1
|
Hansen S, Otten ND, Nissen SD, Carstensen H, Hopster-Iversen C, Fjeldborg J, Staun SH, Fenner M, Hesselkilde EM, Buhl R. Atrial fibrillation as a risk factor for exercise-induced pulmonary haemorrhage following a standardised exercise test. Equine Vet J 2024; 56:552-561. [PMID: 37654233 DOI: 10.1111/evj.13995] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2023] [Accepted: 08/17/2023] [Indexed: 09/02/2023]
Abstract
BACKGROUND Atrial fibrillation (AF) has been proposed as a risk factor for exercise-induced pulmonary haemorrhage (EIPH) due to increased pressure in the left atrium. OBJECTIVE To evaluate if AF was associated with EIPH following a standardised exercise test (SET) to fatigue. STUDY DESIGN Two-arm controlled experiment. METHODS Ten untrained Standardbred mares mean (standard deviation [SD]) age 6 (2) years performed a SET on the treadmill in sinus rhythm (SR) (SET1) and 25-44 days after induction of self-sustained AF (SET2). AF was induced by tachypacing using a pacing device. Endoscopy, including tracheal wash and bronchoalveolar lavage (BAL), was performed 48-72 h before and 24 h after the two SETs. In addition, endoscopic grading of tracheal blood was performed 2 h after each SET. RESULTS After SET1, none of the horses showed blood in the trachea, and two horses showed erythrophagocytosis. Following SET2, two horses had grade 1 blood in the trachea and free erythrocytes and erythrophagocytosis in the BAL, while another two horses had erythrophagocytosis in the BAL. In SET2, the overall performance on the treadmill was decreased with a lower maximum velocity (SET1 10.3 ± 0.8 m/s vs. SET2 8.9 ± 0.9 m/s, p = 0.004), a higher heart rate (284 ± 21 vs. 221 ± 18 bpm, p = 0.003) and more abnormal QRS complexes (p < 0.001) compared with SET1. CONCLUSIONS Two horses showed signs of EIPH, resulting in visible blood in the trachea, when exercising in AF compared with SR. However, a possible link between EIPH, pulmonary pressure and AF needs to be further elucidated.
Collapse
Affiliation(s)
- Sanni Hansen
- Department of Veterinary Clinical Sciences, Faculty of Health and Medical Sciences, University of Copenhagen, Taastrup, Denmark
| | - Nina D Otten
- Department of Veterinary and Animal Sciences, Faculty of Health and Medical Sciences, University of Copenhagen, Frederiksberg C, Denmark
| | - Sarah D Nissen
- Department of Veterinary Clinical Sciences, Faculty of Health and Medical Sciences, University of Copenhagen, Taastrup, Denmark
| | - Helena Carstensen
- Department of Veterinary Clinical Sciences, Faculty of Health and Medical Sciences, University of Copenhagen, Taastrup, Denmark
| | - Charlotte Hopster-Iversen
- Department of Veterinary Clinical Sciences, Faculty of Health and Medical Sciences, University of Copenhagen, Taastrup, Denmark
| | - Julie Fjeldborg
- Department of Veterinary Clinical Sciences, Faculty of Health and Medical Sciences, University of Copenhagen, Taastrup, Denmark
| | - Sophie H Staun
- Department of Veterinary Clinical Sciences, Faculty of Health and Medical Sciences, University of Copenhagen, Taastrup, Denmark
| | - Merle Fenner
- Department of Veterinary Clinical Sciences, Faculty of Health and Medical Sciences, University of Copenhagen, Taastrup, Denmark
| | - Eva M Hesselkilde
- Department of Veterinary Clinical Sciences, Faculty of Health and Medical Sciences, University of Copenhagen, Taastrup, Denmark
| | - Rikke Buhl
- Department of Veterinary Clinical Sciences, Faculty of Health and Medical Sciences, University of Copenhagen, Taastrup, Denmark
| |
Collapse
|
2
|
Norup Hertel J, Linz B, Isaksen J, Jerltorp K, Leonhardt C, Gottlieb L, Saljic A, Jespersen T, Linz D. Inhibition of the acetylcholine-regulated potassium current prevents transient apnea-related atrial arrhythmogenic changes in a porcine model. Heart Rhythm 2024; 21:622-629. [PMID: 38280622 DOI: 10.1016/j.hrthm.2024.01.033] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/18/2023] [Revised: 01/17/2024] [Accepted: 01/19/2024] [Indexed: 01/29/2024]
Abstract
BACKGROUND More than 50% of patients with atrial fibrillation (AF) suffer from sleep disordered breathing (SDB). Obstructive respiratory events contribute to a transient, vagally mediated atrial arrhythmogenic substrate, which is resistant to most available antiarrhythmic drugs. OBJECTIVE The purpose of this study was to investigate the effect of pharmacologic inhibition of the G-protein-gated acetylcholine-regulated potassium current (IK,ACh) with and without acute autonomic nervous system activation by nicotine in a pig model for obstructive respiratory events. METHODS In 21 pigs, SDB was simulated by applying an intermittent negative upper airway pressure (INAP). AF inducibility and atrial effective refractory periods (aERPs) were determined before and during INAP by an S1S2 atrial pacing-protocol. Pigs were randomized into 3 groups-group 1: vehicle (n = 4); group 2: XAF-1407 (IK,ACh inhibitor) (n = 7); and group 3: nicotine followed by XAF-1407 (n = 10). RESULTS In group 1, INAP shortened aERP (ΔaERP -42.6 ms; P = .004) and transiently increased AF inducibility from 0% to 31%. In group 2, XAF-1407 prolonged aERP by 25.2 ms (P = .005) during normal breathing and prevented INAP-induced aERP shortening (ΔaERP -3.6 ms; P = .3) and AF inducibility. In group 3, INAP transiently shortened aERP during nicotine perfusion (ΔaERP -33.6 ms; P = .004) and increased AF inducibility up to 61%, which both were prevented by XAF-1407. CONCLUSION Simulated obstructive respiratory events transiently shorten aERP and increase AF inducibility, which can be prevented by the IK,ACh-inhibitor XAF-1407. XAF-1407 also prevents these arrhythmogenic changes induced by obstructive respiratory events during nicotine perfusion. Whether IK,ACh channels represent a target for SDB-related AF in humans warrants further study.
Collapse
Affiliation(s)
- Julie Norup Hertel
- Faculty of Health and Medical Sciences, Department of Biomedical Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Benedikt Linz
- Faculty of Health and Medical Sciences, Department of Biomedical Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Jonas Isaksen
- Faculty of Health and Medical Sciences, Department of Biomedical Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Kezia Jerltorp
- Faculty of Health and Medical Sciences, Department of Biomedical Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Caroline Leonhardt
- Faculty of Health and Medical Sciences, Department of Biomedical Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Lisa Gottlieb
- Faculty of Health and Medical Sciences, Department of Biomedical Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Arnela Saljic
- Faculty of Health and Medical Sciences, Department of Biomedical Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Thomas Jespersen
- Faculty of Health and Medical Sciences, Department of Biomedical Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Dominik Linz
- Faculty of Health and Medical Sciences, Department of Biomedical Sciences, University of Copenhagen, Copenhagen, Denmark; Centre for Heart Rhythm Disorders, South Australian Health and Medical Research Institute, Royal Adelaide Hospital, University of Adelaide, Australia; Department of Cardiology, Maastricht University Medical Centre and Cardiovascular Research Institute Maastricht, Maastricht, The Netherlands.
| |
Collapse
|
3
|
Arabia G, Bellicini MG, Cersosimo A, Memo M, Mazzarotto F, Inciardi RM, Cerini M, Chen LY, Aboelhassan M, Benzoni P, Mitacchione G, Bontempi L, Curnis A. Ion channel dysfunction and fibrosis in atrial fibrillation: Two sides of the same coin. Pacing Clin Electrophysiol 2024; 47:417-428. [PMID: 38375940 DOI: 10.1111/pace.14944] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/31/2023] [Revised: 01/10/2024] [Accepted: 01/23/2024] [Indexed: 02/21/2024]
Abstract
BACKGROUND Atrial fibrillation (AF) is a common heart rhythm disorder that is associated with an increased risk of stroke and heart failure (HF). Initially, an association between AF and ion channel dysfunction was identified, classifying the pathology as a predominantly electrical disease. More recently it has been recognized that fibrosis and structural atrial remodeling play a driving role in the development of this arrhythmia also in these cases. PURPOSE Understanding the role of fibrosis in genetic determined AF could be important to better comprise the pathophysiology of this arrhythmia and to refine its management also in nongenetic forms. In this review we analyze genetic and epigenetic mechanisms responsible for AF and their link with atrial fibrosis, then we will consider analogies with the pathophysiological mechanism in nongenetic AF, and discuss consequent therapeutic options.
Collapse
Affiliation(s)
- Gianmarco Arabia
- Cardiology Department, Spedali Civili Hospital, University of Brescia, Brescia, Italy
- Department of Molecular and Translational Medicine, University of Brescia, Brescia, Italy
| | | | - Angelica Cersosimo
- Cardiology Department, Spedali Civili Hospital, University of Brescia, Brescia, Italy
| | - Maurizio Memo
- Department of Molecular and Translational Medicine, University of Brescia, Brescia, Italy
| | - Francesco Mazzarotto
- Department of Molecular and Translational Medicine, University of Brescia, Brescia, Italy
- National Heart and Lung Institute, Imperial College London (F.M., J. Ware), London, UK
| | | | - Manuel Cerini
- Cardiology Department, Spedali Civili Hospital, University of Brescia, Brescia, Italy
| | - Lin Yee Chen
- University of Minnesota (L.Y.C.), Minneapolis, USA
| | | | - Patrizia Benzoni
- Department of Biosciences, Università degli Studi di Milano, Milan, Italy
| | | | - Luca Bontempi
- Unit of Cardiology, Cardiac Electrophysiology and, Electrostimulation Laboratory, "Bolognini" Hospital of Seriate - ASST Bergamo Est, Bergamo, Italy
| | - Antonio Curnis
- Cardiology Department, Spedali Civili Hospital, University of Brescia, Brescia, Italy
- Department of Molecular and Translational Medicine, University of Brescia, Brescia, Italy
| |
Collapse
|
4
|
Nissen SD, Saljic A, Carstensen H, Braunstein TH, Hesselkilde EM, Kjeldsen ST, Hopster-Iversen C, D’Souza A, Jespersen T, Buhl R. Muscarinic acetylcholine receptors M 2 are upregulated in the atrioventricular nodal tract in horses with a high burden of second-degree atrioventricular block. Front Cardiovasc Med 2023; 10:1102164. [PMID: 38034369 PMCID: PMC10687567 DOI: 10.3389/fcvm.2023.1102164] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2022] [Accepted: 10/30/2023] [Indexed: 12/02/2023] Open
Abstract
Background Second-degree atrioventricular (AV) block at rest is very common in horses. The underlying molecular mechanisms are unexplored, but commonly attributed to high vagal tone. Aim To assess whether AV block in horses is due to altered expression of the effectors of vagal signalling in the AV node, with specific emphasis on the muscarinic acetylcholine receptor (M2) and the G protein-gated inwardly rectifying K+ (GIRK4) channel that mediates the cardiac IK,ACh current. Method Eighteen horses with a low burden of second-degree AV block (median 8 block per 20 h, IQR: 32 per 20 h) were assigned to the control group, while 17 horses with a high burden of second-degree AV block (median: 408 block per 20 h, IQR: 1,436 per 20 h) were assigned to the AV block group. Radiotelemetry ECG recordings were performed to assess PR interval and incidence of second-degree AV block episodes at baseline and on pharmacological blockade of the autonomic nervous system (ANS). Wenckebach cycle length was measured by intracardiac pacing (n = 16). Furthermore, the expression levels of the M2 receptor and the GIRK4 subunit of the IKACh channel were quantified in biopsies from the right atrium, the AV node and right ventricle using immunohistochemistry and machine learning-based automated segmentation analysis (n = 9 + 9). Results The AV block group had a significantly longer PR interval (mean ± SD, 0.40 ± 0.05 s; p < 0.001) and a longer Wenckebach cycle length (mean ± SD, 995 ± 86 ms; p = 0.007) at baseline. After blocking the ANS, all second-degree AV block episodes were abolished, and the difference in PR interval disappered (p = 0.80). The AV block group had significantly higher expression of the M2 receptor (p = 0.02), but not the GIRK4 (p = 0.25) in the AV node compared to the control group. Both M2 and GIRK4 were highly expressed in the AV node and less expressed in the atria and the ventricles. Conclusion Here, we demonstrate the involvement of the m2R-IK,ACh pathway in underlying second-degree AV block in horses. The high expression level of the M2 receptor may be responsible for the high burden of second-degree AV blocks seen in some horses.
Collapse
Affiliation(s)
- Sarah Dalgas Nissen
- Laboratory of Cardiac Physiology, Department of Biomedical Sciences, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Arnela Saljic
- Laboratory of Cardiac Physiology, Department of Biomedical Sciences, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
- Institute of Pharmacology, West German Heart and Vascular Centre, University Duisburg-Essen, Essen, Germany
| | - Helena Carstensen
- Department of Veterinary Clinical Sciences, Faculty of Health and Medical Sciences, University of Copenhagen, Taastrup, Denmark
| | - Thomas Hartig Braunstein
- Core Facility for Integrated Microscopy, Department of Biomedical Sciences, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Eva Melis Hesselkilde
- Laboratory of Cardiac Physiology, Department of Biomedical Sciences, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Sofie Troest Kjeldsen
- Department of Veterinary Clinical Sciences, Faculty of Health and Medical Sciences, University of Copenhagen, Taastrup, Denmark
| | - Charlotte Hopster-Iversen
- Department of Veterinary Clinical Sciences, Faculty of Health and Medical Sciences, University of Copenhagen, Taastrup, Denmark
| | - Alicia D’Souza
- Division of Cardiovascular Sciences, University of Manchester, 3.30 Core Technology, Manchester, United Kingdom
| | - Thomas Jespersen
- Laboratory of Cardiac Physiology, Department of Biomedical Sciences, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Rikke Buhl
- Department of Veterinary Clinical Sciences, Faculty of Health and Medical Sciences, University of Copenhagen, Taastrup, Denmark
| |
Collapse
|
5
|
Kayser A, Dittmann S, Šarić T, Mearini G, Verkerk AO, Schulze-Bahr E. The W101C KCNJ5 Mutation Induces Slower Pacing by Constitutively Active GIRK Channels in hiPSC-Derived Cardiomyocytes. Int J Mol Sci 2023; 24:15290. [PMID: 37894977 PMCID: PMC10607318 DOI: 10.3390/ijms242015290] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2023] [Revised: 10/13/2023] [Accepted: 10/15/2023] [Indexed: 10/29/2023] Open
Abstract
Mutations in the KCNJ5 gene, encoding one of the major subunits of cardiac G-protein-gated inwardly rectifying K+ (GIRK) channels, have been recently linked to inherited forms of sinus node dysfunction. Here, the pathogenic mechanism of the W101C KCNJ5 mutation underlying sinus bradycardia in a patient-derived cellular disease model of sinus node dysfunction (SND) was investigated. A human-induced pluripotent stem cell (hiPSCs) line of a mutation carrier was generated, and CRISPR/Cas9-based gene targeting was used to correct the familial mutation as a control line. Both cell lines were further differentiated into cardiomyocytes (hiPSC-CMs) that robustly expressed GIRK channels which underly the acetylcholine-regulated K+ current (IK,ACh). hiPSC-CMs with the W101C KCNJ5 mutation (hiPSCW101C-CM) had a constitutively active IK,ACh under baseline conditions; the application of carbachol was able to increase IK,ACh, further indicating that not all available cardiac GIRK channels were open at baseline. Additionally, hiPSCW101C-CM had a more negative maximal diastolic potential (MDP) and a slower pacing frequency confirming the bradycardic phenotype. Of note, the blockade of the constitutively active GIRK channel with XAF-1407 rescued the phenotype. These results provide further mechanistic insights and may pave the way for the treatment of SND patients with GIRK channel dysfunction.
Collapse
Affiliation(s)
- Anne Kayser
- Institute for Genetics of Heart Diseases (IfGH), University Hospital Münster, 48149 Münster, Germany (S.D.); (E.S.-B.)
| | - Sven Dittmann
- Institute for Genetics of Heart Diseases (IfGH), University Hospital Münster, 48149 Münster, Germany (S.D.); (E.S.-B.)
| | - Tomo Šarić
- Center for Physiology and Pathophysiology, Institute for Neurophysiology, Faculty of Medicine and University Hospital Cologne, University of Cologne, 50931 Cologne, Germany;
| | - Giulia Mearini
- Institute of Experimental Pharmacology and Toxicology, University Medical Center Hamburg-Eppendorf, 20246 Hamburg, Germany
| | - Arie O. Verkerk
- Department of Medical Biology, Amsterdam University Medical Centers, University of Amsterdam, 1105 AZ Amsterdam, The Netherlands
- Department of Experimental Cardiology, Amsterdam University Medical Centers, University of Amsterdam, 1105 AZ Amsterdam, The Netherlands
| | - Eric Schulze-Bahr
- Institute for Genetics of Heart Diseases (IfGH), University Hospital Münster, 48149 Münster, Germany (S.D.); (E.S.-B.)
| |
Collapse
|
6
|
Abstract
Cardiac arrhythmias remain a common cause of death and disability. Antiarrhythmic drugs (AADs) and antiarrhythmic agents remain a cornerstone of current cardiac arrhythmia management, despite moderate efficacy and the potential for significant adverse proarrhythmic effects. Due to conceptual, regulatory and financial considerations, the number of novel antiarrhythmic targets and agents in the development pipeline has decreased substantially during the last few decades. However, several promising candidates remain and there are exciting developments in repurposing and reformulating already existing drugs for indications related to cardiac arrhythmias. This review discusses the key conceptual considerations for the development of new antiarrhythmic agents, summarizes new compounds and formulations currently in clinical development for rhythm control of atrial fibrillation, and highlights the potential for drug repurposing. Finally, future directions in AAD development are discussed. Together with an ever-increasing understanding of the molecular mechanisms underlying cardiac arrhythmias, these components support a cautiously optimistic outlook towards improved pharmacological treatment opportunities for patients suffering from cardiac arrhythmias.
Collapse
Affiliation(s)
- Arnela Saljic
- Department of Biomedical Sciences, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
- Institute of Pharmacology, West German Heart and Vascular Center, University Duisburg-Essen, Essen, Germany
| | - Jordi Heijman
- Department of Cardiology, Maastricht University Medical Centre and Cardiovascular Research Institute Maastricht, Maastricht University, Maastricht, The Netherlands
| | - Dobromir Dobrev
- Department of Biomedical Sciences, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark.
- Montréal Heart Institute and University de Montréal, Medicine and Research Center, Montréal, Canada.
- Department of Molecular Physiology and Biophysics, Baylor College of Medicine, Houston, USA.
- , Hufelandstrasse 55, 45122, Essen, Germany.
| |
Collapse
|
7
|
Meyer KM, Malhotra N, Kwak JS, El Refaey M. Relevance of KCNJ5 in Pathologies of Heart Disease. Int J Mol Sci 2023; 24:10849. [PMID: 37446026 PMCID: PMC10341679 DOI: 10.3390/ijms241310849] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2023] [Revised: 06/16/2023] [Accepted: 06/21/2023] [Indexed: 07/15/2023] Open
Abstract
Abnormalities in G-protein-gated inwardly rectifying potassium (GIRK) channels have been implicated in diseased states of the cardiovascular system; however, the role of GIRK4 (Kir3.4) in cardiac physiology and pathophysiology has yet to be completely understood. Within the heart, the KACh channel, consisting of two GIRK1 and two GIRK4 subunits, plays a major role in modulating the parasympathetic nervous system's influence on cardiac physiology. Being that GIRK4 is necessary for the functional KACh channel, KCNJ5, which encodes GIRK4, it presents as a therapeutic target for cardiovascular pathology. Human variants in KCNJ5 have been identified in familial hyperaldosteronism type III, long QT syndrome, atrial fibrillation, and sinus node dysfunction. Here, we explore the relevance of KCNJ5 in each of these diseases. Further, we address the limitations and complexities of discerning the role of KCNJ5 in cardiovascular pathophysiology, as identical human variants of KCNJ5 have been identified in several diseases with overlapping pathophysiology.
Collapse
Affiliation(s)
- Karisa M. Meyer
- Department of Surgery, Division of Cardiac Surgery, The Ohio State University, Columbus, OH 43210, USA; (K.M.M.); (N.M.); (J.s.K.)
- The Dorothy M. Davis Heart and Lung Research Institute, The Ohio State University, Columbus, OH 43210, USA
| | - Nipun Malhotra
- Department of Surgery, Division of Cardiac Surgery, The Ohio State University, Columbus, OH 43210, USA; (K.M.M.); (N.M.); (J.s.K.)
- The Dorothy M. Davis Heart and Lung Research Institute, The Ohio State University, Columbus, OH 43210, USA
| | - Jung seo Kwak
- Department of Surgery, Division of Cardiac Surgery, The Ohio State University, Columbus, OH 43210, USA; (K.M.M.); (N.M.); (J.s.K.)
- The Dorothy M. Davis Heart and Lung Research Institute, The Ohio State University, Columbus, OH 43210, USA
| | - Mona El Refaey
- Department of Surgery, Division of Cardiac Surgery, The Ohio State University, Columbus, OH 43210, USA; (K.M.M.); (N.M.); (J.s.K.)
- The Dorothy M. Davis Heart and Lung Research Institute, The Ohio State University, Columbus, OH 43210, USA
| |
Collapse
|
8
|
Buhl R, Hesselkilde EM, Carstensen H, Hopster‐Iversen C, van Loon G, Decloedt A, Van Steenkiste G, Marr C, Reef VB, Schwarzwald CC, Mitchell KJ, Nostell K, Nogradi N, Nielsen SS, Carlson J, Platonov P. Atrial fibrillatory rate as predictor of recurrence of atrial fibrillation in horses treated medically or with electrical cardioversion. Equine Vet J 2022; 54:1013-1022. [PMID: 34957586 PMCID: PMC9787611 DOI: 10.1111/evj.13551] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2021] [Accepted: 12/20/2021] [Indexed: 12/30/2022]
Abstract
BACKGROUND The recurrence rate of atrial fibrillation (AF) in horses after cardioversion to sinus rhythm (SR) is relatively high. Atrial fibrillatory rate (AFR) derived from surface ECG is considered a biomarker for electrical remodelling and could potentially be used for the prediction of successful AF cardioversion and AF recurrence. OBJECTIVES Evaluate if AFR was associated with successful treatment and could predict AF recurrence in horses. STUDY DESIGN Retrospective multicentre study. METHODS Electrocardiograms (ECG) from horses with persistent AF admitted for cardioversion with either medical treatment (quinidine) or transvenous electrical cardioversion (TVEC) were included. Bipolar surface ECG recordings were analysed by spatiotemporal cancellation of QRST complexes and calculation of AFR from the remaining atrial signal. Kaplan-Meier survival curve and Cox regression analyses were performed to assess the relationship between AFR and the risk of AF recurrence. RESULTS Of the 195 horses included, 74 received quinidine treatment and 121 were treated with TVEC. Ten horses did not cardiovert to SR after quinidine treatment and AFR was higher in these, compared with the horses that successfully cardioverted to SR (median [interquartile range]), (383 [367-422] vs 351 [332-389] fibrillations per minute (fpm), P < .01). Within the first 180 days following AF cardioversion, 12% of the quinidine and 34% of TVEC horses had AF recurrence. For the horses successfully cardioverted with TVEC, AFR above 380 fpm was significantly associated with AF recurrence (hazard ratio = 2.4, 95% confidence interval 1.2-4.8, P = .01). MAIN LIMITATIONS The treatment groups were different and not randomly allocated, therefore the two treatments cannot be compared. Medical records and the follow-up strategy varied between the centres. CONCLUSIONS High AFR is associated with failure of quinidine cardioversion and AF recurrence after successful TVEC. As a noninvasive marker that can be retrieved from surface ECG, AFR can be clinically useful in predicting the probability of responding to quinidine treatment as well as maintaining SR after electrical cardioversion.
Collapse
Affiliation(s)
- Rikke Buhl
- Department of Veterinary Clinical SciencesFaculty of Health and Medical SciencesUniversity of CopenhagenCopenhagenDenmark
| | - Eva M. Hesselkilde
- Department of Veterinary Clinical SciencesFaculty of Health and Medical SciencesUniversity of CopenhagenCopenhagenDenmark
| | - Helena Carstensen
- Department of Veterinary Clinical SciencesFaculty of Health and Medical SciencesUniversity of CopenhagenCopenhagenDenmark
| | - Charlotte Hopster‐Iversen
- Department of Veterinary Clinical SciencesFaculty of Health and Medical SciencesUniversity of CopenhagenCopenhagenDenmark
| | - Gunther van Loon
- Equine CardioteamDepartment of Large Animal Internal MedicineGhent UniversityMerelbekeBelgium
| | - Annelies Decloedt
- Equine CardioteamDepartment of Large Animal Internal MedicineGhent UniversityMerelbekeBelgium
| | - Glenn Van Steenkiste
- Equine CardioteamDepartment of Large Animal Internal MedicineGhent UniversityMerelbekeBelgium
| | | | - Virginia B. Reef
- Department of Clinical Studies New Bolton CenterUniversity of Pennsylvania School of Veterinary MedicineKennett SquarePennsylvaniaUSA
| | | | | | - Katarina Nostell
- Department of Clinical SciencesFaculty of Veteirnary SciencesSwedish University of Agricultural SciencesUppsalaSweden
| | | | - Søren S. Nielsen
- Department of Veterinary SciencesFaculty of Health and Medical SciencesUniversity of CopenhagenCopenhagenDenmark
| | | | | |
Collapse
|
9
|
Distress-Mediated Remodeling of Cardiac Connexin-43 in a Novel Cell Model for Arrhythmogenic Heart Diseases. Int J Mol Sci 2022; 23:ijms231710174. [PMID: 36077591 PMCID: PMC9456330 DOI: 10.3390/ijms231710174] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2022] [Revised: 09/01/2022] [Accepted: 09/02/2022] [Indexed: 11/16/2022] Open
Abstract
Gap junctions and their expression pattern are essential to robust function of intercellular communication and electrical propagation in cardiomyocytes. In healthy myocytes, the main cardiac gap junction protein connexin-43 (Cx43) is located at the intercalated disc providing a clear direction of signal spreading across the cardiac tissue. Dislocation of Cx43 to lateral membranes has been detected in numerous cardiac diseases leading to slowed conduction and high propensity for the development of arrhythmias. At the cellular level, arrhythmogenic diseases are associated with elevated levels of oxidative distress and gap junction remodeling affecting especially the amount and sarcolemmal distribution of Cx43 expression. So far, a mechanistic link between sustained oxidative distress and altered Cx43 expression has not yet been identified. Here, we propose a novel cell model based on murine induced-pluripotent stem cell-derived cardiomyocytes to investigate subcellular signaling pathways linking cardiomyocyte distress with gap junction remodeling. We tested the new hypothesis that chronic distress, induced by rapid pacing, leads to increased reactive oxygen species, which promotes expression of a micro-RNA, miR-1, specific for the control of Cx43. Our data demonstrate that Cx43 expression is highly sensitive to oxidative distress, leading to reduced expression. This effect can be efficiently prevented by the glutathione peroxidase mimetic ebselen. Moreover, Cx43 expression is tightly regulated by miR-1, which is activated by tachypacing-induced oxidative distress. In light of the high arrhythmogenic potential of altered Cx43 expression, we propose miR-1 as a novel target for pharmacological interventions to prevent the maladaptive remodeling processes during chronic distress in the heart.
Collapse
|
10
|
Nissen SD, Weis R, Krag-Andersen EK, Hesselkilde EM, Isaksen JL, Carstensen H, Kanters JK, Linz D, Sanders P, Hopster-Iversen C, Jespersen T, Pehrson S, Buhl R. Electrocardiographic characteristics of trained and untrained standardbred racehorses. J Vet Intern Med 2022; 36:1119-1130. [PMID: 35488721 PMCID: PMC9151491 DOI: 10.1111/jvim.16427] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2021] [Revised: 04/01/2022] [Accepted: 04/02/2022] [Indexed: 11/28/2022] Open
Abstract
Background Long‐term exercise induces cardiac remodeling that potentially influences the electrical properties of the heart. Hypothesis/objectives We assessed whether training alters cardiac conduction in Standardbred racehorses. Animals Two hundred one trained and 52 untrained Standardbred horses. Methods Cross‐sectional study. Resting ECG recordings were analyzed to assess heart rate (HR) along with standard ECG parameters and for identification of atrial and ventricular arrhythmias. An electrophysiological study was performed in 13 horses assessing the effect of training on sinoatrial (SA) and atrioventricular (AV) nodal function by sinus node recovery time (SNRT) and His signal recordings. Age and sex adjustments were implemented in multiple and logistic regression models for comparison. Results Resting HR in beats per minute (bpm) was lower in trained vs untrained horses (mean, 30.8 ± 2.6 bpm vs 32.9 ± 4.2 bpm; P = .001). Trained horses more often displayed second‐degree atrioventricular block (2AVB; odds ratio, 2.59; P = .04). No difference in SNRT was found between groups (n = 13). Mean P‐A, A‐H, and H‐V intervals were 71 ± 20, 209 ± 41, and 134 ± 41 ms, respectively (n = 7). We did not detect a training effect on AV‐nodal conduction intervals. His signals were present in 1 horse during 2AVB with varying H‐V interval preceding a blocked beat. Conclusions and Clinical Importance We identified decreased HR and increased frequency of 2AVB in trained horses. In 5 of 7 horses, His signal recordings had variable H‐V intervals within each individual horse, providing novel insight into AV conduction in horses.
Collapse
Affiliation(s)
- Sarah D Nissen
- Laboratory of Cardiac Physiology, Department of Biomedical Sciences, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Rikke Weis
- Department of Veterinary Clinical Sciences, Faculty of Health and Medical Sciences, University of Copenhagen, Taastrup, Denmark
| | - Elisabeth K Krag-Andersen
- Department of Veterinary Clinical Sciences, Faculty of Health and Medical Sciences, University of Copenhagen, Taastrup, Denmark
| | - Eva M Hesselkilde
- Laboratory of Cardiac Physiology, Department of Biomedical Sciences, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Jonas L Isaksen
- Laboratory of Experimental Cardiology, Department of Biomedical Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Helena Carstensen
- Department of Veterinary Clinical Sciences, Faculty of Health and Medical Sciences, University of Copenhagen, Taastrup, Denmark
| | - Jørgen K Kanters
- Laboratory of Experimental Cardiology, Department of Biomedical Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Dominik Linz
- Laboratory of Cardiac Physiology, Department of Biomedical Sciences, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark.,Department of Cardiology, Maastricht University Medical Center, Cardiovascular Research Institute Maastricht, Maastricht, The Netherlands.,Department of Cardiology, Radboud University Medical Center, Nijmegen, The Netherlands.,Centre for Heart Rhythm Disorders, University of Adelaide and Royal Adelaide Hospital, Adelaide, South Australia, Australia
| | - Prashanthan Sanders
- Centre for Heart Rhythm Disorders, University of Adelaide and Royal Adelaide Hospital, Adelaide, South Australia, Australia
| | - Charlotte Hopster-Iversen
- Department of Veterinary Clinical Sciences, Faculty of Health and Medical Sciences, University of Copenhagen, Taastrup, Denmark
| | - Thomas Jespersen
- Laboratory of Cardiac Physiology, Department of Biomedical Sciences, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Steen Pehrson
- Department of Cardiology 2142, The Heart Centre, Copenhagen University Hospital, Rigshospitalet, Denmark
| | - Rikke Buhl
- Department of Veterinary Clinical Sciences, Faculty of Health and Medical Sciences, University of Copenhagen, Taastrup, Denmark
| |
Collapse
|
11
|
Emerging Antiarrhythmic Drugs for Atrial Fibrillation. Int J Mol Sci 2022; 23:ijms23084096. [PMID: 35456912 PMCID: PMC9029767 DOI: 10.3390/ijms23084096] [Citation(s) in RCA: 24] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2022] [Revised: 03/28/2022] [Accepted: 04/01/2022] [Indexed: 12/19/2022] Open
Abstract
Atrial fibrillation (AF), the most common cardiac arrhythmia worldwide, is driven by complex mechanisms that differ between subgroups of patients. This complexity is apparent from the different forms in which AF presents itself (post-operative, paroxysmal and persistent), each with heterogeneous patterns and variable progression. Our current understanding of the mechanisms responsible for initiation, maintenance and progression of the different forms of AF has increased significantly in recent years. Nevertheless, antiarrhythmic drugs for the management of AF have not been developed based on the underlying arrhythmia mechanisms and none of the currently used drugs were specifically developed to target AF. With the increased knowledge on the mechanisms underlying different forms of AF, new opportunities for developing more effective and safer AF therapies are emerging. In this review, we provide an overview of potential novel antiarrhythmic approaches based on the underlying mechanisms of AF, focusing both on the development of novel antiarrhythmic agents and on the possibility of repurposing already marketed drugs. In addition, we discuss the opportunity of targeting some of the key players involved in the underlying AF mechanisms, such as ryanodine receptor type-2 (RyR2) channels and atrial-selective K+-currents (IK2P and ISK) for antiarrhythmic therapy. In addition, we highlight the opportunities for targeting components of inflammatory signaling (e.g., the NLRP3-inflammasome) and upstream mechanisms targeting fibroblast function to prevent structural remodeling and progression of AF. Finally, we critically appraise emerging antiarrhythmic drug principles and future directions for antiarrhythmic drug development, as well as their potential for improving AF management.
Collapse
|
12
|
Muscarinic receptor activation reduces force and arrhythmias in human atria independent of IK,ACh. J Cardiovasc Pharmacol 2022; 79:678-686. [PMID: 35170489 DOI: 10.1097/fjc.0000000000001237] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/02/2021] [Accepted: 01/15/2022] [Indexed: 11/27/2022]
Abstract
ABSTRACT In human hearts, muscarinic receptors (M-R) are expressed in ventricular and atrial tissue, but the acetylcholine-activated potassium current (IK,ACh) is expressed mainly in the atrium. M-R activation decreases force and increases electrical stability in human atrium, but the impact of IK,ACh to both effects remains unclear. We employed a new selective blocker of IK,ACh to elaborate the contribution of IK,ACh to M-R activation-mediated effects in human atrium.Force and action potentials were measured in rat atria and in human right atrial trabeculae. Cumulative concentration-effect curves for norepinephrine-induced force and arrhythmias were measured in the presence of either carbachol (CCh;1µM) or CCh together with the IK,ACh -blocker XAF-1407 (1 µM) or in time-matched controls. To investigate the vulnerability to arrhythmias we performed some experiments also in the presence of cilostamide (0.3µM) and rolipram (1µM), inhibiting PDE3 and PDE4.In rat atria and human right atrial trabeculae, CCh shortened the action potential duration persistently. However, the direct negative inotropy of CCh was only transient in human, but stable in rat atria. In both rat and human atria, the negative inotropic effect was insensitive to blockage of IK,ACh by XAF-1407. In the presence of cilostamide and rolipram about 40% of trabeculae developed arrhythmias when exposed to norepinephrine. CCh prevented these concentration-dependent norepinephrine-induced arrhythmias, again insensitive to XAF-1407. Maximum catecholamine-induced force was not depressed by CCh.In human atrium, both the direct and the indirect negative inotropic effect of CCh are independent of IK,ACh. The same applies to the CCh-mediated suppression of norepinephrine/PDE-inhibition-induced arrhythmias.
Collapse
|
13
|
Linz B, Thostrup AH, Saljic A, Rombouts K, Hertel JN, Hohl M, Milnes J, Tfelt-Hansen J, Linz D, Jespersen T. Pharmacological inhibition of acetylcholine-regulated potassium current (IK,ACh) prevents atrial arrhythmogenic changes in a rat model of repetitive obstructive respiratory events. Heart Rhythm O2 2021; 3:97-104. [PMID: 35243441 PMCID: PMC8859790 DOI: 10.1016/j.hroo.2021.11.013] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022] Open
Abstract
Background In obstructive sleep apnea (OSA), intermittent hypoxemia and intrathoracic pressure fluctuations may increase atrial fibrillation (AF) susceptibility by cholinergic activation. Objective To investigate short-term atrial electrophysiological consequences of obstructive respiratory events, simulated by intermittent negative upper airway pressure (INAP), and the role of atrial acetylcholine-regulated potassium current (IK,ACh) activated by the M2 receptor. Methods In sedated (2% isoflurane), spontaneously breathing rats, INAP was applied noninvasively by a negative pressure device for 1 minute, followed by a resting period of 4 minutes. INAP was applied repeatedly throughout 70 minutes, followed by a 2-hour recovery period. Atrial effective refractory period (AERP) and AF inducibility were determined throughout the protocol. To study INAP-induced IK,ACh activation, protein levels of protein kinase C (PKCƐ) were determined in membrane and cytosolic fractions of left atrial (LA) tissue by Western blotting. Moreover, an IK,ACh inhibitor (XAF-1407: 1 mg/kg) and a muscarinic receptor inhibitor (atropine: 1 μg/kg) were investigated. Results In vehicle-treated rats, repetitive INAP shortened AERP (37 ± 3 ms vs baseline 44 ± 3 ms; P = .001) and increased LA membrane PKCƐ content relative to cytosolic levels. Upon INAP recovery, ratio of PKCƐ membrane to cytosol content normalized and INAP-induced AERP shortening reversed. Both XAF-1407 and atropine increased baseline AERP (control vs XAF-1407: 61 ± 4 ms; P > .001 and control vs atropine: 58 ± 3 ms; P = .011) and abolished INAP-associated AERP shortening. Conclusion Short-term simulated OSA is associated with a progressive, but transient, AERP shortening and a PKCƐ translocation to LA membrane. Pharmacological IK,ACh and muscarinic receptor inhibition prevented transient INAP-induced AERP shortening, suggesting an involvement of IK,ACh in the transient arrhythmogenic AF substrate in OSA.
Collapse
|
14
|
Papathanasiou KA, Giotaki SG, Vrachatis DA, Siasos G, Lambadiari V, Iliodromitis KE, Kossyvakis C, Kaoukis A, Raisakis K, Deftereos G, Papaioannou TG, Giannopoulos G, Avramides D, Deftereos SG. Molecular Insights in Atrial Fibrillation Pathogenesis and Therapeutics: A Narrative Review. Diagnostics (Basel) 2021; 11:diagnostics11091584. [PMID: 34573926 PMCID: PMC8470040 DOI: 10.3390/diagnostics11091584] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2021] [Revised: 08/29/2021] [Accepted: 08/30/2021] [Indexed: 12/15/2022] Open
Abstract
The prevalence of atrial fibrillation (AF) is bound to increase globally in the following years, affecting the quality of life of millions of people, increasing mortality and morbidity, and beleaguering health care systems. Increasingly effective therapeutic options against AF are the constantly evolving electroanatomic substrate mapping systems of the left atrium (LA) and ablation catheter technologies. Yet, a prerequisite for better long-term success rates is the understanding of AF pathogenesis and maintenance. LA electrical and anatomical remodeling remains in the epicenter of current research for novel diagnostic and treatment modalities. On a molecular level, electrical remodeling lies on impaired calcium handling, enhanced inwardly rectifying potassium currents, and gap junction perturbations. In addition, a wide array of profibrotic stimuli activates fibroblast to an increased extracellular matrix turnover via various intermediaries. Concomitant dysregulation of the autonomic nervous system and the humoral function of increased epicardial adipose tissue (EAT) are established mediators in the pathophysiology of AF. Local atrial lymphomononuclear cells infiltrate and increased inflammasome activity accelerate and perpetuate arrhythmia substrate. Finally, impaired intracellular protein metabolism, excessive oxidative stress, and mitochondrial dysfunction deplete atrial cardiomyocyte ATP and promote arrhythmogenesis. These overlapping cellular and molecular alterations hinder us from distinguishing the cause from the effect in AF pathogenesis. Yet, a plethora of therapeutic modalities target these molecular perturbations and hold promise in combating the AF burden. Namely, atrial selective ion channel inhibitors, AF gene therapy, anti-fibrotic agents, AF drug repurposing, immunomodulators, and indirect cardiac neuromodulation are discussed here.
Collapse
Affiliation(s)
- Konstantinos A. Papathanasiou
- Medical School, National and Kapodistrian University of Athens, 11527 Athens, Greece; (K.A.P.); (S.G.G.); (D.A.V.); (G.S.); (V.L.); (T.G.P.)
| | - Sotiria G. Giotaki
- Medical School, National and Kapodistrian University of Athens, 11527 Athens, Greece; (K.A.P.); (S.G.G.); (D.A.V.); (G.S.); (V.L.); (T.G.P.)
| | - Dimitrios A. Vrachatis
- Medical School, National and Kapodistrian University of Athens, 11527 Athens, Greece; (K.A.P.); (S.G.G.); (D.A.V.); (G.S.); (V.L.); (T.G.P.)
| | - Gerasimos Siasos
- Medical School, National and Kapodistrian University of Athens, 11527 Athens, Greece; (K.A.P.); (S.G.G.); (D.A.V.); (G.S.); (V.L.); (T.G.P.)
| | - Vaia Lambadiari
- Medical School, National and Kapodistrian University of Athens, 11527 Athens, Greece; (K.A.P.); (S.G.G.); (D.A.V.); (G.S.); (V.L.); (T.G.P.)
| | | | - Charalampos Kossyvakis
- Department of Cardiology, “G. Gennimatas” General Hospital of Athens, 11527 Athens, Greece; (C.K.); (A.K.); (K.R.); (G.D.); (D.A.)
| | - Andreas Kaoukis
- Department of Cardiology, “G. Gennimatas” General Hospital of Athens, 11527 Athens, Greece; (C.K.); (A.K.); (K.R.); (G.D.); (D.A.)
| | - Konstantinos Raisakis
- Department of Cardiology, “G. Gennimatas” General Hospital of Athens, 11527 Athens, Greece; (C.K.); (A.K.); (K.R.); (G.D.); (D.A.)
| | - Gerasimos Deftereos
- Department of Cardiology, “G. Gennimatas” General Hospital of Athens, 11527 Athens, Greece; (C.K.); (A.K.); (K.R.); (G.D.); (D.A.)
| | - Theodore G. Papaioannou
- Medical School, National and Kapodistrian University of Athens, 11527 Athens, Greece; (K.A.P.); (S.G.G.); (D.A.V.); (G.S.); (V.L.); (T.G.P.)
| | | | - Dimitrios Avramides
- Department of Cardiology, “G. Gennimatas” General Hospital of Athens, 11527 Athens, Greece; (C.K.); (A.K.); (K.R.); (G.D.); (D.A.)
| | - Spyridon G. Deftereos
- Medical School, National and Kapodistrian University of Athens, 11527 Athens, Greece; (K.A.P.); (S.G.G.); (D.A.V.); (G.S.); (V.L.); (T.G.P.)
- Correspondence: ; Tel.: +30-21-0583-2355
| |
Collapse
|
15
|
Gharaviri A, Pezzuto S, Potse M, Conte G, Zeemering S, Sobota V, Verheule S, Krause R, Auricchio A, Schotten U. Synergistic antiarrhythmic effect of inward rectifier current inhibition and pulmonary vein isolation in a 3D computer model for atrial fibrillation. Europace 2021; 23:i161-i168. [PMID: 33751085 DOI: 10.1093/europace/euaa413] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2020] [Accepted: 12/15/2020] [Indexed: 12/16/2022] Open
Abstract
AIMS Recent clinical studies showed that antiarrhythmic drug (AAD) treatment and pulmonary vein isolation (PVI) synergistically reduce atrial fibrillation (AF) recurrences after initially successful ablation. Among newly developed atrial-selective AADs, inhibitors of the G-protein-gated acetylcholine-activated inward rectifier current (IKACh) were shown to effectively suppress AF in an experimental model but have not yet been evaluated clinically. We tested in silico whether inhibition of inward rectifier current or its combination with PVI reduces AF inducibility. METHODS AND RESULTS We simulated the effect of inward rectifier current blockade (IK blockade), PVI, and their combination on AF inducibility in a detailed three-dimensional model of the human atria with different degrees of fibrosis. IK blockade was simulated with a 30% reduction of its conductivity. Atrial fibrillation was initiated using incremental pacing applied at 20 different locations, in both atria. IK blockade effectively prevented AF induction in simulations without fibrosis as did PVI in simulations without fibrosis and with moderate fibrosis. Both interventions lost their efficacy in severe fibrosis. The combination of IK blockade and PVI prevented AF in simulations without fibrosis, with moderate fibrosis, and even with severe fibrosis. The combined therapy strongly decreased the number of fibrillation waves, due to a synergistic reduction of wavefront generation rate while the wavefront lifespan remained unchanged. CONCLUSION Newly developed blockers of atrial-specific inward rectifier currents, such as IKAch, might prevent AF occurrences and when combined with PVI effectively supress AF recurrences in human.
Collapse
Affiliation(s)
- Ali Gharaviri
- Center for Computational Medicine in Cardiology, Institute of Computational Science, Università della Svizzera italiana, Lugano, Switzerland
| | - Simone Pezzuto
- Center for Computational Medicine in Cardiology, Institute of Computational Science, Università della Svizzera italiana, Lugano, Switzerland
| | - Mark Potse
- Carmen Team, Inria Bordeaux-Sud-Ouest, Talence, France.,Université de Bordeaux, IMB, UMR 5251, F-33400, Talence, France.,IHU Liryc, Electrophysiology and Heart Modeling Institute, Foundation Bordeaux Université, Bordeaux, France
| | - Giulio Conte
- Center for Computational Medicine in Cardiology, Institute of Computational Science, Università della Svizzera italiana, Lugano, Switzerland.,Division of Cardiology, Fondazione Cardiocentro Ticino, Via Tesserete 48, 6900 Lugano, Switzerland
| | - Stef Zeemering
- Department of Physiology, Maastricht University, Maastricht, The Netherlands
| | - Vladimír Sobota
- Department of Physiology, Maastricht University, Maastricht, The Netherlands
| | - Sander Verheule
- Department of Physiology, Maastricht University, Maastricht, The Netherlands
| | - Rolf Krause
- Center for Computational Medicine in Cardiology, Institute of Computational Science, Università della Svizzera italiana, Lugano, Switzerland
| | - Angelo Auricchio
- Center for Computational Medicine in Cardiology, Institute of Computational Science, Università della Svizzera italiana, Lugano, Switzerland.,Division of Cardiology, Fondazione Cardiocentro Ticino, Via Tesserete 48, 6900 Lugano, Switzerland
| | - Ulrich Schotten
- Department of Physiology, Maastricht University, Maastricht, The Netherlands
| |
Collapse
|
16
|
Kir Channel Molecular Physiology, Pharmacology, and Therapeutic Implications. Handb Exp Pharmacol 2021; 267:277-356. [PMID: 34345939 DOI: 10.1007/164_2021_501] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
Abstract
For the past two decades several scholarly reviews have appeared on the inwardly rectifying potassium (Kir) channels. We would like to highlight two efforts in particular, which have provided comprehensive reviews of the literature up to 2010 (Hibino et al., Physiol Rev 90(1):291-366, 2010; Stanfield et al., Rev Physiol Biochem Pharmacol 145:47-179, 2002). In the past decade, great insights into the 3-D atomic resolution structures of Kir channels have begun to provide the molecular basis for their functional properties. More recently, computational studies are beginning to close the time domain gap between in silico dynamic and patch-clamp functional studies. The pharmacology of these channels has also been expanding and the dynamic structural studies provide hope that we are heading toward successful structure-based drug design for this family of K+ channels. In the present review we focus on placing the physiology and pharmacology of this K+ channel family in the context of atomic resolution structures and in providing a glimpse of the promising future of therapeutic opportunities.
Collapse
|
17
|
Saljic A, Friederike Fenner M, Winters J, Flethøj M, Eggert Eggertsen C, Carstensen H, Dalgas Nissen S, Melis Hesselkilde E, van Hunnik A, Schotten U, Sørensen U, Jespersen T, Verheule S, Buhl R. Increased fibroblast accumulation in the equine heart following persistent atrial fibrillation. IJC HEART & VASCULATURE 2021; 35:100842. [PMID: 34355058 PMCID: PMC8322305 DOI: 10.1016/j.ijcha.2021.100842] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2021] [Revised: 06/30/2021] [Accepted: 07/06/2021] [Indexed: 01/06/2023]
Abstract
BACKGROUND Fibroblasts maintain the extracellular matrix homeostasis and may couple to cardiomyocytes through gap junctions and thereby increase the susceptibility to slow conduction and cardiac arrhythmias, such as atrial fibrillation (AF). In this study, we used an equine model of persistent AF to characterize structural changes and the role of fibroblasts in the development of an arrhythmogenic substrate for AF. MATERIAL AND METHODS Eleven horses were subjected to atrial tachypacing until self-sustained AF developed and were kept in AF for six weeks. Horses in sinus rhythm (SR) served as control. In terminal open-chest experiments conduction velocity (CV) was measured. Tissue was harvested and stained from selected sites. Automated image analysis was performed to assess fibrosis, fibroblasts, capillaries and various cardiomyocyte characteristics. RESULTS Horses in SR showed a rate-dependent slowing of CV, while in horses with persistent AF this rate-dependency was completely abolished (CV•basic cycle length relation p = 0.0295). Overall and interstitial amounts of fibrosis were unchanged, but an increased fibroblast count was found in left atrial appendage, Bachmann's bundle, intraatrial septum and pulmonary veins (p < 0.05 for all) in horses with persistent AF. The percentage of α-SMA expressing fibroblasts remained the same between the groups. CONCLUSION Persistent AF resulted in fibroblast accumulation in several regions, particularly in the left atrial appendage. The increased number of fibroblasts could be a mediator of altered electrophysiology during AF. Targeting the fibroblast proliferation and differentiation could potentially serve as a novel therapeutic target slowing down the structural remodeling associated with AF.
Collapse
Affiliation(s)
- Arnela Saljic
- Laboratory of Cardiac Physiology, Department of Biomedical Sciences, Faculty of Health and Medical Sciences, University of Copenhagen, Blegdamsvej 3B, DK-2200 Copenhagen, Denmark
| | - Merle Friederike Fenner
- Department of Veterinary Clinical Sciences, Faculty of Health and Medical Sciences, University of Copenhagen, Agrovej 8, DK-2630 Taastrup, Denmark
- Department of Veterinary and Animal Sciences, Faculty of Health and Medical Sciences, University of Copenhagen, Grønnegårdsvej 7, 1870 Frederiksberg, Denmark
| | - Joris Winters
- Department of Physiology, Maastricht University, Maastricht, Netherlands
| | - Mette Flethøj
- Department of Veterinary Clinical Sciences, Faculty of Health and Medical Sciences, University of Copenhagen, Agrovej 8, DK-2630 Taastrup, Denmark
| | - Caroline Eggert Eggertsen
- Laboratory of Cardiac Physiology, Department of Biomedical Sciences, Faculty of Health and Medical Sciences, University of Copenhagen, Blegdamsvej 3B, DK-2200 Copenhagen, Denmark
| | - Helena Carstensen
- Department of Veterinary Clinical Sciences, Faculty of Health and Medical Sciences, University of Copenhagen, Agrovej 8, DK-2630 Taastrup, Denmark
| | - Sarah Dalgas Nissen
- Laboratory of Cardiac Physiology, Department of Biomedical Sciences, Faculty of Health and Medical Sciences, University of Copenhagen, Blegdamsvej 3B, DK-2200 Copenhagen, Denmark
| | - Eva Melis Hesselkilde
- Laboratory of Cardiac Physiology, Department of Biomedical Sciences, Faculty of Health and Medical Sciences, University of Copenhagen, Blegdamsvej 3B, DK-2200 Copenhagen, Denmark
| | - Arne van Hunnik
- Department of Physiology, Maastricht University, Maastricht, Netherlands
| | - Ulrich Schotten
- Department of Physiology, Maastricht University, Maastricht, Netherlands
| | | | - Thomas Jespersen
- Laboratory of Cardiac Physiology, Department of Biomedical Sciences, Faculty of Health and Medical Sciences, University of Copenhagen, Blegdamsvej 3B, DK-2200 Copenhagen, Denmark
| | - Sander Verheule
- Department of Physiology, Maastricht University, Maastricht, Netherlands
| | - Rikke Buhl
- Department of Veterinary Clinical Sciences, Faculty of Health and Medical Sciences, University of Copenhagen, Agrovej 8, DK-2630 Taastrup, Denmark
| |
Collapse
|
18
|
Saljic A, Jespersen T, Buhl R. Anti-arrhythmic investigations in large animal models of atrial fibrillation. Br J Pharmacol 2021; 179:838-858. [PMID: 33624840 DOI: 10.1111/bph.15417] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2020] [Revised: 02/10/2021] [Accepted: 02/11/2021] [Indexed: 12/13/2022] Open
Abstract
Atrial fibrillation (AF) constitutes an increasing health problem in the aging population. Animal models reflecting human phenotypes are needed to understand the mechanisms of AF, as well as to test new pharmacological interventions. In recent years, a number of large animal models, primarily pigs, goats, dog and horses have been used in AF research. These animals can to a certain extent recapitulate the human pathophysiological characteristics and serve as valuable tools in investigating new pharmacological interventions for treating AF. This review focuses on anti-arrhythmic investigations in large animals. Initially, spontaneous AF in small and large mammals is discussed. This is followed by a short presentation of frequently used methods for inducing short- and long-term AF. The major focus of the review is on anti-arrhythmic compounds either frequently used in the human clinic (ranolazine, flecainide, vernakalant and amiodarone) or being promising new AF medicine candidates (IK,Ach , ISK,Ca and IK2P blockers).
Collapse
Affiliation(s)
- Arnela Saljic
- Laboratory of Cardiac Physiology, Department of Biomedical Sciences, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Thomas Jespersen
- Laboratory of Cardiac Physiology, Department of Biomedical Sciences, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Rikke Buhl
- Department of Veterinary Clinical Sciences, Faculty of Health and Medical Sciences, University of Copenhagen, Taastrup, Denmark
| |
Collapse
|
19
|
Fenner MF, Gatta G, Sattler S, Kuiper M, Hesselkilde EM, Adler DMT, Smerup M, Schotten U, Sørensen U, Diness JG, Jespersen T, Verheule S, Van Hunnik A, Buhl R. Inhibition of Small-Conductance Calcium-Activated Potassium Current ( I K,Ca) Leads to Differential Atrial Electrophysiological Effects in a Horse Model of Persistent Atrial Fibrillation. Front Physiol 2021; 12:614483. [PMID: 33633584 PMCID: PMC7900437 DOI: 10.3389/fphys.2021.614483] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2020] [Accepted: 01/08/2021] [Indexed: 12/13/2022] Open
Abstract
Background Small-conductance Ca2+-activated K+ (KCa2) channels have been proposed as a possible atrial-selective target to pharmacologically terminate atrial fibrillation (AF) and to maintain sinus rhythm. However, it has been hypothesized that the importance of the KCa2 current—and thereby the efficacy of small-conductance Ca2+-activated K+ current (IK,Ca) inhibition—might be negatively related to AF duration and the extent of AF-induced remodeling. Experimental Approach and Methods To address the hypothesis of the efficacy of IK,Ca inhibition being dependent on AF duration, the anti-arrhythmic properties of the IK,Ca inhibitor NS8593 (5 mg/kg) and its influence on atrial conduction were studied using epicardial high-density contact mapping in horses with persistent AF. Eleven Standardbred mares with tachypacing-induced persistent AF (42 ± 5 days of AF) were studied in an open-chest experiment. Unipolar AF electrograms were recorded and isochronal high-density maps analyzed to allow for the reconstruction of wave patterns and changes in electrophysiological parameters, such as atrial conduction velocity and AF cycle length. Atrial anti-arrhythmic properties and adverse effects of NS8593 on ventricular electrophysiology were evaluated by continuous surface ECG monitoring. Results IK,Ca inhibition by NS8593 administered intravenously had divergent effects on right and left AF complexity and propagation properties in this equine model of persistent AF. Despite global prolongation of AF cycle length, a slowing of conduction in the right atrium led to increased anisotropy and electrical dissociation, thus increasing AF complexity. In contrast, there was no significant change in AF complexity in the LA, and cardioversion of AF was not achieved. Conclusions Intra-atrial heterogeneity in response to IK,Ca inhibition by NS8593 was observed. The investigated dose of NS8593 increased the AF cycle length but was not sufficient to induce cardioversion. In terms of propagation properties during AF, IK,Ca inhibition by NS8593 led to divergent effects in the right and left atrium. This divergent behavior may have impeded the cardioversion success.
Collapse
Affiliation(s)
- Merle Friederike Fenner
- Department of Veterinary Clinical Sciences, Faculty of Health and Medical Sciences, University of Copenhagen, Taastrup, Denmark
| | - Giulia Gatta
- Department of Physiology, Cardiovascular Research Institute Maastricht, Maastricht, Netherlands
| | - Stefan Sattler
- Department of Biomedical Sciences, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Marion Kuiper
- Department of Physiology, Cardiovascular Research Institute Maastricht, Maastricht, Netherlands
| | - Eva Melis Hesselkilde
- Department of Veterinary Clinical Sciences, Faculty of Health and Medical Sciences, University of Copenhagen, Taastrup, Denmark.,Department of Biomedical Sciences, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Ditte M T Adler
- Department of Veterinary Clinical Sciences, Faculty of Health and Medical Sciences, University of Copenhagen, Taastrup, Denmark
| | - Morten Smerup
- Department of Cardiothoracic Surgery, The Heart Centre, Copenhagen University Hospital, Copenhagen, Denmark
| | - Ulrich Schotten
- Department of Physiology, Cardiovascular Research Institute Maastricht, Maastricht, Netherlands
| | | | | | - Thomas Jespersen
- Department of Biomedical Sciences, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Sander Verheule
- Department of Physiology, Cardiovascular Research Institute Maastricht, Maastricht, Netherlands
| | - Arne Van Hunnik
- Department of Physiology, Cardiovascular Research Institute Maastricht, Maastricht, Netherlands
| | - Rikke Buhl
- Department of Veterinary Clinical Sciences, Faculty of Health and Medical Sciences, University of Copenhagen, Taastrup, Denmark
| |
Collapse
|
20
|
Sobota V, Gatta G, van Hunnik A, van Tuijn I, Kuiper M, Milnes J, Jespersen T, Schotten U, Verheule S. The Acetylcholine-Activated Potassium Current Inhibitor XAF-1407 Terminates Persistent Atrial Fibrillation in Goats. Front Pharmacol 2021; 11:608410. [PMID: 33584287 PMCID: PMC7873360 DOI: 10.3389/fphar.2020.608410] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2020] [Accepted: 12/10/2020] [Indexed: 12/20/2022] Open
Abstract
Aims: The acetylcholine-activated inward rectifier potassium current (IKACh) has been proposed as an atrial-selective target for the treatment of atrial fibrillation (AF). Using a novel selective IKACh inhibitor XAF-1407, the study investigates the effect of IKACh inhibition in goats with pacing-induced, short-term AF. Methods: Ten goats (57 ± 5 kg) were instrumented with pericardial electrodes. Electrophysiological parameters were assessed at baseline and during intravenous infusion of XAF-1407 (0.3, 3.0 mg/kg) in conscious animals before and after 2 days of electrically induced AF. Following a further 2 weeks of sustained AF, cardioversion was attempted with either XAF-1407 (0.3 followed by 3 mg/kg) or with vernakalant (3.7 followed by 4.5 mg/kg), an antiarrhythmic drug that inhibits the fast sodium current and several potassium currents. During a final open chest experiment, 249 unipolar electrograms were recorded on each atrium to construct activation patterns and AF cardioversion was attempted with XAF-1407. Results: XAF-1407 prolonged atrial effective refractory period by 36 ms (45%) and 71 ms (87%) (0.3 and 3.0 mg/kg, respectively; pacing cycle length 400 ms, 2 days of AF-induced remodeling) and showed higher cardioversion efficacy than vernakalant (8/9 vs. 5/9). XAF-1407 caused a minor decrease in the number of waves per AF cycle in the last seconds prior to cardioversion. Administration of XAF-1407 was associated with a modest increase in QTc (<10%). No ventricular proarrhythmic events were observed. Conclusion: XAF-1407 showed an antiarrhythmic effect in a goat model of AF. The study indicates that IKACh represents an interesting therapeutic target for treatment of AF. To assess the efficacy of XAF-1407 in later time points of AF-induced remodeling, follow-up studies with longer period of AF maintenance would be necessary.
Collapse
Affiliation(s)
- Vladimír Sobota
- Department of Physiology, Cardiovascular Research Institute Maastricht, Maastricht, Netherlands
| | - Giulia Gatta
- Department of Physiology, Cardiovascular Research Institute Maastricht, Maastricht, Netherlands
| | - Arne van Hunnik
- Department of Physiology, Cardiovascular Research Institute Maastricht, Maastricht, Netherlands
| | - Iris van Tuijn
- Department of Physiology, Cardiovascular Research Institute Maastricht, Maastricht, Netherlands
| | - Marion Kuiper
- Department of Physiology, Cardiovascular Research Institute Maastricht, Maastricht, Netherlands
| | | | - Thomas Jespersen
- Department of Biomedical Sciences, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Ulrich Schotten
- Department of Physiology, Cardiovascular Research Institute Maastricht, Maastricht, Netherlands
| | - Sander Verheule
- Department of Physiology, Cardiovascular Research Institute Maastricht, Maastricht, Netherlands
| |
Collapse
|
21
|
Decloedt A, Van Steenkiste G, Vera L, Buhl R, van Loon G. Atrial fibrillation in horses Part 2: Diagnosis, treatment and prognosis. Vet J 2020; 268:105594. [PMID: 33468306 DOI: 10.1016/j.tvjl.2020.105594] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2020] [Revised: 10/27/2020] [Accepted: 12/10/2020] [Indexed: 10/22/2022]
Abstract
Atrial fibrillation (AF) is suspected by an irregularly irregular rhythm during auscultation at rest and should be confirmed by electrocardiography. Heart rate monitoring is potentially interesting for AF detection by horse owners, based on the disproportionally high heart rate during exercise or increased heart rate variability. Echocardiography and laboratory analysis are useful to identify underlying cardiac disease. Horses with severe cardiac disease should not undergo cardioversion due to the risk of recurrence. Cardioversion is recommended especially in horses performing high intensity exercise or showing average maximal heart rates higher than 220 beats per min or abnormal ventricular complexes during exercise or stress. Pharmacological cardioversion can be performed using quinidine sulphate administered orally, with an overall mean reported success rate around 80%. Other therapeutic drugs have been described such as flecainide, amiodarone or novel atrial specific compounds. Transvenous electrical cardioversion (TVEC) is performed by delivering a shock between two cardioversion catheters positioned in the left pulmonary artery and right atrium, with a success rate of >95%. After cardioversion, most horses return to their previous level of performance. However, the recurrence rate after pharmacological or electrical cardioversion is up to 39%. Recurrence has been related to previous unsuccessful treatment attempts, valvular regurgitation and the presence of atrial premature depolarisations or low atrial contractile function after cardioversion. Large atrial size and long AF duration have also been suggested as risk factors. Different approaches for preventing recurrence have been described such as the administration of sotalol, however, large clinical studies have not been published.
Collapse
Affiliation(s)
- Annelies Decloedt
- Department of Large Animal Internal Medicine, Faculty of Veterinary Medicine, Ghent University, Belgium.
| | - Glenn Van Steenkiste
- Department of Large Animal Internal Medicine, Faculty of Veterinary Medicine, Ghent University, Belgium
| | - Lisse Vera
- Department of Large Animal Internal Medicine, Faculty of Veterinary Medicine, Ghent University, Belgium
| | - Rikke Buhl
- Department of Veterinary Clinical Sciences, Faculty of Health and Medical Sciences, University of Copenhagen, Denmark
| | - Gunther van Loon
- Department of Large Animal Internal Medicine, Faculty of Veterinary Medicine, Ghent University, Belgium
| |
Collapse
|
22
|
Mikhailov AV, Kalyanasundaram A, Li N, Scott SS, Artiga EJ, Subr MM, Zhao J, Hansen BJ, Hummel JD, Fedorov VV. Comprehensive evaluation of electrophysiological and 3D structural features of human atrial myocardium with insights on atrial fibrillation maintenance mechanisms. J Mol Cell Cardiol 2020; 151:56-71. [PMID: 33130148 DOI: 10.1016/j.yjmcc.2020.10.012] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/24/2020] [Revised: 10/22/2020] [Accepted: 10/23/2020] [Indexed: 12/14/2022]
Abstract
Atrial fibrillation (AF) occurrence and maintenance is associated with progressive remodeling of electrophysiological (repolarization and conduction) and 3D structural (fibrosis, fiber orientations, and wall thickness) features of the human atria. Significant diversity in AF etiology leads to heterogeneous arrhythmogenic electrophysiological and structural substrates within the 3D structure of the human atria. Since current clinical methods have yet to fully resolve the patient-specific arrhythmogenic substrates, mechanism-based AF treatments remain underdeveloped. Here, we review current knowledge from in-vivo, ex-vivo, and in-vitro human heart studies, and discuss how these studies may provide new insights on the synergy of atrial electrophysiological and 3D structural features in AF maintenance. In-vitro studies on surgically acquired human atrial samples provide a great opportunity to study a wide spectrum of AF pathology, including functional changes in single-cell action potentials, ion channels, and gene/protein expression. However, limited size of the samples prevents evaluation of heterogeneous AF substrates and reentrant mechanisms. In contrast, coronary-perfused ex-vivo human hearts can be studied with state-of-the-art functional and structural technologies, such as high-resolution near-infrared optical mapping and contrast-enhanced MRI. These imaging modalities can resolve atrial arrhythmogenic substrates and their role in reentrant mechanisms maintaining AF and validate clinical approaches. Nonetheless, longitudinal studies are not feasible in explanted human hearts. As no approach is perfect, we suggest that combining the strengths of direct human atrial studies with high fidelity approaches available in the laboratory and in realistic patient-specific computer models would elucidate deeper knowledge of AF mechanisms. We propose that a comprehensive translational pipeline from ex-vivo human heart studies to longitudinal clinically relevant AF animal studies and finally to clinical trials is necessary to identify patient-specific arrhythmogenic substrates and develop novel AF treatments.
Collapse
Affiliation(s)
- Aleksei V Mikhailov
- Department of Physiology & Cell Biology, Bob and Corrine Frick Center for Heart Failure and Arrhythmia, The Ohio State University Wexner Medical Center, Columbus, OH, USA; Arrhythmology Research Department, Almazov National Medical Research Centre, Saint-Petersburg, Russia
| | - Anuradha Kalyanasundaram
- Department of Physiology & Cell Biology, Bob and Corrine Frick Center for Heart Failure and Arrhythmia, The Ohio State University Wexner Medical Center, Columbus, OH, USA
| | - Ning Li
- Department of Physiology & Cell Biology, Bob and Corrine Frick Center for Heart Failure and Arrhythmia, The Ohio State University Wexner Medical Center, Columbus, OH, USA
| | - Shane S Scott
- Department of Physiology & Cell Biology, Bob and Corrine Frick Center for Heart Failure and Arrhythmia, The Ohio State University Wexner Medical Center, Columbus, OH, USA
| | - Esthela J Artiga
- Department of Physiology & Cell Biology, Bob and Corrine Frick Center for Heart Failure and Arrhythmia, The Ohio State University Wexner Medical Center, Columbus, OH, USA
| | - Megan M Subr
- Department of Physiology & Cell Biology, Bob and Corrine Frick Center for Heart Failure and Arrhythmia, The Ohio State University Wexner Medical Center, Columbus, OH, USA
| | - Jichao Zhao
- Auckland Bioengineering Institute, The University of Auckland, Auckland, New Zealand
| | - Brian J Hansen
- Department of Physiology & Cell Biology, Bob and Corrine Frick Center for Heart Failure and Arrhythmia, The Ohio State University Wexner Medical Center, Columbus, OH, USA
| | - John D Hummel
- Davis Heart and Lung Research Institute, The Ohio State University Wexner Medical Center, Columbus, OH, USA; Department of Internal Medicine, The Ohio State University Wexner Medical Center, Columbus, OH, USA
| | - Vadim V Fedorov
- Department of Physiology & Cell Biology, Bob and Corrine Frick Center for Heart Failure and Arrhythmia, The Ohio State University Wexner Medical Center, Columbus, OH, USA; Davis Heart and Lung Research Institute, The Ohio State University Wexner Medical Center, Columbus, OH, USA.
| |
Collapse
|
23
|
Fenner MF, Carstensen H, Dalgas Nissen S, Melis Hesselkilde E, Scott Lunddahl C, Adler Hess Jensen M, Loft-Andersen AV, Sattler SM, Platonov P, El-Haou S, Jackson C, Tang R, Kirby R, Ford J, Schotten U, Milnes J, Svane Sørensen U, Jespersen T, Buhl R. Effect of selective I K,ACh inhibition by XAF-1407 in an equine model of tachypacing-induced persistent atrial fibrillation. Br J Pharmacol 2020; 177:3778-3794. [PMID: 32436234 DOI: 10.1111/bph.15100] [Citation(s) in RCA: 23] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2019] [Revised: 03/20/2020] [Accepted: 05/01/2020] [Indexed: 12/13/2022] Open
Abstract
BACKGROUND AND PURPOSE Inhibition of the G-protein gated ACh-activated inward rectifier potassium current, IK,ACh may be an effective atrial selective treatment strategy for atrial fibrillation (AF). Therefore, the anti-arrhythmic and electrophysiological properties of a novel putatively potent and highly specific IK,ACh inhibitor, XAF-1407 (3-methyl-1-[5-phenyl-4-[4-(2-pyrrolidin-1-ylethoxymethyl)-1-piperidyl]thieno[2,3-d]pyrimidin-6-yl]azetidin-3-ol), were characterised for the first time in vitro and investigated in horses with persistent AF. EXPERIMENTAL APPROACH The pharmacological ion channel profile of XAF-1407 was investigated using cell lines expressing relevant ion channels. In addition, eleven horses were implanted with implantable cardioverter defibrillators enabling atrial tachypacing into self-sustained AF. The electrophysiological effects of XAF-1407 were investigated after serial cardioversions over a period of 1 month. Cardioversion success, drug-induced changes of atrial tissue refractoriness, and ventricular electrophysiology were assessed at baseline (day 0) and days 3, 5, 11, 17, and 29 after AF induction. KEY RESULTS XAF-1407 potently and selectively inhibited Kir 3.1/3.4 and Kir 3.4/3.4, underlying the IK,ACh current. XAF-1407 treatment in horses prolonged atrial effective refractory period as well as decreased atrial fibrillatory rate significantly (~20%) and successfully cardioverted AF, although with a decreasing efficacy over time. XAF-1407 shortened atrioventricular-nodal refractoriness, without effect on QRS duration. QTc prolongation (4%) within 15 min of drug infusion was observed, however, without any evidence of ventricular arrhythmia. CONCLUSION AND IMPLICATIONS XAF-1407 efficiently cardioverted sustained tachypacing-induced AF of short duration in horses without notable side effects. This supports IK,ACh inhibition as a potentially safe treatment of paroxysmal AF in horses, suggesting potential clinical value for other species including humans.
Collapse
Affiliation(s)
- Merle Friederike Fenner
- Department of Veterinary Clinical Sciences, Faculty of Health and Medical Sciences, University of Copenhagen, Taastrup, Denmark
| | - Helena Carstensen
- Department of Veterinary Clinical Sciences, Faculty of Health and Medical Sciences, University of Copenhagen, Taastrup, Denmark
| | - Sarah Dalgas Nissen
- Department of Veterinary Clinical Sciences, Faculty of Health and Medical Sciences, University of Copenhagen, Taastrup, Denmark
| | - Eva Melis Hesselkilde
- Department of Veterinary Clinical Sciences, Faculty of Health and Medical Sciences, University of Copenhagen, Taastrup, Denmark
| | - Christine Scott Lunddahl
- Department of Veterinary Clinical Sciences, Faculty of Health and Medical Sciences, University of Copenhagen, Taastrup, Denmark
| | - Maja Adler Hess Jensen
- Department of Veterinary Clinical Sciences, Faculty of Health and Medical Sciences, University of Copenhagen, Taastrup, Denmark
| | - Ameli Victoria Loft-Andersen
- Department of Veterinary Clinical Sciences, Faculty of Health and Medical Sciences, University of Copenhagen, Taastrup, Denmark
| | - Stefan Michael Sattler
- Department of Cardiology, The Heart Centre, Copenhagen University Hospital, Copenhagen, Denmark.,Department of Medicine I, University Hospital Munich, Campus Grosshadern, Ludwig-Maximilians University Munich (LMU), Munich, Germany
| | - Pyotr Platonov
- Arrhythmia Clinic, Skåne University Hospital and Department of Cardiology, Clinical Sciences, Lund University, Lund, Sweden
| | | | | | | | | | | | - Ulrich Schotten
- Department of Physiology, Cardiovascular Research Institute Maastricht, Maastricht, The Netherlands
| | | | | | - Thomas Jespersen
- Department of Biomedical Sciences, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Rikke Buhl
- Department of Veterinary Clinical Sciences, Faculty of Health and Medical Sciences, University of Copenhagen, Taastrup, Denmark
| |
Collapse
|