1
|
Nahar L, Hagiya H, Gotoh K, Asaduzzaman M, Otsuka F. New Delhi Metallo-Beta-Lactamase Inhibitors: A Systematic Scoping Review. J Clin Med 2024; 13:4199. [PMID: 39064239 PMCID: PMC11277577 DOI: 10.3390/jcm13144199] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2024] [Revised: 07/14/2024] [Accepted: 07/16/2024] [Indexed: 07/28/2024] Open
Abstract
Background/Objectives: Among various carbapenemases, New Delhi metallo-beta-lactamases (NDMs) are recognized as the most powerful type capable of hydrolyzing all beta-lactam antibiotics, often conferring multi-drug resistance to the microorganism. The objective of this review is to synthesize current scientific data on NDM inhibitors to facilitate the development of future therapeutics for challenging-to-treat pathogens. Methods: Following the Preferred Reporting Items for Systematic Reviews and Meta-Analyses (PRISMA) Extension for Scoping Reviews, we conducted a MEDLINE search for articles with relevant keywords from the beginning of 2009 to December 2022. We employed various generic terms to encompass all the literature ever published on potential NDM inhibitors. Results: Out of the 1760 articles identified through the database search, 91 met the eligibility criteria and were included in our analysis. The fractional inhibitory concentration index was assessed using the checkerboard assay for 47 compounds in 37 articles, which included 8 compounds already approved by the Food and Drug Administration (FDA) of the United States. Time-killing curve assays (14 studies, 25%), kinetic assays (15 studies, 40.5%), molecular investigations (25 studies, 67.6%), in vivo studies (14 studies, 37.8%), and toxicity assays (13 studies, 35.1%) were also conducted to strengthen the laboratory-level evidence of the potential inhibitors. None of them appeared to have been applied to human infections. Conclusions: Ongoing research efforts have identified several potential NDM inhibitors; however, there are currently no clinically applicable drugs. To address this, we must foster interdisciplinary and multifaceted collaborations by broadening our own horizons.
Collapse
Affiliation(s)
- Lutfun Nahar
- Department of General Medicine, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama 700-8558, Japan
| | - Hideharu Hagiya
- Department of Infectious Diseases, Okayama University Hospital, Okayama 700-8558, Japan
| | - Kazuyoshi Gotoh
- Department of Bacteriology, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama 700-8558, Japan (M.A.)
| | - Md Asaduzzaman
- Department of Bacteriology, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama 700-8558, Japan (M.A.)
| | - Fumio Otsuka
- Department of General Medicine, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama 700-8558, Japan
| |
Collapse
|
2
|
Li J, Lu T, Chu Y, Zhang Y, Zhang J, Fu W, Sun J, Liu Y, Liao X, Zhou Y. Cinnamaldehyde targets SarA to enhance β-lactam antibiotic activity against methicillin-resistant Staphylococcus aureus. MLIFE 2024; 3:291-306. [PMID: 38948140 PMCID: PMC11211666 DOI: 10.1002/mlf2.12121] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 10/17/2023] [Revised: 02/02/2024] [Accepted: 02/19/2024] [Indexed: 07/02/2024]
Abstract
Methicillin-resistant Staphylococcus aureus (MRSA) is a current global public health problem due to its increasing resistance to the most recent antibiotic therapies. One critical approach is to develop ways to revitalize existing antibiotics. Here, we show that the phytogenic compound cinnamaldehyde (CIN) and β-lactam antibiotic combinations can functionally synergize and resensitize clinical MRSA isolates to β-lactam therapy and inhibit MRSA biofilm formation. Mechanistic studies indicated that the CIN potentiation effect on β-lactams was primarily the result of inhibition of the mecA expression by targeting the staphylococcal accessory regulator sarA. CIN alone or in combination with β-lactams decreased sarA gene expression and increased SarA protein phosphorylation that impaired SarA binding to the mecA promoter element and downregulated virulence genes such as those encoding biofilm, α-hemolysin, and adhesin. Perturbation of SarA-mecA binding thus interfered with PBP2a biosynthesis and this decreased MRSA resistance to β-lactams. Furthermore, CIN fully restored the anti-MRSA activities of β-lactam antibiotics in vivo in murine models of bacteremia and biofilm infections. Together, our results indicated that CIN acts as a β-lactam adjuvant and can be applied as an alternative therapy to combat multidrug-resistant MRSA infections.
Collapse
Affiliation(s)
- Jianguo Li
- State Key Laboratory for Animal Disease Control and PreventionSouth China Agricultural UniversityGuangzhouChina
- Guangdong Provincial Key Laboratory of Veterinary Pharmaceutics Development and Safety EvaluationSouth China Agricultural UniversityGuangzhouChina
| | - Tingyin Lu
- State Key Laboratory for Animal Disease Control and PreventionSouth China Agricultural UniversityGuangzhouChina
- Guangdong Provincial Key Laboratory of Veterinary Pharmaceutics Development and Safety EvaluationSouth China Agricultural UniversityGuangzhouChina
| | - Yuefei Chu
- State Key Laboratory for Animal Disease Control and PreventionSouth China Agricultural UniversityGuangzhouChina
- Guangdong Provincial Key Laboratory of Veterinary Pharmaceutics Development and Safety EvaluationSouth China Agricultural UniversityGuangzhouChina
| | - Yuejun Zhang
- State Key Laboratory for Animal Disease Control and PreventionSouth China Agricultural UniversityGuangzhouChina
- Guangdong Provincial Key Laboratory of Veterinary Pharmaceutics Development and Safety EvaluationSouth China Agricultural UniversityGuangzhouChina
| | - Jing Zhang
- State Key Laboratory for Animal Disease Control and PreventionSouth China Agricultural UniversityGuangzhouChina
- Guangdong Provincial Key Laboratory of Veterinary Pharmaceutics Development and Safety EvaluationSouth China Agricultural UniversityGuangzhouChina
- Yantai Fushan Center for Animal Disease Control and PreventionYantaiChina
| | - Wenzhen Fu
- State Key Laboratory for Animal Disease Control and PreventionSouth China Agricultural UniversityGuangzhouChina
- Guangdong Provincial Key Laboratory of Veterinary Pharmaceutics Development and Safety EvaluationSouth China Agricultural UniversityGuangzhouChina
| | - Jian Sun
- State Key Laboratory for Animal Disease Control and PreventionSouth China Agricultural UniversityGuangzhouChina
- Guangdong Provincial Key Laboratory of Veterinary Pharmaceutics Development and Safety EvaluationSouth China Agricultural UniversityGuangzhouChina
| | - Yahong Liu
- State Key Laboratory for Animal Disease Control and PreventionSouth China Agricultural UniversityGuangzhouChina
- Guangdong Provincial Key Laboratory of Veterinary Pharmaceutics Development and Safety EvaluationSouth China Agricultural UniversityGuangzhouChina
| | - Xiao‐Ping Liao
- State Key Laboratory for Animal Disease Control and PreventionSouth China Agricultural UniversityGuangzhouChina
- Guangdong Provincial Key Laboratory of Veterinary Pharmaceutics Development and Safety EvaluationSouth China Agricultural UniversityGuangzhouChina
| | - Yu‐Feng Zhou
- State Key Laboratory for Animal Disease Control and PreventionSouth China Agricultural UniversityGuangzhouChina
- Guangdong Provincial Key Laboratory of Veterinary Pharmaceutics Development and Safety EvaluationSouth China Agricultural UniversityGuangzhouChina
| |
Collapse
|
3
|
Li X, Li Y, Xiong B, Qiu S. Progress of Antimicrobial Mechanisms of Stilbenoids. Pharmaceutics 2024; 16:663. [PMID: 38794325 PMCID: PMC11124934 DOI: 10.3390/pharmaceutics16050663] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2024] [Revised: 05/13/2024] [Accepted: 05/14/2024] [Indexed: 05/26/2024] Open
Abstract
Antimicrobial drugs have made outstanding contributions to the treatment of pathogenic infections. However, the emergence of drug resistance continues to be a major threat to human health in recent years, and therefore, the search for novel antimicrobial drugs is particularly urgent. With a deeper understanding of microbial habits and drug resistance mechanisms, various creative strategies for the development of novel antibiotics have been proposed. Stilbenoids, characterized by a C6-C2-C6 carbon skeleton, have recently been widely recognized for their flexible antimicrobial roles. Here, we comprehensively summarize the mode of action of stilbenoids from the viewpoint of their direct antimicrobial properties, antibiofilm and antivirulence activities and their role in reversing drug resistance. This review will provide an important reference for the future development and research into the mechanisms of stilbenoids as antimicrobial agents.
Collapse
Affiliation(s)
- Xiancai Li
- Key Laboratory of Plant Resources Conservation and Sustainable Utilization, South China Botanical Garden, Chinese Academy of Sciences, Guangzhou 510650, China;
| | - Yongqing Li
- Key Laboratory of South China Agricultural Plant Molecular Analysis and Genetic Improvement, South China Botanical Garden, Chinese Academy of Sciences, Guangzhou 510650, China;
| | - Binghong Xiong
- Key Laboratory of Plant Resources Conservation and Sustainable Utilization, South China Botanical Garden, Chinese Academy of Sciences, Guangzhou 510650, China;
| | - Shengxiang Qiu
- Key Laboratory of Plant Resources Conservation and Sustainable Utilization, South China Botanical Garden, Chinese Academy of Sciences, Guangzhou 510650, China;
| |
Collapse
|
4
|
Wachino JI, Jin W, Norizuki C, Kimura K, Tsuji M, Kurosaki H, Arakawa Y. Hydroxyhexylitaconic acids as potent IMP-type metallo-β-lactamase inhibitors for controlling carbapenem resistance in Enterobacterales. Microbiol Spectr 2024; 12:e0234423. [PMID: 38315122 PMCID: PMC10913484 DOI: 10.1128/spectrum.02344-23] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2023] [Accepted: 12/06/2023] [Indexed: 02/07/2024] Open
Abstract
Metallo-β-lactamases (MBLs) represent one of the main causes of carbapenem resistance in the order Enterobacterales. To combat MBL-producing carbapenem-resistant Enterobacterales, the development of MBL inhibitors can restore carbapenem efficacy for such resistant bacteria. Microbial natural products are a promising source of attractive seed compounds for the development of antimicrobial agents. Here, we report that hydroxyhexylitaconic acids (HHIAs) produced by a member of the genus Aspergillus can suppress carbapenem resistance conferred by MBLs, particularly IMP (imipenemase)-type MBLs. HHIAs were found to be competitive inhibitors with micromolar orders of magnitude against IMP-1 and showed weak inhibitory activity toward VIM-2, while no inhibitory activity against NDM-1 was observed despite the high dosage. The elongated methylene chains of HHIAs seem to play a crucial role in exerting inhibitory activity because itaconic acid, a structural analog without long methylene chains, did not show inhibitory activity against IMP-1. The addition of HHIAs restored meropenem and imipenem efficacy to satisfactory clinical levels against IMP-type MBL-producing Escherichia coli and Klebsiella pneumoniae clinical isolates. Unlike EDTA and Aspergillomarasmine A, HHIAs did not cause the loss of zinc ions from the active site, resulting in the structural instability of MBLs. X-ray crystallography and in silico docking simulation analyses revealed that two neighboring carboxylates of HHIAs coordinated with two zinc ions in the active sites of VIM-2 and IMP-1, which formed a key interaction observed in MBL inhibitors. Our results indicated that HHIAs are promising for initiating the design of potent inhibitors of IMP-type MBLs.IMPORTANCEThe number and type of metallo-β-lactamase (MΒL) are increasing over time. Carbapenem resistance conferred by MΒL is a significant threat to our antibiotic regimen, and the development of MΒL inhibitors is urgently required to restore carbapenem efficacy. Microbial natural products have served as important sources for developing antimicrobial agents targeting pathogenic bacteria since the discovery of antibiotics in the mid-20th century. MΒL inhibitors derived from microbial natural products are still rare compared to those derived from chemical compound libraries. Hydroxyhexylitaconic acids (HHIAs) produced by members of the genus Aspergillus have potent inhibitory activity against clinically relevant IMP-type MBL. HHIAs may be good lead compounds for the development of MBL inhibitors applicable for controlling carbapenem resistance in IMP-type MBL-producing Enterobacterales.
Collapse
Affiliation(s)
- Jun-ichi Wachino
- Department of Medical Technology, Faculty of Medical Sciences, Shubun University, Ichinomiya, Aichi, Japan
- Department of Bacteriology, Nagoya University Graduate School of Medicine, Nagoya, Aichi, Japan
| | - Wanchun Jin
- College of Pharmacy, Kinjo Gakuin University, Nagoya, Aichi, Japan
| | - Chihiro Norizuki
- Department of Medical Technology, Faculty of Medical Sciences, Shubun University, Ichinomiya, Aichi, Japan
| | - Kouji Kimura
- Department of Bacteriology, Nagoya University Graduate School of Medicine, Nagoya, Aichi, Japan
| | | | | | - Yoshichika Arakawa
- Department of Medical Technology, Faculty of Medical Sciences, Shubun University, Ichinomiya, Aichi, Japan
- Department of Bacteriology, Nagoya University Graduate School of Medicine, Nagoya, Aichi, Japan
| |
Collapse
|
5
|
Zheng J, Chen S, Song M, Liu B, Ma S, Wang S, Wang Q, Ding Q, Xia Q, Zhu K, Wang H. Discovery of adjuvants with antibacterial potentiation activity against carbapenemase-producing Enterobacterales based on in silico virtual screening. Int J Antimicrob Agents 2024; 63:107076. [PMID: 38159889 DOI: 10.1016/j.ijantimicag.2023.107076] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2023] [Revised: 12/04/2023] [Accepted: 12/21/2023] [Indexed: 01/03/2024]
Abstract
Bacterial multi-drug resistance has become a concern worldwide, especially after the emergence of carbapenemases. Adjuvants with antibacterial potentiation activity can resensitise drug-resistant strains to carbapenems. However, only a few adjuvants with antibacterial potentiation activity are currently available in clinical practice. Here, we first docked the library containing more than 30,000 small molecules to carbapenemases including Klebsiella pneumoniae carbapenemase 2 (KPC-2) and New Delhi metallo-β-lactamase-5 (NDM-5), through in silico virtual screening to obtain lead compounds against carbapenemase-producing Enterobacterales. Meanwhile, the in vitro antibacterial potentiation assays revealed that ibandronate, azacytidine, ribostamycin sulfate and cidofovir exhibited synergistic or additive activity in the presence of meropenem, with good biocompatibility based on red blood cell hemolysis and cell viability tests. Furthermore, the combination of meropenem and azacytidine showed high efficacy in a mouse sepsis model infected with an NDM-5-producing clinical strain, with a 100% survival rate, decreased bacterial burden and alleviated pathological deterioration. These results suggest that the virtual screening is a promising strategy to identify new antibiotic adjuvants targeting carbapenemase-producing Enterobacterales.
Collapse
Affiliation(s)
- Ji Zheng
- Institute of Medical Technology, Peking University Health Science Center, Beijing, China; Department of Clinical Laboratory, Peking University People's Hospital, Beijing, China
| | - Shang Chen
- National Key Laboratory of Veterinary Public Health and Safety, College of Veterinary Medicine, China Agricultural University, Beijing, China; State Key Laboratory of Natural and Biomimetic Drugs, Department of Chemical Biology, School of Pharmaceutical Sciences, Peking University, Beijing, China
| | - Meirong Song
- National Key Laboratory of Veterinary Public Health and Safety, College of Veterinary Medicine, China Agricultural University, Beijing, China
| | - Binkai Liu
- Key Laboratory of Radiopharmaceuticals, Ministry of Education, College of Chemistry, Beijing Normal University, Beijing, China
| | - Shuai Ma
- Institute of Medical Technology, Peking University Health Science Center, Beijing, China; Department of Clinical Laboratory, Peking University People's Hospital, Beijing, China
| | - Shuyi Wang
- Institute of Medical Technology, Peking University Health Science Center, Beijing, China; Department of Clinical Laboratory, Peking University People's Hospital, Beijing, China
| | - Qi Wang
- Department of Clinical Laboratory, Peking University People's Hospital, Beijing, China
| | - Qi Ding
- Department of Clinical Laboratory, Peking University People's Hospital, Beijing, China
| | - Qing Xia
- State Key Laboratory of Natural and Biomimetic Drugs, Department of Chemical Biology, School of Pharmaceutical Sciences, Peking University, Beijing, China
| | - Kui Zhu
- National Key Laboratory of Veterinary Public Health and Safety, College of Veterinary Medicine, China Agricultural University, Beijing, China
| | - Hui Wang
- Institute of Medical Technology, Peking University Health Science Center, Beijing, China; Department of Clinical Laboratory, Peking University People's Hospital, Beijing, China.
| |
Collapse
|
6
|
Guo Y, Liu H, Yang M, Ding R, Gao Y, Niu X, Deng X, Wang J, Feng H, Qiu J. Novel metallo-β-lactamases inhibitors restore the susceptibility of carbapenems to New Delhi metallo-lactamase-1 (NDM-1)-harbouring bacteria. Br J Pharmacol 2024; 181:54-69. [PMID: 37539785 DOI: 10.1111/bph.16210] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2022] [Revised: 06/24/2023] [Accepted: 07/20/2023] [Indexed: 08/05/2023] Open
Abstract
BACKGROUND AND PURPOSE The production of metallo-β-lactamases is a major mechanisms adopted by bacterial pathogens to resist carbapenems. Repurposing approved drugs to restore the efficacy of carbapenems represents an efficient and cost-effective approach to fight infections caused by carbapenem resistant pathogens. EXPERIMENTAL APPROACH The nitrocefin hydrolysis assay was employed to screen potential New Delhi metallo-lactamase-1 (NDM-1) inhibitors from a commercially available U.S. Food and Drug Administration (FDA) approved drug library. The mechanism of inhibition was clarified by metal restoration, inductively coupled plasma mass spectrometry (ICP-MS) and molecular dynamics simulation. The in vitro synergistic antibacterial effect of the identified inhibitors with meropenem was determined by the checkerboard minimum inhibitory concentration (MIC) assay, time-dependent killing assay and combined disc test. Three mouse infection models were used to further evaluate the in vivo therapeutic efficacy of combined therapy. KEY RESULTS Twelve FDA-approved compounds were initially screened to inhibit the ability of NDM-1 to hydrolyse nitrocefin. Among these compounds, dexrazoxane, embelin, candesartan cilexetil and nordihydroguaiaretic acid were demonstrated to inhibit all tested metallo-β-lactamases and showed an in vitro synergistic bactericidal effect with meropenem against metallo-β-lactamases-producing bacteria. Dexrazoxane, embelin and candesartan cilexetil are metal ion chelating agents, while the inhibition of NDM-1 by nordihydroguaiaretic acid involves its direct binding to the active region of NDM-1. Furthermore, these four drugs dramatically rescued the treatment efficacy of meropenem in three infection models. CONCLUSIONS AND IMPLICATIONS Our observations indicated that dexrazoxane, embelin, candesartan cilexetil and nordihydroguaiaretic acid are promising carbapenem adjuvants against metallo-β-lactamases-positive carbapenem resistant bacterial pathogens.
Collapse
Affiliation(s)
- Yan Guo
- State Key Laboratory for Diagnosis and Treatment of Severe Zoonotic Infectious Diseases, Key Laboratory for Zoonosis Research of the Ministry of Education, College of Veterinary Medicine, Jilin University, Changchun, China
| | - Hongtao Liu
- State Key Laboratory for Diagnosis and Treatment of Severe Zoonotic Infectious Diseases, Key Laboratory for Zoonosis Research of the Ministry of Education, College of Veterinary Medicine, Jilin University, Changchun, China
| | - Mengge Yang
- State Key Laboratory for Diagnosis and Treatment of Severe Zoonotic Infectious Diseases, Key Laboratory for Zoonosis Research of the Ministry of Education, College of Veterinary Medicine, Jilin University, Changchun, China
| | - Rui Ding
- State Key Laboratory for Diagnosis and Treatment of Severe Zoonotic Infectious Diseases, Key Laboratory for Zoonosis Research of the Ministry of Education, College of Veterinary Medicine, Jilin University, Changchun, China
| | - Yawen Gao
- College of Food Science and Engineering, Jilin University, Changchun, Jilin, China
| | - Xiaodi Niu
- College of Food Science and Engineering, Jilin University, Changchun, Jilin, China
| | - Xuming Deng
- State Key Laboratory for Diagnosis and Treatment of Severe Zoonotic Infectious Diseases, Key Laboratory for Zoonosis Research of the Ministry of Education, College of Veterinary Medicine, Jilin University, Changchun, China
| | - Jianfeng Wang
- State Key Laboratory for Diagnosis and Treatment of Severe Zoonotic Infectious Diseases, Key Laboratory for Zoonosis Research of the Ministry of Education, College of Veterinary Medicine, Jilin University, Changchun, China
| | - Haihua Feng
- State Key Laboratory for Diagnosis and Treatment of Severe Zoonotic Infectious Diseases, Key Laboratory for Zoonosis Research of the Ministry of Education, College of Veterinary Medicine, Jilin University, Changchun, China
| | - Jiazhang Qiu
- State Key Laboratory for Diagnosis and Treatment of Severe Zoonotic Infectious Diseases, Key Laboratory for Zoonosis Research of the Ministry of Education, College of Veterinary Medicine, Jilin University, Changchun, China
| |
Collapse
|
7
|
Li JG, Chen XF, Lu TY, Zhang J, Dai SH, Sun J, Liu YH, Liao XP, Zhou YF. Increased Activity of β-Lactam Antibiotics in Combination with Carvacrol against MRSA Bacteremia and Catheter-Associated Biofilm Infections. ACS Infect Dis 2023; 9:2482-2493. [PMID: 38019707 DOI: 10.1021/acsinfecdis.3c00338] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/01/2023]
Abstract
β-Lactam antibiotics are the mainstay for the treatment of staphylococcal infections, but their utility is greatly limited by the emergence and rapid dissemination of methicillin-resistant Staphylococcus aureus (MRSA). Herein, we evaluated the ability of the plant-derived monoterpene carvacrol to act as an antibiotic adjuvant, revitalizing the anti-MRSA activity of β-lactam antibiotics. Increased susceptibility of MRSA to β-lactam antibiotics and significant synergistic activities were observed with carvacrol-based combinations. Carvacrol significantly inhibited MRSA biofilms and reduced the production of exopolysaccharide, polysaccharide intercellular adhesin, and extracellular DNA and showed synergistic biofilm inhibition in combination with β-lactams. Transcriptome analysis revealed profound downregulation in the expression of genes involved in two-component systems and S. aureus infection. Mechanistic studies indicate that carvacrol inhibits the expression of staphylococcal accessory regulator sarA and interferes with SarA-mecA promoter binding that decreases mecA-mediated β-lactam resistance. Consistently, the in vivo experiment also supported that carvacrol restored MRSA sensitivity to β-lactam antibiotic treatments in both murine models of bacteremia and biofilm-associated infection. Our results indicated that carvacrol has a potential role as a combinatorial partner with β-lactam antibiotics to address MRSA infections.
Collapse
Affiliation(s)
- Jian-Guo Li
- State Key Laboratory for Animal Disease Control and Prevention, South China Agricultural University, Guangzhou 510642, China
- Guangdong Provincial Key Laboratory of Veterinary Pharmaceutics Development and Safety Evaluation, South China Agricultural University, Guangzhou 510642, China
| | - Xiao-Feng Chen
- State Key Laboratory for Animal Disease Control and Prevention, South China Agricultural University, Guangzhou 510642, China
- Guangdong Provincial Key Laboratory of Veterinary Pharmaceutics Development and Safety Evaluation, South China Agricultural University, Guangzhou 510642, China
| | - Ting-Yin Lu
- State Key Laboratory for Animal Disease Control and Prevention, South China Agricultural University, Guangzhou 510642, China
- Guangdong Provincial Key Laboratory of Veterinary Pharmaceutics Development and Safety Evaluation, South China Agricultural University, Guangzhou 510642, China
| | - Jing Zhang
- State Key Laboratory for Animal Disease Control and Prevention, South China Agricultural University, Guangzhou 510642, China
- Guangdong Provincial Key Laboratory of Veterinary Pharmaceutics Development and Safety Evaluation, South China Agricultural University, Guangzhou 510642, China
- Yantai Fushan Center for Animal Disease Control and Prevention, Fushan, Yantai, Shandong 265500, China
| | - Shu-He Dai
- State Key Laboratory for Animal Disease Control and Prevention, South China Agricultural University, Guangzhou 510642, China
- Guangdong Provincial Key Laboratory of Veterinary Pharmaceutics Development and Safety Evaluation, South China Agricultural University, Guangzhou 510642, China
| | - Jian Sun
- State Key Laboratory for Animal Disease Control and Prevention, South China Agricultural University, Guangzhou 510642, China
- Guangdong Provincial Key Laboratory of Veterinary Pharmaceutics Development and Safety Evaluation, South China Agricultural University, Guangzhou 510642, China
| | - Ya-Hong Liu
- State Key Laboratory for Animal Disease Control and Prevention, South China Agricultural University, Guangzhou 510642, China
- Guangdong Provincial Key Laboratory of Veterinary Pharmaceutics Development and Safety Evaluation, South China Agricultural University, Guangzhou 510642, China
- Jiangsu Co-Innovation Center for the Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou University, Yangzhou 225009, China
| | - Xiao-Ping Liao
- State Key Laboratory for Animal Disease Control and Prevention, South China Agricultural University, Guangzhou 510642, China
- Guangdong Provincial Key Laboratory of Veterinary Pharmaceutics Development and Safety Evaluation, South China Agricultural University, Guangzhou 510642, China
| | - Yu-Feng Zhou
- State Key Laboratory for Animal Disease Control and Prevention, South China Agricultural University, Guangzhou 510642, China
- Guangdong Provincial Key Laboratory of Veterinary Pharmaceutics Development and Safety Evaluation, South China Agricultural University, Guangzhou 510642, China
| |
Collapse
|
8
|
Lv H, Zhu Z, Qian C, Li T, Han Z, Zhang W, Si X, Wang J, Deng X, Li L, Fang T, Xia J, Wu S, Zhou Y. Discovery of isatin-β-methyldithiocarbazate derivatives as New Delhi metallo- β-lactamase-1 (NDM-1) inhibitors against NDM-1 producing clinical isolates. Biomed Pharmacother 2023; 166:115439. [PMID: 37673020 DOI: 10.1016/j.biopha.2023.115439] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2023] [Revised: 08/20/2023] [Accepted: 08/31/2023] [Indexed: 09/08/2023] Open
Abstract
New Delhi metallo-β-lactamase-1 (NDM-1) poses a threat to public health due to its capability to hydrolyze nearly all β-lactam antibiotics, leaving limited treatment options for NDM-1 positive pathogens. Regrettably, there are presently no effective NDM-1 inhibitors in clinical use. This compels us to seek new compounds to combat multi-drug resistant bacterial infections (MDR). In our study, Zndm19 was identified as a new NDM-1 inhibitor through virtual screening and an NDM-1 enzyme activity inhibition assay. Subsequently, we employed the checkerboard method, time-killing assay, and combined disk test to investigate the synergistic bactericidal efficacy of Zndm19 in combination with meropenem (MEM). Meanwhile, molecular docking and site-directed mutagenesis were conducted to uncover the crucial amino acid residues engaged in Zndm19 binding. Finally, we established a mice peritonitis infection model to assess the synergistic effect of Zndm19 and MEM in vivo. Our findings demonstrated that 16 µg/mL of Zndm19 inhibited NDM-1 activity without affecting NDM-1 expression, restoring the bactericidal activity of MEM against NDM-1-positive Escherichia coli in vitro. Furthermore, MET-67, ASP-124, HIS-189, and HIS-250 amino acid residues constituted the active site of Zndm19 in NDM-1. Importantly, this combination therapy exhibited synergistic anti-infection activity in the mice peritonitis infection model, leading to an approximate 60% increase in survival rates and reduction of tissue bacterial load, effectively combating bacterial infection in vivo. In summary, our research validates that the synthetic novel NDM-1 inhibitor Zndm19 holds promise as a drug to treat drug-resistant bacterial infections, especially those harboring NDM-1.
Collapse
Affiliation(s)
- Hongfa Lv
- State Key Laboratory for Diagnosis and Treatment of Severe Zoonotic Infectious Diseases, Key Laboratory for Zoonosis Research of the Ministry of Education, Institute of Zoonosis, and College of Veterinary Medicine, Jilin University, Changchun, China
| | - Zihao Zhu
- State Key Laboratory of Bioactive Substance and Function of Natural Medicines, Institute of Materia Medica, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Chenliang Qian
- State Key Laboratory of Bioactive Substance and Function of Natural Medicines, Institute of Materia Medica, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China; School of Pharmacy, Jiangsu Ocean University, Lianyungang, China
| | - Tianlei Li
- State Key Laboratory of Bioactive Substance and Function of Natural Medicines, Institute of Materia Medica, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Zunsheng Han
- State Key Laboratory of Bioactive Substance and Function of Natural Medicines, Institute of Materia Medica, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Wenxuan Zhang
- State Key Laboratory of Bioactive Substance and Function of Natural Medicines, Institute of Materia Medica, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Xinxin Si
- School of Pharmacy, Jiangsu Ocean University, Lianyungang, China
| | - Jianfeng Wang
- State Key Laboratory for Diagnosis and Treatment of Severe Zoonotic Infectious Diseases, Key Laboratory for Zoonosis Research of the Ministry of Education, Institute of Zoonosis, and College of Veterinary Medicine, Jilin University, Changchun, China
| | - Xuming Deng
- State Key Laboratory for Diagnosis and Treatment of Severe Zoonotic Infectious Diseases, Key Laboratory for Zoonosis Research of the Ministry of Education, Institute of Zoonosis, and College of Veterinary Medicine, Jilin University, Changchun, China
| | - Li Li
- State Key Laboratory for Diagnosis and Treatment of Severe Zoonotic Infectious Diseases, Key Laboratory for Zoonosis Research of the Ministry of Education, Institute of Zoonosis, and College of Veterinary Medicine, Jilin University, Changchun, China
| | - Tianqi Fang
- State Key Laboratory for Diagnosis and Treatment of Severe Zoonotic Infectious Diseases, Key Laboratory for Zoonosis Research of the Ministry of Education, Institute of Zoonosis, and College of Veterinary Medicine, Jilin University, Changchun, China
| | - Jie Xia
- State Key Laboratory of Bioactive Substance and Function of Natural Medicines, Institute of Materia Medica, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China.
| | - Song Wu
- State Key Laboratory of Bioactive Substance and Function of Natural Medicines, Institute of Materia Medica, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China.
| | - Yonglin Zhou
- Key Laboratory of Ministry of Education for Conservation and Utilization of Special Biological Resources in the Western China, School of Life Sciences, Ningxia University, Yinchuan, China; State Key Laboratory for Diagnosis and Treatment of Severe Zoonotic Infectious Diseases, Key Laboratory for Zoonosis Research of the Ministry of Education, Institute of Zoonosis, and College of Veterinary Medicine, Jilin University, Changchun, China.
| |
Collapse
|
9
|
S S, N H, Fasim A, More SS, Das Mitra S. Identification of a potential inhibitor for New Delhi metallo-β-lactamase 1 (NDM-1) from FDA approved chemical library- a drug repurposing approach to combat carbapenem resistance. J Biomol Struct Dyn 2023; 41:7700-7711. [PMID: 36165602 DOI: 10.1080/07391102.2022.2123402] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2022] [Accepted: 09/06/2022] [Indexed: 10/14/2022]
Abstract
Superbugs producing New Delhi metallo-β-lactamase 1 (NDM-1) enzyme is a growing crisis, that is adversely affecting the global health care system. NDM-1 empowers the bacteria to inactivate entire arsenal of β-lactam antibiotics including carbapenem (the last resort antibiotic) and remains ineffective to all the available β lactamase inhibitors used in the clinics. Limited therapeutic option available for rapidly disseminating NDM-1 producing bacteria makes it imperative to identify a potential inhibitor for NDM-1 enzyme. With drug repurposing approach, in this study, we used virtual screening of available Food and Drug Administration (FDA) approved chemical library (ZINC12 database) and captured 'adapalene' (FDA drug) as a potent inhibitor candidate for NDM-1 enzyme. Active site docking with NDM-1, showed adapalene with binding energy -9.21 kcal/mol and interacting with key amino acid residues (Asp124, His122, His189, His250, Cys208) in the active site of NDM-1. Further, molecular dynamic simulation of NDM-1 docked with the adapalene at 100 ns displayed a stable conformation dynamic, with relative RMSD and RMSF in the acceptable range. Subsequently, in vitro enzyme assays using recombinant NDM-1 protein demonstrated inhibition of NDM-1 by adapalene. Further, the combination of adapalene plus meropenem (carbapenem antibiotic) showed synergistic effect against the NDM-1 producing carbapenem (meropenem) resistant clinical isolates (Escherichia coli and Klebsiella pneumoniae). Overall, our data indicated that adapalene can be a potential inhibitor candidate for NDM-1 enzyme that can contribute to the development of a suitable adjuvant to save the activity of carbapenem antibiotic against infections caused by NDM-1 positive gram-negative bacteria. Communicated by Ramaswamy H. Sarma.
Collapse
Affiliation(s)
- Shailaja S
- Department of Biological Sciences, School of Basic & Applied Sciences, Dayananda Sagar University, Bangalore, Karnataka, India
| | - Harshitha N
- Department of Biological Sciences, School of Basic & Applied Sciences, Dayananda Sagar University, Bangalore, Karnataka, India
| | - Aneesa Fasim
- Department of Biological Sciences, School of Basic & Applied Sciences, Dayananda Sagar University, Bangalore, Karnataka, India
| | - Sunil S More
- Department of Biological Sciences, School of Basic & Applied Sciences, Dayananda Sagar University, Bangalore, Karnataka, India
| | - Susweta Das Mitra
- Department of Biological Sciences, School of Basic & Applied Sciences, Dayananda Sagar University, Bangalore, Karnataka, India
| |
Collapse
|
10
|
Yu T, Ahmad Malik A, Anuwongcharoen N, Eiamphungporn W, Nantasenamat C, Piacham T. Towards combating antibiotic resistance by exploring the quantitative structure-activity relationship of NDM-1 inhibitors. EXCLI JOURNAL 2022; 21:1331-1351. [PMID: 36540675 PMCID: PMC9755517 DOI: 10.17179/excli2022-5380] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Figures] [Subscribe] [Scholar Register] [Received: 08/30/2022] [Accepted: 11/10/2022] [Indexed: 06/17/2023]
Abstract
The emergence of New Delhi metallo-beta-lactamase-1 (NDM-1) has conferred enteric bacteria resistance to almost all beta-lactam antibiotics. Its capability of horizontal transfer through plasmids, amongst humans, animal reservoirs and the environment, has added up to the totality of antimicrobial resistance control, animal husbandry and food safety. Thus far, there have been no effective drugs for neutralizing NDM-1. This study explores the structure-activity relationship of NDM-1 inhibitors. IC50 values of NDM-1 inhibitors were compiled from both the ChEMBL database and literature. After curation, a final set of 686 inhibitors were used for machine learning model building using the random forest algorithm against 12 sets of molecular fingerprints. Benchmark results indicated that the KlekotaRothCount fingerprint provided the best overall performance with an accuracy of 0.978 and 0.778 for the training and testing set, respectively. Model interpretation revealed that nitrogen-containing features (KRFPC 4080, KRFPC 3882, KRFPC 677, KRFPC 3608, KRFPC 3750, KRFPC 4287 and KRFPC 3943), sulfur-containing substructures (KRFPC 2855 and KRFPC 4843), aromatic features (KRFPC 1566, KRFPC 1564, KRFPC 1642, KRFPC 3608, KRFPC 4287 and KRFPC 3943), carbonyl features (KRFPC 1193 and KRFPC 3025), aliphatic features (KRFPC 2975, KRFPC 297, KRFPC 3224 and KRFPC 669) are features contributing to NDM-1 inhibitory activity. It is anticipated that findings from this study would help facilitate the drug discovery of NDM-1 inhibitors by providing guidelines for further lead optimization.
Collapse
Affiliation(s)
- Tianshi Yu
- Center of Data Mining and Biomedical Informatics, Faculty of Medical Technology, Mahidol University, Bangkok 10700, Thailand
- Department of Clinical Microbiology and Applied Technology, Faculty of Medical Technology, Mahidol University, Bangkok 10700, Thailand
| | - Aijaz Ahmad Malik
- Center of Excellence in Computational Molecular Biology, Faculty of Medicine, Chulalongkorn University, Bangkok, Thailand
| | - Nuttapat Anuwongcharoen
- Center of Data Mining and Biomedical Informatics, Faculty of Medical Technology, Mahidol University, Bangkok 10700, Thailand
| | - Warawan Eiamphungporn
- Department of Clinical Microbiology and Applied Technology, Faculty of Medical Technology, Mahidol University, Bangkok 10700, Thailand
| | | | - Theeraphon Piacham
- Department of Clinical Microbiology and Applied Technology, Faculty of Medical Technology, Mahidol University, Bangkok 10700, Thailand
| |
Collapse
|
11
|
Mphande I, Kataba A, Muzandu K, Gono-Bwalya A. An Evaluation of the Antibacterial Activity of Pterocarpus tinctorius Bark Extract against Enteric Bacteria That Cause Gastroenteritis. EVIDENCE-BASED COMPLEMENTARY AND ALTERNATIVE MEDICINE : ECAM 2022; 2022:7973942. [PMID: 36204123 PMCID: PMC9532075 DOI: 10.1155/2022/7973942] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/24/2022] [Revised: 09/10/2022] [Accepted: 09/12/2022] [Indexed: 11/17/2022]
Abstract
Enteric bacteria are the leading cause of bacterial gastroenteritis worldwide, particularly in low-income countries. The bark decoction of Pterocarpus tinctorius (Fabaceae) has traditionally been used to treat bacterial gastroenteritis. However, studies reporting the antibacterial activity of Pterocarpus tinctorius are rare. Therefore, this study aimed to evaluate the antibacterial activity of stem bark extract of Pterocarpus tinctorius against Escherichia coli, Salmonella typhi, and Shigella dysenteriae. The powdered bark extract was successively extracted with methanol using the cold continuous maceration method, followed by partitioning the crude methanolic extract to obtain methanolic, hexane, and chloroform subextracts. Three fractions were isolated from the methanolic subextract using ordinary normal phase column chromatography. The antibacterial activity of the extracts and fractions was performed using the agar well diffusion method. The minimum inhibitory concentration (MIC) was determined using the agar well diffusion method. While, minimum bactericidal concentration (MBC) was obtained by the subculturing method. The methanolic subextract was the only extract that showed antibacterial activity against the tested bacteria, and its activity was highest on Shigella dysenteriae followed by Salmonella typhi and was least active on Escherichia coli, with mean inhibition zones of 14.3 ± 0.2, 13.7 ± 0.3, and 12.2 ± 0.1 at 200 mg/mL, respectively. Chloroform subextract showed antibacterial activity only on Shigella dysenteriae, while hexane subextract did not show antibacterial activity against all bacteria tested at 100 mg/mL and 200 mg/mL. Among the three subfractions of methanolic subextract, only one subfraction was active and had both mean minimum inhibitory concentration and a minimum bactericidal concentration against Escherichia coli at 1.25 mg/mL, Salmonella typhi at 1.25 mg/mL, and Shigella dysenteriae at 0.6 mg/mL. The findings of this study support the use of Pterocarpus tinctorius in traditional medicine. Therefore, purification and structural elucidation studies are highly recommended.
Collapse
Affiliation(s)
- Isaac Mphande
- Department of Pharmacy, School of Health Sciences, University of Zambia, Lusaka, Zambia
| | - Andrew Kataba
- Department of Biomedical Sciences, School of Veterinary Medicine, University of Zambia, Lusaka, Zambia
| | - Kaampwe Muzandu
- Department of Biomedical Sciences, School of Veterinary Medicine, University of Zambia, Lusaka, Zambia
| | - Angela Gono-Bwalya
- Department of Pharmacy, School of Health Sciences, University of Zambia, Lusaka, Zambia
| |
Collapse
|
12
|
Muteeb G, Rehman MT, AlAjmi MF, Aatif M, Farhan M, Shafi S. Identification of a Potential Inhibitor (MCULE-8777613195-0-12) of New Delhi Metallo-β-Lactamase-1 (NDM-1) Using In Silico and In Vitro Approaches. Molecules 2022; 27:5930. [PMID: 36144666 PMCID: PMC9504514 DOI: 10.3390/molecules27185930] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2022] [Revised: 08/04/2022] [Accepted: 08/08/2022] [Indexed: 11/17/2022] Open
Abstract
New Delhi metallo-β-lactamase-1 (NDM-1), expressed in different Gram-negative bacteria, is a versatile enzyme capable of hydrolyzing β-lactam rings containing antibiotics such as penicillins, cephalosporins, and even carbapenems. Multidrug resistance in bacteria mediated by NDM-1 is an emerging threat to the public health, with an enormous economic burden. There is a scarcity in the availability of specific NDM-1 inhibitors, and also a lag in the development of new inhibitors in pharmaceutical industries. In order to identify novel inhibitors of NDM-1, we screened a library of more than 20 million compounds, available at the MCULE purchasable database. Virtual screening led to the identification of six potential inhibitors, namely, MCULE-1996250788-0-2, MCULE-8777613195-0-12, MCULE-2896881895-0-14, MCULE-5843881524-0-3, MCULE-4937132985-0-1, and MCULE-7157846117-0-1. Furthermore, analyses by molecular docking and ADME properties showed that MCULE-8777613195-0-12 was the most suitable inhibitor against NDM-1. An analysis of the binding pose revealed that MCULE-8777613195-0-12 formed four hydrogen bonds with the catalytic residues of NDM-1 (His120, His122, His189, and Cys208) and interacted with other key residues. Molecular dynamics simulation and principal component analysis confirmed the stability of the NDM-1 and MCULE-8777613195-0-12 complex. The in vitro enzyme kinetics showed that the catalytic efficiency (i.e., kcat/Km) of NDM-1 on various antibiotics decreased significantly in the presence of MCULE-8777613195-0-12, due to poor catalytic proficiency (kcat) and affinity (Km). The IC50 value of MCULE-8777613195-0-12 (54.2 µM) was comparable to that of a known inhibitor, i.e., D-captopril (10.3 µM). In sum, MCULE-8777613195-0-12 may serve as a scaffold to further design/develop more potent inhibitors of NDM-1 and other β-lactamases.
Collapse
Affiliation(s)
- Ghazala Muteeb
- Department of Nursing, College of Applied Medical Science, King Faisal University, Al-Ahsa 31982, Saudi Arabia
| | - Md Tabish Rehman
- Department of Pharmacognosy, College of Pharmacy, King Saud University, Riyadh 11451, Saudi Arabia
| | - Mohamed F. AlAjmi
- Department of Pharmacognosy, College of Pharmacy, King Saud University, Riyadh 11451, Saudi Arabia
| | - Mohammad Aatif
- Department of Public Health, College of Applied Medical Science, King Faisal University, Al-Ahsa 31982, Saudi Arabia
| | - Mohd Farhan
- Department of Basic Sciences, King Faisal University, Al-Ahsa 31982, Saudi Arabia
| | - Sheeba Shafi
- Department of Nursing, College of Applied Medical Science, King Faisal University, Al-Ahsa 31982, Saudi Arabia
| |
Collapse
|
13
|
The development of New Delhi metallo-β-lactamase-1 inhibitors since 2018. Microbiol Res 2022; 261:127079. [DOI: 10.1016/j.micres.2022.127079] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2022] [Revised: 04/22/2022] [Accepted: 05/23/2022] [Indexed: 11/21/2022]
|
14
|
Chen C, Oelschlaeger P, Wang D, Xu H, Wang Q, Wang C, Zhao A, Yang KW. Structure and Mechanism-Guided Design of Dual Serine/Metallo-Carbapenemase Inhibitors. J Med Chem 2022; 65:5954-5974. [PMID: 35420040 DOI: 10.1021/acs.jmedchem.2c00213] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
Serine/metallo-carbapenemase-coproducing pathogens, often referred to as "superbugs", are a significant clinical problem. They hydrolyze nearly all available β-lactam antibiotics, especially carbapenems considered as last-resort antibiotics, seriously endangering efficacious antibacterial treatment. Despite the continuous global spread of carbapenem resistance, no dual-action inhibitors are available in therapy. This Perspective is the first systematic investigation of all chemotypes, modes of inhibition, and crystal structures of dual serine/metallo-carbapenemase inhibitors. An overview of the key strategy for designing dual serine/metallo-carbapenemase inhibitors and their mechanism of action is provided, as guiding rules for the development of clinically available dual inhibitors, coadministrated with carbapenems, to overcome the carbapenem resistance issue.
Collapse
Affiliation(s)
- Cheng Chen
- College of Forestry, Northwest A&F University, Yangling 712100, Shaanxi, P. R. China
| | - Peter Oelschlaeger
- Department of Pharmaceutical Sciences, College of Pharmacy, Western University of Health Sciences, 309 East Second Street, Pomona 91766, California, United States
| | - Dongmei Wang
- College of Forestry, Northwest A&F University, Yangling 712100, Shaanxi, P. R. China
| | - Hao Xu
- State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, National Clinical Research Center for Infectious Diseases, The First Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou 310030, P. R. China
| | - Qian Wang
- Department of Clinical Laboratory, The First Affiliated Hospital of Henan University of Chinese Medicine, Jinshui District 450046, Zhengzhou, P. R. China
| | - Cheng Wang
- College of Forestry, Northwest A&F University, Yangling 712100, Shaanxi, P. R. China
| | - Aiguo Zhao
- College of Forestry, Northwest A&F University, Yangling 712100, Shaanxi, P. R. China
| | - Ke-Wu Yang
- Key Laboratory of Synthetic and Natural Functional Molecule Chemistry of Ministry of Education, College of Chemistry and Materials Science, Northwest University, Xi'an 710127, P. R. China
| |
Collapse
|
15
|
Xu L, Zhou Y, Niu S, Liu Z, Zou Y, Yang Y, Feng H, Liu D, Niu X, Deng X, Wang Y, Wang J. A novel inhibitor of monooxygenase reversed the activity of tetracyclines against tet(X3)/tet(X4)-positive bacteria. EBioMedicine 2022; 78:103943. [PMID: 35306337 PMCID: PMC8933826 DOI: 10.1016/j.ebiom.2022.103943] [Citation(s) in RCA: 19] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2021] [Revised: 02/26/2022] [Accepted: 02/28/2022] [Indexed: 12/20/2022] Open
Abstract
BACKGROUND Tigecycline is one of the few last-resort antibiotics for the treatment of carbapenem-resistant Enterobacteriaceae infection, the incidence of which has been rapidly increasing. However, the emergence and spread of tigecycline resistance genes tet(X) (including tet(X3) and tet(X4)) has largely compromised the efficient usage of tetracyclines in the clinical settings. METHODS The synergistic effect was determined by a checkerboard minimum inhibitory concentration (MIC) assay, a time-killing assay and scanning electron microscopy (SEM) analysis. In-depth mechanisms were defined using an enzyme inhibition assay, western blotting, RT-PCR analysis, molecular dynamics (MD) simulations, biolayer interferometry (BLI) assay and metabolomics analysis. FINDINGS Herein, our work identified a natural compound, plumbagin, as an effective broad-spectrum inhibitor of Tet(X) (also known as monooxygenase) by simultaneously inhibiting the activity and the production of Tet(X3)/Tet(X4). Plumbagin in combination with tetracyclines showed a synergistic bactericidal effect against Tet(X3)/Tet(X4)-producing bacteria. Mechanistic studies revealed that direct engagement of plumbagin with the catalytic pocket of Tet(X3)/Tet(X4) induced an alternation in its secondary structure to inhibit the activity of these monooxygenases. As a consequence, monotherapy or combination therapy with plumbagin increases the oxidative stress and metabolism in bacteria. Moreover, in a mouse systemic infection model of tet(X4)-positive E. coli, the combination of plumbagin and methacycline exhibited remarkable treatment benefits, as shown by a reduced bacterial load and the alleviation of pathological injury. INTERPRETATION Plumbagin, as an inhibitor of Tet(X3)/Tet(X4), represents a promising lead drug, as well as an adjunct with tetracyclines to treat bacterial infections, especially for extensively drug-resistant bacteria harbouring Tet(X3)/Tet(X4). FUNDING The National Natural Science Foundation of China.
Collapse
Affiliation(s)
- Lei Xu
- State Key Laboratory for Zoonotic Diseases, Key Laboratory for Zoonosis Research, Ministry of Education, College of Veterinary Medicine, Jilin University, Changchun, China
| | - Yonglin Zhou
- State Key Laboratory for Zoonotic Diseases, Key Laboratory for Zoonosis Research, Ministry of Education, College of Veterinary Medicine, Jilin University, Changchun, China
| | - Sen Niu
- State Key Laboratory for Zoonotic Diseases, Key Laboratory for Zoonosis Research, Ministry of Education, College of Veterinary Medicine, Jilin University, Changchun, China
| | - Zhiying Liu
- State Key Laboratory for Zoonotic Diseases, Key Laboratory for Zoonosis Research, Ministry of Education, College of Veterinary Medicine, Jilin University, Changchun, China
| | - Yinuo Zou
- State Key Laboratory for Zoonotic Diseases, Key Laboratory for Zoonosis Research, Ministry of Education, College of Veterinary Medicine, Jilin University, Changchun, China
| | - Yanan Yang
- State Key Laboratory for Zoonotic Diseases, Key Laboratory for Zoonosis Research, Ministry of Education, College of Veterinary Medicine, Jilin University, Changchun, China
| | - Haihua Feng
- State Key Laboratory for Zoonotic Diseases, Key Laboratory for Zoonosis Research, Ministry of Education, College of Veterinary Medicine, Jilin University, Changchun, China
| | - Dejun Liu
- Beijing Key Laboratory of Detection Technology for Animal-Derived Food Safety, College of Veterinary Medicine, China Agricultural University, Beijing, China
| | - Xiaodi Niu
- State Key Laboratory for Zoonotic Diseases, Key Laboratory for Zoonosis Research, Ministry of Education, College of Veterinary Medicine, Jilin University, Changchun, China
| | - Xuming Deng
- State Key Laboratory for Zoonotic Diseases, Key Laboratory for Zoonosis Research, Ministry of Education, College of Veterinary Medicine, Jilin University, Changchun, China
| | - Yang Wang
- Beijing Key Laboratory of Detection Technology for Animal-Derived Food Safety, College of Veterinary Medicine, China Agricultural University, Beijing, China.
| | - Jianfeng Wang
- State Key Laboratory for Zoonotic Diseases, Key Laboratory for Zoonosis Research, Ministry of Education, College of Veterinary Medicine, Jilin University, Changchun, China.
| |
Collapse
|
16
|
Muteeb G, Alsultan A, Farhan M, Aatif M. Risedronate and Methotrexate Are High-Affinity Inhibitors of New Delhi Metallo-β-Lactamase-1 (NDM-1): A Drug Repurposing Approach. Molecules 2022; 27:1283. [PMID: 35209073 PMCID: PMC8878330 DOI: 10.3390/molecules27041283] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2022] [Revised: 02/01/2022] [Accepted: 02/08/2022] [Indexed: 01/01/2023] Open
Abstract
Bacteria expressing New Delhi metallo-β-lactamase-1 (NDM-1) can hydrolyze β-lactam antibiotics (penicillins, cephalosporins, and carbapenems) and, thus, mediate multidrug resistance. The worldwide dissemination of NDM-1 poses a serious threat to public health, imposing a huge economic burden in the development of new antibiotics. Thus, there is an urgent need for the identification of novel NDM-1 inhibitors from a pool of already-known drug molecules. Here, we screened a library of FDA-approved drugs to identify novel non-β-lactam ring-containing inhibitors of NDM-1 by applying computational as well as in vitro experimental approaches. Different steps of high-throughput virtual screening, molecular docking, molecular dynamics simulation, and enzyme kinetics were performed to identify risedronate and methotrexate as the inhibitors with the most potential. The molecular mechanics/generalized Born surface area (MM/GBSA) and molecular dynamics (MD) simulations showed that both of the compounds (risedronate and methotrexate) formed a stable complex with NDM-1. Furthermore, analyses of the binding pose revealed that risedronate formed two hydrogen bonds and three electrostatic interactions with the catalytic residues of NDM-1. Similarly, methotrexate formed four hydrogen bonds and one electrostatic interaction with NDM-1's active site residues. The docking scores of risedronate and methotrexate for NDM-1 were -10.543 kcal mol-1 and -10.189 kcal mol-1, respectively. Steady-state enzyme kinetics in the presence of risedronate and methotrexate showed a decreased catalytic efficiency (i.e., kcat/Km) of NDM-1 on various antibiotics, owing to poor catalytic proficiency and affinity. The results were further validated by determining the MICs of imipenem and meropenem in the presence of risedronate and methotrexate. The IC50 values of the identified inhibitors were in the micromolar range. The findings of this study should be helpful in further characterizing the potential of risedronate and methotrexate to treat bacterial infections.
Collapse
Affiliation(s)
- Ghazala Muteeb
- Department of Nursing, College of Applied Medical Science, King Faisal University, Al-Ahsa 31982, Saudi Arabia;
| | - Abdulrahman Alsultan
- College of Applied Medical Science, King Faisal University, Al-Ahsa 31982, Saudi Arabia;
| | - Mohd Farhan
- Department of Basic Sciences, King Faisal University, Al-Ahsa 31982, Saudi Arabia;
| | - Mohammad Aatif
- Department of Public Health, College of Applied Medical Science, King Faisal University, Al-Ahsa 31982, Saudi Arabia
| |
Collapse
|
17
|
Emerione A, a novel fungal metabolite as an inhibitor of New Delhi metallo-β-lactamase-1, restores carbapenem susceptibility in carbapenem-resistant isolates. J Glob Antimicrob Resist 2022; 28:216-222. [PMID: 35017068 DOI: 10.1016/j.jgar.2021.12.019] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2021] [Revised: 12/06/2021] [Accepted: 12/29/2021] [Indexed: 11/23/2022] Open
Abstract
OBJECTIVES Bacterial strains that produce New Delhi metal-β-lactamase 1 (NDM-1) are worldwide threats. It is still a challenging task to find a potent NDM-1 inhibitor for clinical practice. METHODS Molecular docking and virtual screening of an in-house fungal natural product database for NDM-1 inhibitors were performed. Based on the screening results, the affinity and inhibition analysis of potential NDM-1 inhibitors was determined using purified NDM-1. The efficacy of compounds in combination with four β-lactam antibiotics (meropenem, imipenem, ceftriaxone and ampicillin) was evaluated. The morphological transforms of K. pneumoniae ATCC BAA2146 after treatment with the compounds were visualized by transmission electron microscopy. RESULTS In silico screening led to the identification of four fungal products as potential NDM-1 inhibitors. Emerione A (1), a methylated polyketide with bicyclo[4.2.0]octene and 3,6-dioxabicyclo[3.1.0]hexane, has significant activity in cells (Kd = 11.8 ± 0.6 μM; IC50 = 12.1 ± 0.9 μM) and potentiates the activity of meropenem against two kinds of NDM-1-producing Enterobacteriaceae. To the best of our knowledge, emerione A (1) is the second fungal metabolite reported to exhibit NMD-1 inhibitory activity. According to the structural novelty of our database, we also found a structural new compound, asperfunolone A (2), with potential NMD-1 inhibitory activity. CONCLUSION Considering the low toxicity characteristic of emerione A (1), it may be processed as a potential lead compound for anti-NDM-1 drug development.
Collapse
|
18
|
Li X, Zhao D, Li W, Sun J, Zhang X. Enzyme Inhibitors: The Best Strategy to Tackle Superbug NDM-1 and Its Variants. Int J Mol Sci 2021; 23:197. [PMID: 35008622 PMCID: PMC8745225 DOI: 10.3390/ijms23010197] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2021] [Revised: 12/20/2021] [Accepted: 12/23/2021] [Indexed: 01/06/2023] Open
Abstract
Multidrug bacterial resistance endangers clinically effective antimicrobial therapy and continues to cause major public health problems, which have been upgraded to unprecedented levels in recent years, worldwide. β-Lactam antibiotics have become an important weapon to fight against pathogen infections due to their broad spectrum. Unfortunately, the emergence of antibiotic resistance genes (ARGs) has severely astricted the application of β-lactam antibiotics. Of these, New Delhi metallo-β-lactamase-1 (NDM-1) represents the most disturbing development due to its substrate promiscuity, the appearance of variants, and transferability. Given the clinical correlation of β-lactam antibiotics and NDM-1-mediated resistance, the discovery, and development of combination drugs, including NDM-1 inhibitors, for NDM-1 bacterial infections, seems particularly attractive and urgent. This review summarizes the research related to the development and optimization of effective NDM-1 inhibitors. The detailed generalization of crystal structure, enzyme activity center and catalytic mechanism, variants and global distribution, mechanism of action of existing inhibitors, and the development of scaffolds provides a reference for finding potential clinically effective NDM-1 inhibitors against drug-resistant bacteria.
Collapse
Affiliation(s)
- Xiaoting Li
- Heilongjiang Key Laboratory for Animal Disease Control and Pharmaceutical Development, Northeast Agricultural University, Harbin 150036, China; (X.L.); (D.Z.); (W.L.); (J.S.)
- Department of Basic Veterinary Science, College of Veterinary Medicine, Northeast Agricultural University, Harbin 150036, China
| | - Dongmei Zhao
- Heilongjiang Key Laboratory for Animal Disease Control and Pharmaceutical Development, Northeast Agricultural University, Harbin 150036, China; (X.L.); (D.Z.); (W.L.); (J.S.)
- Department of Basic Veterinary Science, College of Veterinary Medicine, Northeast Agricultural University, Harbin 150036, China
| | - Weina Li
- Heilongjiang Key Laboratory for Animal Disease Control and Pharmaceutical Development, Northeast Agricultural University, Harbin 150036, China; (X.L.); (D.Z.); (W.L.); (J.S.)
- Department of Basic Veterinary Science, College of Veterinary Medicine, Northeast Agricultural University, Harbin 150036, China
| | - Jichao Sun
- Heilongjiang Key Laboratory for Animal Disease Control and Pharmaceutical Development, Northeast Agricultural University, Harbin 150036, China; (X.L.); (D.Z.); (W.L.); (J.S.)
- Department of Basic Veterinary Science, College of Veterinary Medicine, Northeast Agricultural University, Harbin 150036, China
| | - Xiuying Zhang
- Heilongjiang Key Laboratory for Animal Disease Control and Pharmaceutical Development, Northeast Agricultural University, Harbin 150036, China; (X.L.); (D.Z.); (W.L.); (J.S.)
- Department of Basic Veterinary Science, College of Veterinary Medicine, Northeast Agricultural University, Harbin 150036, China
| |
Collapse
|
19
|
Kan X, Chen Y, Huang B, Fu S, Guo W, Ran X, Cao Y, Xu D, Cheng J, Yang Z, Xu Y. Effect of Palrnatine on lipopolysaccharide-induced acute lung injury by inhibiting activation of the Akt/NF -κB pathway. J Zhejiang Univ Sci B 2021; 22:929-940. [PMID: 34783223 DOI: 10.1631/jzus.b2000583] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
Abstract
Inflammation plays an important role in the development of acute lung injury (ALI). Severe pulmonary inflammation can cause acute respiratory distress syndrome (ARDS) or even death. Expression of proinflammatory interleukin-1β (IL-1β) and inducible nitric oxide synthase (iNOS) in the process of pulmonary inflammation will further exacerbate the severity of ALI. The purpose of this study was to explore the effect of Palrnatine (Pa) on lipopolysaccharide (LPS)-induced mouse ALI and its underlying mechanism. Pa, a natural product, has a wide range of pharmacological activities with the potential to protect against lung injury. Western blotting and quantitative real-time polymerase chain reaction (qRT-PCR) assays were performed to detect the expression and translation of inflammatory genes and proteins in vitro and in vivo. Immunoprecipitation was used to detect the degree of P65 translocation into the nucleus. We also used molecular modeling to further clarify the mechanism of action. The results showed that Pa pretreatment could significantly inhibit the expression and secretion of the inflammatory cytokine IL-1β, and significantly reduce the protein level of the proinflammatory protease iNOS, in both in vivo and in vitro models induced by LPS. Further mechanism studies showed that Pa could significantly inhibit the activation of the protein kinase B (Akt)/nuclear factor-κB (NF-κB) signaling pathway in the LPS-induced ALI mode and in LPS-induced RAW264.7 cells. Through molecular dynamics simulation, we observed that Pa was bound to the catalytic pocket of Akt and effectively inhibited the biological activity of Akt. These results indicated that Pa significantly relieves LPS-induced ALI by activating the Akt/NF-κB signaling pathway.
Collapse
Affiliation(s)
- Xingchi Kan
- Department of Theoretic Veterinary Medicine, College of Veterinary Medicine, Jilin University, Changchun 130012, China
| | - Yingsheng Chen
- Department of Theoretic Veterinary Medicine, College of Veterinary Medicine, Jilin University, Changchun 130012, China
| | - Bingxu Huang
- Department of Theoretic Veterinary Medicine, College of Veterinary Medicine, Jilin University, Changchun 130012, China
| | - Shoupeng Fu
- Department of Theoretic Veterinary Medicine, College of Veterinary Medicine, Jilin University, Changchun 130012, China
| | - Wenjin Guo
- Department of Theoretic Veterinary Medicine, College of Veterinary Medicine, Jilin University, Changchun 130012, China
| | - Xin Ran
- Department of Theoretic Veterinary Medicine, College of Veterinary Medicine, Jilin University, Changchun 130012, China
| | - Yu Cao
- Department of Theoretic Veterinary Medicine, College of Veterinary Medicine, Jilin University, Changchun 130012, China
| | - Dianwen Xu
- Department of Theoretic Veterinary Medicine, College of Veterinary Medicine, Jilin University, Changchun 130012, China
| | - Ji Cheng
- Department of Theoretic Veterinary Medicine, College of Veterinary Medicine, Jilin University, Changchun 130012, China
| | - Zhanqing Yang
- Department of Theoretic Veterinary Medicine, College of Veterinary Medicine, Jilin University, Changchun 130012, China
| | - Yanling Xu
- Department of Respiratory Medicine, the Second Hospital, Jilin University, Changchun 130012, China.
| |
Collapse
|
20
|
Shih YH, Tsai PJ, Chen YL, Pranata R, Chen RJ. Assessment of the Antibacterial Mechanism of Pterostilbene against Bacillus cereus through Apoptosis-like Cell Death and Evaluation of Its Beneficial Effects on the Gut Microbiota. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2021; 69:12219-12229. [PMID: 34632761 DOI: 10.1021/acs.jafc.1c04898] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/13/2023]
Abstract
Foods contaminated by harmful substances such as bacteria and viruses have caused more than 200 kinds of diseases, ranging from diarrhea to cancer. Among them, Bacillus cereus (B. cereus) is a foodborne pathogen that commonly contaminates raw meat, fresh vegetables, rice, and uncooked food. The current chemical preservatives may have adverse effects on food and even human health. Therefore, natural antibacterial agents are sought after as alternative preservatives. Stilbene compounds, including pterostilbene (PT), pinostilbene (PS), and piceatannol (PIC), which have many health benefits and exhibit antibacterial activity, were tested against B. cereus. The minimum inhibitory concentrations (MICs) and minimum bactericidal concentrations (MBCs) of PT, PS, and PIC against B. cereus ranged from 25 to 100 μg/mL. From the time-kill curve assay, PT reduced B. cereus cell survival, increased intracellular reactive oxygen species (ROS), and induced apoptosis-like cell death (ALD) in a dose-dependent manner. The quantitative real-time polymerase chain reaction (qPCR) results confirmed that treatment with PT induced genetic changes related to ALD, such as an increase in RecA gene expression and a decrease in LexA gene expression. In addition, PT showed a beneficial effect on the gut microbiota that increased the abundance of Bacteroidetes and lowered the abundance of Firmicutes. Taken together, our results showed that PT has antibacterial effects against B. cereus via ALD and is beneficial for promoting healthy gut microbiota that is worthy for the development of antibacterial agents for the food industry.
Collapse
Affiliation(s)
- Yu-Hsuan Shih
- Department of Food Safety/Hygiene and Risk Management, College of Medicine, National Cheng Kung University, Tainan 70428, Taiwan
| | - Pei-Jane Tsai
- Department of Medical Laboratory Science and Biotechnology, College of Medicine, National Cheng Kung University, Tainan 70428, Taiwan
| | - Yen-Lin Chen
- Bioresource Collection and Research Center (BCRC), Food Industry Research and Development Institute, Hsinchu 300, Taiwan
| | - Rosita Pranata
- Department of Food Safety/Hygiene and Risk Management, College of Medicine, National Cheng Kung University, Tainan 70428, Taiwan
| | - Rong-Jane Chen
- Department of Food Safety/Hygiene and Risk Management, College of Medicine, National Cheng Kung University, Tainan 70428, Taiwan
| |
Collapse
|
21
|
Nagulapalli Venkata KC, Ellebrecht M, Tripathi SK. Efforts towards the inhibitor design for New Delhi metallo-beta-lactamase (NDM-1). Eur J Med Chem 2021; 225:113747. [PMID: 34391033 DOI: 10.1016/j.ejmech.2021.113747] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2021] [Revised: 07/16/2021] [Accepted: 08/03/2021] [Indexed: 10/20/2022]
Abstract
Antimicrobial stewardship is imperative when treating bacterial infections because the misuse and overuse of antibiotics have caused pathogens to develop life-threatening resistance mechanisms. The New Delhi metallo-beta-lactamase (NDM-1) is one of many enzymes that enable bacterial resistance. NDM-1 is a more recently discovered beta-lactamase with the ability to inactivate a wide range of beta-lactam antibiotics. Multiple NDM-1 inhibitors have been designed and tested; however, due to the complexity of the NDM-1 active site, there is currently no inhibitor on the market. Consequently, an infection caused by bacteria possessing the gene for the NDM-1 enzyme is a serious and potentially fatal complication. An abundance of research has been invested over the past decade in search of an NDM-1 inhibitor. This review aims to summarize various NDM-1 inhibitor designs that have been developed in recent years.
Collapse
Affiliation(s)
| | - Morgan Ellebrecht
- St. Louis College of Pharmacy, University of Health Sciences and Pharmacy, St. Louis, MO, 63110, USA
| | - Siddharth K Tripathi
- National Center for Natural Products Research, School of Pharmacy, The University of Mississippi, University, MS, 38677, USA
| |
Collapse
|
22
|
Chen F, Bai M, Liu W, Kong H, Zhang T, Yao H, Zhang E, Du J, Qin S. H 2dpa derivatives containing pentadentate ligands: An acyclic adjuvant potentiates meropenem activity in vitro and in vivo against metallo-β-lactamase-producing Enterobacterales. Eur J Med Chem 2021; 224:113702. [PMID: 34303873 DOI: 10.1016/j.ejmech.2021.113702] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2021] [Revised: 06/27/2021] [Accepted: 07/12/2021] [Indexed: 11/27/2022]
Abstract
The emergence and dissemination of metallo-β-lactamases (MBLs) producing Enterobacterales is a great concern for public health due to the limited therapeutic options. No MBL inhibitors are currently available in clinical practice. Herein, we synthesized a series of H2dpa derivatives containing pentadentate-chelating ligands and evaluated their inhibitory activity against MBLs. Related compounds inhibited clinically relevant MBLs (Imipenemase, New Delhi metallo-β-lactamase (NDM) and Verona integron-encoded metallo-β-lactamase) with IC50 values of 1-4.9 μM. In vitro, the most promising compounds, 5b and 5c, which had a chiral methyl at the acid adjacent to 5a, demonstrated potent synergistic activity against engineered strains, with fractional inhibitory concentration index values as low as 0.07-0.18. The addition of 5b and 5c restored meropenem efficacy against 42 MBL-producing Enterobacterales and Pseudomonas aeruginosa to satisfactory clinical levels. In addition, safety tests revealed that 5b/5c showed no toxicity in red blood cells, cell lines or mouse model. Further studies demonstrated that compounds 5b and 5c were non-competitive MBL inhibitors. In vivo compounds 5b and 5c potentiated meropenem efficacy and increased the survival rate from 0 to at least 83% in mice with sepsis caused by an NDM-1-positive clinical strain. The activity of the compounds exhibited consistency at the molecular, cellular, and in vivo levels. These data indicated that H2dpa derivatives 5b and 5c containing pentadentate-chelating ligands may be worthy of further study.
Collapse
Affiliation(s)
- Fangfang Chen
- School of Pharmaceutical Sciences, Institute of Drug Discovery and Development, Key Laboratory of Advanced Pharmaceutical Technology, Ministry of Education of China, Zhengzhou University, Zhengzhou, 450001, PR China
| | - Mengmeng Bai
- School of Pharmaceutical Sciences, Institute of Drug Discovery and Development, Key Laboratory of Advanced Pharmaceutical Technology, Ministry of Education of China, Zhengzhou University, Zhengzhou, 450001, PR China
| | - Wentian Liu
- School of Pharmaceutical Sciences, Institute of Drug Discovery and Development, Key Laboratory of Advanced Pharmaceutical Technology, Ministry of Education of China, Zhengzhou University, Zhengzhou, 450001, PR China
| | - Hongtao Kong
- School of Pharmaceutical Sciences, Institute of Drug Discovery and Development, Key Laboratory of Advanced Pharmaceutical Technology, Ministry of Education of China, Zhengzhou University, Zhengzhou, 450001, PR China
| | - Tingting Zhang
- School of Pharmaceutical Sciences, Institute of Drug Discovery and Development, Key Laboratory of Advanced Pharmaceutical Technology, Ministry of Education of China, Zhengzhou University, Zhengzhou, 450001, PR China
| | - Hong Yao
- College of Veterinary Medicine, Henan Agricultural University, Zhengzhou, 450046, PR China
| | - En Zhang
- School of Pharmaceutical Sciences, Institute of Drug Discovery and Development, Key Laboratory of Advanced Pharmaceutical Technology, Ministry of Education of China, Zhengzhou University, Zhengzhou, 450001, PR China.
| | - Juan Du
- School of Pharmaceutical Sciences, Institute of Drug Discovery and Development, Key Laboratory of Advanced Pharmaceutical Technology, Ministry of Education of China, Zhengzhou University, Zhengzhou, 450001, PR China.
| | - Shangshang Qin
- School of Pharmaceutical Sciences, Institute of Drug Discovery and Development, Key Laboratory of Advanced Pharmaceutical Technology, Ministry of Education of China, Zhengzhou University, Zhengzhou, 450001, PR China.
| |
Collapse
|
23
|
Wang T, Xu K, Zhao L, Tong R, Xiong L, Shi J. Recent research and development of NDM-1 inhibitors. Eur J Med Chem 2021; 223:113667. [PMID: 34225181 DOI: 10.1016/j.ejmech.2021.113667] [Citation(s) in RCA: 29] [Impact Index Per Article: 9.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2021] [Revised: 05/26/2021] [Accepted: 06/13/2021] [Indexed: 10/21/2022]
Abstract
Bacteria carrying New Delhi metallo-β-lactamase-1 (New Delhi metallo-β-lactamase, NDM-1) resistance gene is a new type of "superbug", which can hydrolyze almost all β-lactam antibiotics, rapidly spread among the same species and even spread among different species. NDM-1 belongs to the class B1 broad-spectrum enzyme of β-lactamase. The two positively charged zinc ions in the active center have electrostatic interaction with the hydroxyl ions in them to seize the hydrogen atom near the water molecule to form a bridging ring water molecule, which strengthens its nucleophilicity and attacks the carbonyl group on the lactam ring; thus, catalyzing the hydrolysis of β-lactam antibiotics. Since NDM-1 has an open active site and unique electrostatic structure, it essentially provides a wider range of substrate specificity. Due to its flexible hydrolysis mechanism and more and more variants also aggravate the threat of drug-resistant bacteria infection, there is still no effective inhibitor in clinic, which is a serious threat to human health and public health safety. The electron-rich substituents of NDM-1 inhibitors coordinate with two positively charged zinc ions in the active center of the enzyme through ion-dipole interaction to produce NDM-1 inhibitory activity. In this review, the research progress of NDM-1 enzyme and its inhibitors in the past 5 years was reviewed. The crystal structure, active center structure, surrounding important amino acid residues, newly discovered inhibitors and their action mechanism are classified and summarized in detail, which can be used as a reference for the development of effective drugs against drug-resistant bacteria targeting NDM-1.
Collapse
Affiliation(s)
- Ting Wang
- Personalized Drug Therapy Key Laboratory of Sichuan Province, Department of Pharmacy, Sichuan Academy of Medical Sciences & Sichuan Provincial People's Hospital, School of Medicine, University of Electronic Science and Technology of China, Chengdu, 610072, China
| | - Kaiju Xu
- Department of Infectious Diseases, Sichuan Academy of Medical Sciences and Sichuan Provincial People's Hospital, Chengdu, 610072, China
| | - Liyun Zhao
- Personalized Drug Therapy Key Laboratory of Sichuan Province, Department of Pharmacy, Sichuan Academy of Medical Sciences & Sichuan Provincial People's Hospital, School of Medicine, University of Electronic Science and Technology of China, Chengdu, 610072, China
| | - Rongsheng Tong
- Personalized Drug Therapy Key Laboratory of Sichuan Province, Department of Pharmacy, Sichuan Academy of Medical Sciences & Sichuan Provincial People's Hospital, School of Medicine, University of Electronic Science and Technology of China, Chengdu, 610072, China.
| | - Liang Xiong
- School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, 611137, China; State Key Laboratory of Characteristic Chinese Medicine Resources in Southwest China, Chengdu University of Traditional Chinese Medicine, Chengdu, 611137, China.
| | - Jianyou Shi
- Personalized Drug Therapy Key Laboratory of Sichuan Province, Department of Pharmacy, Sichuan Academy of Medical Sciences & Sichuan Provincial People's Hospital, School of Medicine, University of Electronic Science and Technology of China, Chengdu, 610072, China.
| |
Collapse
|
24
|
Zhang H, Yang K, Cheng Z, Thomas C, Steinbrunner A, Pryor C, Vulcan M, Kemp C, Orea D, Paththamperuma C, Chen AY, Cohen SM, Page RC, Tierney DL, Crowder MW. Spectroscopic and biochemical characterization of metallo-β-lactamase IMP-1 with dicarboxylic, sulfonyl, and thiol inhibitors. Bioorg Med Chem 2021; 40:116183. [PMID: 33965839 PMCID: PMC8170513 DOI: 10.1016/j.bmc.2021.116183] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2021] [Revised: 04/20/2021] [Accepted: 04/26/2021] [Indexed: 02/02/2023]
Abstract
In an effort to probe the biophysical mechanisms of inhibition for ten previously-reported inhibitors of metallo-β-lactamases (MBL) with MBL IMP-1, equilibrium dialysis, metal analyses coupled with atomic absorption spectroscopy (AAS), native state mass spectrometry (native MS), and ultraviolet-visible spectrophotometry (UV-VIS) were used. 6-(1H-tetrazol-5-yl) picolinic acid (1T5PA), ANT431, D/l-captopril, thiorphan, and tiopronin were shown to form IMP-1/Zn(II)/inhibitor ternary complexes, while dipicolinic acid (DPA) and 4-(3-aminophenyl)pyridine-2,6-dicarboxylic acid (3AP-DPA) stripped some metal from the active site of IMP but also formed ternary complexes. DPA and 3AP-DPA stripped less metal from IMP-1 than from VIM-2 but stripped more metal from IMP-1 than from NDM-1. In contrast to a previous report, pterostilbene does not appear to bind to IMP-1 under our conditions. These results, along with previous studies, demonstrate similar mechanisms of inhibition toward different MBLs for different MBL inhibitors.
Collapse
Affiliation(s)
- Huan Zhang
- Department of Chemistry and Biochemistry, Miami University, Oxford, OH 45056, USA
| | - Kundi Yang
- Department of Chemistry and Biochemistry, Miami University, Oxford, OH 45056, USA
| | - Zishuo Cheng
- Department of Chemistry and Biochemistry, Miami University, Oxford, OH 45056, USA
| | - Caitlyn Thomas
- Department of Chemistry and Biochemistry, Miami University, Oxford, OH 45056, USA
| | - Abbie Steinbrunner
- Department of Chemistry and Biochemistry, Miami University, Oxford, OH 45056, USA
| | - Cecily Pryor
- Department of Chemistry and Biochemistry, Miami University, Oxford, OH 45056, USA
| | - Maya Vulcan
- Department of Chemistry and Biochemistry, Miami University, Oxford, OH 45056, USA
| | - Claire Kemp
- Department of Chemistry and Biochemistry, Miami University, Oxford, OH 45056, USA
| | - Diego Orea
- Department of Chemistry and Biochemistry, Miami University, Oxford, OH 45056, USA
| | | | - Allie Y Chen
- Department of Chemistry and Biochemistry, University of California San Diego, La Jolla, CA 92093, USA
| | - Seth M Cohen
- Department of Chemistry and Biochemistry, University of California San Diego, La Jolla, CA 92093, USA
| | - Richard C Page
- Department of Chemistry and Biochemistry, Miami University, Oxford, OH 45056, USA
| | - David L Tierney
- Department of Chemistry and Biochemistry, Miami University, Oxford, OH 45056, USA
| | - Michael W Crowder
- Department of Chemistry and Biochemistry, Miami University, Oxford, OH 45056, USA.
| |
Collapse
|
25
|
Activity of β-Lactam Antibiotics against Metallo-β-Lactamase-Producing Enterobacterales in Animal Infection Models: a Current State of Affairs. Antimicrob Agents Chemother 2021; 65:AAC.02271-20. [PMID: 33782001 DOI: 10.1128/aac.02271-20] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
Metallo-β-lactamases (MBLs) result in resistance to nearly all β-lactam antimicrobial agents, as determined by currently employed susceptibility testing methods. However, recently reported data demonstrate that variable and supraphysiologic zinc concentrations in conventional susceptibility testing media compared with physiologic (bioactive) zinc concentrations may be mediating discordant in vitro-in vivo MBL resistance. While treatment outcomes in patients appear suggestive of this discordance, these limited data are confounded by comorbidities and combination therapy. To that end, the goal of this review is to evaluate the extent of β-lactam activity against MBL-harboring Enterobacterales in published animal infection model studies and provide contemporary considerations to facilitate the optimization of current antimicrobials and development of novel therapeutics.
Collapse
|
26
|
Liu Y, Tong Z, Shi J, Li R, Upton M, Wang Z. Drug repurposing for next-generation combination therapies against multidrug-resistant bacteria. Theranostics 2021; 11:4910-4928. [PMID: 33754035 PMCID: PMC7978324 DOI: 10.7150/thno.56205] [Citation(s) in RCA: 84] [Impact Index Per Article: 28.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2020] [Accepted: 01/29/2021] [Indexed: 12/12/2022] Open
Abstract
Antimicrobial resistance has been a global health challenge that threatens our ability to control and treat life-threatening bacterial infections. Despite ongoing efforts to identify new drugs or alternatives to antibiotics, no new classes of antibiotic or their alternatives have been clinically approved in the last three decades. A combination of antibiotics and non-antibiotic compounds that could inhibit bacterial resistance determinants or enhance antibiotic activity offers a sustainable and effective strategy to confront multidrug-resistant bacteria. In this review, we provide a brief overview of the co-evolution of antibiotic discovery and the development of bacterial resistance. We summarize drug-drug interactions and uncover the art of repurposing non-antibiotic drugs as potential antibiotic adjuvants, including discussing classification and mechanisms of action, as well as reporting novel screening platforms. A pathogen-by-pathogen approach is then proposed to highlight the critical value of drug repurposing and its therapeutic potential. Finally, general advantages, challenges and development trends of drug combination strategy are discussed.
Collapse
Affiliation(s)
- Yuan Liu
- College of Veterinary Medicine, Yangzhou University, Yangzhou, Jiangsu, China
- Jiangsu Co-innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Joint International Research Laboratory of Agriculture and Agri-Product Safety, the Ministry of Education of China, Yangzhou University, Yangzhou, Jiangsu, China
- Institute of Comparative Medicine, Yangzhou University, Yangzhou, Jiangsu, China
| | - Ziwen Tong
- College of Veterinary Medicine, Yangzhou University, Yangzhou, Jiangsu, China
| | - Jingru Shi
- College of Veterinary Medicine, Yangzhou University, Yangzhou, Jiangsu, China
| | - Ruichao Li
- College of Veterinary Medicine, Yangzhou University, Yangzhou, Jiangsu, China
- Jiangsu Co-innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Joint International Research Laboratory of Agriculture and Agri-Product Safety, the Ministry of Education of China, Yangzhou University, Yangzhou, Jiangsu, China
- Institute of Comparative Medicine, Yangzhou University, Yangzhou, Jiangsu, China
| | - Mathew Upton
- School of Biomedical Sciences, University of Plymouth, Drake Circus, Plymouth, UK
| | - Zhiqiang Wang
- College of Veterinary Medicine, Yangzhou University, Yangzhou, Jiangsu, China
- Jiangsu Co-innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Joint International Research Laboratory of Agriculture and Agri-Product Safety, the Ministry of Education of China, Yangzhou University, Yangzhou, Jiangsu, China
| |
Collapse
|
27
|
New Delhi metallo-β-lactamase-1 inhibitors for combating antibiotic drug resistance: recent developments. Med Chem Res 2020. [DOI: 10.1007/s00044-020-02580-x] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
|
28
|
Zhou Y, Guo Y, Sun X, Ding R, Wang Y, Niu X, Wang J, Deng X. Application of Oleanolic Acid and Its Analogues in Combating Pathogenic Bacteria In Vitro/ Vivo by a Two-Pronged Strategy of β-Lactamases and Hemolysins. ACS OMEGA 2020; 5:11424-11438. [PMID: 32478231 PMCID: PMC7254530 DOI: 10.1021/acsomega.0c00460] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/01/2020] [Accepted: 04/30/2020] [Indexed: 05/06/2023]
Abstract
The rapid spread of β-lactamase-producing bacteria in clinical practice has increasingly deteriorated the performance of β-lactam antibiotics against such resistant strains. Thus, novel agents or strategies for the war against β-lactamase-producing bacteria, especially hypervirulent resistant bacteria (such as toxin-secreting Staphylococcus aureus) carrying complex β-lactamases, are urgently needed. In this study, we found that the natural compound oleanolic acid (OA) and its analogues (especially corosolic acid (CA)) significantly inhibited the activity of important β-lactamases (NDM-1, KPC-2, and VIM-1) in Enterobacteriaceae and β-lactamases (β-lactamase N1) in S. aureus. The results showed significant synergy with β-lactams against β-lactamase-positive bacteria (fractional inhibitory concentration (FIC) index <0.5). Additionally, OA treatment significantly inhibited the activity of hemolysin from various bacteria. In the mouse infection models, the combined therapy with OA and β-lactams exhibited a significant synergistic effect in the treatment of β-lactamase-producing bacteria, as evidenced by the survival rate of S. aureus- or Escherichia coli-infected mice, which increased from 25.0 to 75.0% or from 44.4 to 61.1% (CA increased to 77.8%), respectively, compared to treatment with individual β-lactams. Although OA treatment alone led to systemic protection against S. aureus-infected mice by directly targeting α-hemolysin (Hla), a relatively better therapeutic effect was observed for the combined therapy. To the best of our knowledge, this study is the first to find effective inhibitors against resistant bacterial infections with a two-pronged strategy by simultaneously targeting resistance enzymes and toxins, which may provide a promising therapeutic strategy for drug-resistant bacterial infections.
Collapse
Affiliation(s)
- Yonglin Zhou
- Key
Laboratory of Zoonosis Research, Ministry of Education, Institute
of Zoonosis, College of Veterinary Medicine, Jilin University, Changchun 130062, China
- Department
of Respiratory Medicine, The First Hospital
of Jilin University, Changchun 130021, Jilin, China
| | - Yan Guo
- Key
Laboratory of Zoonosis Research, Ministry of Education, Institute
of Zoonosis, College of Veterinary Medicine, Jilin University, Changchun 130062, China
- Department
of Respiratory Medicine, The First Hospital
of Jilin University, Changchun 130021, Jilin, China
| | - Xiaodi Sun
- Key
Laboratory of Zoonosis Research, Ministry of Education, Institute
of Zoonosis, College of Veterinary Medicine, Jilin University, Changchun 130062, China
| | - Rui Ding
- Key
Laboratory of Zoonosis Research, Ministry of Education, Institute
of Zoonosis, College of Veterinary Medicine, Jilin University, Changchun 130062, China
| | - Yanling Wang
- Key
Laboratory of Zoonosis Research, Ministry of Education, Institute
of Zoonosis, College of Veterinary Medicine, Jilin University, Changchun 130062, China
- Qingdao
Vland Biological Limited Co., LTD, Qingdao 266102, Shandong, China
| | - Xiaodi Niu
- Department
of Food Quality and Safety, Jilin University, Changchun 130062, China
| | - Jianfeng Wang
- Key
Laboratory of Zoonosis Research, Ministry of Education, Institute
of Zoonosis, College of Veterinary Medicine, Jilin University, Changchun 130062, China
- Department
of Respiratory Medicine, The First Hospital
of Jilin University, Changchun 130021, Jilin, China
| | - Xuming Deng
- Key
Laboratory of Zoonosis Research, Ministry of Education, Institute
of Zoonosis, College of Veterinary Medicine, Jilin University, Changchun 130062, China
- Department
of Respiratory Medicine, The First Hospital
of Jilin University, Changchun 130021, Jilin, China
| |
Collapse
|
29
|
Wang X, Yang Y, Gao Y, Niu X. Discovery of the Novel Inhibitor Against New Delhi Metallo-β-Lactamase Based on Virtual Screening and Molecular Modelling. Int J Mol Sci 2020; 21:ijms21103567. [PMID: 32443639 PMCID: PMC7279046 DOI: 10.3390/ijms21103567] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2020] [Revised: 05/07/2020] [Accepted: 05/07/2020] [Indexed: 12/20/2022] Open
Abstract
New Delhi metallo-β-lactamase (NDM-1), one of the metallo-β-lactamases (MBLs), leads to antibiotic resistance in clinical treatments due to the strong ability of hydrolysis to almost all kinds of β-lactam antibiotics. Therefore, there is the urgent need for the research and development of the novel drug-resistant inhibitors targeting NDM-1. In this study, ZINC05683641 was screened as potential NDM-1 inhibitor by virtual screening and the inhibitor mechanism of this compound was explored based on molecular dynamics simulation. The nitrocefin assay showed that the IC50 value of ZINC05683641 was 13.59 ± 0.52 μM, indicating that the hydrolytic activity of NDM-1 can be obviously suppressed by ZINC05683641. Further, the binding mode of ZINC05683641 with NDM-1 was obtained by molecular modeling, binding free energy calculation, mutagenesis assays and fluorescence-quenching assays. As results, ILE-35, MET-67, VAL-73, TRP-93, CYS-208, ASN-220 and HIS-250 played the key roles in the binding of NDM-1 with ZINC05683641. Interestingly, these key residues were exactly located in the catalytic activity region of NDM-1, implying that the inhibitor mechanism of ZINC05683641 against NDM-1 was the competitive inhibition. These findings will provide an available approach to research and develop new drug against NDM-1 and treatment for bacterial resistance.
Collapse
|
30
|
Specific NDM-1 Inhibitor of Isoliquiritin Enhances the Activity of Meropenem against NDM-1-positive Enterobacteriaceae in vitro. INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH 2020; 17:ijerph17062162. [PMID: 32213926 PMCID: PMC7143545 DOI: 10.3390/ijerph17062162] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/17/2020] [Revised: 03/23/2020] [Accepted: 03/23/2020] [Indexed: 12/14/2022]
Abstract
NDM-1-positive Enterobacteriaceae have caused serious clinical infections, with high mortality rates. Carbapenem was the ultimate expectation for the treatment of such infections in clinical practice. However, since the discovery of plasmid-mediated New Delhi metallo-β-lactamase-1 (NDM-1), the efficient therapeutic effects of carbapenems have been increasingly restricted. Here, we identified isoliquiritin, a novel specific inhibitor of the NDM-1 enzyme that restored the activity of carbapenem against NDM-1-producing E. coli isolates and K. pneumoniae isolates without affecting the growth of bacteria. A checkerboard test, growth curve assays and time-kill assays confirmed the significant synergistic effect of isoliquiritin combined with meropenem in vitro. It is worth noting that isoliquiritin only inhibited the activity of NDM-1 and had no obvious inhibitory effect on other class B metallo-β-lactamases (VIM-1) or NDM-1 mutants (NDM-5). The FIC indices of meropenem with isoliquiritin on NDM-1-positive E. coli and K. pneumoniae were all less than 0.5. Isoliquiritin had no influences on the expression of NDM-1-positive strains at concentrations below 64 µg/mL. Collectively, our results show that isoliquiritin is a potential adjuvant therapy drug that could enhance the antibacterial effect of carbapenems, such as meropenem, on NDM-1-positive Enterobacteria and lay the foundation for subsequent clinical trials.
Collapse
|
31
|
Zhou YF, Liu P, Zhang CJ, Liao XP, Sun J, Liu YH. Colistin Combined With Tigecycline: A Promising Alternative Strategy to Combat Escherichia coli Harboring bla NDM- 5 and mcr-1. Front Microbiol 2020; 10:2957. [PMID: 31969868 PMCID: PMC6960404 DOI: 10.3389/fmicb.2019.02957] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2019] [Accepted: 12/09/2019] [Indexed: 01/20/2023] Open
Abstract
Infections due to carbapenem-resistant NDM-producing Escherichia coli represent a major therapeutic challenge, especially in situations of pre-existing colistin resistance. The aim of this study was to investigate combinatorial pharmacodynamics of colistin and tigecycline against E. coli harboring blaNDM–5 and mcr-1, with possible mechanisms explored as well. Colistin disrupted the bacterial outer-membrane and facilitated tigecycline uptake largely independent of mcr-1 expression, which allowed a potentiation of the tigecycline-colistin combination. A concentration-dependent decrease in colistin MIC and EC50 was observed with increasing tigecycline levels. Clinically relevant concentrations of colistin and tigecycline combination significantly decreased bacterial density of colistin-resistant E. coli by 3.9 to 6.1-log10 cfu/mL over 48 h at both inoculums of 106 and 108 cfu/mL, and were more active than each drug alone (P < 0.01). Importantly, colistin and tigecycline combination therapy was efficacious in the murine thigh infection model at clinically relevant doses, resulting in >2.0-log10cfu/thigh reduction in bacterial density compared to each monotherapy. These data suggest that the use of colistin and tigecycline combination can provide a therapeutic alternative for infection caused by multidrug-resistant E. coli that harbored both blaNDM–5 and mcr-1.
Collapse
Affiliation(s)
- Yu-Feng Zhou
- National Risk Assessment Laboratory for Antimicrobial Resistance of Animal Original Bacteria, College of Veterinary Medicine, South China Agricultural University, Guangzhou, China.,Guangdong Provincial Key Laboratory of Veterinary Pharmaceutics Development and Safety Evaluation, South China Agricultural University, Guangzhou, China
| | - Ping Liu
- National Risk Assessment Laboratory for Antimicrobial Resistance of Animal Original Bacteria, College of Veterinary Medicine, South China Agricultural University, Guangzhou, China.,Guangdong Provincial Key Laboratory of Veterinary Pharmaceutics Development and Safety Evaluation, South China Agricultural University, Guangzhou, China
| | - Chuan-Jian Zhang
- National Risk Assessment Laboratory for Antimicrobial Resistance of Animal Original Bacteria, College of Veterinary Medicine, South China Agricultural University, Guangzhou, China.,Guangdong Provincial Key Laboratory of Veterinary Pharmaceutics Development and Safety Evaluation, South China Agricultural University, Guangzhou, China
| | - Xiao-Ping Liao
- National Risk Assessment Laboratory for Antimicrobial Resistance of Animal Original Bacteria, College of Veterinary Medicine, South China Agricultural University, Guangzhou, China.,Guangdong Provincial Key Laboratory of Veterinary Pharmaceutics Development and Safety Evaluation, South China Agricultural University, Guangzhou, China
| | - Jian Sun
- National Risk Assessment Laboratory for Antimicrobial Resistance of Animal Original Bacteria, College of Veterinary Medicine, South China Agricultural University, Guangzhou, China.,Guangdong Provincial Key Laboratory of Veterinary Pharmaceutics Development and Safety Evaluation, South China Agricultural University, Guangzhou, China
| | - Ya-Hong Liu
- National Risk Assessment Laboratory for Antimicrobial Resistance of Animal Original Bacteria, College of Veterinary Medicine, South China Agricultural University, Guangzhou, China.,Guangdong Provincial Key Laboratory of Veterinary Pharmaceutics Development and Safety Evaluation, South China Agricultural University, Guangzhou, China.,Jiangsu Co-innovation Center for the Prevention and Control of Important Animal Infectious Disease and Zoonosis, Yangzhou University, Yangzhou, China
| |
Collapse
|
32
|
Liu Y, Yang K, Jia Y, Wang Z. Repurposing Peptidomimetic as Potential Inhibitor of New Delhi Metallo-β-lactamases in Gram-Negative Bacteria. ACS Infect Dis 2019; 5:2061-2066. [PMID: 31637907 DOI: 10.1021/acsinfecdis.9b00364] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023]
Abstract
The emergence, prevalence, and rapid spread of New Delhi metallo-β-lactamases (NDMs) in Gram-negative pathogens threaten our traditional regimen to treat bacterial infectious diseases. Discovery of novel NDMs inhibitors offers an alternative approach to restore the carbapenems activity. However, thus far, no clinical inhibitor of NDMs has been approved. In this study, the potential of peptides and analogues as carbapenems adjuvant in NDMs-positive pathogens was investigated. Herein, we successfully found that peptidomimetic 4 (PEP4) is a potential inhibitor of NDM enzymes. PEP4 displayed significant synergistic activity with Meropenem against NDM-expression Gram-negative bacteria in vitro. Moreover, PEP4 effectively restored Meropenem efficacy in mice infection models infected with NDM-5-positive E. coli. These data demonstrated the high potential of PEP4 as carbapenems adjuvant to address NDMs-positive Gram-negative pathogens.
Collapse
Affiliation(s)
- Yuan Liu
- Jiangsu Co-innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou, Jiangsu 225009, China
| | | | | | - Zhiqiang Wang
- Jiangsu Co-innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou, Jiangsu 225009, China
| |
Collapse
|
33
|
Liu S, Zhang J, Zhou Y, Hu N, Li J, Wang Y, Niu X, Deng X, Wang J. Pterostilbene restores carbapenem susceptibility in New Delhi metallo-β-lactamase-producing isolates by inhibiting the activity of New Delhi metallo-β-lactamases. Br J Pharmacol 2019; 176:4548-4557. [PMID: 31376166 DOI: 10.1111/bph.14818] [Citation(s) in RCA: 32] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2018] [Revised: 07/19/2019] [Accepted: 07/22/2019] [Indexed: 12/11/2022] Open
Abstract
BACKGROUND AND PURPOSE Bacteria producing New Delhi metallo-β-lactamase-1 (NDM-1) are an increasing clinical threat. NDM-1 can inactivate almost all β-lactams and is not sensitive to any existing β-lactamase inhibitors. To identify effective inhibitors of the NDM-1 enzyme and clarify the mechanism of action, a "lead compound" for developing more potent NDM-1 inhibitors needs to be provided. EXPERIMENTAL APPROACH Natural compounds were tested by enzyme inhibition screening to find potential inhibitors. MIC assays, growth curve assays, and time-kill assays were conducted to evaluate the in vitro antibacterial activity of pterostilbene and the combination of pterostilbene and meropenem. A murine thigh model and a mouse pneumonia model were used to evaluate the in vivo efficacy of combined therapy. Molecular modelling and a mutational analysis were used to clarify the mechanism of action. KEY RESULTS Pterostilbene significantly inhibited NDM-1 hydrolysis activity in enzyme inhibition screening assays and effectively restored the effectiveness of meropenem in vitro with NDM-expressing isolates in antibacterial activity assays. In addition, the combined therapy effectively reduced the bacterial burden in a murine thigh model and protected mice from pneumonia caused by Klebsiella pneumoniae. By means of molecular dynamics simulation, we observed that pterostilbene localized to the catalytic pocket of NDM-1, hindering substrate binding to NDM-1 and reducing NDM-1 activity. CONCLUSIONS AND IMPLICATIONS These findings indicated that pterostilbene combined with meropenem may offer a new safe and potential "lead compound" for the further development of NDM-1 inhibitors.
Collapse
Affiliation(s)
- Shui Liu
- Key Laboratory of Zoonosis Research, Ministry of Education, Institute of Zoonosis, College of Veterinary Medicine, Jilin University, Changchun, China
| | - Jian Zhang
- Key Laboratory of Zoonosis Research, Ministry of Education, Institute of Zoonosis, College of Veterinary Medicine, Jilin University, Changchun, China
| | - Yonglin Zhou
- Key Laboratory of Zoonosis Research, Ministry of Education, Institute of Zoonosis, College of Veterinary Medicine, Jilin University, Changchun, China
| | - Naiyu Hu
- College of Animal Sciences, Jilin University, Changchun, China
| | - Jiyun Li
- Beijing Key Laboratory of Detection Technology for Animal-Derived Food Safety, College of Veterinary Medicine, China Agricultural University, Beijing, China
| | - Yang Wang
- Beijing Key Laboratory of Detection Technology for Animal-Derived Food Safety, College of Veterinary Medicine, China Agricultural University, Beijing, China
| | - Xiaodi Niu
- College of Food Science and Engineering, Jilin University, Changchun, China
| | - Xuming Deng
- Key Laboratory of Zoonosis Research, Ministry of Education, Institute of Zoonosis, College of Veterinary Medicine, Jilin University, Changchun, China
| | - Jianfeng Wang
- Key Laboratory of Zoonosis Research, Ministry of Education, Institute of Zoonosis, College of Veterinary Medicine, Jilin University, Changchun, China
| |
Collapse
|
34
|
Betulin efficiently suppresses the process of an experimental Listeria monocytogenes infection as an antagonist against listeriolysin O. Fitoterapia 2019; 139:104409. [PMID: 31698059 DOI: 10.1016/j.fitote.2019.104409] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2019] [Revised: 10/30/2019] [Accepted: 11/04/2019] [Indexed: 12/30/2022]
Abstract
Listeria monocytogenes (Lm) is a widespread foodborne intracellular pathogen that invades a variety of cells, causing abortions and severe human diseases. After internalization into host cells, pore-forming cytolysin listeriolysin O (LLO) disrupts the phagosome, which allows the bacterium to survive and colonize the cytoplasm, providing the bacterium the chance to infect neighboring cells. Betulin is an extracted natural compound from birch bark with diverse pharmacological activities. Here, we showed that LLO-induced rabbit red blood cell lysis in vitro was inhibited by preincubation with betulin, which suppressed the oligomerization process. Infectious assays performed with human monocyte macrophages indicated that betulin significantly protected cells against Lm-induced cell injury. In addition, Balb/c mice were used to perform a general infection, and betulin administration obviously inhibited organ damage and bacterial burden in livers and spleens of infected mice. In conclusion, betulin obviously inhibited Lm-induced cell injury in vitro and protected against infection in vivo through an antivirulence effect. Our results showed betulin as a new candidate against listeriosis by targeting LLO and highlight the potential of natural product-based medicine to be applied in the treatment of pathogenic infections.
Collapse
|