1
|
Dong J, Wang Z, Li L, Zhang M, Wang S, Luo Y, Dong Y, Wang X, Wang Y, Wang K, Yin Y. Fasudil Alleviates Postoperative Neurocognitive Disorders in Mice by Downregulating the Surface Expression of α5GABAAR in Hippocampus. CNS Neurosci Ther 2024; 30:e70098. [PMID: 39491498 PMCID: PMC11532233 DOI: 10.1111/cns.70098] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2024] [Revised: 09/30/2024] [Accepted: 10/08/2024] [Indexed: 11/05/2024] Open
Abstract
AIM Postoperative neurocognitive disorder (PND) refers to the cognitive impairment experienced by patients after surgery. As a target of sevoflurane, a kind of inhalation anesthetic, the balance of the GABAergic system can be disrupted during the perioperative period. In this study, we explored the promoting effect of abnormal elevation of the α5 subtype of γ-aminobutyric acid type A (GABAA) receptors caused by sevoflurane and surgical trauma on PND, as well as the therapeutic effect of fasudil on PND. METHODS Eight-week-old mice were pretreated with fasudil, and after 10 days, sevoflurane-induced femoral fracture surgery was performed to establish an animal model of PND. The Morris water maze and fear conditioning tests were used to evaluate PND induced by this model. Biochemical and electrophysiological analyses were conducted to assess the protective effect of fasudil on the GABAergic system. RESULTS Following artificial fracture, the hippocampus-dependent memory was damaged in these mice. Fasudil pretreatment, however, ameliorated cognitive function impairment in mice induced by sevoflurane and surgery. Mechanistically, fasudil was found to restore the increased hippocampus expression and function of α5GABAARs in mice with PND. In addition, pretreatment with Fasudil inhibited the enhancement in the calcium ion concentration and phosphorylation of Camk2, as well as the activation of the Radixin pathway which led to increased phosphorylation of the ERM family in the hippocampal CA1 region of the PND model. CONCLUSION Preadministration of fasudil improved postoperative cognitive function in PND mice by inhibiting the activation of Camk2 and Radixin pathways and finally downregulating the surface expression of α5GABAAR in hippocampus neurons.
Collapse
Affiliation(s)
- Jinpeng Dong
- Department of Anesthesiology, Key Laboratory of Cancer Prevention and Therapy, State Key Laboratory of Druggability Evaluation and Systematic Translational Medicine, National Clinical Research Center for CancerTianjin Medical University Cancer Institute and Hospital, Tianjin's Clinical Research Center for CancerTianjinChina
| | - Zhun Wang
- Department of Anesthesiology, Key Laboratory of Cancer Prevention and Therapy, State Key Laboratory of Druggability Evaluation and Systematic Translational Medicine, National Clinical Research Center for CancerTianjin Medical University Cancer Institute and Hospital, Tianjin's Clinical Research Center for CancerTianjinChina
| | | | - Mengxue Zhang
- Department of Anesthesiology, Key Laboratory of Cancer Prevention and Therapy, State Key Laboratory of Druggability Evaluation and Systematic Translational Medicine, National Clinical Research Center for CancerTianjin Medical University Cancer Institute and Hospital, Tianjin's Clinical Research Center for CancerTianjinChina
| | - Sixuan Wang
- Department of Anesthesiology, Key Laboratory of Cancer Prevention and Therapy, State Key Laboratory of Druggability Evaluation and Systematic Translational Medicine, National Clinical Research Center for CancerTianjin Medical University Cancer Institute and Hospital, Tianjin's Clinical Research Center for CancerTianjinChina
| | - Yuan Luo
- State Key Laboratory of Toxicology and Medical Countermeasures, Academy of Military Medical SciencesBeijingChina
| | - Ying Dong
- Department of Anesthesiology, Key Laboratory of Cancer Prevention and Therapy, State Key Laboratory of Druggability Evaluation and Systematic Translational Medicine, National Clinical Research Center for CancerTianjin Medical University Cancer Institute and Hospital, Tianjin's Clinical Research Center for CancerTianjinChina
| | - Xiaokun Wang
- Department of Anesthesiology, Key Laboratory of Cancer Prevention and Therapy, State Key Laboratory of Druggability Evaluation and Systematic Translational Medicine, National Clinical Research Center for CancerTianjin Medical University Cancer Institute and Hospital, Tianjin's Clinical Research Center for CancerTianjinChina
| | - Yongan Wang
- State Key Laboratory of Toxicology and Medical Countermeasures, Academy of Military Medical SciencesBeijingChina
| | - Kaiyuan Wang
- Department of Anesthesiology, Key Laboratory of Cancer Prevention and Therapy, State Key Laboratory of Druggability Evaluation and Systematic Translational Medicine, National Clinical Research Center for CancerTianjin Medical University Cancer Institute and Hospital, Tianjin's Clinical Research Center for CancerTianjinChina
| | - Yiqing Yin
- Department of Anesthesiology, Key Laboratory of Cancer Prevention and Therapy, State Key Laboratory of Druggability Evaluation and Systematic Translational Medicine, National Clinical Research Center for CancerTianjin Medical University Cancer Institute and Hospital, Tianjin's Clinical Research Center for CancerTianjinChina
| |
Collapse
|
2
|
Gil M, Caulino-Rocha A, Bento M, Rodrigues NC, Silva-Cruz A, Ribeiro JA, Cunha-Reis D. Postweaning Development Influences Endogenous VPAC 1 Modulation of LTP Induced by Theta-Burst Stimulation: A Link to Maturation of the Hippocampal GABAergic System. Biomolecules 2024; 14:379. [PMID: 38540797 PMCID: PMC10968312 DOI: 10.3390/biom14030379] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2024] [Revised: 03/15/2024] [Accepted: 03/18/2024] [Indexed: 11/11/2024] Open
Abstract
Long-term potentiation (LTP) induced by theta-burst stimulation (TBS) undergoes postweaning developmental changes partially linked to GABAergic circuit maturation. Endogenous vasoactive intestinal peptide (VIP) acting on its VPAC1 receptor strongly influences LTP induced by theta-burst stimulation (TBS), an effect dependent on GABAergic transmission. Although VPAC1 receptor levels are developmentally regulated during embryogenesis, their variation along postweaning development is unknown, as is the VPAC1 modulation of LTP or its relation to hippocampal GABAergic circuit maturation. As such, we investigated how VPAC1 modulation of LTP adjusts from weaning to adulthood along with GABAergic circuit maturation. As described, LTP induced by mild TBS (5 bursts, 4 pulses delivered at 100 Hz) was increasingly greater from weaning to adulthood. The influence of the VPAC1 receptor antagonist PG 97-269 (100 nM) on TBS-induced LTP was much larger in juvenile (3-week-old) than in young adult (6-7-week-old) or adult (12-week-old) rats. This effect was not associated with a developmental decrease in synaptic VPAC1 receptor levels. However, an increase in pre and post-synaptic GABAergic synaptic markers suggests an increase in the number of GABAergic synaptic contacts that is more prominent than the one observed in glutamatergic connections during this period. Conversely, endogenous VPAC2 receptor activation did not significantly influence TBS-induced LTP. VPAC2 receptor levels enhance pronouncedly during postweaning development, but not at synaptic sites. Given the involvement of VIP interneurons in several aspects of hippocampal-dependent learning, neurodevelopmental disorders, and epilepsy, this could provide important insights into the role of VIP modulation of hippocampal synaptic plasticity during normal and altered brain development potentially contributing to epileptogenesis.
Collapse
Affiliation(s)
- Marta Gil
- BioISI—Biosystems & Integrative Sciences Institute, Faculdade de Ciências, Universidade de Lisboa, 1749-016 Lisbon, Portugal
| | - Ana Caulino-Rocha
- BioISI—Biosystems & Integrative Sciences Institute, Faculdade de Ciências, Universidade de Lisboa, 1749-016 Lisbon, Portugal
| | - Marta Bento
- BioISI—Biosystems & Integrative Sciences Institute, Faculdade de Ciências, Universidade de Lisboa, 1749-016 Lisbon, Portugal
| | - Nádia C. Rodrigues
- Unidade de Neurociências, Instituto de Medicina Molecular João Lobo Antunes, Faculdade de Medicina, Universidade de Lisboa, Av. Prof. Egas Moniz, 1649-028 Lisbon, Portugal (J.A.R.)
| | - Armando Silva-Cruz
- Unidade de Neurociências, Instituto de Medicina Molecular João Lobo Antunes, Faculdade de Medicina, Universidade de Lisboa, Av. Prof. Egas Moniz, 1649-028 Lisbon, Portugal (J.A.R.)
| | - Joaquim A. Ribeiro
- Unidade de Neurociências, Instituto de Medicina Molecular João Lobo Antunes, Faculdade de Medicina, Universidade de Lisboa, Av. Prof. Egas Moniz, 1649-028 Lisbon, Portugal (J.A.R.)
- Instituto de Farmacologia e Neurociências, Faculdade de Medicina, Universidade de Lisboa, Av. Prof. Egas Moniz, 1649-028 Lisbon, Portugal
| | - Diana Cunha-Reis
- BioISI—Biosystems & Integrative Sciences Institute, Faculdade de Ciências, Universidade de Lisboa, 1749-016 Lisbon, Portugal
- Unidade de Neurociências, Instituto de Medicina Molecular João Lobo Antunes, Faculdade de Medicina, Universidade de Lisboa, Av. Prof. Egas Moniz, 1649-028 Lisbon, Portugal (J.A.R.)
- Departamento de Química e Bioquímica, Faculdade de Ciências, Universidade de Lisboa, Campo Grande, 1749-016 Lisboa, Portugal
| |
Collapse
|
3
|
Xu J, Chen X, Liu S, Wei Z, Xu M, Jiang L, Han X, Peng L, Gu X, Xia T. Nicotinamide mononucleotide pretreatment improves long-term isoflurane anesthesia-induced cognitive impairment in mice. Behav Brain Res 2024; 458:114738. [PMID: 37931707 DOI: 10.1016/j.bbr.2023.114738] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2023] [Revised: 10/17/2023] [Accepted: 11/01/2023] [Indexed: 11/08/2023]
Abstract
Postoperative cognitive dysfunction (POCD) is characterized by impaired cognitive function following general anesthesia and surgery. Oxidative stress is a significant pathophysiological manifestation underlying POCD. Previous studies have reported that the decline of nicotinamide adenine dinucleotide (NAD+) -dependent sirtuin 1 (SIRT1) contributes to the activation of oxidative stress. In this study, we investigated whether pretreatment of nicotinamide mononucleotide (NMN), an NAD+ intermediate, improves oxidative stress and cognitive function in POCD. The animal model of POCD was established in C57BL/6 J mice through 6 h isoflurane anesthesia-induced cognitive impairment. Mice were intraperitoneally injected with NMN for 7 days prior to anesthesia, after which oxidative stress and cognitive function were assessed. The level of oxidative stress was determined using flow cytometry analysis and assey kits. The fear condition test and the Y-maze test were utilized to evaluate contextual and spatial memory. Our results showed that cognitive impairment and increased oxidative stress were observed in POCD mice, as well as downregulation of NAD+ levels and related protein expressions of SIRT1 and nicotinamide phosphoribosyltransferase (NAMPT) in the hippocampus. And NMN supplementation could effectively prevent the decline of NAD+ and related proteins, and reduce oxidative stress and cognitive disorders after POCD. Mechanistically, the findings suggested that protection on cognitive function mediated by NMN pretreatment in POCD mice may be regulated by NAD+-SIRT1 signaling pathway. This study indicated that NMN preconditioning reduced oxidative stress damage and alleviated cognitive impairment in POCD mice.
Collapse
Affiliation(s)
- Jiyan Xu
- Department of Anesthesiology, Nanjing Drum Tower Hospital, Affiliated Hospital of Medical School, Nanjing University, Nanjing 210008, China; Medical School, Nanjing University, Nanjing 210093, China; Jiangsu Key Laboratory of Molecular Medicine, Nanjing University, Nanjing, China; State Key Laboratory of Pharmaceutical Biotechnology, Nanjing University, Nanjing, China
| | - Xinlu Chen
- Department of Anesthesiology, Nanjing Drum Tower Hospital, Affiliated Hospital of Medical School, Nanjing University, Nanjing 210008, China; Medical School, Nanjing University, Nanjing 210093, China; Jiangsu Key Laboratory of Molecular Medicine, Nanjing University, Nanjing, China; State Key Laboratory of Pharmaceutical Biotechnology, Nanjing University, Nanjing, China
| | - Shuai Liu
- Department of Anesthesiology, Nanjing Drum Tower Hospital, Affiliated Hospital of Medical School, Nanjing University, Nanjing 210008, China
| | - Ziqi Wei
- Medical School, Nanjing University, Nanjing 210093, China; Jiangsu Key Laboratory of Molecular Medicine, Nanjing University, Nanjing, China; State Key Laboratory of Pharmaceutical Biotechnology, Nanjing University, Nanjing, China
| | - Minhui Xu
- Medical School, Nanjing University, Nanjing 210093, China; Jiangsu Key Laboratory of Molecular Medicine, Nanjing University, Nanjing, China; State Key Laboratory of Pharmaceutical Biotechnology, Nanjing University, Nanjing, China
| | - Linhao Jiang
- Department of Anesthesiology, Nanjing Drum Tower Hospital, Affiliated Hospital of Medical School, Nanjing University, Nanjing 210008, China; Medical School, Nanjing University, Nanjing 210093, China; Jiangsu Key Laboratory of Molecular Medicine, Nanjing University, Nanjing, China; State Key Laboratory of Pharmaceutical Biotechnology, Nanjing University, Nanjing, China
| | - Xue Han
- Department of Anesthesiology, Nanjing Drum Tower Hospital, Affiliated Hospital of Medical School, Nanjing University, Nanjing 210008, China; Medical School, Nanjing University, Nanjing 210093, China; Jiangsu Key Laboratory of Molecular Medicine, Nanjing University, Nanjing, China; State Key Laboratory of Pharmaceutical Biotechnology, Nanjing University, Nanjing, China
| | - Liangyu Peng
- Department of Anesthesiology, Nanjing Drum Tower Hospital, Affiliated Hospital of Medical School, Nanjing University, Nanjing 210008, China.
| | - Xiaoping Gu
- Department of Anesthesiology, Nanjing Drum Tower Hospital, Affiliated Hospital of Medical School, Nanjing University, Nanjing 210008, China.
| | - Tianjiao Xia
- Medical School, Nanjing University, Nanjing 210093, China; Jiangsu Key Laboratory of Molecular Medicine, Nanjing University, Nanjing, China; State Key Laboratory of Pharmaceutical Biotechnology, Nanjing University, Nanjing, China.
| |
Collapse
|
4
|
Dakopolos A, Condy E, Smith E, Harvey D, Kaat AJ, Coleman J, Riley K, Berry-Kravis E, Hessl D. Developmental Associations between Cognition and Adaptive Behavior in Intellectual and Developmental Disability. RESEARCH SQUARE 2024:rs.3.rs-3684708. [PMID: 38260292 PMCID: PMC10802716 DOI: 10.21203/rs.3.rs-3684708/v1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/24/2024]
Abstract
Background Intellectual and developmental disabilities (IDDs) are associated with both cognitive challenges and difficulties in conceptual, social, and practical areas of living (DSM-5). Individuals with IDD often present with an intellectual disability in addition to a developmental disability such as autism or Down syndrome. Those with IDD may present with deficits in intellectual functioning as well as adaptive functioning that interfere with independence and living skills. The present study sought to examine associations of longitudinal developmental change in domains of cognition (NIH Toolbox Cognition Battery, NIHTB-CB) and adaptive behavior domains (Vineland Adaptive Behavior Scales-3; VABS-3) including Socialization, Communication, and Daily Living Skills (DLS) over a two-year period. Methods Eligible participants for this multisite longitudinal study included those who were between 6 and 26 years at Visit 1, and who had a diagnosis of, or suspected intellectual disability (ID), including borderline ID. Three groups were recruited, including those with fragile X syndrome, Down syndrome, and other/idiopathic intellectual disability. In order to examine the association of developmental change between cognitive and adaptive behavior domains, bivariate latent change score (BLCS) models were fit to compare change in the three cognitive domains measured by the NIHTB-CB (Fluid, Crystallized, Composite) and the three adaptive behavior domains measured by the VABS-3 (Communication, DLS, and Socialization). Results Over a two-year period, change in cognition (both Crystalized and Composite) was significantly and positively associated with change in daily living skills. Also, baseline cognition level predicted growth in adaptive behavior, however baseline adaptive behavior did not predict growth in cognition in any model. Conclusions The present study demonstrated that developmental improvements in cognition and adaptive behavior are associated in children and young adults with IDD, indicating the potential for cross-domain effects of intervention. Notably, improvements in Daily Living Skills on the VABS-3 emerged as a primary area of adaptive behavior that positively related to improvements in cognition. This work provides evidence for the clinical, "real life" meaningfulness of the NIHTB-CB in IDD, and important empirical support for the NIHTB-CB as a fit-for-purpose performance-based outcome measure for this population.
Collapse
Affiliation(s)
| | | | - Elizabeth Smith
- Cincinnati Children's Hospital Medical Center Burnet Campus: Cincinnati Children's Hospital Medical Center
| | | | - Aaron J Kaat
- Northwestern University Feinberg School of Medicine
| | | | | | | | | |
Collapse
|
5
|
Thomazeau A, Lassalle O, Manzoni OJ. Glutamatergic synaptic deficits in the prefrontal cortex of the Ts65Dn mouse model for Down syndrome. Front Neurosci 2023; 17:1171797. [PMID: 37841687 PMCID: PMC10569174 DOI: 10.3389/fnins.2023.1171797] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2023] [Accepted: 09/11/2023] [Indexed: 10/17/2023] Open
Abstract
Down syndrome (DS), the most prevalent cause of intellectual disability, stems from a chromosomal anomaly resulting in an entire or partial extra copy of chromosome 21. This leads to intellectual disability and a range of associated symptoms. While there has been considerable research focused on the Ts65Dn mouse model of DS, particularly in the context of the hippocampus, the synaptic underpinnings of prefrontal cortex (PFC) dysfunction in DS, including deficits in working memory, remain largely uncharted territory. In a previous study featuring mBACtgDyrk1a mice, which manifest overexpression of the Dyrk1a gene, a known candidate gene linked to intellectual disability and microcephaly in DS, we documented adverse effects on spine density, alterations in the molecular composition of synapses, and the presence of synaptic plasticity deficits within the PFC. The current study aimed to enrich our understanding of the roles of different genes in DS by studying Ts65Dn mice, which overexpress several genes including Dyrk1a, to compare with our previous work on mBACtgDyrk1a mice. Through ex-vivo electrophysiological experiments, including patch-clamp and extracellular field potential recordings, we identified alterations in the intrinsic properties of PFC layer V/VI pyramidal neurons in Ts65Dn male mice. Additionally, we observed changes in the synaptic plasticity range. Notably, long-term depression was absent in Ts65Dn mice, while synaptic or pharmacological long-term potentiation remained fully expressed in these mice. These findings provide valuable insights into the intricate synaptic mechanisms contributing to PFC dysfunction in DS, shedding light on potential therapeutic avenues for addressing the neurocognitive symptoms associated with this condition.
Collapse
Affiliation(s)
- Aurore Thomazeau
- Côte d’Azur, CNRS UMR7275, Institut de Pharmacologie Moléculaire et Cellulaire, Valbonne, France
- Université Aix-Marseille, Marseille, France
- INMED, INSERM U1249, Marseille, France
| | - Olivier Lassalle
- Université Aix-Marseille, Marseille, France
- INMED, INSERM U1249, Marseille, France
| | - Olivier J. Manzoni
- Université Aix-Marseille, Marseille, France
- INMED, INSERM U1249, Marseille, France
| |
Collapse
|
6
|
Zhang Y, Wei R, Ni M, Wu Q, Li Y, Ge Y, Kong X, Li X, Chen G. An enriched environment improves maternal sleep deprivation-induced cognitive deficits and synaptic plasticity via hippocampal histone acetylation. Brain Behav 2023; 13:e3018. [PMID: 37073496 PMCID: PMC10275536 DOI: 10.1002/brb3.3018] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/05/2022] [Revised: 03/20/2023] [Accepted: 04/02/2023] [Indexed: 04/20/2023] Open
Abstract
INTRODUCTION Growing evidence clearly demonstrates that maternal rodents exposure to sleep deprivation (SD) during late pregnancy impairs learning and memory in their offspring. Epigenetic mechanisms, particularly histone acetylation, are known to be involved in synaptic plasticity, learning, and memory. We hypothesize that the cognitive decline induced by SD during late pregnancy is associated with histone acetylation dysfunction, and this effect could be reversed by an enriched environment (EE). METHODS In the present study, pregnant CD-1 mice were exposed to SD during the third trimester of pregnancy. After weaning, all offspring were randomly assigned to two subgroups in either a standard environment or an EE. When offspring were 3 months old, the Morris water maze was used to evaluate hippocampal-dependent learning and memory ability. Molecular biological techniques, including western blot and real-time fluorescence quantitative polymerase chain reaction, were used to examine the histone acetylation pathway and synaptic plasticity markers in the hippocampus of offspring. RESULTS The results showed that the following were all reversed by EE treatment: maternal SD (MSD)-induced cognitive deficits including spatial learning and memory; histone acetylation dysfunction including increased histone deacetylase 2 (HDAC2) and decreased histone acetyltransferase (CBP), and the acetylation levels of H3K9 and H4K12; synaptic plasticity dysfunction including decreased brain-derived neurotrophic factor; and postsynaptic density protein-95. CONCLUSIONS Our findings suggested that MSD could damage learning ability and memory in offspring via the histone acetylation pathway. This effect could be reversed by EE treatment.
Collapse
Affiliation(s)
- Yue‐Ming Zhang
- Department of Neurology (Sleep Disorders)the Affiliated Chaohu Hospital of Anhui Medical UniversityHefeiAnhuiP. R. China
| | - Ru‐Meng Wei
- Department of Neurology (Sleep Disorders)the Affiliated Chaohu Hospital of Anhui Medical UniversityHefeiAnhuiP. R. China
| | - Ming‐Zhu Ni
- Department of Neurology (Sleep Disorders)the Affiliated Chaohu Hospital of Anhui Medical UniversityHefeiAnhuiP. R. China
| | - Qi‐Tao Wu
- Department of Neurology (Sleep Disorders)the Affiliated Chaohu Hospital of Anhui Medical UniversityHefeiAnhuiP. R. China
| | - Yun Li
- Department of Neurology (Sleep Disorders)the Affiliated Chaohu Hospital of Anhui Medical UniversityHefeiAnhuiP. R. China
| | - Yi‐Jun Ge
- Department of Neurology (Sleep Disorders)the Affiliated Chaohu Hospital of Anhui Medical UniversityHefeiAnhuiP. R. China
| | - Xiao‐Yi Kong
- Department of Neurology (Sleep Disorders)the Affiliated Chaohu Hospital of Anhui Medical UniversityHefeiAnhuiP. R. China
| | - Xue‐Yan Li
- Department of Neurology (Sleep Disorders)the Affiliated Chaohu Hospital of Anhui Medical UniversityHefeiAnhuiP. R. China
| | - Gui‐Hai Chen
- Department of Neurology (Sleep Disorders)the Affiliated Chaohu Hospital of Anhui Medical UniversityHefeiAnhuiP. R. China
| |
Collapse
|
7
|
Shields RH, Kaat A, Sansone SM, Michalak C, Coleman J, Thompson T, McKenzie FJ, Dakopolos A, Riley K, Berry-Kravis E, Widaman KF, Gershon RC, Hessl D. Sensitivity of the NIH Toolbox to Detect Cognitive Change in Individuals With Intellectual and Developmental Disability. Neurology 2023; 100:e778-e789. [PMID: 36460468 PMCID: PMC9984222 DOI: 10.1212/wnl.0000000000201528] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2022] [Accepted: 09/21/2022] [Indexed: 12/04/2022] Open
Abstract
BACKGROUND AND OBJECTIVE Individuals with intellectual disability (ID) experience protracted cognitive development compared with typical youth. Sensitive measurement of cognitive change in this population is a critical need for clinical trials and other intervention studies, but well-validated outcome measures are scarce. This study's aim was to evaluate the sensitivity of the NIH Toolbox Cognition Battery (NIHTB-CB) to detect developmental changes in groups with ID-fragile X syndrome (FXS), Down syndrome (DS), and other ID (OID)-and to provide further support for its use as an outcome measure for treatment trials. METHODS We administered the NIHTB-CB and a reference standard cross-validation measure (Stanford-Binet Intelligence Scales, Fifth Edition [SB5]) to 256 individuals with FXS, DS, and OID (ages 6-27 years). After 2 years of development, we retested 197 individuals. Group developmental changes in each cognitive domain of the NIHTB-CB and SB5 were assessed using latent change score models, and 2-year growth was evaluated at 3 age points (10, 16, and 22 years). RESULTS Overall, effect sizes of growth measured by the NIHTB-CB tests were comparable with or exceeded those of the SB5. The NIHTB-CB showed significant gains in almost all domains in OID at younger ages (10 years), with continued gains at 16 years and stability in early adulthood (22 years). The FXS group showed delayed gains in attention and inhibitory control compared with OID. The DS group had delayed gains in receptive vocabulary compared with OID. Unlike the other groups, DS had significant growth in early adulthood in 2 domains (working memory and attention/inhibitory control). Notably, each group's pattern of NIHTB-CB growth across development corresponded to their respective pattern of SB5 growth. DISCUSSION The NIHTB-CB is sensitive to developmental changes in individuals with ID. Comparison with levels and timing of growth on the cross-validation measure shows that the NIHTB-CB has potential to identify meaningful trajectories across cognitive domains and ID etiologies. Sensitivity to change within the context of treatment studies and delineation of clinically meaningful changes in NIHTB-CB scores, linked to daily functioning, must be established in future research to evaluate the battery more completely as a key outcome measure.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | | | | | | | | | | | - David Hessl
- From the MIND Institute and Department of Psychiatry and Behavioral Sciences (R.H.S., S.M.S., F.J.M., A.D., D.H.), University of California Davis, Sacramento; Northwestern University Feinberg School of Medicine (A.K., R.C.G.), Chicago, IL; Rush University Medical Center Departments of Pediatrics (C.M., E.B.), Neurological Sciences and Biochemistry, Chicago, IL; University of Denver Morgridge College of Education (J.C.), Denver, CO; University of Colorado School of Medicine (T.T.), Aurora; Regis University (K.R.), Denver, CO; and University of California Riverside Graduate School of Education (K.F.W.), Riverside.
| |
Collapse
|
8
|
Lorenzon N, Musoles-Lleó J, Turrisi F, Gomis-González M, De La Torre R, Dierssen M. State-of-the-art therapy for Down syndrome. Dev Med Child Neurol 2023. [PMID: 36692980 DOI: 10.1111/dmcn.15517] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/09/2022] [Revised: 12/04/2022] [Accepted: 12/19/2022] [Indexed: 01/25/2023]
Abstract
In the last decade, an important effort was made in the field of Down syndrome to find new interventions that improve cognition. These therapies have added to the traditional symptomatic treatments and to the drugs for treating Alzheimer disease in the general population repurposed for Down syndrome. Defining next-generation therapeutics will involve biomarker-based therapeutic decision-making, and preventive and multimodal interventions. However, translation of specific findings into effective therapeutic strategies has been disappointingly slow and has failed in many cases at the clinical level, leading to reduced credibility of mouse studies. This is aggravated by a tendency to favour large-magnitude effects and highly significant findings, leading to high expectations but also to a biased view of the complex pathophysiology of Down syndrome. Here, we review some of the most recent and promising strategies for ameliorating the cognitive state of individuals with Down syndrome. We studied the landscape of preclinical and clinical studies and conducted a thorough literature search on PubMed and ClinicalTrials.gov for articles published between June 2012 and August 2022 on therapies for ameliorating cognitive function in individuals with Down syndrome. We critically assess current therapeutic approaches, why therapies fail in clinical trials in Down syndrome, and what could be the path forward. We discuss some intrinsic difficulties for translational research, and the need for a framework that improves the detection of drug efficacy to avoid discarding compounds too early from the companies' pipelines.
Collapse
Affiliation(s)
- Nicola Lorenzon
- Centre for Genomic Regulation, The Barcelona Institute of Science and Technology, Barcelona, Spain.,Universitat Pompeu Fabra, Barcelona, Spain
| | - Juanluis Musoles-Lleó
- Centre for Genomic Regulation, The Barcelona Institute of Science and Technology, Barcelona, Spain.,Universitat Pompeu Fabra, Barcelona, Spain
| | - Federica Turrisi
- Centre for Genomic Regulation, The Barcelona Institute of Science and Technology, Barcelona, Spain.,Universitat Pompeu Fabra, Barcelona, Spain.,Integrative Pharmacology and Systems Neurosciences Research Group, Neurosciences Research Program, Hospital del Mar Medical Research Institute, Barcelona, Spain
| | - Maria Gomis-González
- Integrative Pharmacology and Systems Neurosciences Research Group, Neurosciences Research Program, Hospital del Mar Medical Research Institute, Barcelona, Spain
| | - Rafael De La Torre
- Universitat Pompeu Fabra, Barcelona, Spain.,Integrative Pharmacology and Systems Neurosciences Research Group, Neurosciences Research Program, Hospital del Mar Medical Research Institute, Barcelona, Spain.,Centro de Investigación Biomédica en Red de Fisiopatología de la Obesidad y la Nutrición, Instituto de Salud Carlos III, Madrid, Spain
| | - Mara Dierssen
- Centre for Genomic Regulation, The Barcelona Institute of Science and Technology, Barcelona, Spain.,Universitat Pompeu Fabra, Barcelona, Spain.,Centro de Investigación Biomédica en Red de Enfermedades Raras, Barcelona, Spain
| |
Collapse
|
9
|
Pharmacological Signature and Target Specificity of Inhibitory Circuits Formed by Martinotti Cells in the Mouse Barrel Cortex. J Neurosci 2023; 43:14-27. [PMID: 36384682 PMCID: PMC9838699 DOI: 10.1523/jneurosci.1661-21.2022] [Citation(s) in RCA: 7] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2021] [Revised: 09/13/2022] [Accepted: 10/26/2022] [Indexed: 11/18/2022] Open
Abstract
In the neocortex, fast synaptic inhibition orchestrates both spontaneous and sensory-evoked activity. GABAergic interneurons (INs) inhibit pyramidal neurons (PNs) directly, modulating their output activity and thus contributing to balance cortical networks. Moreover, several IN subtypes also inhibit other INs, forming specific disinhibitory circuits, which play crucial roles in several cognitive functions. Here, we studied a subpopulation of somatostatin-positive INs, the Martinotti cells (MCs) in layer 2/3 of the mouse barrel cortex (both sexes). MCs inhibit the distal portion of PN apical dendrites, thus controlling dendrite electrogenesis and synaptic integration. Yet, it is poorly understood whether MCs inhibit other elements of the cortical circuits, and the connectivity properties with non-PN targets are unknown. We found that MCs have a strong preference for PN dendrites, but they also considerably connect with parvalbumin-positive, vasoactive intestinal peptide-expressing, and layer 1 (L1) INs. Remarkably, GABAergic synapses from MCs exhibited clear cell type-specific short-term plasticity. Moreover, whereas the biophysical properties of MC-PN synapses were consistent with distal dendritic inhibition, MC-IN synapses exhibited characteristics of fast perisomatic inhibition. Finally, MC-PN connections used α5-containing GABAA receptors (GABAARs), but this subunit was not expressed by the other INs targeted by MCs. We reveal a specialized connectivity blueprint of MCs within different elements of superficial cortical layers. In addition, our results identify α5-GABAARs as the molecular fingerprint of MC-PN dendritic inhibition. This is of critical importance, given the role of α5-GABAARs in cognitive performance and their involvement in several brain diseases.SIGNIFICANCE STATEMENT Martinotti cells (MCs) are a prominent, broad subclass of somatostatin-expressing GABAergic interneurons, specialized in controlling distal dendrites of pyramidal neurons (PNs) and taking part in several cognitive functions. Here we characterize the connectivity pattern of MCs with other interneurons in the superficial layers (L1 and L2/3) of the mouse barrel cortex. We found that the connectivity pattern of MCs with PNs as well as parvalbumin, vasoactive intestinal peptide, and L1 interneurons exhibit target-specific plasticity and biophysical properties. The specificity of α5-GABAARs at MC-PN synapses and the lack or functional expression of this subunit by other cell types define the molecular identity of MC-PN connections and the exclusive involvement of this inhibitory circuits in α5-dependent cognitive tasks.
Collapse
|
10
|
Bartesaghi R. Brain circuit pathology in Down syndrome: from neurons to neural networks. Rev Neurosci 2022; 34:365-423. [PMID: 36170842 DOI: 10.1515/revneuro-2022-0067] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2022] [Accepted: 08/28/2022] [Indexed: 11/15/2022]
Abstract
Down syndrome (DS), a genetic pathology caused by triplication of chromosome 21, is characterized by brain hypotrophy and impairment of cognition starting from infancy. While studies in mouse models of DS have elucidated the major neuroanatomical and neurochemical defects of DS, comparatively fewer investigations have focused on the electrophysiology of the DS brain. Electrical activity is at the basis of brain functioning. Therefore, knowledge of the way in which brain circuits operate in DS is fundamental to understand the causes of behavioral impairment and devise targeted interventions. This review summarizes the state of the art regarding the electrical properties of the DS brain, starting from individual neurons and culminating in signal processing in whole neuronal networks. The reported evidence derives from mouse models of DS and from brain tissues and neurons derived from individuals with DS. EEG data recorded in individuals with DS are also provided as a key tool to understand the impact of brain circuit alterations on global brain activity.
Collapse
Affiliation(s)
- Renata Bartesaghi
- Department of Biomedical and Neuromotor Sciences, University of Bologna, 40126 Bologna, Italy
| |
Collapse
|
11
|
Troppoli TA, Zanos P, Georgiou P, Gould TD, Rudolph U, Thompson SM. Negative Allosteric Modulation of Gamma-Aminobutyric Acid A Receptors at α5 Subunit-Containing Benzodiazepine Sites Reverses Stress-Induced Anhedonia and Weakened Synaptic Function in Mice. Biol Psychiatry 2022; 92:216-226. [PMID: 35120711 PMCID: PMC9198111 DOI: 10.1016/j.biopsych.2021.11.024] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/03/2021] [Revised: 11/12/2021] [Accepted: 11/23/2021] [Indexed: 12/20/2022]
Abstract
BACKGROUND Abnormal reward processing, typically anhedonia, is a hallmark of human depression and is accompanied by altered functional connectivity in reward circuits. Negative allosteric modulators of GABAA (gamma-aminobutyric acid A) receptors (GABA-NAMs) have rapid antidepressant-like properties in rodents and exert few adverse effects, but molecular targets underlying their behavioral and synaptic effects remain undetermined. We hypothesized that GABA-NAMs act at the benzodiazepine site of GABAA receptors containing α5 subunits to increase gamma oscillatory activity, strengthen synapses in reward circuits, and reverse anhedonia. METHODS Anhedonia was induced by chronic stress in male mice and assayed by preferences for sucrose and female urine (n = 5-7 mice/group). Hippocampal slices were then prepared for electrophysiological recording (n = 1-6 slices/mouse, 4-6 mice/group). Electroencephalography power was quantified in response to GABA-NAM and ketamine administration (n = 7-9 mice/group). RESULTS Chronic stress reduced sucrose and female urine preferences and hippocampal temporoammonic-CA1 synaptic strength. A peripheral injection of the GABA-NAM MRK-016 restored hedonic behavior and AMPA-to-NMDA ratios in wild-type mice. These actions were prevented by pretreatment with the benzodiazepine site antagonist flumazenil. MRK-016 administration increased gamma power over the prefrontal cortex in wild-type mice but not α5 knockout mice, whereas ketamine promoted gamma power in both genotypes. Hedonic behavior and AMPA-to-NMDA ratios were only restored by MRK-016 in stressed wild-type mice but not α5 knockout mice. CONCLUSIONS α5-Selective GABA-NAMs exert rapid anti-anhedonic actions and restore the strength of synapses in reward regions by acting at the benzodiazepine site of α5-containing GABAA receptors. These results encourage human studies using GABA-NAMs to treat depression by providing readily translatable measures of target engagement.
Collapse
Affiliation(s)
- Timothy A. Troppoli
- Department of Physiology, University of Maryland School of Medicine, 655 W. Baltimore St., Baltimore, MD 21201,Molecular Medicine Program, University of Maryland School of Medicine, 655 W. Baltimore St., Baltimore, MD 21201
| | - Panos Zanos
- Department of Psychiatry, University of Maryland School of Medicine, 655 W. Baltimore St., Baltimore, MD 21201,Current address: Department of Psychology, University of Cyprus, 1 Panepistimiou Avenue, Aglantzia, 2109, PO Box 1678, Nicosia, Cyprus
| | - Polymnia Georgiou
- Department of Psychiatry, University of Maryland School of Medicine, 655 W. Baltimore St., Baltimore, MD 21201
| | - Todd D. Gould
- Department of Psychiatry, University of Maryland School of Medicine, 655 W. Baltimore St., Baltimore, MD 21201,Department of Anatomy & Neurobiology, University of Maryland School of Medicine, 655 W. Baltimore St., Baltimore, MD 21201,Department of Pharmacology, University of Maryland School of Medicine, 655 W. Baltimore St., Baltimore, MD 21201,Veterans Affairs Maryland Health Care System, Baltimore, MD, 21201
| | - Uwe Rudolph
- Department of Comparative Biosciences and Carl R. Woese Institute for Genomic Biology, College of Veterinary Medicine, University of Illinois at Urbana-Champaign, 2001 S Lincoln Ave, Urbana, IL 61802-6178
| | - Scott M. Thompson
- Department of Physiology, University of Maryland School of Medicine, 655 W. Baltimore St., Baltimore, MD 21201,Department of Psychiatry, University of Maryland School of Medicine, 655 W. Baltimore St., Baltimore, MD 21201,To whom correspondence should be addressed:
| |
Collapse
|
12
|
He CF, Xue WJ, Xu XD, Wang JT, Wang XR, Feng Y, Zhou HG, Guo JC. Knockdown of NRSF Alleviates Ischemic Brain Injury and Microvasculature Defects in Diabetic MCAO Mice. Front Neurol 2022; 13:869220. [PMID: 35645950 PMCID: PMC9136417 DOI: 10.3389/fneur.2022.869220] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2022] [Accepted: 04/04/2022] [Indexed: 11/26/2022] Open
Abstract
Diabetes is one of the well-established risk factors of stroke and is associated with a poor outcome in patients with stroke. Previous studies have shown that the expression of neuron restrictive silencer factor (NRSF) is elevated in diabetes as well as ischemic stroke. However, the role of NRSF in regulating an outcome of diabetic ischemic stroke has not been completely understood. Here, we hypothesized that diabetes-induced NRSF elevation can aggravate brain injury and cognition impairment in ischemic stroke. The diabetic ischemic stroke mice model was established by 8 weeks of high-fat-diet feeding and 5 days of streptozotocin injection followed by 30 min of middle cerebral artery occlusion (MCAO). We found that diabetes enhanced the MCAO-induced elevation of NRSF in the hippocampus in accompany with an elevation of its corepressors, HDAC1, and mSin3A, and decrease of β-TrCP. By using histological/immunofluorescence staining and neurobehavioral testing, our results showed that the brain damage and learning/memory impairment were aggravated in diabetic ischemic mice but significantly attenuated after stereotaxic injection of NRSF-shRNA. Meanwhile, by performing whole-brain clearing with PEGASOS, microvascular reconstruction, western blotting, and ELISA, we found that NRSF-shRNA markedly alleviated the vasculature disorders and rescued the suppression of NRP-1, VEGF, and VEGFR2 in the hippocampus of diabetic ischemic mice. Therefore, our results demonstrated for the first time that the elevation of hippocampal NRSF plays an important role in alleviating brain injury and cognitive disabilities in diabetic ischemic mice, potentially via the reduction of NRP-1/VEGF signaling.
Collapse
Affiliation(s)
- Cheng-Feng He
- State Key Laboratory of Medical Neurobiology and MOE Frontiers Center for Brain Science, Department of Translational Neuroscience, Jing'an District Centre Hospital of Shanghai, Institutes of Brain Science, Fudan University, Shanghai, China
| | - Wen-Jiao Xue
- State Key Laboratory of Medical Neurobiology and MOE Frontiers Center for Brain Science, Department of Translational Neuroscience, Jing'an District Centre Hospital of Shanghai, Institutes of Brain Science, Fudan University, Shanghai, China
| | - Xiao-Die Xu
- State Key Laboratory of Medical Neurobiology and MOE Frontiers Center for Brain Science, Department of Translational Neuroscience, Jing'an District Centre Hospital of Shanghai, Institutes of Brain Science, Fudan University, Shanghai, China
| | - Jian-Tao Wang
- Department of Geriatric Neurology of Huashan Hospital, National Clinical Research Center for Aging and Medicine, Fudan University, Shanghai, China
| | - Xin-Ru Wang
- Department of Geriatric Neurology of Huashan Hospital, National Clinical Research Center for Aging and Medicine, Fudan University, Shanghai, China
| | - Yi Feng
- State Key Laboratory of Medical Neurobiology, Department of Integrative Medicine and Neurobiology, School of Basic Medical Sciences, Institutes of Brain Science, Brain Science Collaborative Innovation Center, Fudan Institutes of Integrative Medicine, Fudan University, Shanghai, China
- *Correspondence: Yi Feng
| | - Hou-Guang Zhou
- Department of Geriatric Neurology of Huashan Hospital, National Clinical Research Center for Aging and Medicine, Fudan University, Shanghai, China
- Hou-Guang Zhou
| | - Jing-Chun Guo
- State Key Laboratory of Medical Neurobiology and MOE Frontiers Center for Brain Science, Department of Translational Neuroscience, Jing'an District Centre Hospital of Shanghai, Institutes of Brain Science, Fudan University, Shanghai, China
- Jing-Chun Guo
| |
Collapse
|
13
|
Connexin 43 gap junction-mediated astrocytic network reconstruction attenuates isoflurane-induced cognitive dysfunction in mice. J Neuroinflammation 2022; 19:64. [PMID: 35255943 PMCID: PMC8903726 DOI: 10.1186/s12974-022-02424-y] [Citation(s) in RCA: 32] [Impact Index Per Article: 16.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2021] [Accepted: 02/23/2022] [Indexed: 01/18/2023] Open
Abstract
Background Postoperative cognitive dysfunction (POCD) is a common complication following anesthesia and surgery. General anesthetic isoflurane has potential neurotoxicity and induces cognitive impairments, but the exact mechanism remains unclear. Astrocytes form interconnected networks in the adult brain through gap junctions (GJs), which primarily comprise connexin 43 (Cx43), and play important roles in brain homeostasis and functions such as memory. However, the role of the GJ-Cx43-mediated astrocytic network in isoflurane-induced cognitive dysfunction has not been defined. Methods 4-month-old male C57BL/6 mice were exposure to long-term isoflurane to induce cognitive impairment. To simulate an in vitro isoflurane-induced cognitive dysfunction‐like condition, primary mouse astrocytes were subjected to long-term isoflurane exposure. Cognitive function was assessed by Y-maze and fear conditioning tests. Western blot was used to determine the expression levels of different functional configurations of Cx43. The morphology of the GJs-Cx43 was evaluated by immunofluorescence staining. Levels of IL-1β and IL-6 were examined by ELISA. The ability of GJs-Cx43-mediated intercellular communication was examined by lucifer yellow dye transfer assay. Ethidium bromide uptake assays were used to measure the activity of Cx43 hemichannels. The ultrastructural morphology of astrocyte gap junctions and tripartite synapse were observed by transmission electron microscopy. Results After long-term isoflurane anesthesia, the GJs formed by Cx43 in the mouse hippocampus and primary mouse astrocytes were significantly reduced, GJs function was impaired, hemichannel activity was enhanced, the levels of IL-1β and IL-6 were increased, and mice showed significant cognitive impairment. After treatment with the novel GJ-Cx43 enhancer ZP1609, GJ-Cx43-mediated astrocytic network function was enhanced, neuroinflammation was alleviated, and ameliorated cognition dysfunction induced by long-term isoflurane exposure. However, ZP1609 enhances the astrocytic network by promoting Cx43 to form GJs without affecting hemichannel activity. Additionally, our data showed that long-term isoflurane exposure does not alter the structure of tripartite synapse. Conclusion Our results reveal a novel mechanism of the GJ-Cx43-mediated astrocytic network involved in isoflurane-induced neuroinflammation and cognitive impairments, which provides new mechanistic insight into the pathogenesis of POCD and identifies potential targets for its treatment. Supplementary Information The online version contains supplementary material available at 10.1186/s12974-022-02424-y.
Collapse
|
14
|
Ni K, Zhu J, Xu X, Liu Y, Yang S, Huang Y, Xu R, Jiang L, Zhang J, Zhang W, Ma Z. Hippocampal Activated Microglia May Contribute to Blood–Brain Barrier Impairment and Cognitive Dysfunction in Post-Traumatic Stress Disorder-Like Rats. J Mol Neurosci 2022; 72:975-982. [PMID: 35167061 PMCID: PMC8852956 DOI: 10.1007/s12031-022-01981-4] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2021] [Accepted: 02/02/2022] [Indexed: 12/20/2022]
Abstract
Post-traumatic stress disorder (PTSD)-associated cognitive dysfunction significantly disturbs patients’ quality of life and will to live. However, its underlying mechanism is as yet unknown. Recent researches indicate that blood–brain barrier (BBB) breakdown is responsible for early cognitive dysfunction. Microglia might participate in remodeling of BBB-associated tight junction and regulating BBB integrity. Nevertheless, it is unclear whether microglia activation and BBB injury involve in PTSD-associated cognitive dysfunction. Hence, we established an animal model of PTSD, single prolonged stress (SPS), and investigated permeability changes in the hippocampus and further explored the effects of microglia on BBB remodeling. The Y maze was used to assess the changes of cognitive function. The sodium fluorescein (NaFlu) assay and western blotting analysis were employed to detect BBB integrity changes. Minocycline was administered to inhibit microglial activation. Immunofluorescence stains were used to assess the activation states in microglia. The results showed that SPS-exposed rats exhibited poorer cognitive performance, higher passage of NaFlu, and lower expression of tight junction proteins (occludin and claudin 5) in the hippocampus on the day after SPS, but no difference on the 7th day. Inhibition of microglial activation by minocycline attenuated poor cognitive performance and BBB impairment including the extravasation of NaFlu and protein levels of the tight junction. Taken together, the present study indicates that BBB impairment may underlie the shared pathological basis of PTSD and cognitive dysfunction. Microglial activation may involve in BBB remodeling at the early stage of SPS.
Collapse
Affiliation(s)
- Kun Ni
- Department of Anesthesiology, Drum Tower Hospital, Medical School of Nanjing University, 321 Zhongshan Road, Nanjing, 210008, China
| | - Jixiang Zhu
- Department of Anesthesiology, Drum Tower Hospital, Medical School of Nanjing University, 321 Zhongshan Road, Nanjing, 210008, China
| | - Xuan Xu
- Department of Anesthesiology, Drum Tower Hospital, Medical School of Nanjing University, 321 Zhongshan Road, Nanjing, 210008, China
| | - Yue Liu
- Department of Anesthesiology, Drum Tower Hospital, Medical School of Nanjing University, 321 Zhongshan Road, Nanjing, 210008, China
| | - Shuai Yang
- Department of Anesthesiology, Drum Tower Hospital, Medical School of Nanjing University, 321 Zhongshan Road, Nanjing, 210008, China
| | - Yulin Huang
- Department of Anesthesiology, Drum Tower Hospital, Medical School of Nanjing University, 321 Zhongshan Road, Nanjing, 210008, China
| | - Rui Xu
- Department of Anesthesiology, Drum Tower Hospital, Medical School of Nanjing University, 321 Zhongshan Road, Nanjing, 210008, China
| | - Li Jiang
- Nanjing Drum Tower Hospital Clinical College of Nanjing Medical University, 321 Zhongshan Road, Nanjing, 210008, China
| | - Juan Zhang
- Department of Anesthesiology, Drum Tower Hospital, Medical School of Nanjing University, 321 Zhongshan Road, Nanjing, 210008, China.
| | - Wei Zhang
- Department of Anesthesiology, Drum Tower Hospital, Medical School of Nanjing University, 321 Zhongshan Road, Nanjing, 210008, China.
| | - Zhengliang Ma
- Department of Anesthesiology, Drum Tower Hospital, Medical School of Nanjing University, 321 Zhongshan Road, Nanjing, 210008, China.
- Nanjing Drum Tower Hospital Clinical College of Nanjing Medical University, 321 Zhongshan Road, Nanjing, 210008, China.
| |
Collapse
|
15
|
Kida E, Walus M, Albertini G, Golabek AA. Long-term voluntary running modifies the levels of proteins of the excitatory/inhibitory system and reduces reactive astrogliosis in the brain of Ts65Dn mouse model for Down syndrome. Brain Res 2021; 1766:147535. [PMID: 34043998 DOI: 10.1016/j.brainres.2021.147535] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2021] [Revised: 05/20/2021] [Accepted: 05/22/2021] [Indexed: 09/30/2022]
Abstract
We showed previously that voluntary long-term running improved cognition and motor skills, but in an age-dependent manner, in the Ts65Dn mouse model for Down syndrome (DS). Presently, we investigated the effect of running on the levels of some key proteins of the excitatory/inhibitory system, which is impaired in the trisomic brain, and on astroglia, a vital component of this system. Ts65Dn mice had free access to a running wheel for 9-13 months either from weaning or from the age of 7 months. Sedentary Ts65Dn mice served as controls. We found that running modified the levels of four of the seven proteins we tested that are associated with the glutamatergic/GABA-ergic system. Thus, Ts65Dn runners demonstrated increased levels of glutamine synthetase and metabotropic glutamate receptor 1 and decreased levels of glutamate transporter 1 and glutamic acid decarboxylase 65 (GAD65) versus sedentary mice, but of metabotropic glutamate receptor 1 and GAD65 only in the post-weaning cohort. GAD67, ionotropic N-methyl-D-aspartate type receptor subunit 1, and GABAAα5 receptors' levels were similar in runners and sedentary animals. The number of glial fibrillary acidic protein (GFAP)-positive astrocytes and the levels of GFAP were significantly reduced in runners relative to sedentary mice. Our study provides new insight into the mechanisms underlying the beneficial effect of voluntary, sustained running on function of the trisomic brain by identifying the involvement of proteins associated with glutamatergic and GABAergic systems and reduction in reactive astrogliosis.
Collapse
Affiliation(s)
- Elizabeth Kida
- Department of Developmental Neurobiology, New York State Institute for Basic Research in Developmental Disabilities, Staten Island, NY 10314, USA
| | - Marius Walus
- Department of Developmental Neurobiology, New York State Institute for Basic Research in Developmental Disabilities, Staten Island, NY 10314, USA
| | - Giorgio Albertini
- Child Development Department, IRCCS San Raffaele Pisana, Rome and San Raffaele Cassino, Italy
| | - Adam A Golabek
- Department of Developmental Neurobiology, New York State Institute for Basic Research in Developmental Disabilities, Staten Island, NY 10314, USA.
| |
Collapse
|
16
|
Knoflach F, Bertrand D. Pharmacological modulation of GABA A receptors. Curr Opin Pharmacol 2021; 59:3-10. [PMID: 34020139 DOI: 10.1016/j.coph.2021.04.003] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2020] [Accepted: 04/13/2021] [Indexed: 10/21/2022]
Abstract
Ligand-gated ion channels are integral membrane proteins that activate through a change in conformation upon transmitter binding and were identified as key players of brain function. GABAA receptors are major inhibitory ligand-gated ion channels of this protein family. They are the target of many therapeutic compounds widely used in the clinic and continue to attract the attention of academic and pharmaceutical laboratories. Advances in the knowledge of the structure of GABAA receptors at the molecular level with unprecedented resolution enabled the determination of the binding sites of many allosteric modulators revealing the nature of their interactions with the receptors. Herein, we review the latest findings on allosteric modulation of GABAA receptors and their relevance to drug discovery.
Collapse
Affiliation(s)
- Frédéric Knoflach
- F. Hoffmann-La Roche Ltd., Neuroscience & Rare Diseases (NRD) Research, Roche Innovation Center Basel, Basel, 4070, Switzerland
| | - Daniel Bertrand
- HiQScreen Sàrl, 6 rte de Compois, Vésenaz, Geneva, 1222, Switzerland.
| |
Collapse
|
17
|
Atypical electrophysiological and behavioral responses to diazepam in a leading mouse model of Down syndrome. Sci Rep 2021; 11:9521. [PMID: 33947925 PMCID: PMC8096846 DOI: 10.1038/s41598-021-89011-y] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2021] [Accepted: 04/15/2021] [Indexed: 02/02/2023] Open
Abstract
Mounting evidence implicates dysfunctional GABAAR-mediated neurotransmission as one of the underlying causes of learning and memory deficits observed in the Ts65Dn mouse model of Down syndrome (DS). The specific origin and nature of such dysfunction is still under investigation, which is an issue with practical consequences to preclinical and clinical research, as well as to the care of individuals with DS and anxiety disorder or those experiencing seizures in emergency room settings. Here, we investigated the effects of GABAAR positive allosteric modulation (PAM) by diazepam on brain activity, synaptic plasticity, and behavior in Ts65Dn mice. We found Ts65Dn mice to be less sensitive to diazepam, as assessed by electroencephalography, long-term potentiation, and elevated plus-maze. Still, diazepam pre-treatment displayed typical effectiveness in reducing susceptibility and severity to picrotoxin-induced seizures in Ts65Dn mice. These findings fill an important gap in the understanding of GABAergic function in a key model of DS.
Collapse
|
18
|
Signalling pathways contributing to learning and memory deficits in the Ts65Dn mouse model of Down syndrome. Neuronal Signal 2021; 5:NS20200011. [PMID: 33763235 PMCID: PMC7955101 DOI: 10.1042/ns20200011] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2020] [Revised: 02/24/2021] [Accepted: 02/25/2021] [Indexed: 01/30/2023] Open
Abstract
Down syndrome (DS) is a genetic trisomic disorder that produces life-long changes in physiology and cognition. Many of the changes in learning and memory seen in DS are reminiscent of disorders involving the hippocampal/entorhinal circuit. Mouse models of DS typically involve trisomy of murine chromosome 16 is homologous for many of the genes triplicated in human trisomy 21, and provide us with good models of changes in, and potential pharmacotherapy for, human DS. Recent careful dissection of the Ts65Dn mouse model of DS has revealed differences in key signalling pathways from the basal forebrain to the hippocampus and associated rhinal cortices, as well as changes in the microstructure of the hippocampus itself. In vivo behavioural and electrophysiological studies have shown that Ts65Dn animals have difficulties in spatial memory that mirror hippocampal deficits, and have changes in hippocampal electrophysiological phenomenology that may explain these differences, and align with expectations generated from in vitro exploration of this model. Finally, given the existing data, we will examine the possibility for pharmacotherapy for DS, and outline the work that remains to be done to fully understand this system.
Collapse
|
19
|
Cao JW, Guan W, Yu YC, Fu Y. Synaptic Transmission from Somatostatin-expressing Interneurons to Excitatory Neurons Mediated by α5-subunit-containing GABA A Receptors in the Developing Visual Cortex. Neuroscience 2020; 449:147-156. [PMID: 32926954 DOI: 10.1016/j.neuroscience.2020.09.008] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2020] [Revised: 08/29/2020] [Accepted: 09/02/2020] [Indexed: 11/16/2022]
Abstract
Dendrite-targeting somatostatin-expressing interneurons (SST-INs) powerfully control signal integration and synaptic plasticity in pyramidal dendrites during cortical development. We previously showed that synaptic transmission from SST-INs to pyramidal cells (PCs) (SST-IN → PC) in the mouse visual cortex suddenly declined at around the second postnatal week. However, it is unclear what specific postsynaptic mechanisms underlie this developmental change. Using multiple whole-cell patch-clamp recordings, we found that application of an α5-GABAA receptor-selective inverse agonist, alpha5IA, significantly weakened SST-IN → PC unitary inhibitory postsynaptic currents (uIPSCs) in layer 2/3 of the mouse visual cortex, but had no effect on uIPSCs from SST-INs to other types of interneurons. The extent of alpha5IA-induced reduction of SST-IN → PC synaptic transmission was significantly larger at postnatal days 11-13 (P11-13) than P14-17. Moreover, α5-subunit-containing GABAA receptors (α5-GABAARs)-mediated uIPSCs had slow rise and decay kinetics. Apart from pharmacological test, we observed that SST-IN → PC synapses did indeed contain α5-GABAARs by immunogold labeling for electron microscopy. More importantly, coinciding with the weakening of SST-IN → PC synaptic transmission, the number of α5-GABAAR particles in SST-IN → PC synapses significantly decreased at around the second postnatal week. Together, these data indicate that α5-GABAARs are involved in synaptic transmission from SST-INs to PCs in the neocortex, and are significantly diminished around the second postnatal week.
Collapse
Affiliation(s)
- Jun-Wei Cao
- Jing'an District Center Hospital of Shanghai, State Key Laboratory of Medical Neurobiology and MOE Frontiers Center for Brain Science, Institutes of Brain Science, Fudan University, Shanghai, China
| | - Wuqiang Guan
- Jing'an District Center Hospital of Shanghai, State Key Laboratory of Medical Neurobiology and MOE Frontiers Center for Brain Science, Institutes of Brain Science, Fudan University, Shanghai, China
| | - Yong-Chun Yu
- Jing'an District Center Hospital of Shanghai, State Key Laboratory of Medical Neurobiology and MOE Frontiers Center for Brain Science, Institutes of Brain Science, Fudan University, Shanghai, China
| | - Yinghui Fu
- Jing'an District Center Hospital of Shanghai, State Key Laboratory of Medical Neurobiology and MOE Frontiers Center for Brain Science, Institutes of Brain Science, Fudan University, Shanghai, China.
| |
Collapse
|
20
|
Lourenço J, Koukouli F, Bacci A. Synaptic inhibition in the neocortex: Orchestration and computation through canonical circuits and variations on the theme. Cortex 2020; 132:258-280. [PMID: 33007640 DOI: 10.1016/j.cortex.2020.08.015] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2020] [Revised: 07/28/2020] [Accepted: 08/31/2020] [Indexed: 12/15/2022]
Abstract
The neocortex plays a crucial role in all basic and abstract cognitive functions. Conscious mental processes are achieved through a correct flow of information within and across neocortical networks, whose particular activity state results from a tight balance between excitation and inhibition. The proper equilibrium between these indissoluble forces is operated with multiscale organization: along the dendro-somatic axis of single neurons and at the network level. Fast synaptic inhibition is assured by a multitude of inhibitory interneurons. During cortical activities, these cells operate a finely tuned division of labor that is epitomized by their detailed connectivity scheme. Recent results combining the use of mouse genetics, cutting-edge optical and neurophysiological approaches have highlighted the role of fast synaptic inhibition in driving cognition-related activity through a canonical cortical circuit, involving several major interneuron subtypes and principal neurons. Here we detail the organization of this cortical blueprint and we highlight the crucial role played by different neuron types in fundamental cortical computations. In addition, we argue that this canonical circuit is prone to many variations on the theme, depending on the resolution of the classification of neuronal types, and the cortical area investigated. Finally, we discuss how specific alterations of distinct inhibitory circuits can underlie several devastating brain diseases.
Collapse
Affiliation(s)
- Joana Lourenço
- Sorbonne Université, Institut Du Cerveau-Paris Brain Institute-ICM, Inserm U1127, CNRS UMR 7225, 47 Boulevard de L'Hôpital, 75013, Paris, France.
| | - Fani Koukouli
- Sorbonne Université, Institut Du Cerveau-Paris Brain Institute-ICM, Inserm U1127, CNRS UMR 7225, 47 Boulevard de L'Hôpital, 75013, Paris, France
| | - Alberto Bacci
- Sorbonne Université, Institut Du Cerveau-Paris Brain Institute-ICM, Inserm U1127, CNRS UMR 7225, 47 Boulevard de L'Hôpital, 75013, Paris, France.
| |
Collapse
|
21
|
Zorrilla de San Martin J, Donato C, Peixoto J, Aguirre A, Choudhary V, De Stasi AM, Lourenço J, Potier MC, Bacci A. Alterations of specific cortical GABAergic circuits underlie abnormal network activity in a mouse model of Down syndrome. eLife 2020; 9:58731. [PMID: 32783810 PMCID: PMC7481006 DOI: 10.7554/elife.58731] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2020] [Accepted: 08/11/2020] [Indexed: 12/21/2022] Open
Abstract
Down syndrome (DS) results in various degrees of cognitive deficits. In DS mouse models, recovery of behavioral and neurophysiological deficits using GABAAR antagonists led to hypothesize an excessive activity of inhibitory circuits in this condition. Nonetheless, whether over-inhibition is present in DS and whether this is due to specific alterations of distinct GABAergic circuits is unknown. In the prefrontal cortex of Ts65Dn mice (a well-established DS model), we found that the dendritic synaptic inhibitory loop formed by somatostatin-positive Martinotti cells (MCs) and pyramidal neurons (PNs) was strongly enhanced, with no alteration in their excitability. Conversely, perisomatic inhibition from parvalbumin-positive (PV) interneurons was unaltered, but PV cells of DS mice lost their classical fast-spiking phenotype and exhibited increased excitability. These microcircuit alterations resulted in reduced pyramidal-neuron firing and increased phase locking to cognitive-relevant network oscillations in vivo. These results define important synaptic and circuit mechanisms underlying cognitive dysfunctions in DS. Down syndrome is a genetic disorder caused by the presence of a third copy of chromosome 21. Affected individuals show delayed growth, characteristic facial features, altered brain development; with mild to severe intellectual disability. The exact mechanisms underlying the intellectual disability in Down syndrome are unclear, although studies in mice have provided clues. Drugs that reduce the inhibitory activity in the brain improve cognition in a mouse model of Down syndrome. This suggests that excessive inhibitory activity may contribute to the cognitive impairments. Many different neural circuits generate inhibitory activity in the brain. These circuits contain cells called interneurons. Sub-types of interneurons act via different mechanisms to reduce the activity of neurons. Identifying the interneurons that are affected in Down syndrome would thus improve our understanding of the brain basis of the disorder. Zorrilla de San Martin et al. compared mice with Down syndrome to unaffected control mice. The results revealed an increased activity in two types of inhibitory brain circuits in Down syndrome. The first contains interneurons called Martinotti cells. These help the brain to combine inputs from different sources. The second contains interneurons called parvalbumin-positive basket cells. These help different areas of the brain to synchronize their activity, which in turn makes it easier for those areas to exchange information. By mapping the changes in inhibitory circuits in Down syndrome, Zorrilla de San Martin et al. have provided new insights into the biological basis of the disorder. Future studies should examine whether targeting specific circuits with pharmacological treatments could ultimately help reduce the associated impairments.
Collapse
Affiliation(s)
| | - Cristina Donato
- Institut du Cerveau (ICM), CNRS UMR 7225 - Inserm U1127, Sorbonne Université, Paris, France
| | - Jérémy Peixoto
- Institut du Cerveau (ICM), CNRS UMR 7225 - Inserm U1127, Sorbonne Université, Paris, France
| | - Andrea Aguirre
- Institut du Cerveau (ICM), CNRS UMR 7225 - Inserm U1127, Sorbonne Université, Paris, France
| | - Vikash Choudhary
- Institut du Cerveau (ICM), CNRS UMR 7225 - Inserm U1127, Sorbonne Université, Paris, France
| | | | - Joana Lourenço
- Institut du Cerveau (ICM), CNRS UMR 7225 - Inserm U1127, Sorbonne Université, Paris, France
| | - Marie-Claude Potier
- Institut du Cerveau (ICM), CNRS UMR 7225 - Inserm U1127, Sorbonne Université, Paris, France
| | - Alberto Bacci
- Institut du Cerveau (ICM), CNRS UMR 7225 - Inserm U1127, Sorbonne Université, Paris, France
| |
Collapse
|
22
|
Antonarakis SE, Skotko BG, Rafii MS, Strydom A, Pape SE, Bianchi DW, Sherman SL, Reeves RH. Down syndrome. Nat Rev Dis Primers 2020; 6:9. [PMID: 32029743 PMCID: PMC8428796 DOI: 10.1038/s41572-019-0143-7] [Citation(s) in RCA: 391] [Impact Index Per Article: 97.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 12/17/2019] [Indexed: 12/11/2022]
Abstract
Trisomy 21, the presence of a supernumerary chromosome 21, results in a collection of clinical features commonly known as Down syndrome (DS). DS is among the most genetically complex of the conditions that are compatible with human survival post-term, and the most frequent survivable autosomal aneuploidy. Mouse models of DS, involving trisomy of all or part of human chromosome 21 or orthologous mouse genomic regions, are providing valuable insights into the contribution of triplicated genes or groups of genes to the many clinical manifestations in DS. This endeavour is challenging, as there are >200 protein-coding genes on chromosome 21 and they can have direct and indirect effects on homeostasis in cells, tissues, organs and systems. Although this complexity poses formidable challenges to understanding the underlying molecular basis for each of the many clinical features of DS, it also provides opportunities for improving understanding of genetic mechanisms underlying the development and function of many cell types, tissues, organs and systems. Since the first description of trisomy 21, we have learned much about intellectual disability and genetic risk factors for congenital heart disease. The lower occurrence of solid tumours in individuals with DS supports the identification of chromosome 21 genes that protect against cancer when overexpressed. The universal occurrence of the histopathology of Alzheimer disease and the high prevalence of dementia in DS are providing insights into the pathology and treatment of Alzheimer disease. Clinical trials to ameliorate intellectual disability in DS signal a new era in which therapeutic interventions based on knowledge of the molecular pathophysiology of DS can now be explored; these efforts provide reasonable hope for the future.
Collapse
Affiliation(s)
- Stylianos E Antonarakis
- Department of Genetic Medicine and Development, University of Geneva Medical School, Geneva, Switzerland.
| | - Brian G Skotko
- Down Syndrome Program, Division of Medical Genetics, Department of Pediatrics, Massachusetts General Hospital, Boston, MA, USA
- Department of Pediatrics, Harvard Medical School, Boston, MA, USA
| | - Michael S Rafii
- Keck School of Medicine of University of Southern California, California, CA, USA
| | - Andre Strydom
- Department of Forensic and Neurodevelopmental Sciences, Institute of Psychiatry, Psychology & Neuroscience, King's College London, London, UK
| | - Sarah E Pape
- Department of Forensic and Neurodevelopmental Sciences, Institute of Psychiatry, Psychology & Neuroscience, King's College London, London, UK
| | - Diana W Bianchi
- Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, Bethesda, MD, USA
- National Human Genome Research Institute, National Institutes of Health, Bethesda, MD, USA
| | - Stephanie L Sherman
- Department of Human Genetics, Emory University School of Medicine, Atlanta, GA, USA
| | - Roger H Reeves
- Department of Physiology, Johns Hopkins University School of Medicine, Baltimore, MD, USA
- McKusick-Nathans Department of Genetic Medicine, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| |
Collapse
|
23
|
Duchon A, Gruart A, Albac C, Delatour B, Zorrilla de San Martin J, Delgado-García JM, Hérault Y, Potier MC. Long-lasting correction of in vivo LTP and cognitive deficits of mice modelling Down syndrome with an α5-selective GABA A inverse agonist. Br J Pharmacol 2020; 177:1106-1118. [PMID: 31652355 PMCID: PMC7042104 DOI: 10.1111/bph.14903] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2019] [Revised: 09/12/2019] [Accepted: 09/15/2019] [Indexed: 12/19/2022] Open
Abstract
Background and Purpose Excessive GABAergic inhibition contributes to cognitive dysfunctions in Down syndrome (DS). Selective negative allosteric modulators (NAMs) of α5‐containing GABAA receptors such as the α5 inverse agonist (α5IA) restore learning and memory deficits in Ts65Dn mice, a model of DS. In this study we have assessed the long‐lasting effects of α5IA on in vivo LTP and behaviour in Ts65Dn mice. Experimental Approach We made in vivo LTP recordings for six consecutive days in freely moving Ts65Dn mice and their wild‐type littermates, treated with vehicle or α5IA. In parallel, Ts65Dn mice were assessed by various learning and memory tests (Y maze, Morris water maze, or the novel object recognition) for up to 7 days, following one single injection of α5IA or vehicle. Key Results LTP was not evoked in vivo in Ts65Dn mice at hippocampal CA3‐CA1 synapses. However, this deficit was sustainably reversed for at least six consecutive days following a single injection of α5IA. This long‐lasting effect of α5IA was also observed when assessing working and long‐term memory deficits in Ts65Dn mice. Conclusion and Implications We show for the first time in vivo LTP deficits in Ts65Dn mice. These deficits were restored for at least 6 days following acute treatment with α5IA and might be the substrate for the long‐lasting pharmacological effects of α5IA on spatial working and long‐term recognition and spatial memory tasks. Our results demonstrate the relevance of negative allosteric modulators of α5‐containing GABAA receptors to the treatment of cognitive deficits associated with DS.
Collapse
Affiliation(s)
- Arnaud Duchon
- Translational Medicine and Neurogenetics, Institut de Génétique et de Biologie Moléculaire et Cellulaire, Illkirch, France.,Centre National de la Recherche Scientifique, UMR7104, Illkirch, France.,Institut National de la Santé et de la Recherche Médicale, U1258, Illkirch, France.,Neuropôle, Université de Strasbourg, Illkirch, France
| | - Agnès Gruart
- División de Neurociencias, Universidad Pablo de Olavide, Seville, Spain
| | - Christelle Albac
- Institut du Cerveau et de la Moelle épinière, Hôpital de la Pitié-Salpêtrière, Paris, France.,Institut National de la Santé et de la Recherche Médicale, U1127, Hôpital de la Pitié-Salpêtrière, Paris, France.,Centre National de la Recherche Scientifique, UMR7225, Hôpital de la Pitié-Salpêtrière, Paris, France.,Sorbonne Université, Hôpital de la Pitié-Salpêtrière, Paris, France
| | - Benoît Delatour
- Institut du Cerveau et de la Moelle épinière, Hôpital de la Pitié-Salpêtrière, Paris, France.,Institut National de la Santé et de la Recherche Médicale, U1127, Hôpital de la Pitié-Salpêtrière, Paris, France.,Centre National de la Recherche Scientifique, UMR7225, Hôpital de la Pitié-Salpêtrière, Paris, France.,Sorbonne Université, Hôpital de la Pitié-Salpêtrière, Paris, France
| | - Javier Zorrilla de San Martin
- Institut du Cerveau et de la Moelle épinière, Hôpital de la Pitié-Salpêtrière, Paris, France.,Institut National de la Santé et de la Recherche Médicale, U1127, Hôpital de la Pitié-Salpêtrière, Paris, France.,Centre National de la Recherche Scientifique, UMR7225, Hôpital de la Pitié-Salpêtrière, Paris, France.,Sorbonne Université, Hôpital de la Pitié-Salpêtrière, Paris, France
| | | | - Yann Hérault
- Translational Medicine and Neurogenetics, Institut de Génétique et de Biologie Moléculaire et Cellulaire, Illkirch, France.,Centre National de la Recherche Scientifique, UMR7104, Illkirch, France.,Institut National de la Santé et de la Recherche Médicale, U1258, Illkirch, France.,Neuropôle, Université de Strasbourg, Illkirch, France
| | - Marie-Claude Potier
- Institut du Cerveau et de la Moelle épinière, Hôpital de la Pitié-Salpêtrière, Paris, France.,Institut National de la Santé et de la Recherche Médicale, U1127, Hôpital de la Pitié-Salpêtrière, Paris, France.,Centre National de la Recherche Scientifique, UMR7225, Hôpital de la Pitié-Salpêtrière, Paris, France.,Sorbonne Université, Hôpital de la Pitié-Salpêtrière, Paris, France
| |
Collapse
|