1
|
Armeli F, Coccurello R, Giacovazzo G, Mengoni B, Paoletti I, Oddi S, Maccarrone M, Businaro R. FAAH Inhibition Counteracts Neuroinflammation via Autophagy Recovery in AD Models. Int J Mol Sci 2024; 25:12044. [PMID: 39596118 PMCID: PMC11593522 DOI: 10.3390/ijms252212044] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2024] [Revised: 10/28/2024] [Accepted: 11/06/2024] [Indexed: 11/28/2024] Open
Abstract
Endocannabinoids have attracted great interest for their ability to counteract the neuroinflammation underlying Alzheimer's disease (AD). Our study aimed at evaluating whether this activity was also due to a rebalance of autophagic mechanisms in cellular and animal models of AD. We supplied URB597, an inhibitor of Fatty-Acid Amide Hydrolase (FAAH), the degradation enzyme of anandamide, to microglial cultures treated with Aβ25-35, and to Tg2576 transgenic mice, thus increasing the endocannabinoid tone. The addition of URB597 did not alter cell viability and induced microglia polarization toward an anti-inflammatory phenotype, as shown by the modulation of pro- and anti-inflammatory cytokines, as well as M1 and M2 markers; moreover microglia, after URB597 treatment released higher levels of Bdnf and Nrf2, confirming the protective role underlying endocannabinoids increase, as shown by RT-PCR and immunofluorescence experiments. We assessed the number and area of amyloid plaques in animals administered with URB597 compared to untreated animals and the expression of autophagy key markers in the hippocampus and prefrontal cortex from both groups of mice, via immunohistochemistry and ELISA. After URB597 supply, we detected a reduction in the number and areas of amyloid plaques, as detected by Congo Red staining and a reshaping of microglia activation as shown by M1 and M2 markers' modulation. URB597 administration restored autophagy in Tg2576 mice via an increase in BECN1 (Beclin1), ATG7 (Autophagy Related 7), LC3 (light chain 3) and SQSTM1/p62 (sequestrome 1) as well as via the activation of the ULK1 (Unc-51 Like Autophagy Activating Kinase 1) signaling pathway, suggesting that it targets mTOR/ULK1-dependent autophagy pathway. The potential of endocannabinoids to rebalance autophagy machinery may be considered as a new perspective for therapeutic intervention in AD.
Collapse
Affiliation(s)
- Federica Armeli
- Department of Medico-Surgical Sciences and Biotechnologies, Sapienza University of Rome, 04100 Latina, Italy; (F.A.); (B.M.)
| | - Roberto Coccurello
- European Brain Research Center, Santa Lucia Foundation IRCCS, 00143 Rome, Italy; (R.C.); (G.G.); (I.P.); (S.O.); (M.M.)
- Institute for Complex Systems (ISC), National Research Council (C.N.R.), 00185 Rome, Italy
| | - Giacomo Giacovazzo
- European Brain Research Center, Santa Lucia Foundation IRCCS, 00143 Rome, Italy; (R.C.); (G.G.); (I.P.); (S.O.); (M.M.)
- School of Veterinary Medicine, University of Teramo (UniTE), 64100 Teramo, Italy
| | - Beatrice Mengoni
- Department of Medico-Surgical Sciences and Biotechnologies, Sapienza University of Rome, 04100 Latina, Italy; (F.A.); (B.M.)
| | - Ilaria Paoletti
- European Brain Research Center, Santa Lucia Foundation IRCCS, 00143 Rome, Italy; (R.C.); (G.G.); (I.P.); (S.O.); (M.M.)
| | - Sergio Oddi
- European Brain Research Center, Santa Lucia Foundation IRCCS, 00143 Rome, Italy; (R.C.); (G.G.); (I.P.); (S.O.); (M.M.)
- School of Veterinary Medicine, University of Teramo (UniTE), 64100 Teramo, Italy
| | - Mauro Maccarrone
- European Brain Research Center, Santa Lucia Foundation IRCCS, 00143 Rome, Italy; (R.C.); (G.G.); (I.P.); (S.O.); (M.M.)
- Department of Biotechnological and Applied Clinical Sciences, University of L’Aquila, 67100 L’Aquila, Italy
| | - Rita Businaro
- Department of Medico-Surgical Sciences and Biotechnologies, Sapienza University of Rome, 04100 Latina, Italy; (F.A.); (B.M.)
| |
Collapse
|
2
|
Kim L, Nan G, Kim HY, Cha M, Lee BH. Modulation of chemotherapy-induced peripheral neuropathy by JZL195 through glia and the endocannabinoid system. Biomed Pharmacother 2024; 180:117515. [PMID: 39362070 DOI: 10.1016/j.biopha.2024.117515] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2024] [Revised: 09/12/2024] [Accepted: 09/25/2024] [Indexed: 10/05/2024] Open
Abstract
Chemotherapy-induced peripheral neuropathy (CIPN) used to treat cancer, is a significant side effect with a complex pathophysiology, and its mechanisms remain unclear. Recent research highlights neuroinflammation, which is modulated by the endocannabinoid system (ECS) and associated with glial activation, and the role of toll-like receptor 4 (TLR4) in CIPN. This study aimed to investigate the effects of JZL195, an inhibitor of fatty acid amide hydrolase (FAAH) and monoacylglycerol lipase (MAGL), and explore the connection between cannabinoid receptors and TLR4 in glial cells. A CIPN animal model was developed using cisplatin-injected male C57BL/6 mice. Mechanical and cold allodynia were assessed through von Frey and acetone tests. Western blot analysis was used to examine the expression of catabolic enzymes, cannabinoid receptors, glial cells, and neuroinflammatory factors in the dorsal root ganglia (DRGs) and spinal cord. Immunohistochemistry was used to investigate the colocalization of cannabinoid receptors and TLR4 in glial cells. JZL195 alleviated pain by inhibiting FAAH/MAGL, modulating the ECS and neuroinflammatory factors, and suppressing glial cell activity. Additionally, cannabinoid receptors and TLR4 colocalized with astrocytes and microglia in the spinal cord. This study highlights the therapeutic potential of JZL195 in modulating the ECS and suggests a correlation between cannabinoid receptors and TLR4 in spinal glial cells, providing insight into alleviating pain and neuroinflammation in CIPN.
Collapse
Affiliation(s)
- Leejeong Kim
- Department of Physiology, Yonsei University College of Medicine, Seoul 03722, Republic of Korea; Department of Medical Science, Brain Korea 21 Project, Yonsei University College of Medicine, Seoul 03722, Republic of Korea
| | - Guanghai Nan
- Department of Physiology, Yonsei University College of Medicine, Seoul 03722, Republic of Korea; Department of Medical Science, Brain Korea 21 Project, Yonsei University College of Medicine, Seoul 03722, Republic of Korea
| | - Hee Young Kim
- Department of Physiology, Yonsei University College of Medicine, Seoul 03722, Republic of Korea; Department of Medical Science, Brain Korea 21 Project, Yonsei University College of Medicine, Seoul 03722, Republic of Korea
| | - Myeounghoon Cha
- Department of Physiology, Yonsei University College of Medicine, Seoul 03722, Republic of Korea.
| | - Bae Hwan Lee
- Department of Physiology, Yonsei University College of Medicine, Seoul 03722, Republic of Korea; Department of Medical Science, Brain Korea 21 Project, Yonsei University College of Medicine, Seoul 03722, Republic of Korea; Brain Research Institute, Yonsei University College of Medicine, Seoul 03722, Republic of Korea.
| |
Collapse
|
3
|
Zorrilla E, Della Pietra A, Russo AF. Interplay between cannabinoids and the neuroimmune system in migraine. J Headache Pain 2024; 25:178. [PMID: 39407099 PMCID: PMC11481476 DOI: 10.1186/s10194-024-01883-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2024] [Accepted: 10/01/2024] [Indexed: 10/19/2024] Open
Abstract
Migraine is a common and complex neurological disorder that has a high impact on quality of life. Recent advances with drugs that target the neuropeptide calcitonin gene-related peptide (CGRP) have helped, but treatment options remain insufficient. CGRP is released from trigeminal sensory fibers and contributes to peripheral sensitization, perhaps in part due to actions on immune cells in the trigeminovascular system. In this review, we will discuss the potential of cannabinoid targeting of immune cells as an innovative therapeutic target for migraine treatment. We will cover endogenous endocannabinoids, plant-derived phytocannabinoids and synthetically derived cannabinoids. The focus will be on six types of immune cells known to express multiple cannabinoid receptors: macrophages, monocytes, mast cells, dendritic cells, B cells, and T cells. These cells also contain receptors for CGRP and as such, cannabinoids might potentially modulate the efficacy of current CGRP-targeting drugs. Unfortunately, to date most studies on cannabinoids and immune cells have relied on cell cultures and only a single preclinical study has tested cannabinoid actions on immune cells in a migraine model. Encouragingly, in that study a synthetically created stable chiral analog of an endocannabinoid reduced meningeal mast cell degranulation. Likewise, clinical trials evaluating the safety and efficacy of cannabinoid-based therapies for migraine patients have been limited but are encouraging. Thus, the field is at its infancy and there are significant gaps in our understanding of the impact of cannabinoids on immune cells in migraine. Future research exploring the interactions between cannabinoids and immune cells could lead to more targeted and effective migraine treatments.
Collapse
Affiliation(s)
- Erik Zorrilla
- Department of Molecular Physiology and Biophysics, University of Iowa, Iowa City, IA, 52242, USA
| | - Adriana Della Pietra
- Department of Molecular Physiology and Biophysics, University of Iowa, Iowa City, IA, 52242, USA
| | - Andrew F Russo
- Department of Molecular Physiology and Biophysics, University of Iowa, Iowa City, IA, 52242, USA.
- Department of Neurology, University of Iowa, Iowa City, IA, 52242, USA.
- Veterans Affairs Healthcare System, Iowa City, IA, 52246, USA.
| |
Collapse
|
4
|
Menéndez-Pérez C, Rivas-Santisteban R, del Valle E, Tolivia J, Navarro A, Franco R, Martínez-Pinilla E. Heteromers Formed by GPR55 and Either Cannabinoid CB 1 or CB 2 Receptors Are Upregulated in the Prefrontal Cortex of Multiple Sclerosis Patients. Int J Mol Sci 2024; 25:4176. [PMID: 38673761 PMCID: PMC11050292 DOI: 10.3390/ijms25084176] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2024] [Revised: 04/03/2024] [Accepted: 04/08/2024] [Indexed: 04/28/2024] Open
Abstract
Multiple sclerosis (MS) is an autoimmune, inflammatory, and neurodegenerative disease of the central nervous system for which there is no cure, making it necessary to search for new treatments. The endocannabinoid system (ECS) plays a very important neuromodulatory role in the CNS. In recent years, the formation of heteromers containing cannabinoid receptors and their up/downregulation in some neurodegenerative diseases have been demonstrated. Despite the beneficial effects shown by some phytocannabinoids in MS, the role of the ECS in its pathophysiology is unknown. The main objective of this work was to identify heteromers of cell surface proteins receptive to cannabinoids, namely GPR55, CB1 and CB2 receptors, in brain samples from control subjects and MS patients, as well as determining their cellular localization, using In Situ Proximity Ligation Assays and immunohistochemical techniques. For the first time, CB1R-GPR55 and CB2R-GPR55 heteromers are identified in the prefrontal cortex of the human brain, more in the grey than in the white matter. Remarkably, the number of CB1R-GPR55 and CB2R-GPR55 complexes was found to be increased in MS patient samples. The results obtained open a promising avenue of research on the use of these receptor complexes as potential therapeutic targets for the disease.
Collapse
Affiliation(s)
- Carlota Menéndez-Pérez
- Department of Morphology and Cell Biology, University of Oviedo, 33006 Oviedo, Spain; (C.M.-P.); (E.d.V.); (J.T.); (A.N.)
- Instituto de Neurociencias del Principado de Asturias (INEUROPA), 33006 Oviedo, Spain
- Instituto de Investigación Sanitaria del Principado de Asturias (ISPA), 33006 Oviedo, Spain
| | - Rafael Rivas-Santisteban
- Molecular Neurobiology Laboratory, Department of Biochemistry and Molecular Biomedicine, Faculty of Biology, University of Barcelona, 08028 Barcelona, Spain; (R.R.-S.); (R.F.)
- CiberNed, Network Center for Neurodegenerative Diseases, National Spanish Health Institute Carlos III, 28031 Madrid, Spain
- Laboratory of Computational Medicine, Biostatistics Unit, Faculty of Medicine, Autonomous University of Barcelona, Campus Bellaterra, 08193 Bellaterra, Spain
| | - Eva del Valle
- Department of Morphology and Cell Biology, University of Oviedo, 33006 Oviedo, Spain; (C.M.-P.); (E.d.V.); (J.T.); (A.N.)
- Instituto de Neurociencias del Principado de Asturias (INEUROPA), 33006 Oviedo, Spain
- Instituto de Investigación Sanitaria del Principado de Asturias (ISPA), 33006 Oviedo, Spain
| | - Jorge Tolivia
- Department of Morphology and Cell Biology, University of Oviedo, 33006 Oviedo, Spain; (C.M.-P.); (E.d.V.); (J.T.); (A.N.)
- Instituto de Neurociencias del Principado de Asturias (INEUROPA), 33006 Oviedo, Spain
- Instituto de Investigación Sanitaria del Principado de Asturias (ISPA), 33006 Oviedo, Spain
| | - Ana Navarro
- Department of Morphology and Cell Biology, University of Oviedo, 33006 Oviedo, Spain; (C.M.-P.); (E.d.V.); (J.T.); (A.N.)
- Instituto de Neurociencias del Principado de Asturias (INEUROPA), 33006 Oviedo, Spain
- Instituto de Investigación Sanitaria del Principado de Asturias (ISPA), 33006 Oviedo, Spain
| | - Rafael Franco
- Molecular Neurobiology Laboratory, Department of Biochemistry and Molecular Biomedicine, Faculty of Biology, University of Barcelona, 08028 Barcelona, Spain; (R.R.-S.); (R.F.)
- CiberNed, Network Center for Neurodegenerative Diseases, National Spanish Health Institute Carlos III, 28031 Madrid, Spain
| | - Eva Martínez-Pinilla
- Department of Morphology and Cell Biology, University of Oviedo, 33006 Oviedo, Spain; (C.M.-P.); (E.d.V.); (J.T.); (A.N.)
- Instituto de Neurociencias del Principado de Asturias (INEUROPA), 33006 Oviedo, Spain
- Instituto de Investigación Sanitaria del Principado de Asturias (ISPA), 33006 Oviedo, Spain
| |
Collapse
|
5
|
Mazzantini C, El Bourji Z, Parisio C, Davolio PL, Cocchi A, Pellegrini-Giampietro DE, Landucci E. Anti-Inflammatory Properties of Cannabidiol and Beta-Caryophyllene Alone or Combined in an In Vitro Inflammation Model. Pharmaceuticals (Basel) 2024; 17:467. [PMID: 38675427 PMCID: PMC11055086 DOI: 10.3390/ph17040467] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2024] [Revised: 03/20/2024] [Accepted: 03/28/2024] [Indexed: 04/28/2024] Open
Abstract
Cannabis contains over 500 different compounds, including cannabinoids, terpenoids, and flavonoids. Cannabidiol (CBD) is a non-psychoactive constituent, whereas beta-caryophyllene (BCP) is one of most the well-known terpenoids of Cannabis sativa. In recent years, there has been an emerging idea that the beneficial activities of these compounds are greater when they are combined. The aim of this study was to evaluate the anti-inflammatory effect of CBD and BCP using the in vitro model of lipopolysaccharide (LPS)-stimulated human keratinocytes (HaCaT) cells. The vitality of the cells was quantified using LDH and MTT assays. The levels of the following pro-inflammatory proteins and genes were quantified: IL-1β, COX-2, and phospho-NF-κB p65 (p-p65) through Western blotting (WB) and interleukin-1β (IL-1β), interleukin-6 (IL-6), and tumor necrosis factor-α (TNFα) through quantitative real-time polymerase chain reaction (RT-qPCR). When present in the incubation medium, CBD and BCP reduced the increased levels of pro-inflammatory proteins (IL-1β, COX-2, and p-NF-kB) induced by LPS. The anti-inflammatory effects of CBD were blocked by a PPARγ antagonist, whereas a CB2 antagonist was able to revert the effects of BCP. Selected concentrations of CBD and BCP were able to revert the increases in the expression of pro-inflammatory genes (IL-1β, IL-6, and TNFα), and these effects were significant when the drugs were used in combination. Our results suggest that CBD and BCP work in concert to produce a major anti-inflammatory effect with good safety profiles.
Collapse
Affiliation(s)
- Costanza Mazzantini
- Department of Health Sciences, Section of Clinical Pharmacology and Oncology, University of Florence, Viale Pieraccini 6, 50139 Florence, Italy; (C.M.); (Z.E.B.); (D.E.P.-G.)
| | - Zahraa El Bourji
- Department of Health Sciences, Section of Clinical Pharmacology and Oncology, University of Florence, Viale Pieraccini 6, 50139 Florence, Italy; (C.M.); (Z.E.B.); (D.E.P.-G.)
| | - Carmen Parisio
- Farmacia del Madonnone, Via Aretina 9R, 50135 Florence, Italy; (C.P.); (P.L.D.)
| | - Pier Luigi Davolio
- Farmacia del Madonnone, Via Aretina 9R, 50135 Florence, Italy; (C.P.); (P.L.D.)
| | - Arianna Cocchi
- Tuscopharm srl, Viale Giacomo Leopardi 45, 57121 Livorno, Italy;
| | - Domenico E. Pellegrini-Giampietro
- Department of Health Sciences, Section of Clinical Pharmacology and Oncology, University of Florence, Viale Pieraccini 6, 50139 Florence, Italy; (C.M.); (Z.E.B.); (D.E.P.-G.)
| | - Elisa Landucci
- Department of Health Sciences, Section of Clinical Pharmacology and Oncology, University of Florence, Viale Pieraccini 6, 50139 Florence, Italy; (C.M.); (Z.E.B.); (D.E.P.-G.)
| |
Collapse
|
6
|
Weng J, Wang Y, Tan Z, Yuan Y, Huang S, Li Z, Li Y, Zhang L, Du Z. Glabridin reduces neuroinflammation by modulating inflammatory signals in LPS-induced in vitro and in vivo models. Inflammopharmacology 2024; 32:1159-1169. [PMID: 38372849 DOI: 10.1007/s10787-023-01424-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2023] [Accepted: 12/23/2023] [Indexed: 02/20/2024]
Abstract
OBJECTIVES Chronic neuroinflammation has become one of the important causes of common neurodegeneration disease. Therefore, the target of this study was to explore the protective action of glabridin on lipopolysaccharide (LPS)-induced neuroinflammation in vivo and in vitro and its mechanism. METHODS The neuroinflammation model was established by LPS-induced BV2 cells. The cell viability with various concentrations of glabridin was determined by MTT assay, and the content of NO in each group was detected. A neuroinflammatory model was established in male C57BL/6J mice for a water maze test. Subsequently, NF-κB and SOD indices were measured by ELISA, GFAP and IBA-1 indices were measured by immunofluorescence, and Nissl staining was used to explore the Nissl bodies in the hippocampus of mice. RESULTS In vitro experiments, our results expressed that glabridin could markedly increase the cell activity of LPS-induced BV2 cells and reduce the NO expression in cells. It indicated that glabridin had a remarkable impact on the neuroinflammation of LPS-induced BV2 cell protection. In vivo neuroinflammation experiments, mice treated with different doses of glabridin showed significantly improved ability of memory compared with the LPS group in the Morris water maze test. The levels of NF-κB, GFAP, and the number of positive cells in Nissl staining were decreased. High-dose glabridin significantly increased the SOD content in the brain tissue and decreased the IBA-1 levels. CONCLUSION Glabridin can significantly reduce or even reverse LPS-induced neuroinflammation, which may be related to the fact that glabridin can reduce the NO expression, NF-κB, IBA-1, GFAP, and other inflammatory mediators, upregulate the expression of SOD to relieve oxidative stress of brain and inhibit the activation of gliocyte in brain tissue.
Collapse
Affiliation(s)
- Jiyu Weng
- School of Biomedical and Pharmaceutical Sciences, Guangdong University of Technology, Guangzhou, 510006, China
- Guangdong Provincial Key Laboratory of Plant Resources Biorefinery, Guangdong University of Technology, Guangzhou, 510006, China
| | - Ying Wang
- School of Biomedical and Pharmaceutical Sciences, Guangdong University of Technology, Guangzhou, 510006, China
- Guangdong Provincial Key Laboratory of Plant Resources Biorefinery, Guangdong University of Technology, Guangzhou, 510006, China
| | - Zekai Tan
- School of Biomedical and Pharmaceutical Sciences, Guangdong University of Technology, Guangzhou, 510006, China
- Guangdong Provincial Key Laboratory of Plant Resources Biorefinery, Guangdong University of Technology, Guangzhou, 510006, China
| | - Yanghe Yuan
- School of Biomedical and Pharmaceutical Sciences, Guangdong University of Technology, Guangzhou, 510006, China
- Guangdong Provincial Key Laboratory of Plant Resources Biorefinery, Guangdong University of Technology, Guangzhou, 510006, China
| | - Shiyuan Huang
- School of Biomedical and Pharmaceutical Sciences, Guangdong University of Technology, Guangzhou, 510006, China
- Guangdong Provincial Key Laboratory of Plant Resources Biorefinery, Guangdong University of Technology, Guangzhou, 510006, China
| | - Zexi Li
- School of Biomedical and Pharmaceutical Sciences, Guangdong University of Technology, Guangzhou, 510006, China
- Guangdong Provincial Key Laboratory of Plant Resources Biorefinery, Guangdong University of Technology, Guangzhou, 510006, China
| | - Yiming Li
- School of Biomedical and Pharmaceutical Sciences, Guangdong University of Technology, Guangzhou, 510006, China
- Guangdong Provincial Key Laboratory of Plant Resources Biorefinery, Guangdong University of Technology, Guangzhou, 510006, China
| | - Lanyue Zhang
- School of Biomedical and Pharmaceutical Sciences, Guangdong University of Technology, Guangzhou, 510006, China.
- Guangdong Provincial Key Laboratory of Plant Resources Biorefinery, Guangdong University of Technology, Guangzhou, 510006, China.
| | - Zhiyun Du
- School of Biomedical and Pharmaceutical Sciences, Guangdong University of Technology, Guangzhou, 510006, China.
- Guangdong Provincial Key Laboratory of Plant Resources Biorefinery, Guangdong University of Technology, Guangzhou, 510006, China.
| |
Collapse
|
7
|
Shastri M, Sharma M, Sharma K, Sharma A, Minz RW, Dogra S, Chhabra S. Cutaneous-immuno-neuro-endocrine (CINE) system: A complex enterprise transforming skin into a super organ. Exp Dermatol 2024; 33:e15029. [PMID: 38429868 DOI: 10.1111/exd.15029] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2023] [Revised: 12/12/2023] [Accepted: 01/20/2024] [Indexed: 03/03/2024]
Abstract
Skin is now emerging as a complex realm of three chief systems viz. immune system, nervous system, and endocrine system. The cells involved in their intricate crosstalk, namely native skin cells, intra-cutaneous immune cells and cutaneous sensory neurons have diverse origin and distinct functions. However, recent studies have explored their role beyond their pre-defined functional boundaries, such that the cells shun their traditional functions and adopt unconventional roles. For example, the native skin cells, apart from providing for basic structural framework of skin, also perform special immune functions and participate in extensive neuro-endocrine circuitry, which were traditionally designated as functions of cutaneous resident immune cells and sensory neurons respectively. At the cellular level, this unique collaboration is brought out by special molecules called neuromediators including neurotransmitters, neuropeptides, neurotrophins, neurohormones and cytokines/chemokines. While this intricate crosstalk is essential for maintaining cutaneous homeostasis, its disruption is seen in various cutaneous diseases. Recent study models have led to a paradigm shift in our understanding of pathophysiology of many such disorders. In this review, we have described in detail the interaction of immune cells with neurons and native skin cells, role of neuromediators, the endocrine aspect in skin and current understanding of cutaneous neuro-immuno-endocrine loop in one of the commonest skin diseases, psoriasis. An accurate knowledge of this unique crosstalk can prove crucial in understanding the pathophysiology of different skin diseases and allow for generation of targeted therapeutic modalities.
Collapse
Affiliation(s)
- Malvika Shastri
- Department of Pathology, Postgraduate Institute of Medical Education and Research, Chandigarh, India
| | - Maryada Sharma
- Department of Otolaryngology and Head & Neck Surgery, Nehru Extension Block, Postgraduate Institute of Medical Education and Research, Chandigarh, India
| | - Keshav Sharma
- Department of Immunopathology, Postgraduate Institute of Medical Education and Research, Chandigarh, India
| | - Ayush Sharma
- Department of Immunopathology, Postgraduate Institute of Medical Education and Research, Chandigarh, India
| | - Ranjana Walker Minz
- Department of Immunopathology, Postgraduate Institute of Medical Education and Research, Chandigarh, India
| | - Sunil Dogra
- Department of Dermatology, Postgraduate Institute of Medical Education and Research, Chandigarh, India
| | - Seema Chhabra
- Department of Immunopathology, Postgraduate Institute of Medical Education and Research, Chandigarh, India
| |
Collapse
|
8
|
Wu Y, Han C, Luo R, Cai W, Xia Q, Jiang R, Ferdek PE, Liu T, Huang W. Molecular mechanisms of pain in acute pancreatitis: recent basic research advances and therapeutic implications. Front Mol Neurosci 2023; 16:1331438. [PMID: 38188196 PMCID: PMC10771850 DOI: 10.3389/fnmol.2023.1331438] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2023] [Accepted: 12/14/2023] [Indexed: 01/09/2024] Open
Abstract
Although severe abdominal pain is the main symptom of acute pancreatitis, its mechanisms are poorly understood. An emerging body of literature evidence indicates that neurogenic inflammation might play a major role in modulating the perception of pain from the pancreas. Neurogenic inflammation is the result of a crosstalk between injured pancreatic tissue and activated neurons, which leads to an auto-amplification loop between inflammation and pain during the progression of acute pancreatitis. In this review, we summarize recent findings on the role of neuropeptides, ion channels, and the endocannabinoid system in acute pancreatitis-related pain. We also highlight potential therapeutic strategies that could be applied for managing severe pain in this disease.
Collapse
Affiliation(s)
- Yongzi Wu
- West China Centre of Excellence for Pancreatitis, Institute of Integrated Traditional Chinese and Western Medicine, West China-Liverpool Biomedical Research Centre, West China Hospital, Sichuan University, Chengdu, China
| | - Chenxia Han
- West China Centre of Excellence for Pancreatitis, Institute of Integrated Traditional Chinese and Western Medicine, West China-Liverpool Biomedical Research Centre, West China Hospital, Sichuan University, Chengdu, China
| | - Rong Luo
- Laboratory of Anesthesia and Critical Care Medicine, National-Local Joint Engineering Research Center of Translational Medicine of Anesthesiology, West China Hospital, Sichuan University, Chengdu, China
| | - Wenhao Cai
- West China Centre of Excellence for Pancreatitis, Institute of Integrated Traditional Chinese and Western Medicine, West China-Liverpool Biomedical Research Centre, West China Hospital, Sichuan University, Chengdu, China
| | - Qing Xia
- West China Centre of Excellence for Pancreatitis, Institute of Integrated Traditional Chinese and Western Medicine, West China-Liverpool Biomedical Research Centre, West China Hospital, Sichuan University, Chengdu, China
| | - Ruotian Jiang
- Laboratory of Anesthesia and Critical Care Medicine, National-Local Joint Engineering Research Center of Translational Medicine of Anesthesiology, West China Hospital, Sichuan University, Chengdu, China
| | - Pawel E. Ferdek
- Department of Cell Biology, Faculty of Biochemistry, Biophysics and Biotechnology, Jagiellonian University, Kraków, Poland
| | - Tingting Liu
- West China Centre of Excellence for Pancreatitis, Institute of Integrated Traditional Chinese and Western Medicine, West China-Liverpool Biomedical Research Centre, West China Hospital, Sichuan University, Chengdu, China
| | - Wei Huang
- West China Centre of Excellence for Pancreatitis, Institute of Integrated Traditional Chinese and Western Medicine, West China-Liverpool Biomedical Research Centre, West China Hospital, Sichuan University, Chengdu, China
- Institutes for Systems Genetics and Immunology and Inflammation, Frontiers Science Center for Disease-related Molecular Network, West China Hospital, Sichuan University, Chengdu, China
- West China Biobank, West China Hospital, Sichuan University, Chengdu, China
| |
Collapse
|
9
|
Palomares O. Could we co-opt the cannabinoid system for asthma therapy? Expert Rev Clin Immunol 2023; 19:1183-1186. [PMID: 37420178 DOI: 10.1080/1744666x.2023.2235082] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2023] [Accepted: 07/06/2023] [Indexed: 07/09/2023]
Affiliation(s)
- Oscar Palomares
- Department of Biochemistry and Molecular Biology, Chemistry School, Complutense University of Madrid, Madrid, Spain
| |
Collapse
|
10
|
Greco R, Francavilla M, Demartini C, Zanaboni AM, Sodergren MH, Facchetti S, Pacchetti B, Palmisan M, Franco V, Tassorelli C. Characterization of the biochemical and behavioral effects of cannabidiol: implications for migraine. J Headache Pain 2023; 24:48. [PMID: 37138206 PMCID: PMC10155373 DOI: 10.1186/s10194-023-01589-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2023] [Accepted: 04/27/2023] [Indexed: 05/05/2023] Open
Abstract
Cannabidiol (CBD) is the main pharmacologically active phytocannabinoid. CBD exerts an analgesic effect in several pain models, does not have side effects and has low toxicity. The data about CBD mechanisms of action in pain and its therapeutic potential in this area are limited. Here, we tested CBD effects in animal models specific for migraine. We assayed CBD distribution in plasma and in cranial areas related to migraine pain in male Sprague Dawley rats treated chronically (5 days). Successively, we tested CBD activity on the behavioral and biochemical effects induced in the acute and the chronic migraine animal models by nitroglycerin (NTG) administration. In the acute migraine model, rats received CBD (15 mg or 30 mg/kg, i.p) 3 h after NTG (10 mg/kg i.p.) or vehicle injection. In the chronic migraine model, rats were treated with CBD and NTG every other day over nine days with the following doses: CBD 30 mg/kg i.p., NTG 10 mg/kg i.p. We evaluated behavioral parameters with the open field and the orofacial formalin tests. We explored the fatty acid amide hydrolase gene expression, cytokines mRNA and protein levels in selected brain areas and CGRP serum level. CBD levels in the meninges, trigeminal ganglia, cervical spinal cord, medulla pons, and plasma were higher 1 h after the last treatment than after 24 h, suggesting that CBD penetrates but does not accumulate in these tissues. In the acute model, CBD significantly reduced NTG-induced trigeminal hyperalgesia and CGRP and cytokine mRNA levels in peripheral and central sites. In the chronic model, CBD caused a significant decrease in NTG-induced IL-6 protein levels in the medulla-pons, and trigeminal ganglion. It also reduced CGRP serum levels. By contrast, CBD did not modulate TNF-alpha protein levels and fatty acid amide hydrolase (FAAH) gene expression in any of investigated areas. In both experimental conditions, there was no modulation of anxiety, motor/exploratory behavior, or grooming. These findings show that CBD reaches brain areas involved in migraine pain after systemic administration. They also show for the first time that CBD modulates migraine-related nociceptive transmission, likely via a complex signaling mechanism involving different pathways.
Collapse
Affiliation(s)
- Rosaria Greco
- Unit of Translational Neurovascular Research, IRCCS Mondino Foundation, 27100, Pavia, Italy.
| | - Miriam Francavilla
- Unit of Translational Neurovascular Research, IRCCS Mondino Foundation, 27100, Pavia, Italy
- Department of Brain and Behavioral Sciences, University of Pavia, 27100, Pavia, Italy
| | - Chiara Demartini
- Unit of Translational Neurovascular Research, IRCCS Mondino Foundation, 27100, Pavia, Italy
- Department of Brain and Behavioral Sciences, University of Pavia, 27100, Pavia, Italy
| | - Anna Maria Zanaboni
- Unit of Translational Neurovascular Research, IRCCS Mondino Foundation, 27100, Pavia, Italy
- Department of Brain and Behavioral Sciences, University of Pavia, 27100, Pavia, Italy
| | - Mikael H Sodergren
- Curaleaf International, Guernsey, UK
- Medical Cannabis Research Group, Imperial College London, London, UK
| | - Sara Facchetti
- Unit of Translational Neurovascular Research, IRCCS Mondino Foundation, 27100, Pavia, Italy
| | | | - Michela Palmisan
- Clinical and Experimental Pharmacology Unit, Department of Internal Medicine and Therapeutics, University of Pavia, 27100, Pavia, Italy
| | - Valentina Franco
- Clinical and Experimental Pharmacology Unit, Department of Internal Medicine and Therapeutics, University of Pavia, 27100, Pavia, Italy
| | - Cristina Tassorelli
- Unit of Translational Neurovascular Research, IRCCS Mondino Foundation, 27100, Pavia, Italy
- Department of Brain and Behavioral Sciences, University of Pavia, 27100, Pavia, Italy
| |
Collapse
|
11
|
Spatz P, Steinmüller SAM, Tutov A, Poeta E, Morilleau A, Carles A, Deventer MH, Hofmann J, Stove CP, Monti B, Maurice T, Decker M. Dual-Acting Small Molecules: Subtype-Selective Cannabinoid Receptor 2 Agonist/Butyrylcholinesterase Inhibitor Hybrids Show Neuroprotection in an Alzheimer's Disease Mouse Model. J Med Chem 2023; 66:6414-6435. [PMID: 37127287 PMCID: PMC10184129 DOI: 10.1021/acs.jmedchem.3c00541] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/03/2023]
Abstract
We present the synthesis and characterization of merged human butyrylcholinesterase (hBChE) inhibitor/cannabinoid receptor 2 (hCB2R) ligands for the treatment of neurodegeneration. In total, 15 benzimidazole carbamates were synthesized and tested for their inhibition of human cholinesterases, also with regard to their pseudoirreversible binding mode and affinity toward both cannabinoid receptors in radioligand binding studies. After evaluation in a calcium mobilization assay as well as a β-arrestin 2 (βarr2) recruitment assay, two compounds with balanced activities on both targets were tested for their immunomodulatory effect on microglia activation and regarding their pharmacokinetic properties and blood-brain barrier penetration. Compound 15d, containing a dimethyl carbamate motif, was further evaluated in vivo, showing prevention of Aβ25-35-induced learning impairments in a pharmacological mouse model of Alzheimer's disease for both short- and long-term memory responses. Additional combination studies proved a synergic effect of BChE inhibition and CB2R activation in vivo.
Collapse
Affiliation(s)
- Philipp Spatz
- Pharmaceutical and Medicinal Chemistry, Institute of Pharmacy and Food Chemistry, Julius Maximilian University Würzburg, Am Hubland, D-97074 Würzburg, Germany
| | - Sophie A M Steinmüller
- Pharmaceutical and Medicinal Chemistry, Institute of Pharmacy and Food Chemistry, Julius Maximilian University Würzburg, Am Hubland, D-97074 Würzburg, Germany
| | - Anna Tutov
- Pharmaceutical and Medicinal Chemistry, Institute of Pharmacy and Food Chemistry, Julius Maximilian University Würzburg, Am Hubland, D-97074 Würzburg, Germany
| | - Eleonora Poeta
- Department of Pharmacy and Biotechnology, University of Bologna, Via Belmeloro 6, 40126 Bologna, Italy
| | - Axelle Morilleau
- MMDN, University of Montpellier, EPHE, INSERM, 34095 Montpellier, France
| | - Allison Carles
- MMDN, University of Montpellier, EPHE, INSERM, 34095 Montpellier, France
| | - Marie H Deventer
- Laboratory of Toxicology, Department of Bioanalysis, Faculty of Pharmaceutical Sciences, Ghent University, Ottergemsesteenweg 460, 9000 Ghent, Belgium
| | - Julian Hofmann
- Pharmaceutical and Medicinal Chemistry, Institute of Pharmacy and Food Chemistry, Julius Maximilian University Würzburg, Am Hubland, D-97074 Würzburg, Germany
| | - Christophe P Stove
- Laboratory of Toxicology, Department of Bioanalysis, Faculty of Pharmaceutical Sciences, Ghent University, Ottergemsesteenweg 460, 9000 Ghent, Belgium
| | - Barbara Monti
- Department of Pharmacy and Biotechnology, University of Bologna, Via Belmeloro 6, 40126 Bologna, Italy
| | - Tangui Maurice
- MMDN, University of Montpellier, EPHE, INSERM, 34095 Montpellier, France
| | - Michael Decker
- Pharmaceutical and Medicinal Chemistry, Institute of Pharmacy and Food Chemistry, Julius Maximilian University Würzburg, Am Hubland, D-97074 Würzburg, Germany
| |
Collapse
|
12
|
Anti-Inflammatory and Analgesic Properties of the Cannabis Terpene Myrcene in Rat Adjuvant Monoarthritis. Int J Mol Sci 2022; 23:ijms23147891. [PMID: 35887239 PMCID: PMC9319952 DOI: 10.3390/ijms23147891] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2022] [Revised: 07/03/2022] [Accepted: 07/13/2022] [Indexed: 11/28/2022] Open
Abstract
Cannabis-based terpenes are believed to modulate physiological responses to disease and alter the efficacy of cannabinoids in the so-called “entourage effect”. The monoterpene myrcene can reduce nociception produced by noxious thermal and mechanical stimuli as well as reducing acute inflammation. The current study examined the role of myrcene and cannabidiol (CBD) in controlling chronic joint inflammation and pain. Chronic arthritis was induced in male Wistar rats by intra-articular injection of Freund’s complete adjuvant into the right knee. On days 7 and 21 after arthritis induction, joint pain (von Frey hair algesiometry), inflammation (intravital microscopy, laser speckle contrast analysis) and joint histopathology were assessed. Local application of myrcene (1 and 5 mg/kg s.c.) reduced joint pain and inflammation via a cannabinoid receptor mechanism. The combination of myrcene and CBD (200 μg) was not significantly different from myrcene alone. Repeated myrcene treatment had no effect on joint damage or inflammatory cytokine production. These data suggest that topical myrcene has the potential to reduce chronic arthritis pain and inflammation; however, it has no synergistic effect with CBD.
Collapse
|
13
|
Borgonetti V, Benatti C, Governa P, Isoldi G, Pellati F, Alboni S, Tascedda F, Montopoli M, Galeotti N, Manetti F, Miraldi E, Biagi M, Rigillo G. Non-psychotropic Cannabis sativa L. phytocomplex modulates microglial inflammatory response through CB2 receptors-, endocannabinoids-, and NF-κB-mediated signaling. Phytother Res 2022; 36:2246-2263. [PMID: 35393641 PMCID: PMC9325551 DOI: 10.1002/ptr.7458] [Citation(s) in RCA: 26] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2021] [Revised: 12/27/2021] [Accepted: 01/12/2022] [Indexed: 12/11/2022]
Abstract
Cannabis sativa L. is increasingly emerging for its protective role in modulating neuroinflammation, a complex process orchestrated among others by microglia, the resident immune cells of the central nervous system. Phytocannabinoids, especially cannabidiol (CBD), terpenes, and other constituents trigger several upstream and downstream microglial intracellular pathways. Here, we investigated the molecular mechanisms of a CBD- and terpenes-enriched C. sativa extract (CSE) in an in vitro model of neuroinflammation. We evaluated the effect of CSE on the inflammatory response induced by exposure to lipopolysaccharide (LPS) in BV-2 microglial cells, compared with CBD and β-caryophyllene (CAR), CB2 receptors (CB2r) inverse and full agonist, respectively. The LPS-induced upregulation of the pro-inflammatory cytokines IL-1β, IL-6, and TNF-α was significantly attenuated by CSE and only partially by CBD, whereas CAR was ineffective. In BV-2 cells, these anti-inflammatory effects exerted by CSE phytocomplex were only partially dependent on CB2r modulation and they were mediated by the regulation of enzymes responsible for the endocannabinoids metabolism, by the inhibition of reactive oxygen species release and the modulation of JNK/p38 cascade with consequent NF-κB p65 nuclear translocation suppression. Our data suggest that C. sativa phytocomplex and its multitarget mechanism could represent a novel therapeutic strategy for neuroinflammatory-related diseases.
Collapse
Affiliation(s)
- Vittoria Borgonetti
- Department of Neuroscience, Psychology, Drug Research and Child Health (NEUROFARBA), Section of Pharmacology, University of Florence, Florence, Italy
| | - Cristina Benatti
- Center for Neuroscience and Neurotechnology, University of Modena and Reggio Emilia, Modena, Italy.,Department of Life Sciences, University of Modena and Reggio Emilia, Modena, Italy
| | - Paolo Governa
- Department of Biotechnology, Chemistry and Pharmacy (Department of Excellence 2018-2022), University of Siena, Siena, Italy
| | | | - Federica Pellati
- Department of Life Sciences, University of Modena and Reggio Emilia, Modena, Italy
| | - Silvia Alboni
- Center for Neuroscience and Neurotechnology, University of Modena and Reggio Emilia, Modena, Italy.,Department of Life Sciences, University of Modena and Reggio Emilia, Modena, Italy
| | - Fabio Tascedda
- Center for Neuroscience and Neurotechnology, University of Modena and Reggio Emilia, Modena, Italy.,Department of Life Sciences, University of Modena and Reggio Emilia, Modena, Italy.,Consorzio Interuniversitario Biotecnologie, Trieste, Italy
| | - Monica Montopoli
- Department of Pharmaceutical and Pharmacological Sciences, University of Padua, Padua, Italy
| | - Nicoletta Galeotti
- Department of Neuroscience, Psychology, Drug Research and Child Health (NEUROFARBA), Section of Pharmacology, University of Florence, Florence, Italy
| | - Fabrizio Manetti
- Department of Biotechnology, Chemistry and Pharmacy (Department of Excellence 2018-2022), University of Siena, Siena, Italy
| | - Elisabetta Miraldi
- Department of Physical Sciences, Earth and Environment, University of Siena, Siena, Italy
| | - Marco Biagi
- Department of Physical Sciences, Earth and Environment, University of Siena, Siena, Italy
| | - Giovanna Rigillo
- Department of Life Sciences, University of Modena and Reggio Emilia, Modena, Italy
| |
Collapse
|
14
|
Moghrovyan A, Parseghyan L, Sevoyan G, Darbinyan A, Sahakyan N, Gaboyan M, Karabekian Z, Voskanyan A. Antinociceptive, anti-inflammatory, and cytotoxic properties of Origanum vulgare essential oil, rich with β-caryophyllene and β-caryophyllene oxide. Korean J Pain 2022; 35:140-151. [PMID: 35354677 PMCID: PMC8977206 DOI: 10.3344/kjp.2022.35.2.140] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2021] [Revised: 02/01/2022] [Accepted: 02/02/2022] [Indexed: 11/05/2022] Open
Abstract
Background Essential oils are of great interest for their analgesic and anti-inflammatory properties. We aimed to study the content of the essential oil of the Origanum vulgare of the Armenian highlands (OVA) in different periods of vegetation and to investigate its antinociceptive and anti-inflammatory effects in mice (in vivo) and cytotoxic action in cultured cells (in vitro). OVA essential oil was extracted from fresh plant material by hydro-distillation. Methods For OVA essential oil contents determination the gas chromatography-mass spectrometry method was used. Formalin and hot plate tests and analysis of cell viability using the methyl-thiazolyl-tetrazolium (MTT) assay were used. Results The maximal content of β-caryophyllene and β-caryophyllene oxide in OVA essential oil was revealed in the period of blossoming (8.18% and 13.36%, correspondently). In the formalin test, 4% OVA essential oil solution (3.5 mg/mouse) exerts significant antinociceptive and anti-inflammatory effects (P = 0.003). MTT assay shows approximately 60% cytotoxicity in HeLa and Vero cells for 2.0 μL/mL OVA essential oil in media. Conclusions The wild oregano herb of Armenian highlands, harvested in the blossoming period, may be considered as a valuable source for developing pain-relieving preparations.
Collapse
Affiliation(s)
- Armenuhi Moghrovyan
- Department of Pharmacognosy, Yerevan State Medical University after M. Heratsi, Yerevan, Armenia
| | - Lilya Parseghyan
- Orbeli Institute of Physiology, Laboratory of Physiologically Active Substances Investigations, Yerevan, Armenia
| | - Gohar Sevoyan
- Orbeli Institute of Physiology, Laboratory of Tissue Engineering, Yerevan, Armenia
| | - Anna Darbinyan
- Orbeli Institute of Physiology, Laboratory of Physiologically Active Substances Investigations, Yerevan, Armenia
| | - Naira Sahakyan
- Yerevan State University, Research Institute of Biology, Faculty of Biology, Yerevan, Armenia
| | - Monica Gaboyan
- Yerevan State Medical University after M. Heratsi, Faculty of Pharmacy, Yerevan, Armenia
| | - Zaruhi Karabekian
- Orbeli Institute of Physiology, Laboratory of Tissue Engineering, Yerevan, Armenia
| | - Armen Voskanyan
- Orbeli Institute of Physiology, Laboratory of Physiologically Active Substances Investigations, Yerevan, Armenia
| |
Collapse
|
15
|
Morissette F, Mongeau-Pérusse V, Rizkallah E, Thébault P, Lepage S, Brissette S, Bruneau J, Dubreucq S, Stip E, Cailhier JF, Jutras-Aswad D. Exploring cannabidiol effects on inflammatory markers in individuals with cocaine use disorder: a randomized controlled trial. Neuropsychopharmacology 2021; 46:2101-2111. [PMID: 34331010 PMCID: PMC8505631 DOI: 10.1038/s41386-021-01098-z] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/12/2021] [Revised: 07/01/2021] [Accepted: 07/06/2021] [Indexed: 01/29/2023]
Abstract
Cocaine use disorder (CUD) is a major public health issue associated with physical, social, and psychological problems. Excessive and repeated cocaine use induces oxidative stress leading to a systemic inflammatory response. Cannabidiol (CBD) has gained substantial interest for its anti-inflammatory properties, safety, and tolerability profile. However, CBD anti-inflammatory properties have yet to be confirmed in humans. This exploratory study is based on a single-site randomized controlled trial that enrolled participants with CUD between 18 and 65 years, randomized (1:1) to daily receive either CBD (800 mg) or placebo for 92 days. The trial was divided into a 10-day detoxification (phase I) followed by a 12-week outpatient follow-up (phase II). Blood samples were collected from 48 participants at baseline, day 8, week 4, and week 12 and were analyzed to determine monocytes and lymphocytes phenotypes, and concentrations of various inflammatory markers such as cytokines. We used generalized estimating equations to detect group differences. Participants treated with CBD had lower levels of interleukin-6 (p = 0.017), vascular endothelial growth factor (p = 0.032), intermediate monocytes CD14+CD16+ (p = 0.024), and natural killer CD56negCD16hi (p = 0.000) compared with participants receiving placebo. CD25+CD4+T cells were higher in the CBD group (p = 0.007). No significant group difference was observed for B lymphocytes. This study suggests that CBD may exert anti-inflammatory effects in individuals with CUD.
Collapse
Affiliation(s)
- Florence Morissette
- grid.14848.310000 0001 2292 3357Faculty of Medicine, Department of Psychiatry and Addictology, Université de Montréal, Montreal, QC Canada ,grid.410559.c0000 0001 0743 2111Research Centre of Centre Hospitalier de l’Université de Montréal (CRCHUM), Montreal, QC Canada
| | - Violaine Mongeau-Pérusse
- grid.14848.310000 0001 2292 3357Faculty of Medicine, Department of Psychiatry and Addictology, Université de Montréal, Montreal, QC Canada ,grid.410559.c0000 0001 0743 2111Research Centre of Centre Hospitalier de l’Université de Montréal (CRCHUM), Montreal, QC Canada
| | - Elie Rizkallah
- grid.14848.310000 0001 2292 3357Faculty of Medicine, Department of Psychiatry and Addictology, Université de Montréal, Montreal, QC Canada ,grid.410559.c0000 0001 0743 2111Research Centre of Centre Hospitalier de l’Université de Montréal (CRCHUM), Montreal, QC Canada
| | - Paméla Thébault
- grid.410559.c0000 0001 0743 2111Research Centre of Centre Hospitalier de l’Université de Montréal (CRCHUM), Montreal, QC Canada ,Montreal Cancer Institute, Montreal, QC Canada
| | - Stéphanie Lepage
- grid.410559.c0000 0001 0743 2111Research Centre of Centre Hospitalier de l’Université de Montréal (CRCHUM), Montreal, QC Canada ,Montreal Cancer Institute, Montreal, QC Canada
| | - Suzanne Brissette
- grid.410559.c0000 0001 0743 2111Research Centre of Centre Hospitalier de l’Université de Montréal (CRCHUM), Montreal, QC Canada ,grid.14848.310000 0001 2292 3357Faculty of Medicine, Department of Family and Emergency Medicine, Université de Montréal, Montreal, QC Canada
| | - Julie Bruneau
- grid.410559.c0000 0001 0743 2111Research Centre of Centre Hospitalier de l’Université de Montréal (CRCHUM), Montreal, QC Canada ,grid.14848.310000 0001 2292 3357Faculty of Medicine, Department of Family and Emergency Medicine, Université de Montréal, Montreal, QC Canada
| | - Simon Dubreucq
- grid.14848.310000 0001 2292 3357Faculty of Medicine, Department of Psychiatry and Addictology, Université de Montréal, Montreal, QC Canada ,grid.410559.c0000 0001 0743 2111Research Centre of Centre Hospitalier de l’Université de Montréal (CRCHUM), Montreal, QC Canada
| | - Emmanuel Stip
- grid.14848.310000 0001 2292 3357Faculty of Medicine, Department of Psychiatry and Addictology, Université de Montréal, Montreal, QC Canada ,grid.410559.c0000 0001 0743 2111Research Centre of Centre Hospitalier de l’Université de Montréal (CRCHUM), Montreal, QC Canada ,grid.43519.3a0000 0001 2193 6666Department of Psychiatry and Behavioral Science, College of Medicine and Health Sciences, United Arab Emirates University, Abu Dhabi, United Arab Emirates
| | - Jean-François Cailhier
- grid.410559.c0000 0001 0743 2111Research Centre of Centre Hospitalier de l’Université de Montréal (CRCHUM), Montreal, QC Canada ,Montreal Cancer Institute, Montreal, QC Canada ,grid.14848.310000 0001 2292 3357Division of Nephrology, Department of Medicine, Université de Montréal, Montreal, QC Canada
| | - Didier Jutras-Aswad
- Faculty of Medicine, Department of Psychiatry and Addictology, Université de Montréal, Montreal, QC, Canada. .,Research Centre of Centre Hospitalier de l'Université de Montréal (CRCHUM), Montreal, QC, Canada. .,University Institute on Addictions, Montreal, QC, Canada.
| |
Collapse
|
16
|
Greco R, Demartini C, Francavilla M, Zanaboni AM, Tassorelli C. Dual Inhibition of FAAH and MAGL Counteracts Migraine-like Pain and Behavior in an Animal Model of Migraine. Cells 2021; 10:2543. [PMID: 34685523 PMCID: PMC8534238 DOI: 10.3390/cells10102543] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2021] [Revised: 09/07/2021] [Accepted: 09/23/2021] [Indexed: 12/26/2022] Open
Abstract
The endocannabinoid system exerts an important role in pain processing and modulation. Modulation of the system with hydrolase inhibitors of anandamide (AEA) or 2-arachidonyl glycerol (2-AG) has proved effective in reducing migraine-like features in animal models of migraine. Here, we investigated the effect of dual inhibition of the AEA and 2-AG catabolic pathways in the nitroglycerin-based animal model of migraine. The dual inhibitor JZL195 was administered to rats 2 h after nitroglycerin or vehicle injection. Rats were then exposed to the open field test and the orofacial formalin test. At the end of the tests, they were sacrificed to evaluate calcitonin gene-related peptide (CGRP) serum levels and gene expression of CGRP and cytokines in the cervical spinal cord and the trigeminal ganglion. The dual inhibitor significantly reduced the nitroglycerin-induced trigeminal hyperalgesia and pain-associated behavior, possibly via cannabinoid 1 receptors-mediated action, but it did not change the hypomotility and the anxiety behaviors induced by nitroglycerin. The decreased hyperalgesia was associated with a reduction in CGRP and cytokine gene expression levels in central and peripheral structures and reduced CGRP serum levels. These data suggest an antinociceptive synergy of the endocannabinoid action in peripheral and central sites, confirming that this system participates in reduction of cephalic pain signals.
Collapse
Affiliation(s)
- Rosaria Greco
- Unit of Translational Neurovascular Research, IRCCS Mondino Foundation, via Mondino 2, 27100 Pavia, Italy; (C.D.); (M.F.); (A.M.Z.); (C.T.)
| | - Chiara Demartini
- Unit of Translational Neurovascular Research, IRCCS Mondino Foundation, via Mondino 2, 27100 Pavia, Italy; (C.D.); (M.F.); (A.M.Z.); (C.T.)
| | - Miriam Francavilla
- Unit of Translational Neurovascular Research, IRCCS Mondino Foundation, via Mondino 2, 27100 Pavia, Italy; (C.D.); (M.F.); (A.M.Z.); (C.T.)
| | - Anna Maria Zanaboni
- Unit of Translational Neurovascular Research, IRCCS Mondino Foundation, via Mondino 2, 27100 Pavia, Italy; (C.D.); (M.F.); (A.M.Z.); (C.T.)
- Department of Brain and Behavioral Sciences, University of Pavia, via Bassi 21, 27100 Pavia, Italy
| | - Cristina Tassorelli
- Unit of Translational Neurovascular Research, IRCCS Mondino Foundation, via Mondino 2, 27100 Pavia, Italy; (C.D.); (M.F.); (A.M.Z.); (C.T.)
- Department of Brain and Behavioral Sciences, University of Pavia, via Bassi 21, 27100 Pavia, Italy
| |
Collapse
|
17
|
MacCallum CA, Eadie L, Barr AM, Boivin M, Lu S. Practical Strategies Using Medical Cannabis to Reduce Harms Associated With Long Term Opioid Use in Chronic Pain. Front Pharmacol 2021; 12:633168. [PMID: 33995035 PMCID: PMC8120104 DOI: 10.3389/fphar.2021.633168] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2020] [Accepted: 04/08/2021] [Indexed: 12/17/2022] Open
Abstract
Background: Chronic non-cancer pain (CNCP) is estimated to affect 20% of the adult population. Current United States and Canadian Chronic non-cancer pain guidelines recommend careful reassessment of the risk-benefit ratio for doses greater than 90 mg morphine equivalent dose (MED), due to low evidence for improved pain efficacy at higher morphine equivalent dose and a significant increase in morbidity and mortality. There are a number of human studies demonstrating cannabis opioid synergy. This preliminary evidence suggests a potential role of cannabis as an adjunctive therapy with or without opioids to optimize pain control. Methods: In 2017, the Canadian Opioid Guidelines Clinical Tool was created to encourage judicious opioid prescribing for CNCP patients and to reevaluate those who have been chronically using high MED. Mirroring this approach, we draw on our clinical experiences and available evidence to create a clinical tool to serve as a foundational clinical guideline for the initiation of medical cannabis in the management of CNCP patients using chronic opioid therapy. Findings: Following principles of harm reduction and risk minimization, we suggest cannabis be introduced in appropriately selected CNCP patients, using a stepwise approach, with the intent of pain management optimization. We use a structured approach to focus on low dose cannabis (namely, THC) initiation, slow titration, dose optimization and frequent monitoring. Conclusion: When low dose THC is introduced as an adjunctive therapy, we observe better pain control clinically with lower doses of opioids, improved pain related outcomes and reduced opioid related harm.
Collapse
Affiliation(s)
- Caroline A MacCallum
- Department of Medicine, Faculty of Medicine, Division of Community Internal Medicine, University of British Columbia, Vancouver, BC, Canada.,Department of Medicine, Faculty of Medicine, Division of Palliative Care, UBC, Vancouver, BC, Canada.,Faculty of Pharmaceutical Sciences, UBC, Vancouver, BC, Canada
| | - Lauren Eadie
- Department of Medicine, Faculty of Medicine, Division of Community Internal Medicine, University of British Columbia, Vancouver, BC, Canada
| | - Alasdair M Barr
- Department of Anesthesiology, Pharmacology and Therapeutics, Faculty of Medicine, UBC, Vancouver, BC, Canada
| | | | - Shaohua Lu
- Department of Medicine, Faculty of Medicine, Division of Community Internal Medicine, University of British Columbia, Vancouver, BC, Canada
| |
Collapse
|