Laboratory for Gastrointestinal Microbiome Study, School of Life Sciences, Sun Yat-sen University, Guangzhou, China
- Biomedical Center of Sun Yat-sen University, Guangzhou, China
| | - Chan Li
- School of Pharmaceutical Sciences, Guangdong Provincial Key Laboratory of New Drug Design and Evaluation, Sun Yat-sen University, Guangzhou, China
| | - Shiyao Guo
- School of Pharmaceutical Sciences, Guangdong Provincial Key Laboratory of New Drug Design and Evaluation, Sun Yat-sen University, Guangzhou, China
| | - Yaohao Xu
- School of Pharmaceutical Sciences, Guangdong Provincial Key Laboratory of New Drug Design and Evaluation, Sun Yat-sen University, Guangzhou, China
| | - Dandan Zhao
- School of Pharmaceutical Sciences, Guangdong Provincial Key Laboratory of New Drug Design and Evaluation, Sun Yat-sen University, Guangzhou, China
| | - Yutao Hu
- School of Pharmaceutical Sciences, Guangdong Provincial Key Laboratory of New Drug Design and Evaluation, Sun Yat-sen University, Guangzhou, China
| | - Bingbing Song
- School of Pharmaceutical Sciences, Guangdong Provincial Key Laboratory of New Drug Design and Evaluation, Sun Yat-sen University, Guangzhou, China
| | - Zhi Jiang
- School of Pharmaceutical Sciences, Guangdong Provincial Key Laboratory of New Drug Design and Evaluation, Sun Yat-sen University, Guangzhou, China
| | - Zhenhuang Ge
- Run Ze Laboratory for Gastrointestinal Microbiome Study, School of Life Sciences, Sun Yat-sen University, Guangzhou, China
- Biomedical Center of Sun Yat-sen University, Guangzhou, China
| | - Xiyuan Liu
- Run Ze Laboratory for Gastrointestinal Microbiome Study, School of Life Sciences, Sun Yat-sen University, Guangzhou, China
- Biomedical Center of Sun Yat-sen University, Guangzhou, China
| | - Chengdao Li
- Run Ze Laboratory for Gastrointestinal Microbiome Study, School of Life Sciences, Sun Yat-sen University, Guangzhou, China
- Biomedical Center of Sun Yat-sen University, Guangzhou, China
| | - Shuobin Chen
- School of Pharmaceutical Sciences, Guangdong Provincial Key Laboratory of New Drug Design and Evaluation, Sun Yat-sen University, Guangzhou, China
| | - Jiming Ye
- Lipid Biology and Metabolic Disease Research Group, School of Health and Biomedical Sciences, RMIT University, Melbourne, Australia
| | - Zhishu Huang
- School of Pharmaceutical Sciences, Guangdong Provincial Key Laboratory of New Drug Design and Evaluation, Sun Yat-sen University, Guangzhou, China
| | - Yongjun Lu
- Run Ze Laboratory for Gastrointestinal Microbiome Study, School of Life Sciences, Sun Yat-sen University, Guangzhou, China
- Biomedical Center of Sun Yat-sen University, Guangzhou, China
| |
Collapse
|
26
|
Peng C, Stewart AG, Woodman OL, Ritchie RH, Qin CX. Non-Alcoholic Steatohepatitis: A Review of Its Mechanism, Models and Medical Treatments. Front Pharmacol 2020; 11:603926. [PMID: 33343375 PMCID: PMC7745178 DOI: 10.3389/fphar.2020.603926] [Citation(s) in RCA: 128] [Impact Index Per Article: 25.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2020] [Accepted: 10/19/2020] [Indexed: 12/11/2022] Open
Abstract
Non-alcoholic steatohepatitis (NASH) develops from non-alcoholic fatty liver disease (NAFLD). Currently, around 25% of the population is estimated to have NAFLD, and 25% of NAFLD patients are estimated to have NASH. NASH is typically characterized by liver steatosis inflammation, and fibrosis driven by metabolic disruptions such as obesity, diabetes, and dyslipidemia. NASH patients with significant fibrosis have increased risk of developing cirrhosis and liver failure. Currently, NASH is the second leading cause for liver transplant in the United States. More importantly, the risk of developing hepatocellular carcinoma from NASH has also been highlighted in recent studies. Patients may have NAFLD for years before progressing into NASH. Although the pathogenesis of NASH is not completely understood, the current “multiple-hits” hypothesis suggests that in addition to fat accumulation, elevated oxidative and ER stress may also drive liver inflammation and fibrosis. The development of clinically relevant animal models and pharmacological treatments for NASH have been hampered by the limited understanding of the disease mechanism and a lack of sensitive, non-invasive diagnostic tools. Currently, most pre-clinical animal models are divided into three main groups which includes: genetic models, diet-induced, and toxin + diet-induced animal models. Although dietary models mimic the natural course of NASH in humans, the models often only induce mild liver injury. Many genetic and toxin + diet-induced models rapidly induce the development of metabolic disruption and serious liver injury, but not without their own shortcomings. This review provides an overview of the “multiple-hits” hypothesis and an evaluation of the currently existing animal models of NASH. This review also provides an update on the available interventions for managing NASH as well as pharmacological agents that are currently undergoing clinical trials for the treatment of NASH.
Collapse
Affiliation(s)
- Cheng Peng
- Drug Discovery Biology, Monash Institute of Pharmaceutical Sciences, Melbourne, VIC, Australia.,Baker Heart & Diabetes Institute, Melbourne, VIC, Australia.,Department of Pharmacology and Therapeutics, University of Melbourne, Melbourne, VIC, Australia
| | - Alastair G Stewart
- Department of Pharmacology and Therapeutics, University of Melbourne, Melbourne, VIC, Australia.,Australian Research Council, Centre for Personalised Therapeutics Technologies, Lancaster, CBR, Australia
| | - Owen L Woodman
- Drug Discovery Biology, Monash Institute of Pharmaceutical Sciences, Melbourne, VIC, Australia
| | - Rebecca H Ritchie
- Drug Discovery Biology, Monash Institute of Pharmaceutical Sciences, Melbourne, VIC, Australia.,Baker Heart & Diabetes Institute, Melbourne, VIC, Australia.,Department of Pharmacology and Therapeutics, University of Melbourne, Melbourne, VIC, Australia
| | - Cheng Xue Qin
- Drug Discovery Biology, Monash Institute of Pharmaceutical Sciences, Melbourne, VIC, Australia.,Baker Heart & Diabetes Institute, Melbourne, VIC, Australia.,Department of Pharmacology and Therapeutics, University of Melbourne, Melbourne, VIC, Australia
| |
Collapse
|
27
|
Zhang Y, Meng Q, Sun Q, Xu ZX, Zhou H, Wang Y. LKB1 deficiency-induced metabolic reprogramming in tumorigenesis and non-neoplastic diseases. Mol Metab 2020; 44:101131. [PMID: 33278637 PMCID: PMC7753952 DOI: 10.1016/j.molmet.2020.101131] [Citation(s) in RCA: 47] [Impact Index Per Article: 9.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/19/2020] [Revised: 11/22/2020] [Accepted: 11/26/2020] [Indexed: 02/07/2023] Open
Abstract
Background Live kinase B1 (LKB1) is a tumor suppressor that is mutated in Peutz-Jeghers syndrome (PJS) and a variety of cancers. Lkb1 encodes serine-threonine kinase (STK) 11 that activates AMP-activated protein kinase (AMPK) and its 13 superfamily members, regulating multiple biological processes, such as cell polarity, cell cycle arrest, embryo development, apoptosis, and bioenergetics metabolism. Increasing evidence has highlighted that deficiency of LKB1 in cancer cells induces extensive metabolic alterations that promote tumorigenesis and development. LKB1 also participates in the maintenance of phenotypes and functions of normal cells through metabolic regulation. Scope of review Given the important role of LKB1 in metabolic regulation, we provide an overview of the association of metabolic alterations in glycolysis, aerobic oxidation, the pentose phosphate pathway (PPP), gluconeogenesis, glutamine, lipid, and serine induced by aberrant LKB1 signals in tumor progression, non-neoplastic diseases, and functions of immune cells. Major conclusions In this review, we summarize layers of evidence demonstrating that disordered metabolisms in glucose, glutamine, lipid, and serine caused by LKB1 deficiency promote carcinogenesis and non-neoplastic diseases. The metabolic reprogramming resulting from the loss of LKB1 confers cancer cells with growth or survival advantages. Nevertheless, it also causes a metabolic frangibility for LKB1-deficient cancer cells. The metabolic regulation of LKB1 also plays a vital role in maintaining cellular phenotype in the progression of non-neoplastic diseases. In addition, lipid metabolic regulation of LKB1 plays an important role in controlling the function, activity, proliferation, and differentiation of several types of immune cells. We conclude that in-depth knowledge of metabolic pathways regulated by LKB1 is conducive to identifying therapeutic targets and developing drug combinations to treat cancers and metabolic diseases and achieve immunoregulation.
Collapse
Affiliation(s)
- Yanghe Zhang
- Key Laboratory of Pathobiology, Ministry of Education, Jilin University, Changchun, 130021, China
| | - Qingfei Meng
- Key Laboratory of Pathobiology, Ministry of Education, Jilin University, Changchun, 130021, China
| | - Qianhui Sun
- School of Life Sciences, Henan University, Kaifeng, 475004, China
| | - Zhi-Xiang Xu
- Key Laboratory of Pathobiology, Ministry of Education, Jilin University, Changchun, 130021, China; School of Life Sciences, Henan University, Kaifeng, 475004, China.
| | - Honglan Zhou
- Department of Urology, First Hospital of Jilin University, Changchun, 130021, China.
| | - Yishu Wang
- Key Laboratory of Pathobiology, Ministry of Education, Jilin University, Changchun, 130021, China.
| |
Collapse
|
28
|
Li X, Wang J, Gong X, Zhang M, Kang S, Shu B, Wei Z, Huang ZS, Li D. Upregulation of BCL-2 by acridone derivative through gene promoter i-motif for alleviating liver damage of NAFLD/NASH. Nucleic Acids Res 2020; 48:8255-8268. [PMID: 32710621 PMCID: PMC7470982 DOI: 10.1093/nar/gkaa615] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2020] [Revised: 06/29/2020] [Accepted: 07/11/2020] [Indexed: 12/15/2022] Open
Abstract
Nonalcoholic fatty liver disease (NAFLD)/nonalcoholic steatohepatitis (NASH) are global epidemic public health problems with pathogenesis incompletely understood. Hepatocyte excessive apoptosis is a significant symbol for NAFLD/NASH patients, and therefore anti-apoptosis therapy could be used for NAFLD/NASH treatment. Up-regulation of BCL-2 has been found to be closely related with anti-apoptosis. BCL-2 gene promoter region has a C-rich sequence, which can form i-motif structure and play important role in regulating gene transcription. In this study, after extensive screening and evaluation, we found that acridone derivative A22 could up-regulate BCL-2 transcription and translation in vitro and in cells through selective binding to and stabilizing BCL-2 gene promoter i-motif. Our further experiments showed that A22 could reduce hepatocyte apoptosis in NAFLD/NASH model possibly through up-regulating BCL-2 expression. A22 could reduce inflammation, endoplasmic reticulum stress and cirrhosis in high-fat diet-fed mice liver model. Our findings provide a potentially new approach of anti-apoptosis for NAFLD/NASH treatment, and A22 could be further developed as a lead compound for NAFLD/NASH therapy. Our present study first demonstrated that gene promoter i-motif could be targeted for gene up-regulation for extended treatment of other important diseases besides cancer.
Collapse
Affiliation(s)
- Xiaoya Li
- School of Pharmaceutical Sciences, Sun Yat-sen University, Guangzhou University City, 132 Wai huan East Road, Guangzhou 510006, P. R. China
| | - Jing Wang
- School of Pharmaceutical Sciences, Sun Yat-sen University, Guangzhou University City, 132 Wai huan East Road, Guangzhou 510006, P. R. China
| | - Xue Gong
- School of Pharmaceutical Sciences, Sun Yat-sen University, Guangzhou University City, 132 Wai huan East Road, Guangzhou 510006, P. R. China
| | - Meiling Zhang
- School of Pharmaceutical Sciences, Sun Yat-sen University, Guangzhou University City, 132 Wai huan East Road, Guangzhou 510006, P. R. China
| | - Shuangshuang Kang
- School of Pharmaceutical Sciences, Sun Yat-sen University, Guangzhou University City, 132 Wai huan East Road, Guangzhou 510006, P. R. China
| | - Bing Shu
- School of Pharmaceutical Sciences, Sun Yat-sen University, Guangzhou University City, 132 Wai huan East Road, Guangzhou 510006, P. R. China
| | - Zuzhuang Wei
- School of Pharmaceutical Sciences, Sun Yat-sen University, Guangzhou University City, 132 Wai huan East Road, Guangzhou 510006, P. R. China
| | - Zhi-Shu Huang
- School of Pharmaceutical Sciences, Sun Yat-sen University, Guangzhou University City, 132 Wai huan East Road, Guangzhou 510006, P. R. China
| | - Ding Li
- School of Pharmaceutical Sciences, Sun Yat-sen University, Guangzhou University City, 132 Wai huan East Road, Guangzhou 510006, P. R. China
| |
Collapse
|
29
|
Zeng Y, Hua YQ, Wang W, Zhang H, Xu XL. Modulation of SIRT1-mediated signaling cascades in the liver contributes to the amelioration of nonalcoholic steatohepatitis in high fat fed middle-aged LDL receptor knockout mice by dihydromyricetin. Biochem Pharmacol 2020; 175:113927. [DOI: 10.1016/j.bcp.2020.113927] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2020] [Accepted: 03/19/2020] [Indexed: 02/08/2023]
|
30
|
Rao Y, Lu YT, Li C, Song QQ, Xu YH, Xu Z, Hu YT, Yu H, Gao L, Gu LQ, Ye JM, Huang ZS. Bouchardatine analogue alleviates non-alcoholic hepatic fatty liver disease/non-alcoholic steatohepatitis in high-fat fed mice by inhibiting ATP synthase activity. Br J Pharmacol 2019; 176:2877-2893. [PMID: 31113010 DOI: 10.1111/bph.14713] [Citation(s) in RCA: 27] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2018] [Revised: 04/09/2019] [Accepted: 04/30/2019] [Indexed: 12/14/2022] Open
Abstract
BACKGROUND AND PURPOSE Non-alcoholic hepatic fatty liver disease (NAFLD) is a manifestation of the metabolic syndrome in the liver and non-alcoholic steatohepatitis (NASH) represents its advanced stage. R17 derived from bouchardatine, shows benefits in the metabolic syndrome, but has not been tested in the liver. The present study examined the pharmacological effects of R17 in a model of NAFLD/NASH and its mode of action. EXPERIMENTAL APPROACH The effects of R17 were examined in mice fed a high-fat (HF) diet to induce the pathological characteristics of NAFLD/NASH and in cultures of HuH7 cells. We used histological and immunohistochemical techniques along with western blotting and siRNA. Generation of ROS and apoptosis were measured. KEY RESULTS Administration of R17 (20 mg·kg-1 , i.p. every other day) for 5 weeks reversed HF-induced hepatic triglyceride content, inflammation (inflammatory cytokines and macrophage numbers), injury (hepatocyte ballooning and apoptosis, plasma levels of alanine aminotransferase and aspartate aminotransferase), and fibrogenesis (collagen deposition and mRNA expression of fibrosis markers). In cultured cells, R17 reduced cell steatosis from both lipogenesis and fatty acid influx. The attenuated inflammation and cell injury were associated with inhibition of both endoplasmic reticulum (ER) stress and oxidative stress. Notably, R17 activated the liver kinase B1-AMP-activated protein kinase (AMPK) pathway by inhibiting activity of ATP synthase, rather than direct stimulation of AMPK. CONCLUSION AND IMPLICATIONS R17 has therapeutic potential for NAFLD/NASH. Its mode of action involves the elimination of ER and oxidative stresses, possibly via activating the LKB1-AMPK axis by inhibiting the activity of ATP synthase.
Collapse
Affiliation(s)
- Yong Rao
- Guangdong Provincial Key Laboratory of New Drug Design and Evaluation, Institute of Medicinal Chemistry, School of Pharmaceutical Sciences, Sun Yat-sen University, Guangzhou, China
| | - Yu-Ting Lu
- Guangdong Provincial Key Laboratory of New Drug Design and Evaluation, Institute of Medicinal Chemistry, School of Pharmaceutical Sciences, Sun Yat-sen University, Guangzhou, China
| | - Chan Li
- Guangdong Provincial Key Laboratory of New Drug Design and Evaluation, Institute of Medicinal Chemistry, School of Pharmaceutical Sciences, Sun Yat-sen University, Guangzhou, China
| | - Qin-Qin Song
- Guangdong Provincial Key Laboratory of New Drug Design and Evaluation, Institute of Medicinal Chemistry, School of Pharmaceutical Sciences, Sun Yat-sen University, Guangzhou, China
| | - Yao-Hao Xu
- Guangdong Provincial Key Laboratory of New Drug Design and Evaluation, Institute of Medicinal Chemistry, School of Pharmaceutical Sciences, Sun Yat-sen University, Guangzhou, China
| | - Zhao Xu
- Guangdong Provincial Key Laboratory of New Drug Design and Evaluation, Institute of Medicinal Chemistry, School of Pharmaceutical Sciences, Sun Yat-sen University, Guangzhou, China
| | - Yu-Tao Hu
- Guangdong Provincial Key Laboratory of New Drug Design and Evaluation, Institute of Medicinal Chemistry, School of Pharmaceutical Sciences, Sun Yat-sen University, Guangzhou, China
| | - Hong Yu
- Guangdong Provincial Key Laboratory of New Drug Design and Evaluation, Institute of Medicinal Chemistry, School of Pharmaceutical Sciences, Sun Yat-sen University, Guangzhou, China
| | - Lin Gao
- Guangdong Provincial Key Laboratory of New Drug Design and Evaluation, Institute of Medicinal Chemistry, School of Pharmaceutical Sciences, Sun Yat-sen University, Guangzhou, China
| | - Lian-Quan Gu
- Guangdong Provincial Key Laboratory of New Drug Design and Evaluation, Institute of Medicinal Chemistry, School of Pharmaceutical Sciences, Sun Yat-sen University, Guangzhou, China
| | - Ji-Ming Ye
- Lipid Biology and Metabolic Disease Laboratory, School of Health and Biomedical Sciences, RMIT University, Melbourne, VIC, Australia
| | - Zhi-Shu Huang
- Guangdong Provincial Key Laboratory of New Drug Design and Evaluation, Institute of Medicinal Chemistry, School of Pharmaceutical Sciences, Sun Yat-sen University, Guangzhou, China
| |
Collapse
|