1
|
Thompson MD, Chidiac P, Jose PA, Hauser AS, Gorvin CM. Genetic variants of accessory proteins and G proteins in human genetic disease. Crit Rev Clin Lab Sci 2025:1-22. [PMID: 39743506 DOI: 10.1080/10408363.2024.2431853] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2023] [Revised: 01/14/2024] [Accepted: 11/16/2024] [Indexed: 01/04/2025]
Abstract
We present a series of three articles on the genetics and pharmacogenetics of G protein- coupled receptors (GPCR). In the first article, we discuss genetic variants of the G protein subunits and accessory proteins that are associated with human phenotypes; in the second article, we build upon this to discuss "G protein-coupled receptor (GPCR) gene variants and human genetic disease" and in the third article, we survey "G protein-coupled receptor pharmacogenomics". In the present article, we review the processes of ligand binding, GPCR activation, inactivation, and receptor trafficking to the membrane in the context of human genetic disease resulting from pathogenic variants of accessory proteins and G proteins. Pathogenic variants of the genes encoding G protein α and β subunits are examined in diverse phenotypes. Variants in the genes encoding accessory proteins that modify or organize G protein coupling have been associated with disease; these include the contribution of variants of the regulator of G protein signaling (RGS) to hypertension; the role of variants of activator of G protein signaling type III in phenotypes such as hypoxia; the contribution of variation at the RGS10 gene to short stature and immunological compromise; and the involvement of variants of G protein-coupled receptor kinases (GRKs), such as GRK4, in hypertension. Variation in genes that encode proteins involved in GPCR signaling are outlined in the context of the changes in structure and function that may be associated with human phenotypes.
Collapse
Affiliation(s)
- Miles D Thompson
- Krembil Brain Institute, Toronto Western Hospital, Toronto, Ontario, Canada
| | - Peter Chidiac
- Department of Physiology and Pharmacology, University of Western Ontario, London, Ontario, Canada
| | - Pedro A Jose
- Division of Renal Diseases & Hypertension, Departments of Medicine and Pharmacology/Physiology, The George Washington University School of Medicine and Health Sciences, Washington, District of Columbia, USA
| | - Alexander S Hauser
- Department of Drug Design and Pharmacology, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Caroline M Gorvin
- Institute of Metabolism and Systems Research (IMSR), University of Birmingham, Birmingham, West Midlands, UK
| |
Collapse
|
2
|
Koene JM, Jackson DJ, Nakadera Y, Cerveau N, Madoui MA, Noel B, Jamilloux V, Poulain J, Labadie K, Da Silva C, Davison A, Feng ZP, Adema CM, Klopp C, Aury JM, Wincker P, Coutellec MA. The genome of the simultaneously hermaphroditic snail Lymnaea stagnalis reveals an evolutionary expansion of FMRFamide-like receptors. Sci Rep 2024; 14:29213. [PMID: 39587195 PMCID: PMC11589774 DOI: 10.1038/s41598-024-78520-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2024] [Accepted: 10/31/2024] [Indexed: 11/27/2024] Open
Abstract
The great pond snail Lymnaea stagnalis has served as a model organism for over a century in diverse disciplines such as neurophysiology, evolution, ecotoxicology and developmental biology. To support both established uses and newly emerging research interests we have performed whole genome sequencing (avg.176 × depth), assembly and annotation of a single individual derived from an inbred line. These efforts resulted in a final assembly of 943 Mb (L50 = 257; N50 = 957,215) with a total of 22,499 predicted gene models. The mitogenome was found to be 13,834 bp long and similarly organized as in other lymnaeid species, with minor differences in location of tRNA genes. As a first step towards understanding the hermaphroditic reproductive biology of L. stagnalis, we identified molecular receptors, specifically nuclear receptors (including newly discovered 2xDNA binding domain-NRs), G protein-coupled receptors, and receptor tyrosine kinases, that may be involved in the cellular specification and maintenance of simultaneously active male and female reproductive systems. A phylogenetic analysis of one particular family of GPCRs (Rhodopsin neuropeptide FMRFamide-receptor-like genes) shows a remarkable expansion that coincides with the occurrence of simultaneous hermaphroditism in the Euthyneura gastropods. As some GPCRs and NRs also showed qualitative differences in expression in female (albumen gland) and male (prostate gland) organs, it is possible that separate regulation of male and female reproductive processes may in part have been enabled by an increased abundance of receptors in the transition from a separate-sexed state to a hermaphroditic condition. These findings will support efforts to pair receptors with their activating ligands, and more generally stimulate deeper insight into the mechanisms that underlie the modes of action of compounds involved in neuroendocrine regulation of reproduction, induced toxicity, and development in L. stagnalis, and molluscs in general.
Collapse
Affiliation(s)
- J M Koene
- Ecology and Evolution, Amsterdam Institute for Life and Environment (A-LIFE), Vrije Universiteit, De Boelelaan 1108, 1081 HZ, Amsterdam, The Netherlands
| | - D J Jackson
- Department of Geobiology, Georg-August University of Göttingen, Goldschmidtstr. 3, 37077, Göttingen, Germany
| | - Y Nakadera
- Ecology and Evolution, Amsterdam Institute for Life and Environment (A-LIFE), Vrije Universiteit, De Boelelaan 1108, 1081 HZ, Amsterdam, The Netherlands
| | - N Cerveau
- Department of Geobiology, Georg-August University of Göttingen, Goldschmidtstr. 3, 37077, Göttingen, Germany
| | - M A Madoui
- SEPIA, Institut François Jacob, Commissariat à l'Energie Atomique et aux Energies Alternatives (CEA), Université Paris Saclay, Fontenay-aux-Roses, France
| | - B Noel
- Génomique Métabolique, Genoscope, Institut François Jacob, CEA, CNRS, Université Paris-Saclay, 91057, Evry, France
| | - V Jamilloux
- URGI, INRAE, Université Paris-Saclay, Route de Saint-Cyr, 78026, Versailles, France
| | - J Poulain
- Génomique Métabolique, Genoscope, Institut François Jacob, CEA, CNRS, Université Paris-Saclay, 91057, Evry, France
| | - K Labadie
- Genoscope, Institut François Jacob, CEA, CNRS, Université Paris-Saclay, 91057, Evry, France
| | - C Da Silva
- Génomique Métabolique, Genoscope, Institut François Jacob, CEA, CNRS, Université Paris-Saclay, 91057, Evry, France
| | - A Davison
- School of Life Sciences, University Park, University of Nottingham, Nottingham, NG7 2RD, UK
| | - Z P Feng
- Department of Physiology, University of Toronto, 1 King's College, Toronto, ON, M5S 1A8, Canada
| | - C M Adema
- Department of Biology, Center for Evolutionary and Theoretical Immunology, University of New Mexico, Albuquerque, NM, 87112, USA
| | - C Klopp
- INRAE, Sigenae, BioInfoMics MIAT, UR875, INRAE, Castanet-Tolosan, France
| | - J M Aury
- Génomique Métabolique, Genoscope, Institut François Jacob, CEA, CNRS, Université Paris-Saclay, 91057, Evry, France
| | - P Wincker
- Génomique Métabolique, Genoscope, Institut François Jacob, CEA, CNRS, Université Paris-Saclay, 91057, Evry, France
| | - M A Coutellec
- DECOD (Ecosystem Dynamics and Sustainability), L'Institut Agro, Ifremer, INRAE, 35042, Rennes, France.
| |
Collapse
|
3
|
Thompson MD, Percy ME, Cole DEC, Bichet DG, Hauser AS, Gorvin CM. G protein-coupled receptor (GPCR) gene variants and human genetic disease. Crit Rev Clin Lab Sci 2024; 61:317-346. [PMID: 38497103 DOI: 10.1080/10408363.2023.2286606] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2023] [Revised: 08/28/2023] [Accepted: 11/19/2023] [Indexed: 03/19/2024]
Abstract
Genetic variations in the genes encoding G protein-coupled receptors (GPCRs) can disrupt receptor structure and function, which can result in human genetic diseases. Disease-causing mutations have been reported in at least 55 GPCRs for more than 66 monogenic diseases in humans. The spectrum of pathogenic and likely pathogenic variants includes loss of function variants that decrease receptor signaling on one extreme and gain of function that may result in biased signaling or constitutive activity, originally modeled on prototypical rhodopsin GPCR variants identified in retinitis pigmentosa, on the other. GPCR variants disrupt ligand binding, G protein coupling, accessory protein function, receptor desensitization and receptor recycling. Next generation sequencing has made it possible to identify variants of uncertain significance (VUS). We discuss variants in receptors known to result in disease and in silico strategies for disambiguation of VUS such as sorting intolerant from tolerant and polymorphism phenotyping. Modeling of variants has contributed to drug development and precision medicine, including drugs that target the melanocortin receptor in obesity and interventions that reverse loss of gonadotropin-releasing hormone receptor from the cell surface in idiopathic hypogonadotropic hypogonadism. Activating and inactivating variants of the calcium sensing receptor (CaSR) gene that are pathogenic in familial hypocalciuric hypercalcemia and autosomal dominant hypocalcemia have enabled the development of calcimimetics and calcilytics. Next generation sequencing has continued to identify variants in GPCR genes, including orphan receptors, that contribute to human phenotypes and may have therapeutic potential. Variants of the CaSR gene, some encoding an arginine-rich region that promotes receptor phosphorylation and intracellular retention, have been linked to an idiopathic epilepsy syndrome. Agnostic strategies have identified variants of the pyroglutamylated RF amide peptide receptor gene in intellectual disability and G protein-coupled receptor 39 identified in psoriatic arthropathy. Coding variants of the G protein-coupled receptor L1 (GPR37L1) orphan receptor gene have been identified in a rare familial progressive myoclonus epilepsy. The study of the role of GPCR variants in monogenic, Mendelian phenotypes has provided the basis of modeling the significance of more common variants of pharmacogenetic significance.
Collapse
Affiliation(s)
- Miles D Thompson
- Krembil Brain Institute, Toronto Western Hospital, Toronto, ON, Canada
| | - Maire E Percy
- Departments of Physiology and Obstetrics & Gynaecology, University of Toronto, Toronto, ON, Canada
| | - David E C Cole
- Department of Laboratory Medicine and Pathobiology, University of Toronto, Toronto, ON, Canada
| | - Daniel G Bichet
- Department of Physiology and Medicine, Hôpital du Sacré-Coeur, Université de Montréal, QC, Canada
| | - Alexander S Hauser
- Department of Drug Design and Pharmacology, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Caroline M Gorvin
- Institute of Metabolism and Systems Research (IMSR), University of Birmingham, Birmingham, West Midlands, UK
| |
Collapse
|
4
|
Anversa RG, Maddern XJ, Lawrence AJ, Walker LC. Orphan peptide and G protein-coupled receptor signalling in alcohol use disorder. Br J Pharmacol 2024; 181:595-609. [PMID: 38073127 PMCID: PMC10953447 DOI: 10.1111/bph.16301] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2023] [Revised: 11/22/2023] [Accepted: 11/28/2023] [Indexed: 01/10/2024] Open
Abstract
Neuropeptides and G protein-coupled receptors (GPCRs) have long been, and continue to be, one of the most popular target classes for drug discovery in CNS disorders, including alcohol use disorder (AUD). Yet, orphaned neuropeptide systems and receptors (oGPCR), which have no known cognate receptor or ligand, remain understudied in drug discovery and development. Orphan neuropeptides and oGPCRs are abundantly expressed within the brain and represent an unprecedented opportunity to address brain function and may hold potential as novel treatments for disease. Here, we describe the current literature regarding orphaned neuropeptides and oGPCRs implicated in AUD. Specifically, in this review, we focus on the orphaned neuropeptide cocaine- and amphetamine-regulated transcript (CART), and several oGPCRs that have been directly implicated in AUD (GPR6, GPR26, GPR88, GPR139, GPR158) and discuss their potential and pitfalls as novel treatments, and progress in identifying their cognate receptors or ligands.
Collapse
Affiliation(s)
- Roberta Goncalves Anversa
- Florey Institute of Neuroscience and Mental HealthMelbourneVICAustralia
- Florey Department of Neuroscience and Mental HealthUniversity of MelbourneMelbourneVICAustralia
| | - Xavier J. Maddern
- Florey Institute of Neuroscience and Mental HealthMelbourneVICAustralia
- Florey Department of Neuroscience and Mental HealthUniversity of MelbourneMelbourneVICAustralia
| | - Andrew J. Lawrence
- Florey Institute of Neuroscience and Mental HealthMelbourneVICAustralia
- Florey Department of Neuroscience and Mental HealthUniversity of MelbourneMelbourneVICAustralia
| | - Leigh C. Walker
- Florey Institute of Neuroscience and Mental HealthMelbourneVICAustralia
- Florey Department of Neuroscience and Mental HealthUniversity of MelbourneMelbourneVICAustralia
| |
Collapse
|
5
|
Jobe A, Vijayan R. Orphan G protein-coupled receptors: the ongoing search for a home. Front Pharmacol 2024; 15:1349097. [PMID: 38495099 PMCID: PMC10941346 DOI: 10.3389/fphar.2024.1349097] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2023] [Accepted: 02/15/2024] [Indexed: 03/19/2024] Open
Abstract
G protein-coupled receptors (GPCRs) make up the largest receptor superfamily, accounting for 4% of protein-coding genes. Despite the prevalence of such transmembrane receptors, a significant number remain orphans, lacking identified endogenous ligands. Since their conception, the reverse pharmacology approach has been used to characterize such receptors. However, the multifaceted and nuanced nature of GPCR signaling poses a great challenge to their pharmacological elucidation. Considering their therapeutic relevance, the search for native orphan GPCR ligands continues. Despite limited structural input in terms of 3D crystallized structures, with advances in machine-learning approaches, there has been great progress with respect to accurate ligand prediction. Though such an approach proves valuable given that ligand scarcity is the greatest hurdle to orphan GPCR deorphanization, the future pairings of the remaining orphan GPCRs may not necessarily take a one-size-fits-all approach but should be more comprehensive in accounting for numerous nuanced possibilities to cover the full spectrum of GPCR signaling.
Collapse
Affiliation(s)
- Amie Jobe
- Department of Biology, College of Science, United Arab Emirates University, Al Ain, United Arab Emirates
| | - Ranjit Vijayan
- Department of Biology, College of Science, United Arab Emirates University, Al Ain, United Arab Emirates
- The Big Data Analytics Center, United Arab Emirates University, Al Ain, United Arab Emirates
- Zayed Bin Sultan Center for Health Sciences, United Arab Emirates University, Al Ain, United Arab Emirates
| |
Collapse
|
6
|
Scharf MM, Humphrys LJ, Berndt S, Di Pizio A, Lehmann J, Liebscher I, Nicoli A, Niv MY, Peri L, Schihada H, Schulte G. The dark sides of the GPCR tree - research progress on understudied GPCRs. Br J Pharmacol 2024. [PMID: 38339984 DOI: 10.1111/bph.16325] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2023] [Revised: 11/24/2023] [Accepted: 01/08/2024] [Indexed: 02/12/2024] Open
Abstract
A large portion of the human GPCRome is still in the dark and understudied, consisting even of entire subfamilies of GPCRs such as odorant receptors, class A and C orphans, adhesion GPCRs, Frizzleds and taste receptors. However, it is undeniable that these GPCRs bring an untapped therapeutic potential that should be explored further. Open questions on these GPCRs span diverse topics such as deorphanisation, the development of tool compounds and tools for studying these GPCRs, as well as understanding basic signalling mechanisms. This review gives an overview of the current state of knowledge for each of the diverse subfamilies of understudied receptors regarding their physiological relevance, molecular mechanisms, endogenous ligands and pharmacological tools. Furthermore, it identifies some of the largest knowledge gaps that should be addressed in the foreseeable future and lists some general strategies that might be helpful in this process.
Collapse
Affiliation(s)
- Magdalena M Scharf
- Karolinska Institutet, Dept. Physiology & Pharmacology, Sec. Receptor Biology & Signaling, Stockholm, Sweden
| | - Laura J Humphrys
- Institute of Pharmacy, University of Regensburg, Regensburg, Germany
| | - Sandra Berndt
- Rudolf Schönheimer Institute for Biochemistry, Molecular Biochemistry, University of Leipzig, Leipzig, Germany
| | - Antonella Di Pizio
- Leibniz Institute for Food Systems Biology at the Technical University of Munich, Freising, Germany
- Chemoinformatics and Protein Modelling, Department of Molecular Life Science, School of Life Science, Technical University of Munich, Freising, Germany
| | - Juliane Lehmann
- Rudolf Schönheimer Institute for Biochemistry, Molecular Biochemistry, University of Leipzig, Leipzig, Germany
| | - Ines Liebscher
- Rudolf Schönheimer Institute for Biochemistry, Molecular Biochemistry, University of Leipzig, Leipzig, Germany
| | - Alessandro Nicoli
- Leibniz Institute for Food Systems Biology at the Technical University of Munich, Freising, Germany
- Chemoinformatics and Protein Modelling, Department of Molecular Life Science, School of Life Science, Technical University of Munich, Freising, Germany
| | - Masha Y Niv
- The Institute of Biochemistry, Food Science and Nutrition, Robert H. Smith Faculty of Agriculture, Food and Environment, The Hebrew University of Jerusalem, Rehovot, Israel
| | - Lior Peri
- The Institute of Biochemistry, Food Science and Nutrition, Robert H. Smith Faculty of Agriculture, Food and Environment, The Hebrew University of Jerusalem, Rehovot, Israel
| | - Hannes Schihada
- Institute of Pharmaceutical Chemistry, Philipps-University Marburg, Marburg, Germany
| | - Gunnar Schulte
- Karolinska Institutet, Dept. Physiology & Pharmacology, Sec. Receptor Biology & Signaling, Stockholm, Sweden
| |
Collapse
|
7
|
Calderón JC, Plut E, Keller M, Cabrele C, Reiser O, Gervasio FL, Clark T. Extended Metadynamics Protocol for Binding/Unbinding Free Energies of Peptide Ligands to Class A G-Protein-Coupled Receptors. J Chem Inf Model 2024; 64:205-218. [PMID: 38150388 DOI: 10.1021/acs.jcim.3c01574] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2023]
Abstract
A metadynamics protocol is presented to characterize the binding and unbinding of peptide ligands to class A G-protein-coupled receptors (GPCRs). The protocol expands on the one previously presented for binding and unbinding small-molecule ligands to class A GPCRs and accounts for the more demanding nature of the peptide binding-unbinding process. It applies to almost all class A GPCRs. Exemplary simulations are described for subtypes Y1R, Y2R, and Y4R of the neuropeptide Y receptor family, vasopressin binding to the vasopressin V2 receptor (V2R), and oxytocin binding to the oxytocin receptor (OTR). Binding free energies and the positions of alternative binding sites are presented and, where possible, compared with the experiment.
Collapse
Affiliation(s)
- Jacqueline C Calderón
- Computer-Chemistry-Center, Department of Chemistry and Pharmacy, Friedrich-Alexander-University Erlangen-Nuernberg, Naegelsbachstr. 25, Erlangen 91052, Germany
| | - Eva Plut
- Institute of Organic Chemistry, Faculty of Chemistry and Pharmacy, University of Regensburg, Regensburg 93040, Germany
| | - Max Keller
- Institute of Pharmacy, Faculty of Chemistry and Pharmacy, University of Regensburg, Regensburg D-93040, Germany
| | - Chiara Cabrele
- Institute of Organic Chemistry, Faculty of Chemistry and Pharmacy, University of Regensburg, Regensburg 93040, Germany
| | - Oliver Reiser
- Institute of Organic Chemistry, Faculty of Chemistry and Pharmacy, University of Regensburg, Regensburg 93040, Germany
| | | | - Timothy Clark
- Computer-Chemistry-Center, Department of Chemistry and Pharmacy, Friedrich-Alexander-University Erlangen-Nuernberg, Naegelsbachstr. 25, Erlangen 91052, Germany
| |
Collapse
|
8
|
Addis P, Bali U, Baron F, Campbell A, Harborne S, Jagger L, Milne G, Pearce M, Rosethorne EM, Satchell R, Swift D, Young B, Unitt JF. Key aspects of modern GPCR drug discovery. SLAS DISCOVERY : ADVANCING LIFE SCIENCES R & D 2024; 29:1-22. [PMID: 37625784 DOI: 10.1016/j.slasd.2023.08.007] [Citation(s) in RCA: 7] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/13/2023] [Revised: 08/07/2023] [Accepted: 08/22/2023] [Indexed: 08/27/2023]
Abstract
G-protein-coupled receptors (GPCRs) are the largest and most versatile cell surface receptor family with a broad repertoire of ligands and functions. We've learned an enormous amount about discovering drugs of this receptor class since the first GPCR was cloned and expressed in 1986, such that it's now well-recognized that GPCRs are the most successful target class for approved drugs. Here we take the reader through a GPCR drug discovery journey from target to the clinic, highlighting the key learnings, best practices, challenges, trends and insights on discovering drugs that ultimately modulate GPCR function therapeutically in patients. The future of GPCR drug discovery is inspiring, with more desirable drug mechanisms and new technologies enabling the delivery of better and more successful drugs.
Collapse
Affiliation(s)
- Phil Addis
- Bioscience, Medicinal Chemistry, Pharmacology and Protein Science Departments, Sygnature Discovery Ltd, BioCity, Pennyfoot Street, Nottingham NG1 1GR, UK
| | - Utsav Bali
- Bioscience, Medicinal Chemistry, Pharmacology and Protein Science Departments, Sygnature Discovery Ltd, BioCity, Pennyfoot Street, Nottingham NG1 1GR, UK
| | - Frank Baron
- Bioscience, Medicinal Chemistry, Pharmacology and Protein Science Departments, Sygnature Discovery Ltd, BioCity, Pennyfoot Street, Nottingham NG1 1GR, UK
| | - Adrian Campbell
- Bioscience, Medicinal Chemistry, Pharmacology and Protein Science Departments, Sygnature Discovery Ltd, BioCity, Pennyfoot Street, Nottingham NG1 1GR, UK
| | - Steven Harborne
- Bioscience, Medicinal Chemistry, Pharmacology and Protein Science Departments, Sygnature Discovery Ltd, BioCity, Pennyfoot Street, Nottingham NG1 1GR, UK
| | - Liz Jagger
- Bioscience, Medicinal Chemistry, Pharmacology and Protein Science Departments, Sygnature Discovery Ltd, BioCity, Pennyfoot Street, Nottingham NG1 1GR, UK
| | - Gavin Milne
- Bioscience, Medicinal Chemistry, Pharmacology and Protein Science Departments, Sygnature Discovery Ltd, BioCity, Pennyfoot Street, Nottingham NG1 1GR, UK
| | - Martin Pearce
- Bioscience, Medicinal Chemistry, Pharmacology and Protein Science Departments, Sygnature Discovery Ltd, BioCity, Pennyfoot Street, Nottingham NG1 1GR, UK
| | - Elizabeth M Rosethorne
- Bioscience, Medicinal Chemistry, Pharmacology and Protein Science Departments, Sygnature Discovery Ltd, BioCity, Pennyfoot Street, Nottingham NG1 1GR, UK
| | - Rupert Satchell
- Bioscience, Medicinal Chemistry, Pharmacology and Protein Science Departments, Sygnature Discovery Ltd, BioCity, Pennyfoot Street, Nottingham NG1 1GR, UK
| | - Denise Swift
- Bioscience, Medicinal Chemistry, Pharmacology and Protein Science Departments, Sygnature Discovery Ltd, BioCity, Pennyfoot Street, Nottingham NG1 1GR, UK
| | - Barbara Young
- Bioscience, Medicinal Chemistry, Pharmacology and Protein Science Departments, Sygnature Discovery Ltd, BioCity, Pennyfoot Street, Nottingham NG1 1GR, UK
| | - John F Unitt
- Bioscience, Medicinal Chemistry, Pharmacology and Protein Science Departments, Sygnature Discovery Ltd, BioCity, Pennyfoot Street, Nottingham NG1 1GR, UK.
| |
Collapse
|
9
|
Otvos L, Wade JD. Big peptide drugs in a small molecule world. Front Chem 2023; 11:1302169. [PMID: 38144886 PMCID: PMC10740154 DOI: 10.3389/fchem.2023.1302169] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2023] [Accepted: 11/24/2023] [Indexed: 12/26/2023] Open
Abstract
A quarter of a century ago, designer peptide drugs finally broke through the glass ceiling. Despite the resistance by big pharma, biotechnology companies managed to develop injectable peptide-based drugs, first against orphan or other small volume diseases, and later for conditions affecting large patient populations such as type 2 diabetes. Even their lack of gastrointestinal absorption could be utilized to enable successful oral dosing against chronic constipation. The preference of peptide therapeutics over small molecule competitors against identical medical conditions can be achieved by careful target selection, intrachain and terminal amino acid modifications, appropriate conjugation to stability enhancers and chemical space expansion, innovative delivery and administration techniques and patient-focused marketing strategies. Unfortunately, however, pharmacoeconomical considerations, including the strength of big pharma to develop competing small molecule drugs, have somewhat limited the success of otherwise smart peptide-based therapeutics. Yet, with increasing improvement in peptide drug modification and formulation, these are continuing to gain significant, and growing, acceptance as desirable alternatives to small molecule compounds.
Collapse
Affiliation(s)
- Laszlo Otvos
- Institute of Medical Microbiology, Semmelweis University, Budapest, Hungary
- OLPE Pharmaceutical Consultants, Audubon, PA, United States
| | - John D. Wade
- Florey Institute of Neuroscience and Mental Health, Parkville, VIC, Australia
- School of Chemistry, University of Melbourne, Parkville, VIC, Australia
| |
Collapse
|
10
|
Beets I, Zels S, Vandewyer E, Demeulemeester J, Caers J, Baytemur E, Courtney A, Golinelli L, Hasakioğulları İ, Schafer WR, Vértes PE, Mirabeau O, Schoofs L. System-wide mapping of peptide-GPCR interactions in C. elegans. Cell Rep 2023; 42:113058. [PMID: 37656621 PMCID: PMC7615250 DOI: 10.1016/j.celrep.2023.113058] [Citation(s) in RCA: 29] [Impact Index Per Article: 14.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2022] [Revised: 07/19/2023] [Accepted: 08/16/2023] [Indexed: 09/03/2023] Open
Abstract
Neuropeptides and peptide hormones are ancient, widespread signaling molecules that underpin almost all brain functions. They constitute a broad ligand-receptor network, mainly by binding to G protein-coupled receptors (GPCRs). However, the organization of the peptidergic network and roles of many peptides remain elusive, as our insight into peptide-receptor interactions is limited and many peptide GPCRs are still orphan receptors. Here we report a genome-wide peptide-GPCR interaction map in Caenorhabditis elegans. By reverse pharmacology screening of over 55,384 possible interactions, we identify 461 cognate peptide-GPCR couples that uncover a broad signaling network with specific and complex combinatorial interactions encoded across and within single peptidergic genes. These interactions provide insights into peptide functions and evolution. Combining our dataset with phylogenetic analysis supports peptide-receptor co-evolution and conservation of at least 14 bilaterian peptidergic systems in C. elegans. This resource lays a foundation for system-wide analysis of the peptidergic network.
Collapse
Affiliation(s)
- Isabel Beets
- Department of Biology, KU Leuven, 3000 Leuven, Belgium.
| | - Sven Zels
- Department of Biology, KU Leuven, 3000 Leuven, Belgium
| | | | - Jonas Demeulemeester
- The Francis Crick Institute, London NW1 1AT, UK; VIB - KU Leuven Center for Cancer Biology, 3000 Leuven, Belgium; Department of Oncology, KU Leuven, 3000 Leuven, Belgium
| | - Jelle Caers
- Department of Biology, KU Leuven, 3000 Leuven, Belgium
| | - Esra Baytemur
- Department of Biology, KU Leuven, 3000 Leuven, Belgium
| | - Amy Courtney
- Neurobiology Division, MRC Laboratory of Molecular Biology, Cambridge CB2 0QH, UK
| | | | | | - William R Schafer
- Neurobiology Division, MRC Laboratory of Molecular Biology, Cambridge CB2 0QH, UK
| | - Petra E Vértes
- Department of Psychiatry, Behavioural and Clinical Neuroscience Institute, University of Cambridge, Cambridge CB2 3EB, UK
| | - Olivier Mirabeau
- Institut Pasteur, Université Paris Cité, Bioinformatics and Biostatistics Hub, Inserm U1224, Brain-Immune Communication Lab, 75015 Paris, France
| | | |
Collapse
|
11
|
Hellinger R, Sigurdsson A, Wu W, Romanova EV, Li L, Sweedler JV, Süssmuth RD, Gruber CW. Peptidomics. NATURE REVIEWS. METHODS PRIMERS 2023; 3:25. [PMID: 37250919 PMCID: PMC7614574 DOI: 10.1038/s43586-023-00205-2] [Citation(s) in RCA: 31] [Impact Index Per Article: 15.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Accepted: 02/09/2023] [Indexed: 05/31/2023]
Abstract
Peptides are biopolymers, typically consisting of 2-50 amino acids. They are biologically produced by the cellular ribosomal machinery or by non-ribosomal enzymes and, sometimes, other dedicated ligases. Peptides are arranged as linear chains or cycles, and include post-translational modifications, unusual amino acids and stabilizing motifs. Their structure and molecular size render them a unique chemical space, between small molecules and larger proteins. Peptides have important physiological functions as intrinsic signalling molecules, such as neuropeptides and peptide hormones, for cellular or interspecies communication, as toxins to catch prey or as defence molecules to fend off enemies and microorganisms. Clinically, they are gaining popularity as biomarkers or innovative therapeutics; to date there are more than 60 peptide drugs approved and more than 150 in clinical development. The emerging field of peptidomics comprises the comprehensive qualitative and quantitative analysis of the suite of peptides in a biological sample (endogenously produced, or exogenously administered as drugs). Peptidomics employs techniques of genomics, modern proteomics, state-of-the-art analytical chemistry and innovative computational biology, with a specialized set of tools. The complex biological matrices and often low abundance of analytes typically examined in peptidomics experiments require optimized sample preparation and isolation, including in silico analysis. This Primer covers the combination of techniques and workflows needed for peptide discovery and characterization and provides an overview of various biological and clinical applications of peptidomics.
Collapse
Affiliation(s)
- Roland Hellinger
- Center for Physiology and Pharmacology, Medical University of Vienna, Vienna, Austria
| | - Arnar Sigurdsson
- Institut für Chemie, Technische Universität Berlin, Berlin, Germany
| | - Wenxin Wu
- School of Pharmacy and Department of Chemistry, University of Wisconsin-Madison, Madison, WI, USA
| | - Elena V Romanova
- Department of Chemistry, University of Illinois, Urbana, IL, USA
| | - Lingjun Li
- School of Pharmacy and Department of Chemistry, University of Wisconsin-Madison, Madison, WI, USA
| | | | | | - Christian W Gruber
- Center for Physiology and Pharmacology, Medical University of Vienna, Vienna, Austria
| |
Collapse
|
12
|
Urban N, Leonhardt M, Schaefer M. Multiplex G Protein-Coupled Receptor Screen Reveals Reliably Acting Agonists and a Gq-Phospholipase C Coupling Mode of GPR30/GPER1. Mol Pharmacol 2023; 103:48-62. [PMID: 36400433 DOI: 10.1124/molpharm.122.000580] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2022] [Revised: 10/21/2022] [Accepted: 10/27/2022] [Indexed: 11/21/2022] Open
Abstract
G protein-coupled receptors (GPCRs) constitute the most versatile family of pharmacological target proteins. For some "orphan" GPCRs, no ligand or drug-like modulator is known. In this study, we have established and applied a parallelized assay to coscreen 29 different human GPCRs. Three compounds, chlorhexidine, Lys-05, and 9-aminoacridine, triggered transient Ca2+ signals linked to the expression of GPR30. GPR30, also named G protein-coupled estrogen receptor 1 (GPER1), was reported to elicit increases in cAMP in response to 17β-estradiol, 4-hydroxytamoxifen, or G-1. These findings could, however, not be reproduced by other groups, and the deorphanization of GPR30 is, therefore, intensely disputed. The unbiased screen and following experiments in transiently or stably GPR30-overexpressing HEK293 cells did not show responses to 17β-estradiol, 4-hydroxytamoxifen, or G-1. A thorough analysis of the activated signaling cascade revealed a canonical Gq-coupled pathway, including phospholipase C, protein kinase C and ERK activation, receptor internalization, and sensitivity to the Gq inhibitor YM-254890. When expressed in different cell lines, the localization of a fluorescent GPR30 fusion protein appeared variable. An efficient integration into the plasma membrane and stronger functional responses were found in HEK293 and in MCF-7 cells, whereas GPR30 appeared mostly retained in endomembrane compartments in Cos-7 or HeLa cells. Thus, conflicting findings may result from the use of different cell lines. The newly identified agonists and the finding that GPR30 couples to Gq are expected to serve as a starting point for identifying physiologic responses that are controlled by this GPCR. SIGNIFICANCE STATEMENT: This study has identified and thoroughly characterized novel and reliably acting agonists of the G protein-coupled receptor GPER1/GPR30. Applying these agonists, this study demonstrates that GPR30 couples to the canonical Gq-phospholipase C pathway and is rapidly internalized upon continuous exposure to the agonists.
Collapse
Affiliation(s)
- Nicole Urban
- Medical Faculty, Rudolf-Boehm-Institute of Pharmacology and Toxicology, Leipzig University, Leipzig, Germany
| | - Marion Leonhardt
- Medical Faculty, Rudolf-Boehm-Institute of Pharmacology and Toxicology, Leipzig University, Leipzig, Germany
| | - Michael Schaefer
- Medical Faculty, Rudolf-Boehm-Institute of Pharmacology and Toxicology, Leipzig University, Leipzig, Germany
| |
Collapse
|
13
|
Dietary Zinc Differentially Regulates the Effects of the GPR39 Receptor Agonist, TC-G 1008, in the Maximal Electroshock Seizure Test and Pentylenetetrazole-Kindling Model of Epilepsy. Cells 2023; 12:cells12020264. [PMID: 36672199 PMCID: PMC9856893 DOI: 10.3390/cells12020264] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2022] [Revised: 12/29/2022] [Accepted: 12/30/2022] [Indexed: 01/11/2023] Open
Abstract
The G-protein coupled receptor 39 (GPR39) is gaining increasing attention as a target for future drugs, yet there are gaps in the understanding of its pharmacology. Zinc is an endogenous agonist or an allosteric modulator, while TC-G 1008 is a synthetic, small molecule agonist. Zinc is also a positive allosteric modulator for the activity of TC-G 1008 at GPR39. Activation of GPR39 by TC-G 1008 facilitated the development of epileptogenesis in the pentylenetetrazole (PTZ)-induced kindling model of epilepsy. Congruently, TC-G 1008 decreased the seizure threshold in the maximal electroshock seizure threshold (MEST) test. Here, we investigated the effects of TC-G 1008 under the condition of zinc deficiency. Mice were fed a zinc-adequate diet (ZnA, 50 mg Zn/kg) or a zinc-deficient diet (ZnD, 3 mg Zn/kg) for 4 weeks. Following 4 weeks of dietary zinc restriction, TC-G 1008 was administered as a single dose and the MEST test was performed. Additional groups of mice began the PTZ-kindling model during which TC-G 1008 was administered repeatedly and the diet was continued. TC-G 1008 administered acutely decreased the seizure threshold in the MEST test in mice fed the ZnD diet but not in mice fed the ZnA diet. TC-G 1008 administered chronically increased the maximal seizure severity and the percentage of fully kindled mice in those fed the ZnA diet, but not in mice fed the ZnD diet. Our data showed that the amount of zinc in a diet is a factor contributing to the effects of TC-G 1008 in vivo.
Collapse
|
14
|
Wilkins BP, Finch AM, Wang Y, Smith NJ. Orphan GPR146: an alternative therapeutic pathway to achieve cholesterol homeostasis? Trends Endocrinol Metab 2022; 33:481-492. [PMID: 35550855 DOI: 10.1016/j.tem.2022.04.008] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/28/2022] [Revised: 04/07/2022] [Accepted: 04/10/2022] [Indexed: 11/27/2022]
Abstract
Atherosclerosis predisposes to myriad cardiovascular complications, including myocardial infarction and stroke. Statins have revolutionised cholesterol management but they do not work for all patients, particularly those with familial hypercholesterolaemia (FH). Genome-wide association studies have linked SNPs at orphan G protein-coupled receptor 146 (GPR146) to human atherosclerosis but how GPR146 influences serum cholesterol homeostasis was only recently described. Gpr146 deletion in mice reduces serum cholesterol and atherosclerotic plaque burden, confirming GPR146 as a potential therapeutic target for managing circulating cholesterol. Critically, this effect was independent of the low-density lipoprotein receptor. While still an orphan, the activation of GPR146 by serum suggests identification of its endogenous ligand is tantalisingly close. Herein, we discuss the evidence for GPR146 inhibition as a treatment for atherosclerosis.
Collapse
Affiliation(s)
- Brendan P Wilkins
- Orphan Receptor Pharmacology Laboratory, School of Medical Sciences, University of New South Wales, Sydney, NSW, Australia; Molecular Pharmacology Drug Design, School of Medical Sciences, University of New South Wales, Sydney, NSW, Australia
| | - Angela M Finch
- Molecular Pharmacology Drug Design, School of Medical Sciences, University of New South Wales, Sydney, NSW, Australia
| | - Yan Wang
- Hubei Key Laboratory of Cell Homeostasis, College of Life Sciences, Wuhan University, Wuhan, China
| | - Nicola J Smith
- Orphan Receptor Pharmacology Laboratory, School of Medical Sciences, University of New South Wales, Sydney, NSW, Australia; Molecular Pharmacology Drug Design, School of Medical Sciences, University of New South Wales, Sydney, NSW, Australia.
| |
Collapse
|
15
|
Doboszewska U, Sawicki J, Sajnóg A, Szopa A, Serefko A, Socała K, Pieróg M, Nieoczym D, Mlyniec K, Nowak G, Barałkiewicz D, Sowa I, Wlaź P. Alterations of Serum Magnesium Concentration in Animal Models of Seizures and Epilepsy—The Effects of Treatment with a GPR39 Agonist and Knockout of the Gpr39 Gene. Cells 2022; 11:cells11131987. [PMID: 35805072 PMCID: PMC9265460 DOI: 10.3390/cells11131987] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2022] [Accepted: 06/14/2022] [Indexed: 12/10/2022] Open
Abstract
Several ligands have been proposed for the GPR39 receptor, including the element zinc. The relationship between GPR39 and magnesium homeostasis has not yet been examined, nor has such a relationship in the context of seizures/epilepsy. We used samples from mice that were treated with an agonist of the GPR39 receptor (TC-G 1008) and underwent acute seizures (maximal electroshock (MES)- or 6-hertz-induced seizures) or a chronic, pentylenetetrazole (PTZ)-induced kindling model of epilepsy. MES seizures and PTZ kindling, unlike 6 Hz seizures, increased serum magnesium concentration. In turn, Gpr39-KO mice that underwent PTZ kindling displayed decreased concentrations of this element in serum, compared to WT mice subjected to this procedure. However, the levels of expression of TRPM7 and SlC41A1 proteins—which are responsible for magnesium transport into and out of cells, respectively—did not differ in the hippocampus between Gpr39-KO and WT mice. Furthermore, laser ablation inductively coupled plasma mass spectrometry applied to hippocampal slices did not reveal differences in magnesium levels between the groups. These data show the relationship between magnesium homeostasis and certain types of acute or chronic seizures (MES seizures or PTZ kindling, respectively), but do not explicitly support the role of GPR39 in mediating magnesium balance in the hippocampus in the latter model. However, decreased expression of TRPM7 and increased expression of SLC41A1—which were observed in the hippocampi of Gpr39-KO mice treated with TC-G 1008, in comparison to WT mice that received the same treatment—implicitly support the link between GPR39 and hippocampal magnesium homeostasis.
Collapse
Affiliation(s)
- Urszula Doboszewska
- Department of Animal Physiology and Pharmacology, Institute of Biological Sciences, Maria Curie-Skłodowska University, Akademicka 19, PL 20-033 Lublin, Poland; (K.S.); (M.P.); (D.N.); (P.W.)
- Department of Pharmacobiology, Jagiellonian University Medical College, Medyczna 9, PL 30-688 Kraków, Poland; (K.M.); (G.N.)
- Correspondence: or ; Tel.: +48-81-537-50-10; Fax: +48-81-537-59-01
| | - Jan Sawicki
- Department of Analytical Chemistry, Medical University of Lublin, Chodźki 4A, PL 20-093 Lublin, Poland; (J.S.); (I.S.)
| | - Adam Sajnóg
- Department of Trace Analysis, Adam Mickiewicz University, Uniwersytetu Poznanskiego 8, PL 61-614 Poznan, Poland; (A.S.); (D.B.)
| | - Aleksandra Szopa
- Chair and Department of Applied and Social Pharmacy, Laboratory of Preclinical Testing, Medical University of Lublin, Chodźki 1, PL 20-093 Lublin, Poland; (A.S.); (A.S.)
| | - Anna Serefko
- Chair and Department of Applied and Social Pharmacy, Laboratory of Preclinical Testing, Medical University of Lublin, Chodźki 1, PL 20-093 Lublin, Poland; (A.S.); (A.S.)
| | - Katarzyna Socała
- Department of Animal Physiology and Pharmacology, Institute of Biological Sciences, Maria Curie-Skłodowska University, Akademicka 19, PL 20-033 Lublin, Poland; (K.S.); (M.P.); (D.N.); (P.W.)
| | - Mateusz Pieróg
- Department of Animal Physiology and Pharmacology, Institute of Biological Sciences, Maria Curie-Skłodowska University, Akademicka 19, PL 20-033 Lublin, Poland; (K.S.); (M.P.); (D.N.); (P.W.)
| | - Dorota Nieoczym
- Department of Animal Physiology and Pharmacology, Institute of Biological Sciences, Maria Curie-Skłodowska University, Akademicka 19, PL 20-033 Lublin, Poland; (K.S.); (M.P.); (D.N.); (P.W.)
| | - Katarzyna Mlyniec
- Department of Pharmacobiology, Jagiellonian University Medical College, Medyczna 9, PL 30-688 Kraków, Poland; (K.M.); (G.N.)
| | - Gabriel Nowak
- Department of Pharmacobiology, Jagiellonian University Medical College, Medyczna 9, PL 30-688 Kraków, Poland; (K.M.); (G.N.)
- Department of Neurobiology, Maj Institute of Pharmacology, Polish Academy of Sciences, Smetna 12, PL 31-343 Kraków, Poland
| | - Danuta Barałkiewicz
- Department of Trace Analysis, Adam Mickiewicz University, Uniwersytetu Poznanskiego 8, PL 61-614 Poznan, Poland; (A.S.); (D.B.)
| | - Ireneusz Sowa
- Department of Analytical Chemistry, Medical University of Lublin, Chodźki 4A, PL 20-093 Lublin, Poland; (J.S.); (I.S.)
| | - Piotr Wlaź
- Department of Animal Physiology and Pharmacology, Institute of Biological Sciences, Maria Curie-Skłodowska University, Akademicka 19, PL 20-033 Lublin, Poland; (K.S.); (M.P.); (D.N.); (P.W.)
| |
Collapse
|
16
|
Abstract
Neuropeptides are a diverse class of signaling molecules in metazoans. They occur in all animals with a nervous system and also in neuron-less placozoans. However, their origin has remained unclear because no neuropeptide shows deep homology across lineages, and none have been found in sponges. Here, we identify two neuropeptide precursors, phoenixin (PNX) and nesfatin, with broad evolutionary conservation. By database searches, sequence alignments, and gene-structure comparisons, we show that both precursors are present in bilaterians, cnidarians, ctenophores, and sponges. We also found PNX and a secreted nesfatin precursor homolog in the choanoflagellate Salpingoeca rosetta. PNX, in particular, is highly conserved, including its cleavage sites, suggesting that prohormone processing occurs also in choanoflagellates. In addition, based on phyletic patterns and negative pharmacological assays, we question the originally proposed GPR-173 (SREB3) as a PNX receptor. Our findings revealed that secreted neuropeptide homologs derived from longer precursors have premetazoan origins and thus evolved before neurons.
Collapse
Affiliation(s)
| | - Daniel Thiel
- Living Systems Institute, University of Exeter, Stocker Road, Exeter, UK
| | - Gáspár Jékely
- Living Systems Institute, University of Exeter, Stocker Road, Exeter, UK
| |
Collapse
|
17
|
Lindquist P, Gasbjerg LS, Mokrosinski J, Holst JJ, Hauser AS, Rosenkilde MM. The Location of Missense Variants in the Human GIP Gene Is Indicative for Natural Selection. Front Endocrinol (Lausanne) 2022; 13:891586. [PMID: 35846282 PMCID: PMC9277503 DOI: 10.3389/fendo.2022.891586] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/08/2022] [Accepted: 05/04/2022] [Indexed: 11/16/2022] Open
Abstract
The intestinal hormone, glucose-dependent insulinotropic polypeptide (GIP), is involved in important physiological functions, including postprandial blood glucose homeostasis, bone remodeling, and lipid metabolism. While mutations leading to physiological changes can be identified in large-scale sequencing, no systematic investigation of GIP missense variants has been performed. Here, we identified 168 naturally occurring missense variants in the human GIP genes from three independent cohorts comprising ~720,000 individuals. We examined amino acid changing variants scattered across the pre-pro-GIP peptide using in silico effect predictions, which revealed that the sequence of the fully processed GIP hormone is more protected against mutations than the rest of the precursor protein. Thus, we observed a highly species-orthologous and population-specific conservation of the GIP peptide sequence, suggestive of evolutionary constraints to preserve the GIP peptide sequence. Elucidating the mutational landscape of GIP variants and how they affect the structural and functional architecture of GIP can aid future biological characterization and clinical translation.
Collapse
Affiliation(s)
- Peter Lindquist
- Laboratory for Molecular Pharmacology, Department of Biomedical Sciences, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Lærke Smidt Gasbjerg
- Laboratory for Molecular Pharmacology, Department of Biomedical Sciences, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Jacek Mokrosinski
- Novo Nordisk Research Center Indianapolis, Indianapolis, IN, United States
| | - Jens Juul Holst
- Department of Biomedical Sciences, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
- Novo Nordisk Foundation Center for Basic Metabolic Research, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Alexander Sebastian Hauser
- Department of Drug Design and Pharmacology, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
- *Correspondence: Alexander Sebastian Hauser, ; Mette Marie Rosenkilde,
| | - Mette Marie Rosenkilde
- Laboratory for Molecular Pharmacology, Department of Biomedical Sciences, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
- *Correspondence: Alexander Sebastian Hauser, ; Mette Marie Rosenkilde,
| |
Collapse
|
18
|
Zhu S, Wu M, Huang Z, An J. Trends in application of advancing computational approaches in GPCR ligand discovery. Exp Biol Med (Maywood) 2021; 246:1011-1024. [PMID: 33641446 PMCID: PMC8113737 DOI: 10.1177/1535370221993422] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
Abstract
G protein-coupled receptors (GPCRs) comprise the most important superfamily of protein targets in current ligand discovery and drug development. GPCRs are integral membrane proteins that play key roles in various cellular signaling processes. Therefore, GPCR signaling pathways are closely associated with numerous diseases, including cancer and several neurological, immunological, and hematological disorders. Computer-aided drug design (CADD) can expedite the process of GPCR drug discovery and potentially reduce the actual cost of research and development. Increasing knowledge of biological structures, as well as improvements on computer power and algorithms, have led to unprecedented use of CADD for the discovery of novel GPCR modulators. Similarly, machine learning approaches are now widely applied in various fields of drug target research. This review briefly summarizes the application of rising CADD methodologies, as well as novel machine learning techniques, in GPCR structural studies and bioligand discovery in the past few years. Recent novel computational strategies and feasible workflows are updated, and representative cases addressing challenging issues on olfactory receptors, biased agonism, and drug-induced cardiotoxic effects are highlighted to provide insights into future GPCR drug discovery.
Collapse
Affiliation(s)
- Siyu Zhu
- Division of Infectious Diseases and Global Public Health, Department of Medicine, School of Medicine, University of California at San Diego, La Jolla, CA 92093, USA
- Ciechanover Institute of Precision and Regenerative Medicine, School of Life and Health Sciences, Chinese University of Hong Kong, Shenzhen 518172, China
| | - Meixian Wu
- Division of Infectious Diseases and Global Public Health, Department of Medicine, School of Medicine, University of California at San Diego, La Jolla, CA 92093, USA
| | - Ziwei Huang
- Division of Infectious Diseases and Global Public Health, Department of Medicine, School of Medicine, University of California at San Diego, La Jolla, CA 92093, USA
- Ciechanover Institute of Precision and Regenerative Medicine, School of Life and Health Sciences, Chinese University of Hong Kong, Shenzhen 518172, China
- School of Life Sciences, Tsinghua University, Beijing 100084, China
| | - Jing An
- Division of Infectious Diseases and Global Public Health, Department of Medicine, School of Medicine, University of California at San Diego, La Jolla, CA 92093, USA
| |
Collapse
|
19
|
Uenoyama Y, Nagae M, Tsuchida H, Inoue N, Tsukamura H. Role of KNDy Neurons Expressing Kisspeptin, Neurokinin B, and Dynorphin A as a GnRH Pulse Generator Controlling Mammalian Reproduction. Front Endocrinol (Lausanne) 2021; 12:724632. [PMID: 34566891 PMCID: PMC8458932 DOI: 10.3389/fendo.2021.724632] [Citation(s) in RCA: 58] [Impact Index Per Article: 14.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/14/2021] [Accepted: 08/23/2021] [Indexed: 01/16/2023] Open
Abstract
Increasing evidence accumulated during the past two decades has demonstrated that the then-novel kisspeptin, which was discovered in 2001, the known neuropeptides neurokinin B and dynorphin A, which were discovered in 1983 and 1979, respectively, and their G-protein-coupled receptors, serve as key molecules that control reproduction in mammals. The present review provides a brief historical background and a summary of our recent understanding of the roles of hypothalamic neurons expressing kisspeptin, neurokinin B, and dynorphin A, referred to as KNDy neurons, in the central mechanism underlying gonadotropin-releasing hormone (GnRH) pulse generation and subsequent tonic gonadotropin release that controls mammalian reproduction.
Collapse
|
20
|
A synthetic method to assay adhesion-family G-protein coupled receptors. Determination of the G-protein coupling profile of ADGRG6(GPR126). Biochem Biophys Res Commun 2020; 534:317-322. [PMID: 33248691 DOI: 10.1016/j.bbrc.2020.11.086] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2020] [Accepted: 11/18/2020] [Indexed: 12/19/2022]
Abstract
G-protein coupled receptors (GPCRs) are the largest family of membrane-spanning receptors in metazoans and mediate diverse biological processes such as chemotaxis, vision, and neurotransmission. Adhesion GPCRs represent an understudied class of GPCRs. Adhesion GPCRs (ADGRs) are activated by an intrinsic proteolytic mechanism executed by the G-protein autoproteolysis inducing domain that defines this class of GPCRs. It is hypothesized that agonist ligands modulate the proteolyzed receptor to regulate the activity of a tethered agonist peptide that is an intramolecular activator of ADGRs. The mechanism of activation of ADGRs in physiological settings is unclear and the toolbox for interrogating ADGR physiology in cellular models is limited. Therefore, we generated a novel enterokinase-activated tethered ligand system for ADGRG6(GPR126). Enterokinase addition to cells expressing a synthetic ADGRG6 protein induced potent and efficacious signal transduction through heterotrimeric G-protein coupled second messenger pathways including cyclic nucleotide production, intracellular calcium mobilization, and GPCR-pathway linked reporter gene induction. These studies support the hypothesis that ADGRG6(GPR126) is coupled to multiple heterotrimeric G-proteins: including Gαs, Gαq, and Gα12. This novel assay method is robust, specific, and compatible with numerous cell pharmacology approaches. We present a new tool for determination of the biological function of ADGRs and the identification of ligands that engage these receptors.
Collapse
|
21
|
Schöneberg T, Liebscher I. Mutations in G Protein-Coupled Receptors: Mechanisms, Pathophysiology and Potential Therapeutic Approaches. Pharmacol Rev 2020; 73:89-119. [PMID: 33219147 DOI: 10.1124/pharmrev.120.000011] [Citation(s) in RCA: 64] [Impact Index Per Article: 12.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
There are approximately 800 annotated G protein-coupled receptor (GPCR) genes, making these membrane receptors members of the most abundant gene family in the human genome. Besides being involved in manifold physiologic functions and serving as important pharmacotherapeutic targets, mutations in 55 GPCR genes cause about 66 inherited monogenic diseases in humans. Alterations of nine GPCR genes are causatively involved in inherited digenic diseases. In addition to classic gain- and loss-of-function variants, other aspects, such as biased signaling, trans-signaling, ectopic expression, allele variants of GPCRs, pseudogenes, gene fusion, and gene dosage, contribute to the repertoire of GPCR dysfunctions. However, the spectrum of alterations and GPCR involvement is probably much larger because an additional 91 GPCR genes contain homozygous or hemizygous loss-of-function mutations in human individuals with currently unidentified phenotypes. This review highlights the complexity of genomic alteration of GPCR genes as well as their functional consequences and discusses derived therapeutic approaches. SIGNIFICANCE STATEMENT: With the advent of new transgenic and sequencing technologies, the number of monogenic diseases related to G protein-coupled receptor (GPCR) mutants has significantly increased, and our understanding of the functional impact of certain kinds of mutations has substantially improved. Besides the classical gain- and loss-of-function alterations, additional aspects, such as biased signaling, trans-signaling, ectopic expression, allele variants of GPCRs, uniparental disomy, pseudogenes, gene fusion, and gene dosage, need to be elaborated in light of GPCR dysfunctions and possible therapeutic strategies.
Collapse
Affiliation(s)
- Torsten Schöneberg
- Rudolf Schönheimer Institute of Biochemistry, Molecular Biochemistry, Medical Faculty, Leipzig, Germany
| | - Ines Liebscher
- Rudolf Schönheimer Institute of Biochemistry, Molecular Biochemistry, Medical Faculty, Leipzig, Germany
| |
Collapse
|
22
|
Babwah AV. The wonderful and masterful G protein-coupled receptor (GPCR): A focus on signaling mechanisms and the neuroendocrine control of fertility. Mol Cell Endocrinol 2020; 515:110886. [PMID: 32574585 DOI: 10.1016/j.mce.2020.110886] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/09/2020] [Revised: 05/08/2020] [Accepted: 05/20/2020] [Indexed: 12/18/2022]
Abstract
Human GnRH deficiency, both clinically and genetically, is a heterogeneous disorder comprising of congenital GnRH deficiency with anosmia (Kallmann syndrome), or with normal olfaction [normosmic idiopathic hypogonadotropic hypogonadism (IHH)], and adult-onset hypogonadotropic hypogonadism. Our understanding of the neural mechanisms underlying GnRH secretion and GnRH signaling continues to increase at a rapid rate and strikingly, the heterotrimeric guanine nucleotide-binding protein (G protein)-coupled receptors (GPCRs) continue to emerge as essential players in these processes. GPCRs were once viewed as binary on-off switches, where in the "on" state they are bound to their Gα protein, but now we understand that view is overly simplistic and does not adequately characterize GPCRs. Instead, GPCRs have emerged as masterful signaling molecules exploiting different physical conformational states of itself to elicit an array of downstream signaling events via their G proteins and the β-arrestins. The "one receptor-multiple signaling conformations" model is likely an evolved strategy that can be used to our advantage as researchers have shown that targeting specific receptor conformations via biased ligands is proving to be a powerful tool in the effective treatment of human diseases. Can biased ligands be used to selectively modulate signaling by GPCR regulators of the neuroendocrine axis in the treatment of IHH? As discussed in this review, the grand possibility exists. However, while we are still very far from developing these treatments, this exciting likelihood can happen through a much greater mechanistic understanding of how GPCRs signal within the cell.
Collapse
Affiliation(s)
- Andy V Babwah
- Department of Pediatrics, Laboratory of Human Growth and Reproductive Development, Robert Wood Johnson Medical School, Rutgers, The State University of New Jersey, New Brunswick, NJ, United States; Child Health Institute of New Jersey, New Brunswick, NJ, United States.
| |
Collapse
|
23
|
Sallee NA, Lee E, Leffert A, Ramirez S, Brace AD, Halenbeck R, Kavanaugh WM, Sullivan KMC. A Pilot Screen of a Novel Peptide Hormone Library Identified Candidate GPR83 Ligands. SLAS DISCOVERY 2020; 25:1047-1063. [PMID: 32713278 DOI: 10.1177/2472555220934807] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
Abstract
The identification of novel peptide hormones by functional screening is challenging because posttranslational processing is frequently required to generate biologically active hormones from inactive precursors. We developed an approach for functional screening of novel potential hormones by expressing them in endocrine host cells competent for posttranslational processing. Candidate preprohormones were selected by bioinformatics analysis, and stable endocrine host cell lines were engineered to express the preprohormones. The production of mature hormones was demonstrated by including the preprohormones insulin and glucagon, which require the regulated secretory pathway for production of the active forms. As proof of concept, we screened a set of G-protein-coupled receptors (GPCRs) and identified protein FAM237A as a specific activator of GPR83, a GPCR implicated in central nervous system and regulatory T-cell function. We identified the active form of FAM237A as a C-terminally cleaved, amidated 9 kDa secreted protein. The related protein FAM237B, which is 64% homologous to FAM237A, demonstrated similar posttranslational modification and activation of GPR83, albeit with reduced potency. These results demonstrate that our approach is capable of identifying and characterizing novel hormones that require processing for activity.
Collapse
Affiliation(s)
- Nathan A Sallee
- Five Prime Therapeutics Inc., South San Francisco, CA, USA.,Maze Therapeutics Inc., South San Francisco, CA, USA
| | - Ernestine Lee
- Five Prime Therapeutics Inc., South San Francisco, CA, USA
| | - Atossa Leffert
- Five Prime Therapeutics Inc., South San Francisco, CA, USA
| | - Silvia Ramirez
- Five Prime Therapeutics Inc., South San Francisco, CA, USA.,BioMarin Pharmaceutical Inc., San Rafael, CA, USA
| | - Arthur D Brace
- Five Prime Therapeutics Inc., South San Francisco, CA, USA
| | - Robert Halenbeck
- Five Prime Therapeutics Inc., South San Francisco, CA, USA.,BioMarin Pharmaceutical Inc., San Rafael, CA, USA
| | - W Michael Kavanaugh
- Five Prime Therapeutics Inc., South San Francisco, CA, USA.,CytomX Therapeutics Inc., South San Francisco, CA, USA
| | | |
Collapse
|
24
|
Hauser AS, Gloriam DE, Bräuner‐Osborne H, Foster SR. Novel approaches leading towards peptide GPCR de-orphanisation. Br J Pharmacol 2020; 177:961-968. [PMID: 31863461 PMCID: PMC7042120 DOI: 10.1111/bph.14950] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2019] [Revised: 11/12/2019] [Accepted: 11/19/2019] [Indexed: 12/12/2022] Open
Abstract
The discovery of novel ligands for orphan GPCRs has profoundly affected our understanding of human biology, opening new opportunities for research, and ultimately for therapeutic development. Accordingly, much effort has been directed towards the remaining orphan receptors, yet the rate of GPCR de-orphanisation has slowed in recent years. Here, we briefly review contemporary methodologies of de-orphanisation and then highlight our recent integrated computational and experimental approach for discovery of novel peptide ligands for orphan GPCRs. We identified putative endogenous peptide ligands and found peptide receptor sequence and structural characteristics present in selected orphan receptors. With comprehensive pharmacological screening using three complementary assays, we discovered novel pairings of 17 peptides with five different orphan GPCRs and revealed potential additional ligands for nine peptide GPCRs. These promising findings lay the foundation for future studies on these peptides and receptors to characterise their roles in human physiology and disease.
Collapse
Affiliation(s)
- Alexander S. Hauser
- Department of Drug Design and PharmacologyUniversity of CopenhagenCopenhagenDenmark
| | - David E. Gloriam
- Department of Drug Design and PharmacologyUniversity of CopenhagenCopenhagenDenmark
| | - Hans Bräuner‐Osborne
- Department of Drug Design and PharmacologyUniversity of CopenhagenCopenhagenDenmark
| | - Simon R. Foster
- Department of Drug Design and PharmacologyUniversity of CopenhagenCopenhagenDenmark
- Department of Biochemistry and Molecular Biology, Monash Biomedicine Discovery InstituteMonash UniversityClaytonVICAustralia
| |
Collapse
|