1
|
Degro CE, Jiménez-Vargas NN, Guzman-Rodriguez M, Schincariol H, Tsang Q, Reed DE, Lomax AE, Bunnett NW, Stein C, Vanner SJ. A pH-sensitive opioid does not exhibit analgesic tolerance in a mouse model of colonic inflammation. Br J Pharmacol 2024. [PMID: 39396524 DOI: 10.1111/bph.17363] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2024] [Revised: 09/04/2024] [Accepted: 09/06/2024] [Indexed: 10/15/2024] Open
Abstract
BACKGROUND AND PURPOSE Tolerance to the analgesic effects of opioids and resultant dose escalation is associated with worsening of side effects and greater addiction risk. Here, we compare the development of tolerance to the conventional opioid fentanyl with a novel pH-sensitive μ-opioid receptor (MOR) agonist, (±)-N-(3-fluoro-1-phenethylpiperidine-4-yl)-N-phenyl propionamide (NFEPP) that is active only in acidic inflammatory microenvironments. EXPERIMENTAL APPROACH An opioid tolerance model was developed in male C57BL/6 mice, with and without dextran sulphate sodium colitis, using increasing doses of either fentanyl or NFEPP over 5 days. Visceral nociception was assessed in vivo by measuring visceromotor responses (VMRs) to noxious colorectal distensions and in vitro measuring colonic afferent nerve activity of mesenteric nerves and performing patch-clamp recordings from isolated dorsal root ganglia neurons. Somatic thermal nociception was tested using a tail immersion assay. Cardiorespiratory effects were analysed by pulse oximeter experiments. KEY RESULTS VMRs and tail immersion tests demonstrated tolerance to fentanyl, but not to NFEPP in colitis mice. Cross-tolerance also occurred to fentanyl, but not to NFEPP. The MOR agonist DAMGO inhibited colonic afferent nerve activity in colitis mice exposed to chronic NFEPP, but not those from fentanyl-treated mice. Similarly, in patch-clamp recordings from isolated dorsal root ganglia neurons, DAMGO inhibited neurons from NFEPP-, but not fentanyl-treated mice. CONCLUSION AND IMPLICATIONS NFEPP did not exhibit tolerance in an inflammatory pain model, unlike fentanyl. Consequently, dose escalation to maintain analgesia during an evolving inflammation could be avoided, mitigating the potential risk of side effects.
Collapse
Affiliation(s)
- Claudius E Degro
- Gastrointestinal Diseases Research Unit, Kingston General Hospital, Queen's University, Kingston, Ontario, Canada
- Department of General and Visceral Surgery, Charité - Universitätsmedizin Corporate Member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Campus Benjamin Franklin, Berlin, Germany
| | | | - Mabel Guzman-Rodriguez
- Gastrointestinal Diseases Research Unit, Kingston General Hospital, Queen's University, Kingston, Ontario, Canada
| | - Hailey Schincariol
- Gastrointestinal Diseases Research Unit, Kingston General Hospital, Queen's University, Kingston, Ontario, Canada
| | - Quentin Tsang
- Gastrointestinal Diseases Research Unit, Kingston General Hospital, Queen's University, Kingston, Ontario, Canada
| | - David E Reed
- Gastrointestinal Diseases Research Unit, Kingston General Hospital, Queen's University, Kingston, Ontario, Canada
| | - Alan E Lomax
- Gastrointestinal Diseases Research Unit, Kingston General Hospital, Queen's University, Kingston, Ontario, Canada
| | - Nigel W Bunnett
- Department of Molecular Pathobiology, Pain Research Center, New York University, College of Dentistry, New York, New York, USA
- Department of Neuroscience and Physiology, Neuroscience Institute, Grossman, School of Medicine, New York University, New York, New York, USA
| | - Christoph Stein
- Department of Experimental Anaesthesiology, Charité - Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Campus Benjamin Franklin, Berlin, Germany
| | - Stephen J Vanner
- Gastrointestinal Diseases Research Unit, Kingston General Hospital, Queen's University, Kingston, Ontario, Canada
| |
Collapse
|
2
|
Khatoon H, Faudzi SMM. Balancing acts: The dual faces of fentanyl in medicine and public health. Leg Med (Tokyo) 2024; 71:102507. [PMID: 39127024 DOI: 10.1016/j.legalmed.2024.102507] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2024] [Revised: 07/14/2024] [Accepted: 08/06/2024] [Indexed: 08/12/2024]
Abstract
Fentanyl is a potent synthetic opioid widely used in medicine for its effective analgesic properties, particularly in surgical procedures and in the treatment of severe, chronic pain. In recent decades, however, there has been a worrying increase in the illicit use of fentanyl, particularly in North America. This rise in illicit use is concerning because fentanyl is associated with polydrug abuse, which adds layers of complexity and dangerous. This review provides a comprehensive examination of fentanyl, focusing on its synthesis and medical use. It also discusses the significance of the piperidine ring in medicinal chemistry as well as the critical role of fentanyl in pain management and anesthesia. Furthermore, it addresses the challenges associated with the abuse potential of fentanyl and the resulting public health concerns. The study aims to strike a balance between the clinical benefits and risks of fentanyl by advocating for innovative uses while addressing public health issues. It examines the chemistry, pharmacokinetics and pharmacodynamics of fentanyl and highlights the importance of personalized medicine in the administration of opioids. The review underscores the necessity of continuous research and adaptation in both clinical use and public health strategies.
Collapse
Affiliation(s)
- Hena Khatoon
- Department of Chemistry, Faculty of Science, Universiti Putra Malaysia, Serdang 43400, Selangor, Malaysia.
| | - Siti Munirah Mohd Faudzi
- Department of Chemistry, Faculty of Science, Universiti Putra Malaysia, Serdang 43400, Selangor, Malaysia; Natural Medicines and Product Research Laboratory, Institute of Bioscience, Universiti Putra Malaysia, Serdang 43400, Selangor, Malaysia
| |
Collapse
|
3
|
Kapolka NJ, Taghon GJ, Isom DG. Advances in yeast synthetic biology for human G protein-coupled receptor biology and pharmacology. Curr Opin Biotechnol 2024; 88:103176. [PMID: 39079313 DOI: 10.1016/j.copbio.2024.103176] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2024] [Revised: 06/04/2024] [Accepted: 07/12/2024] [Indexed: 08/11/2024]
Abstract
G protein-coupled receptors (GPCRs) are the largest family of transmembrane receptors in humans. Over 800 GPCRs regulate the (patho)biology of every organ, tissue, and cell type. Consequently, GPCRs are the most prominent therapeutic targets in medicine. Although over 30% of current U.S. Food and Drug Administration-approved drugs target GPCR signaling, most receptors remain understudied and therapeutically underutilized. Challenges include an incomplete understanding of GPCR signaling, pharmacology, structural biology, and the multiplicity of endogenous GPCR ligands, in addition to a scarcity of biological and pharmacological tools for elucidating GPCR-mediated cellular processes beyond initial signaling events. Various mammalian, insect, and yeast cell models currently address some of these needs. Here, we review recent advances in yeast synthetic biology that are helping to catalyze new and unexpected conceptual and technical breakthroughs in GPCR-based medicine and biotechnology.
Collapse
Affiliation(s)
- Nicholas J Kapolka
- Department of Pharmacology, University of North Carolina, Chapel Hill, USA
| | - Geoffrey J Taghon
- National Institute of Standards and Technology, Gaithersburg, MD, USA
| | - Daniel G Isom
- Department of Molecular and Cellular Pharmacology, University of Miami School of Medicine, USA; Sylvester Comprehensive Cancer Center, Tumor Biology Program, USA; Frost Institute for Data Science and Computing, USA
| |
Collapse
|
4
|
Stein C. Effects of pH on opioid receptor activation and implications for drug design. Biophys J 2024:S0006-3495(24)00446-6. [PMID: 38970252 DOI: 10.1016/j.bpj.2024.07.007] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2024] [Revised: 05/29/2024] [Accepted: 07/02/2024] [Indexed: 07/08/2024] Open
Abstract
G-protein-coupled receptors are integral membrane proteins that transduce chemical signals from the extracellular matrix into the cell. Traditional drug design has considered ligand-receptor interactions only under normal conditions. However, studies on opioids indicate that such interactions are very different in diseased tissues. In such microenvironments, protons play an important role in structural and functional alterations of both ligands and receptors. The pertinent literature strongly suggests that future drug design should take these aspects into account in order to reduce adverse side effects while preserving desired effects of novel compounds.
Collapse
Affiliation(s)
- Christoph Stein
- Charité Universitätsmedizin Berlin, Campus Benjamin Franklin, Experimental Anaesthesiology, Berlin, Germany.
| |
Collapse
|
5
|
Lešnik S, Bren U, Domratcheva T, Bondar AN. Fentanyl and the Fluorinated Fentanyl Derivative NFEPP Elicit Distinct Hydrogen-Bond Dynamics of the Opioid Receptor. J Chem Inf Model 2023; 63:4732-4748. [PMID: 37498626 DOI: 10.1021/acs.jcim.3c00197] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/28/2023]
Abstract
The development of safe therapeutics to manage pain is of central interest for biomedical applications. The fluorinated fentanyl derivative N-(3-fluoro-1-phenethylpiperidin-4-yl)-N-phenylpropionamide (NFEPP) is potentially a safer alternative to fentanyl because unlike fentanyl─which binds to the μ-opioid receptor (MOR) at both physiological and acidic pH─NFEPP might bind to the MOR only at acidic pH typical of inflamed tissue. Knowledge of the protonation-coupled dynamics of the receptor-drug interactions is thus required to understand the molecular mechanism by which receptor activation initiates cell signaling to silence pain. To this end, here we have carried out extensive atomistic simulations of the MOR in different protonation states, in the absence of opioid drugs, and in the presence of fentanyl vs NFEPP. We used graph-based analyses to characterize internal hydrogen-bond networks that could contribute to the activation of the MOR. We find that fentanyl and NFEPP prefer distinct binding poses and that, in their binding poses, fentanyl and NFEPP partake in distinct internal hydrogen-bond networks, leading to the cytoplasmic G-protein-binding region. Moreover, the protonation state of functionally important aspartic and histidine side chains impacts hydrogen-bond networks that extend throughout the receptor, such that the ligand-bound MOR presents at its cytoplasmic G-protein-binding side, a hydrogen-bonding environment where dynamics depend on whether fentanyl or NFEPP is bound, and on the protonation state of specific MOR groups. The exquisite sensitivity of the internal protein-water hydrogen-bond network to the protonation state and to details of the drug binding could enable the MOR to elicit distinct pH- and opioid-dependent responses at its cytoplasmic G-protein-binding site.
Collapse
Affiliation(s)
- Samo Lešnik
- Faculty of Chemistry and Chemical Engineering, Laboratory of Physical Chemistry and Chemical Thermodynamics, University of Maribor, Smetanova ulica 17, SI-2000 Maribor, Slovenia
- Institute for Environmental Protection and Sensors, Beloruska ulica 7, 2000 Maribor, Slovenia
| | - Urban Bren
- Faculty of Chemistry and Chemical Engineering, Laboratory of Physical Chemistry and Chemical Thermodynamics, University of Maribor, Smetanova ulica 17, SI-2000 Maribor, Slovenia
- Institute for Environmental Protection and Sensors, Beloruska ulica 7, 2000 Maribor, Slovenia
- Faculty of Mathematics, Natural Sciences and Information Technologies, University of Primorska, SI-6000 Koper, Slovenia
| | - Tatiana Domratcheva
- Department of Chemistry, Lomonosov Moscow State University, 119991 Moscow, Russia
- Department of Biomolecular Mechanisms, Max-Plank-Institute fur Medizinische Forschung, D-69120 Heidelberg, Germany
| | - Ana-Nicoleta Bondar
- Faculty of Physics, University of Bucharest, Atomiştilor 405, 077125 Măgurele, Romania
- Institute of Computational Biomedicine, IAS-5/INM-9, Forschungszentrum Jülich, Wilhelm-Johnen Straße, 5428 Jülich, Germany
| |
Collapse
|
6
|
Celik MÖ, Seitz V, Yergöz F, Dembla S, Blum NK, Schulz S, Stein C. Modulation of G-protein activation, calcium currents and opioid receptor phosphorylation by the pH-dependent antinociceptive agonist NFEPP. Front Mol Neurosci 2023; 16:1171855. [PMID: 37251645 PMCID: PMC10213447 DOI: 10.3389/fnmol.2023.1171855] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2023] [Accepted: 04/24/2023] [Indexed: 05/31/2023] Open
Abstract
N-(3-fluoro-1-phenethylpiperidine-4-yl)-N-phenyl propionamide is a newly-designed pain killer selectively activating G-protein-coupled mu-opioid receptors (MOR) in acidic injured tissues, and therefore devoid of central side effects which are typically elicited at normal pH values in healthy tissues. However, the neuronal mechanisms underlying NFEPP's antinociceptive effects were not examined in detail so far. Voltage-dependent Ca2+ channels (VDCCs) in nociceptive neurons play a major role in the generation and inhibition of pain. In this study, we focused on the effects of NFEPP on calcium currents in rat dorsal root ganglion (DRG) neurons. The inhibitory role of the G-protein subunits Gi/o and Gβγ on VDCCs was investigated using the blockers pertussis toxin and gallein, respectively. GTPγS binding, calcium signals and MOR phosphorylation were also investigated. All experiments were performed at acidic and normal pH values using NFEPP in comparison to the conventional opioid agonist fentanyl. At low pH, NFEPP produced more efficient G-protein activation in transfected HEK293 cells and significantly reduced VDCCs in depolarized DRG neurons. The latter effect was mediated by Gβγ subunits, and NFEPP-mediated MOR phosphorylation was pH-dependent. Fentanyl's responses were not affected by pH changes. Our data indicate that NFEPP-induced MOR signaling is more effective at low pH and that the inhibition of calcium channels in DRG neurons underlies NFEPP's antinociceptive actions.
Collapse
Affiliation(s)
- Melih Özgür Celik
- Department of Experimental Anesthesiology, Charité – Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Berlin, Germany
| | - Viola Seitz
- Department of Experimental Anesthesiology, Charité – Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Berlin, Germany
| | - Fatih Yergöz
- Department of Experimental Anesthesiology, Charité – Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Berlin, Germany
| | - Sandeep Dembla
- Department of Experimental Anesthesiology, Charité – Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Berlin, Germany
| | | | - Stefan Schulz
- Department of Pharmacology, Universitätsklinikum Jena, Jena, Germany
| | - Christoph Stein
- Department of Experimental Anesthesiology, Charité – Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Berlin, Germany
| |
Collapse
|
7
|
Bergerhoff M, Moosmann B. Novel Receptor-Binding-Based Assay for the Detection of Opioids in Human Urine Samples. Anal Chem 2023; 95:2723-2731. [PMID: 36706344 DOI: 10.1021/acs.analchem.2c03516] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/29/2023]
Abstract
Consumption of opioids is a growing global health problem. The gold standard for drugs of abuse screening is immunochemical assays. However, this method comes with some disadvantages when screening for a wide variety of opioids. Detection of the binding of a compound at the human μ-opioid receptor (MOR) offers a promising alternative target. Here, we set up a urine assay to allow for detection of compounds that bind at the MOR, thus allowing the assay to be utilized as a screening tool for opioid intake. The assay is based on the incubation of MOR-containing cell membranes with the selective MOR-ligand DAMGO and urine. After filtration, the amount of DAMGO in the eluate is analyzed by liquid chromatography tandem mass spectroscopy (LC-MS/MS). The absence of DAMGO in the eluate corresponds to a competing MOR ligand in the urine sample, thus indicating opiate/opioid intake by the suspect. Sensitivity and specificity were determined by the analysis of 200 consecutive forensic routine casework urine samples. A pronounced displacement of DAMGO was observed in 29 of the 35 opiate/opioid-positive samples. Detection of fentanyl intake proved to be the most challenging aspect. Applying a cut-off value of, e.g., 10% DAMGO binding would lead to a sensitivity of 83% and a specificity of 95%. Consequently, the novel assay proved to be a promising screening tool for opiate/opioid presence in urine samples. The nontargeted approach and possible automation of the assay make it a promising alternative to conventional methods.
Collapse
Affiliation(s)
- Maja Bergerhoff
- Institute of Forensic Medicine, Forensic Toxicology, Kantonsspital St. Gallen, St. Gallen 9007, Switzerland
| | - Bjoern Moosmann
- Institute of Forensic Medicine, Forensic Toxicology, Kantonsspital St. Gallen, St. Gallen 9007, Switzerland
| |
Collapse
|
8
|
Modelling altered signalling of G-protein coupled receptors in inflamed environment to advance drug design. Sci Rep 2023; 13:607. [PMID: 36635362 PMCID: PMC9837128 DOI: 10.1038/s41598-023-27699-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2022] [Accepted: 01/05/2023] [Indexed: 01/14/2023] Open
Abstract
We previously reported the successful design, synthesis and testing of the prototype opioid painkiller NFEPP that does not elicit adverse side effects. The design process of NFEPP was based on mathematical modelling of extracellular interactions between G-protein coupled receptors (GPCRs) and ligands, recognizing that GPCRs function differently under pathological versus healthy conditions. We now present an additional and novel stochastic model of GPCR function that includes intracellular dissociation of G-protein subunits and modulation of plasma membrane calcium channels and their dependence on parameters of inflamed and healthy tissue (pH, radicals). The model is validated against in vitro experimental data for the ligands NFEPP and fentanyl at different pH values and radical concentrations. We observe markedly reduced binding affinity and calcium channel inhibition for NFEPP at normal pH compared to lower pH, in contrast to the effect of fentanyl. For increasing radical concentrations, we find enhanced constitutive G-protein activation but reduced ligand binding affinity. Assessing the different effects, the results suggest that, compared to radicals, low pH is a more important determinant of overall GPCR function in an inflamed environment. Future drug design efforts should take this into account.
Collapse
|
9
|
Bálint ER, Fűr G, Kui B, Balla Z, Kormányos ES, Orján EM, Tóth B, Horváth G, Szűcs E, Benyhe S, Ducza E, Pallagi P, Maléth J, Venglovecz V, Hegyi P, Kiss L, Rakonczay Z. Fentanyl but Not Morphine or Buprenorphine Improves the Severity of Necrotizing Acute Pancreatitis in Rats. Int J Mol Sci 2022; 23:1192. [PMID: 35163111 PMCID: PMC8835441 DOI: 10.3390/ijms23031192] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2021] [Revised: 01/14/2022] [Accepted: 01/18/2022] [Indexed: 02/07/2023] Open
Abstract
Opioids are widely used for the pain management of acute pancreatitis (AP), but their impact on disease progression is unclear. Therefore, our aim was to study the effects of clinically relevant opioids on the severity of experimental AP. Various doses of fentanyl, morphine, or buprenorphine were administered as pre- and/or post-treatments in rats. Necrotizing AP was induced by the intraperitoneal injection of L-ornithine-HCl or intra-ductal injection of Na-taurocholate, while intraperitoneal caerulein administration caused edematous AP. Disease severity was determined by laboratory and histological measurements. Mu opioid receptor (MOR) expression and function was assessed in control and AP animals. MOR was expressed in both the pancreas and brain. The pancreatic expression and function of MOR were reduced in AP. Fentanyl post-treatment reduced necrotizing AP severity, whereas pre-treatment exacerbated it. Fentanyl did not affect the outcome of edematous AP. Morphine decreased vacuolization in edematous AP, while buprenorphine pre-treatment increased pancreatic edema during AP. The overall effects of morphine on disease severity were negligible. In conclusion, the type, dosing, administration route, and timing of opioid treatment can influence the effects of opioids on AP severity. Fentanyl post-treatment proved to be beneficial in AP. Clinical studies are needed to determine which opioids are best in AP.
Collapse
Affiliation(s)
- Emese Réka Bálint
- Department of Pathophysiology, University of Szeged, 6725 Szeged, Hungary; (E.R.B.); (G.F.); (Z.B.); (E.S.K.); (E.M.O.); (B.T.)
| | - Gabriella Fűr
- Department of Pathophysiology, University of Szeged, 6725 Szeged, Hungary; (E.R.B.); (G.F.); (Z.B.); (E.S.K.); (E.M.O.); (B.T.)
| | - Balázs Kui
- Department of Medicine, University of Szeged, 6725 Szeged, Hungary; (B.K.); (P.P.); (J.M.); (P.H.)
| | - Zsolt Balla
- Department of Pathophysiology, University of Szeged, 6725 Szeged, Hungary; (E.R.B.); (G.F.); (Z.B.); (E.S.K.); (E.M.O.); (B.T.)
| | - Eszter Sára Kormányos
- Department of Pathophysiology, University of Szeged, 6725 Szeged, Hungary; (E.R.B.); (G.F.); (Z.B.); (E.S.K.); (E.M.O.); (B.T.)
| | - Erik Márk Orján
- Department of Pathophysiology, University of Szeged, 6725 Szeged, Hungary; (E.R.B.); (G.F.); (Z.B.); (E.S.K.); (E.M.O.); (B.T.)
| | - Brigitta Tóth
- Department of Pathophysiology, University of Szeged, 6725 Szeged, Hungary; (E.R.B.); (G.F.); (Z.B.); (E.S.K.); (E.M.O.); (B.T.)
| | - Gyöngyi Horváth
- Department of Physiology, University of Szeged, 6725 Szeged, Hungary;
| | - Edina Szűcs
- Institute of Biochemistry, Biological Research Center, 6726 Szeged, Hungary; (E.S.); (S.B.)
| | - Sándor Benyhe
- Institute of Biochemistry, Biological Research Center, 6726 Szeged, Hungary; (E.S.); (S.B.)
| | - Eszter Ducza
- Department of Pharmacodynamics and Biopharmacy, Faculty of Pharmacy, University of Szeged, 6725 Szeged, Hungary;
| | - Petra Pallagi
- Department of Medicine, University of Szeged, 6725 Szeged, Hungary; (B.K.); (P.P.); (J.M.); (P.H.)
| | - József Maléth
- Department of Medicine, University of Szeged, 6725 Szeged, Hungary; (B.K.); (P.P.); (J.M.); (P.H.)
| | - Viktória Venglovecz
- Department of Pharmacology and Pharmacotherapy, University of Szeged, 6725 Szeged, Hungary;
| | - Péter Hegyi
- Department of Medicine, University of Szeged, 6725 Szeged, Hungary; (B.K.); (P.P.); (J.M.); (P.H.)
- Institute for Translational Medicine, Medical School, University of Pecs, 7624 Pecs, Hungary
| | - Lóránd Kiss
- Department of Pathophysiology, University of Szeged, 6725 Szeged, Hungary; (E.R.B.); (G.F.); (Z.B.); (E.S.K.); (E.M.O.); (B.T.)
| | - Zoltán Rakonczay
- Department of Pathophysiology, University of Szeged, 6725 Szeged, Hungary; (E.R.B.); (G.F.); (Z.B.); (E.S.K.); (E.M.O.); (B.T.)
| |
Collapse
|
10
|
Mahinthichaichan P, Vo QN, Ellis CR, Shen J. Kinetics and Mechanism of Fentanyl Dissociation from the μ-Opioid Receptor. JACS AU 2021; 1:2208-2215. [PMID: 34977892 PMCID: PMC8715493 DOI: 10.1021/jacsau.1c00341] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/05/2021] [Indexed: 06/14/2023]
Abstract
Driven by illicit fentanyl, opioid related deaths have reached the highest level in 2020. Currently, an opioid overdose is resuscitated by the use of naloxone, which competitively binds and antagonizes the μ-opioid receptor (mOR). Thus, knowledge of the residence times of opioids at mOR and the unbinding mechanisms is valuable for assessing the effectiveness of naloxone. In the present study, we calculate the fentanyl-mOR dissociation time and elucidate the mechanism by applying an enhanced sampling molecular dynamics (MD) technique. Two sets of metadynamics simulations with different initial structures were performed while accounting for the protonation state of the conserved H2976.52, which has been suggested to modulate the ligand-mOR affinity and binding mode. Surprisingly, with the Nδ-protonated H2976.52, fentanyl can descend as much as 10 Å below the level of the conserved D1473.32 before escaping the receptor and has a calculated residence time τ of 38 s. In contrast, with the Nϵ- and doubly protonated H2976.52, the calculated τ are 2.6 and 0.9 s, respectively. Analysis suggests that formation of the piperidine-Hid297 hydrogen bond strengthens the hydrophobic contacts with the transmembrane helix (TM) 6, allowing fentanyl to explore a deep pocket. Considering the experimental τ of ∼4 min for fentanyl and the role of TM6 in mOR activation, the deep insertion mechanism may be biologically relevant. The work paves the way for large-scale computational predictions of opioid dissociation rates to inform evaluation of strategies for opioid overdose reversal. The profound role of the histidine protonation state found here may shift the paradigm in computational studies of ligand-receptor kinetics.
Collapse
Affiliation(s)
- Paween Mahinthichaichan
- Division
of Applied Regulatory Science, Office of Clinical Pharmacology, Office
of Translational Sciences, Center for Drug
Evaluation and Research, United States Food and Drug Administration, Silver Spring, Maryland 20993, United States
- Department
of Pharmaceutical Sciences, University of
Maryland School of Pharmacy, Baltimore, Maryland 21201, United States
| | - Quynh N. Vo
- Division
of Applied Regulatory Science, Office of Clinical Pharmacology, Office
of Translational Sciences, Center for Drug
Evaluation and Research, United States Food and Drug Administration, Silver Spring, Maryland 20993, United States
- Department
of Pharmaceutical Sciences, University of
Maryland School of Pharmacy, Baltimore, Maryland 21201, United States
| | - Christopher R. Ellis
- Division
of Applied Regulatory Science, Office of Clinical Pharmacology, Office
of Translational Sciences, Center for Drug
Evaluation and Research, United States Food and Drug Administration, Silver Spring, Maryland 20993, United States
| | - Jana Shen
- Department
of Pharmaceutical Sciences, University of
Maryland School of Pharmacy, Baltimore, Maryland 21201, United States
| |
Collapse
|
11
|
Opioid Receptors and Protonation-Coupled Binding of Opioid Drugs. Int J Mol Sci 2021; 22:ijms222413353. [PMID: 34948150 PMCID: PMC8707250 DOI: 10.3390/ijms222413353] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2021] [Revised: 12/09/2021] [Accepted: 12/09/2021] [Indexed: 01/01/2023] Open
Abstract
Opioid receptors are G-protein-coupled receptors (GPCRs) part of cell signaling paths of direct interest to treat pain. Pain may associate with inflamed tissue characterized by acidic pH. The potentially low pH at tissue targeted by opioid drugs in pain management could impact drug binding to the opioid receptor, because opioid drugs typically have a protonated amino group that contributes to receptor binding, and the functioning of GPCRs may involve protonation change. In this review, we discuss the relationship between structure, function, and dynamics of opioid receptors from the perspective of the usefulness of computational studies to evaluate protonation-coupled opioid-receptor interactions.
Collapse
|
12
|
Abstract
This paper is the forty-second consecutive installment of the annual anthological review of research concerning the endogenous opioid system, summarizing articles published during 2019 that studied the behavioral effects of molecular, pharmacological and genetic manipulation of opioid peptides and receptors as well as effects of opioid/opiate agonists and antagonists. The review is subdivided into the following specific topics: molecular-biochemical effects and neurochemical localization studies of endogenous opioids and their receptors (1), the roles of these opioid peptides and receptors in pain and analgesia in animals (2) and humans (3), opioid-sensitive and opioid-insensitive effects of nonopioid analgesics (4), opioid peptide and receptor involvement in tolerance and dependence (5), stress and social status (6), learning and memory (7), eating and drinking (8), drug abuse and alcohol (9), sexual activity and hormones, pregnancy, development and endocrinology (10), mental illness and mood (11), seizures and neurologic disorders (12), electrical-related activity and neurophysiology (13), general activity and locomotion (14), gastrointestinal, renal and hepatic functions (15), cardiovascular responses (16), respiration and thermoregulation (17), and immunological responses (18).
Collapse
Affiliation(s)
- Richard J Bodnar
- Department of Psychology and Neuropsychology Doctoral Sub-Program, Queens College, City University of New York, 65-30 Kissena Blvd., Flushing, NY, 11367, United States.
| |
Collapse
|
13
|
Huang H, Li X, Xie P, Li X, Xu X, Qian Y, Yuan C, Meng X, Chai J, Chen J, Liu J, Wang W, Li W, Wang Y, Fu W, Liu J. Discovery, Structure-Activity Relationship, and Mechanistic Studies of 1-((3 R,4 S)-3-((Dimethylamino)methyl)-4-hydroxy-4-(3-methoxyphenyl)piperidin-1-yl)-2-(2,4,5-trifluorophenyl)ethan-1-one as a Novel Potent Analgesic. J Med Chem 2021; 64:9458-9483. [PMID: 34152138 DOI: 10.1021/acs.jmedchem.1c00722] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Management of moderate to severe pain relies heavily on opioid analgesics such as morphine, oxycodone, and fentanyl in clinics. However, their prolonged use was associated with undesirable side effects. Many new strategies to reduce side effects have been proposed, but not without disadvantages. Using a hot plate model as a phenotypic screening method, our studies identified (3R,4S)-9d with a new scaffold as a potent analgesic with ED50 values of 0.54 mg/kg and 0.021 mg/kg in hot plate and antiwrithing models, respectively. Mechanistic studies showed that it elicited its analgesic effect via the active metabolite (3R,4S)-10a. The mechanism of (3R,4S)-10a-induced activation of the μ opioid receptor (MOR) was proposed by means of molecular dynamics (MD) simulation.
Collapse
Affiliation(s)
- Huoming Huang
- Department of Medicinal Chemistry, School of Pharmacy, Fudan University, Shanghai 201203, China
| | - Xueping Li
- Key Laboratory of Receptor Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai 201203, China.,University of Chinese Academy of Sciences, No.19A Yuquan Road, Beijing 100049, China
| | - Peng Xie
- Department of Medicinal Chemistry, School of Pharmacy, Fudan University, Shanghai 201203, China
| | - Xinwei Li
- Department of Medicinal Chemistry, School of Pharmacy, Fudan University, Shanghai 201203, China
| | - XueJun Xu
- Key Laboratory of Receptor Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai 201203, China
| | - Yuanyuan Qian
- Department of Medicinal Chemistry, School of Pharmacy, Fudan University, Shanghai 201203, China
| | - Congmin Yuan
- Department of Medicinal Chemistry, School of Pharmacy, Fudan University, Shanghai 201203, China
| | - Xiangguo Meng
- School of Pharmacy, Shanghai University of Medicine & Health Sciences, Shanghai 201318, China
| | - JingRui Chai
- Key Laboratory of Receptor Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai 201203, China
| | - Jing Chen
- Key Laboratory of Receptor Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai 201203, China
| | - Jing Liu
- Key Laboratory of Receptor Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai 201203, China.,University of Chinese Academy of Sciences, No.19A Yuquan Road, Beijing 100049, China
| | - Wenli Wang
- Department of Medicinal Chemistry, School of Pharmacy, Fudan University, Shanghai 201203, China
| | - Wei Li
- Department of Medicinal Chemistry, School of Pharmacy, Fudan University, Shanghai 201203, China
| | - YuJun Wang
- Key Laboratory of Receptor Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai 201203, China.,University of Chinese Academy of Sciences, No.19A Yuquan Road, Beijing 100049, China
| | - Wei Fu
- Department of Medicinal Chemistry, School of Pharmacy, Fudan University, Shanghai 201203, China
| | - Jinggen Liu
- Key Laboratory of Receptor Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai 201203, China.,University of Chinese Academy of Sciences, No.19A Yuquan Road, Beijing 100049, China
| |
Collapse
|
14
|
Crilly SE, Ko W, Weinberg ZY, Puthenveedu MA. Conformational specificity of opioid receptors is determined by subcellular location irrespective of agonist. eLife 2021; 10:67478. [PMID: 34013886 PMCID: PMC8208814 DOI: 10.7554/elife.67478] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2021] [Accepted: 05/19/2021] [Indexed: 12/13/2022] Open
Abstract
The prevailing model for the variety in drug responses is that different drugs stabilize distinct active states of their G protein-coupled receptor (GPCR) targets, allowing coupling to different effectors. However, whether the same ligand generates different GPCR active states based on the immediate environment of receptors is not known. Here we address this question using spatially resolved imaging of conformational biosensors that read out distinct active conformations of the δ-opioid receptor (DOR), a physiologically relevant GPCR localized to Golgi and the surface in neuronal cells. We have shown that Golgi and surface pools of DOR both inhibit cAMP, but engage distinct conformational biosensors in response to the same ligand in rat neuroendocrine cells. Further, DOR recruits arrestins on the surface but not on the Golgi. Our results suggest that the local environment determines the active states of receptors for any given drug, allowing GPCRs to couple to different effectors at different subcellular locations.
Collapse
Affiliation(s)
- Stephanie E Crilly
- Cellular and Molecular Biology Program, University of Michigan, Ann Arbor, United States.,Department of Pharmacology University of Michigan Medical School, Ann Arbor, United States
| | - Wooree Ko
- Department of Pharmacology University of Michigan Medical School, Ann Arbor, United States
| | - Zara Y Weinberg
- Department of Pharmacology University of Michigan Medical School, Ann Arbor, United States
| | - Manojkumar A Puthenveedu
- Cellular and Molecular Biology Program, University of Michigan, Ann Arbor, United States.,Department of Pharmacology University of Michigan Medical School, Ann Arbor, United States
| |
Collapse
|
15
|
Uncovering the analgesic effects of a pH-dependent mu-opioid receptor agonist using a model of nonevoked ongoing pain. Pain 2021; 161:2798-2804. [PMID: 32639370 DOI: 10.1097/j.pain.0000000000001968] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
Abstract
Currently, opioids targeting mu-opioid receptors are the most potent drugs for acute and cancer pain. However, opioids produce adverse side effects such as constipation, respiratory depression, or addiction potential. We recently developed (±)-N-(3-fluoro-1-phenethylpiperidine-4-yl)-N-phenyl propionamide (NFEPP), a compound that does not evoke central or intestinal side effects due to its selective activation of mu-opioid receptors at low pH in peripheral injured tissues. Although we demonstrated that NFEPP effectively abolishes injury-induced pain, hyperalgesia, and allodynia in rodents, the efficacy of NFEPP in nonevoked ongoing pain remains to be established. Here, we examined reward, locomotor activity, and defecation in rats with complete Freund's adjuvant-induced paw inflammation to compare fentanyl's and NFEPP's potentials to induce side effects and to inhibit spontaneous pain. We demonstrate that low, but not higher, doses of NFEPP produce conditioned place preference but not constipation or motor disturbance, in contrast to fentanyl. Using a peripherally restricted antagonist, we provide evidence that NFEPP-induced place preference is mediated by peripheral opioid receptors. Our results indicate that a low dose of NFEPP produces reward by abolishing spontaneous inflammatory pain.
Collapse
|
16
|
Vo QN, Mahinthichaichan P, Shen J, Ellis CR. How μ-opioid receptor recognizes fentanyl. Nat Commun 2021; 12:984. [PMID: 33579956 PMCID: PMC7881245 DOI: 10.1038/s41467-021-21262-9] [Citation(s) in RCA: 56] [Impact Index Per Article: 18.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2020] [Accepted: 01/08/2021] [Indexed: 01/26/2023] Open
Abstract
Roughly half of the drug overdose-related deaths in the United States are related to synthetic opioids represented by fentanyl which is a potent agonist of mu-opioid receptor (mOR). In recent years, X-ray crystal structures of mOR in complex with morphine derivatives have been determined; however, structural basis of mOR activation by fentanyl-like opioids remains lacking. Exploiting the X-ray structure of BU72-bound mOR and several molecular simulation techniques, we elucidated the detailed binding mechanism of fentanyl. Surprisingly, in addition to the salt-bridge binding mode common to morphinan opiates, fentanyl can move deeper and form a stable hydrogen bond with the conserved His2976.52, which has been suggested to modulate mOR's ligand affinity and pH dependence by previous mutagenesis experiments. Intriguingly, this secondary binding mode is only accessible when His2976.52 adopts a neutral HID tautomer. Alternative binding modes may represent a general mechanism in G protein-coupled receptor-ligand recognition.
Collapse
Affiliation(s)
- Quynh N Vo
- Center for Drug Evaluation and Research, United State Food and Drug Administration, Silver Spring, MD, USA
- Department of Pharmaceutical Sciences, University of Maryland School of Pharmacy, Baltimore, MD, USA
| | - Paween Mahinthichaichan
- Center for Drug Evaluation and Research, United State Food and Drug Administration, Silver Spring, MD, USA
- Department of Pharmaceutical Sciences, University of Maryland School of Pharmacy, Baltimore, MD, USA
| | - Jana Shen
- Department of Pharmaceutical Sciences, University of Maryland School of Pharmacy, Baltimore, MD, USA.
| | - Christopher R Ellis
- Center for Drug Evaluation and Research, United State Food and Drug Administration, Silver Spring, MD, USA.
| |
Collapse
|
17
|
Vo QN, Mahinthichaichan P, Shen J, Ellis CR. How μ-Opioid Receptor Recognizes Fentanyl. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2020:2020.08.16.253013. [PMID: 32839778 PMCID: PMC7444290 DOI: 10.1101/2020.08.16.253013] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
Abstract
In 2019, drug overdose has claimed over 70,000 lives in the United States. More than half of the deaths are related to synthetic opioids represented by fentanyl which is a potent agonist of mu-opioid receptor (mOR). In recent years, the crystal structures of mOR in complex with morphine derivatives have been determined; however, structural basis of mOR activation by fentanyl-like synthetic opioids remains lacking. Exploiting the X-ray structure of mOR bound to a morphinan ligand and several state-of-the-art simulation techniques, including weighted ensemble and continuous constant pH molecular dynamics, we elucidated the detailed binding mechanism of fentanyl with mOR. Surprisingly, in addition to forming a salt-bridge with Asp1473.32 in the orthosteric site common to morphinan opiates, fentanyl can move deeper and bind mOR through hydrogen bonding with a conserved histidine His2976.52, which has been shown to modulate mOR's ligand affinity and pH dependence in mutagenesis experiments, but its precise role remains unclear. Intriguingly, the secondary binding mode is only accessible when His297 adopts a neutral HID tautomer. Alternative binding modes and involvement of tautomer states may represent general mechanisms in G protein-coupled receptor (GPCR)-ligand recognition. Our work provides a starting point for understanding the molecular basis of mOR activation by fentanyl which has many analogs emerging at a rapid pace. The knowledge may also inform the design of safer analgesics to combat the opioid crisis. Current protein simulation studies employ standard protonation and tautomer states; our work demonstrates the need to move beyond the practice to advance our understanding of protein-ligand recognition.
Collapse
Affiliation(s)
- Quynh N Vo
- Center for Drug Evaluation and Research, United State Food and Drug Administration, Silver Spring, Maryland 20993
- Department of Pharmaceutical Sciences, University of Maryland School of Pharmacy, Baltimore, Maryland 21201
| | - Paween Mahinthichaichan
- Center for Drug Evaluation and Research, United State Food and Drug Administration, Silver Spring, Maryland 20993
- Department of Pharmaceutical Sciences, University of Maryland School of Pharmacy, Baltimore, Maryland 21201
| | - Jana Shen
- Department of Pharmaceutical Sciences, University of Maryland School of Pharmacy, Baltimore, Maryland 21201
| | - Christopher R Ellis
- Center for Drug Evaluation and Research, United State Food and Drug Administration, Silver Spring, Maryland 20993
| |
Collapse
|
18
|
Vo QN, Mahinthichaichan P, Shen J, Ellis CR. How mu-Opioid Receptor Recognizes Fentanyl. RESEARCH SQUARE 2020:rs.3.rs-67888. [PMID: 32935088 PMCID: PMC7491576 DOI: 10.21203/rs.3.rs-67888/v1] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
Abstract
The opioid crisis has escalated during the COVID-19 pandemic. More than half of the overdose-related deaths are related to synthetic opioids represented by fentanyl which is a potent agonist of mu-opioid receptor (mOR). In recent years, crystal structures of mOR complexed with morphine derivatives have been determined; however, structural basis of mOR activation by fentanyl-like synthetic opioids remains lacking. Exploiting the X-ray structure of mOR bound to a morphinan ligand and several state-of-the-art simulation techniques, including weighted ensemble and continuous constant pH molecular dynamics, we elucidated the detailed binding mechanism of fentanyl with mOR. Surprisingly, in addition to the orthosteric site common to morphinan opiates, fentanyl can move deeper and bind mOR through hydrogen bonding with a conserved histidine H297, which has been shown to modulate mOR's ligand affinity and pH dependence in mutagenesis experiments, but its precise role remains unclear. Intriguingly, the secondary binding mode is only accessible when H297 adopts a neutral HID tautomer. Alternative binding modes and involvement of tautomer states may represent general mechanisms in G protein-coupled receptor (GPCR)-ligand recognition. Our work provides a starting point for understanding mOR activation by fentanyl analogs that are emerging at a rapid pace and assisting the design of safer analgesics to combat the opioid crisis. Current protein simulation studies employ standard protonation and tautomer states; our work demonstrates the need to move beyond the practice to advance our understanding of protein-ligand recognition.
Collapse
Affiliation(s)
- Quynh N Vo
- Center for Drug Evaluation and Research, United State Food and Drug Administration, Silver Spring, Maryland 20993
- Department of Pharmaceutical Sciences, University of Maryland School of Pharmacy, Baltimore, Maryland 21201
| | - Paween Mahinthichaichan
- Center for Drug Evaluation and Research, United State Food and Drug Administration, Silver Spring, Maryland 20993
- Department of Pharmaceutical Sciences, University of Maryland School of Pharmacy, Baltimore, Maryland 21201
| | - Jana Shen
- Department of Pharmaceutical Sciences, University of Maryland School of Pharmacy, Baltimore, Maryland 21201
| | - Christopher R Ellis
- Center for Drug Evaluation and Research, United State Food and Drug Administration, Silver Spring, Maryland 20993
| |
Collapse
|
19
|
Meyer J, Del Vecchio G, Seitz V, Massaly N, Stein C. Modulation of μ-opioid receptor activation by acidic pH is dependent on ligand structure and an ionizable amino acid residue. Br J Pharmacol 2019; 176:4510-4520. [PMID: 31355457 PMCID: PMC6932940 DOI: 10.1111/bph.14810] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2019] [Revised: 07/12/2019] [Accepted: 07/14/2019] [Indexed: 12/22/2022] Open
Abstract
Background and Purpose Adverse side effects of conventional opioids can be avoided if ligands selectively activate peripheral opioid receptors in injured tissue. Injury and inflammation are typically accompanied by acidification. In this study, we examined influences of low pH and mutation of the ionizable amino acid residue H2976.52 on μ‐opioid receptor binding and signalling induced by the μ‐opioid receptor ligands fentanyl, DAMGO, and naloxone. Experimental Approach HEK 293 cells stably transfected with μ‐opioid receptors were used to study opioid ligand binding, [35S]‐GTPγS binding, and cAMP reduction at physiological and acidic pH. We used μ‐opioid receptors mutated at H2976.52 to A (MOR‐H2976.52A) to delineate ligand‐specific interactions with H2976.52. Key Results Low pH and the mutant receptor MOR‐H2976.52A impaired naloxone binding and antagonism of cAMP reduction. In addition, DAMGO binding and G‐protein activation were decreased under these conditions. Fentanyl‐induced signalling was not influenced by pH and largely independent of H2976.52. Conclusions and Implications Our investigations indicate that low pH selectively impairs μ‐opioid receptor signalling modulated by ligands capable of forming hydrogen bonds with H2976.52. We propose that protonation of H2976.52 at acidic pH reduces binding and subsequent signalling of such ligands. Novel agonists targeting opioid receptors in injured tissue might benefit from lack of hydrogen bond formation with H2976.52.
Collapse
Affiliation(s)
- Johanna Meyer
- Department of Experimental Anesthesiology, Campus Benjamin Franklin, Charité-Universitätsmedizin Berlin, Germany
| | - Giovanna Del Vecchio
- Department of Experimental Anesthesiology, Campus Benjamin Franklin, Charité-Universitätsmedizin Berlin, Germany
| | - Viola Seitz
- Department of Experimental Anesthesiology, Campus Benjamin Franklin, Charité-Universitätsmedizin Berlin, Germany
| | - Nicolas Massaly
- Department of Experimental Anesthesiology, Campus Benjamin Franklin, Charité-Universitätsmedizin Berlin, Germany
| | - Christoph Stein
- Department of Experimental Anesthesiology, Campus Benjamin Franklin, Charité-Universitätsmedizin Berlin, Germany
| |
Collapse
|