1
|
Qin Y, Hu X, Zhao HL, Kurban N, Chen X, Yi JK, Zhang Y, Cui SY, Zhang YH. Inhibition of Indoleamine 2,3-Dioxygenase Exerts Antidepressant-like Effects through Distinct Pathways in Prelimbic and Infralimbic Cortices in Rats under Intracerebroventricular Injection with Streptozotocin. Int J Mol Sci 2024; 25:7496. [PMID: 39000602 PMCID: PMC11242124 DOI: 10.3390/ijms25137496] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2024] [Revised: 06/28/2024] [Accepted: 07/06/2024] [Indexed: 07/16/2024] Open
Abstract
The application of intracerebroventricular injection of streptozotocin (ICV-STZ) is considered a useful animal model to mimic the onset and progression of sporadic Alzheimer's disease (sAD). In rodents, on day 7 of the experiment, the animals exhibit depression-like behaviors. Indoleamine 2,3-dioxygenase (IDO), a rate-limiting enzyme catalyzing the conversion of tryptophan (Trp) to kynurenine (Kyn), is closely related to depression and AD. The present study aimed to investigate the pathophysiological mechanisms of preliminary depression-like behaviors in ICV-STZ rats in two distinct cerebral regions of the medial prefrontal cortex, the prelimbic cortex (PrL) and infralimbic cortex (IL), both presumably involved in AD progression in this model, with a focus on IDO-related Kyn pathways. The results showed an increased Kyn/Trp ratio in both the PrL and IL of ICV-STZ rats, but, intriguingly, abnormalities in downstream metabolic pathways were different, being associated with distinct biological effects. In the PrL, the neuroprotective branch of the Kyn pathway was attenuated, as evidenced by a decrease in the kynurenic acid (KA) level and Kyn aminotransferase II (KAT II) expression, accompanied by astrocyte alterations, such as the decrease in glial fibrillary acidic protein (GFAP)-positive cells and increase in morphological damage. In the IL, the neurotoxicogenic branch of the Kyn pathway was enhanced, as evidenced by an increase in the 3-hydroxy-kynurenine (3-HK) level and kynurenine 3-monooxygenase (KMO) expression paralleled by the overactivation of microglia, reflected by an increase in ionized calcium-binding adaptor molecule 1 (Iba1)-positive cells and cytokines with morphological alterations. Synaptic plasticity was attenuated in both subregions. Additionally, microinjection of the selective IDO inhibitor 1-Methyl-DL-tryptophan (1-MT) in the PrL or IL alleviated depression-like behaviors by reversing these different abnormalities in the PrL and IL. These results suggest that the antidepressant-like effects linked to Trp metabolism changes induced by 1-MT in the PrL and IL occur through different pathways, specifically by enhancing the neuroprotective branch in the PrL and attenuating the neurotoxicogenic branch in the IL, involving distinct glial cells.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | - Su-Ying Cui
- Department of Pharmacology, School of Basic Medical Sciences, Peking University, Beijing 100191, China; (Y.Q.); (X.H.); (H.-L.Z.); (N.K.); (X.C.); (J.-K.Y.); (Y.Z.)
| | - Yong-He Zhang
- Department of Pharmacology, School of Basic Medical Sciences, Peking University, Beijing 100191, China; (Y.Q.); (X.H.); (H.-L.Z.); (N.K.); (X.C.); (J.-K.Y.); (Y.Z.)
| |
Collapse
|
2
|
Sun Q, Li G, Zhao F, Dong M, Xie W, Liu Q, Yang W, Cui R. Role of estrogen in treatment of female depression. Aging (Albany NY) 2024; 16:3021-3042. [PMID: 38309292 PMCID: PMC10911346 DOI: 10.18632/aging.205507] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2023] [Accepted: 11/28/2023] [Indexed: 02/05/2024]
Abstract
Depression is a neurological disorder that profoundly affects human physical and mental health, resulting in various changes in the central nervous system. Despite several prominent hypotheses, such as the monoaminergic theory, hypothalamic-pituitary-adrenal (HPA) axis theory, neuroinflammation, and neuroplasticity, the current understanding of depression's pathogenesis remains incomplete. Importantly, depression is a gender-dimorphic disorder, with women exhibiting higher incidence rates than men. Given estrogen's pivotal role in the menstrual cycle, it is reasonable to postulate that its fluctuating levels could contribute to the pathogenesis of depression. Estrogen acts by binding to a diversity of receptors, which are widely distributed in the central nervous system. An abundance of research has established that estrogen and its receptors play a crucial role in depression, spanning pathogenesis and treatment. In this comprehensive review, we provide an in-depth analysis of the fundamental role of estrogen and its receptors in depression, with a focus on neuroinflammation, neuroendocrinology, and neuroplasticity. Furthermore, we discuss potential mechanisms underlying the therapeutic effects of estrogen in the treatment of depression, which may pave the way for new antidepressant drug development and alternative treatment options.
Collapse
Affiliation(s)
- Qihan Sun
- Jilin Provincial Key Laboratory on Molecular and Chemical Genetic, The Second Hospital of Jilin University, Changchun, Jilin 130000, P.R. China
| | - Guangquan Li
- Jilin Provincial Key Laboratory on Molecular and Chemical Genetic, The Second Hospital of Jilin University, Changchun, Jilin 130000, P.R. China
| | - Fangyi Zhao
- Jilin Provincial Key Laboratory on Molecular and Chemical Genetic, The Second Hospital of Jilin University, Changchun, Jilin 130000, P.R. China
| | - Mengmeng Dong
- Jilin Provincial Key Laboratory on Molecular and Chemical Genetic, The Second Hospital of Jilin University, Changchun, Jilin 130000, P.R. China
| | - Wei Xie
- Jilin Provincial Key Laboratory on Molecular and Chemical Genetic, The Second Hospital of Jilin University, Changchun, Jilin 130000, P.R. China
| | - Qianqian Liu
- Jilin Provincial Key Laboratory on Molecular and Chemical Genetic, The Second Hospital of Jilin University, Changchun, Jilin 130000, P.R. China
| | - Wei Yang
- Department of Neurology, The Second Hospital of Jilin University, Changchun, Jilin 130041, P.R. China
| | - Ranji Cui
- Jilin Provincial Key Laboratory on Molecular and Chemical Genetic, The Second Hospital of Jilin University, Changchun, Jilin 130000, P.R. China
| |
Collapse
|
3
|
Spironolactone as a potential new pharmacotherapy for alcohol use disorder: convergent evidence from rodent and human studies. Mol Psychiatry 2022; 27:4642-4652. [PMID: 36123420 DOI: 10.1038/s41380-022-01736-y] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/04/2022] [Revised: 08/02/2022] [Accepted: 08/08/2022] [Indexed: 12/14/2022]
Abstract
Evidence suggests that spironolactone, a nonselective mineralocorticoid receptor (MR) antagonist, modulates alcohol seeking and consumption. Therefore, spironolactone may represent a novel pharmacotherapy for alcohol use disorder (AUD). In this study, we tested the effects of spironolactone in a mouse model of alcohol drinking (drinking-in-the-dark) and in a rat model of alcohol dependence (vapor exposure). We also investigated the association between spironolactone receipt for at least 60 continuous days and change in self-reported alcohol consumption, using the Alcohol Use Disorders Identification Test-Consumption (AUDIT-C), in a pharmacoepidemiologic cohort study in the largest integrated healthcare system in the US. Spironolactone dose-dependently reduced the intake of sweetened or unsweetened alcohol solutions in male and female mice. No effects of spironolactone were observed on drinking of a sweet solution without alcohol, food or water intake, motor coordination, alcohol-induced ataxia, or blood alcohol levels. Spironolactone dose-dependently reduced operant alcohol self-administration in dependent and nondependent male and female rats. In humans, a greater reduction in alcohol consumption was observed among those who received spironolactone, compared to propensity score-matched individuals who did not receive spironolactone. The largest effects were among those who reported hazardous/heavy episodic alcohol consumption at baseline (AUDIT-C ≥ 8) and those exposed to ≥ 50 mg/day of spironolactone. These convergent findings across rodent and human studies demonstrate that spironolactone reduces alcohol use and support the hypothesis that this medication may be further studied as a novel pharmacotherapy for AUD.
Collapse
|
4
|
Das S, Komnenov D, Newhouse L, Rishi AK, Rossi NF. Paraventricular Nucleus V 1a Receptor Knockdown Blunts Neurocardiovascular Responses to Acute Stress in Male Rats after Chronic Mild Unpredictable Stress. Physiol Behav 2022; 253:113867. [PMID: 35661787 DOI: 10.1016/j.physbeh.2022.113867] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2022] [Revised: 05/09/2022] [Accepted: 06/01/2022] [Indexed: 10/18/2022]
Abstract
Chronic stress and depression impart increased risk for adverse cardiovascular events. Autonomic dysregulation, particularly sympathoexcitation, has long been associated with poor cardiovascular outcomes. Vasopressin (AVP) receptors with the paraventricular nucleus (PVN), known as an integrating locus for hemodynamic and autonomic function, have been implicated in behavior and stress. The present studies were designed to test the hypothesis that knockdown of vasopressin V1aR within the PVN in male Sprague Dawley rats subjected to chronic mild unpredictable stress (CMS) would result in lower resting hemodynamics and renal sympathetic nerve activity (RSNA) and mitigate the responses to acute stressors. Male rats underwent CMS for 4 weeks; controls were housed in standard caging. Twenty days into the paradigm, the PVN was injected with either small interfering RNA (siRNA) directed against V1aR or scrambled RNA (scrRNA). Arterial pressure, heart rate and RSNA were ascertained by telemetry with the animals in their home cages. Pretreatment with siRNA to V1aR prevented the increase in arterial pressure to PVN microinjection with exogenous AVP. Basal mean arterial pressure (MAP) was significantly higher in scrRNA-treated but not in siRNA-treated CMS rats vs control rats. Paradoxically, basal RSNA was approximately two-fold higher in siRNA-treated CMS rats. Acute emotional stress delivered as 15-sec air-jet resulted in greater peak and duration of the MAP and RSNA responses in scrRNA-treated CMS rats vs control; siRNA treatment inhibited the responses. The 15-sec exposure to ammonia to test the nasopharyngeal reflex, whose circuitry does not include the PVN, produced similar increases in arterial pressure, heart rate, and RSNA in controls and both groups of CMS rats. Thus, CMS increases arterial pressure and predisposes to greater hemodynamic and RSNA responses to acute emotional stress. The higher basal RSNA in siRNA-treated rats may be due to functional and/or anatomical neuroplasticity occurring during more protracted inhibition of V1aR PVN signaling. Vasopressinergic signaling via V1aR in PVN modulates the cardiovascular and sympathetic responses to both the chronic and acute stress.
Collapse
Affiliation(s)
- Shibandri Das
- Department of Ophthalmology, Visual, and Anatomical Sciences, Wayne State University, Detroit, MI, US
| | - Dragana Komnenov
- Departments of Internal Medicine and Physiology, Wayne State University, Detroit, MI, US
| | - Lauren Newhouse
- Department of Internal Medicine, University of Illinois, Chicago, IL, US
| | - Arun K Rishi
- Department of Oncology, Wayne State University, US; John D. Dingell VA Medical Center, Detroit, MI, US
| | - Noreen F Rossi
- Departments of Internal Medicine and Physiology, Wayne State University, Detroit, MI, US; John D. Dingell VA Medical Center, Detroit, MI, US.
| |
Collapse
|
5
|
Gene Dysregulation in the Adult Rat Paraventricular Nucleus and Amygdala by Prenatal Exposure to Dexamethasone. LIFE (BASEL, SWITZERLAND) 2022; 12:life12071077. [PMID: 35888164 PMCID: PMC9316520 DOI: 10.3390/life12071077] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/23/2022] [Revised: 06/24/2022] [Accepted: 07/15/2022] [Indexed: 12/02/2022]
Abstract
Fetal programming is the concept that maternal stressors during critical periods of fetal development can alter offspring phenotypes postnatally. Excess glucocorticoids can interact with the fetus to effect genetic and epigenetic changes implicated in adverse developmental outcomes. The present study investigates how chronic exposure to the synthetic glucocorticoid dexamethasone during late gestation alters the expression of genes related to behavior in brain areas relevant to the regulation and function of the hypothalamic–pituitary–adrenal axis. Pregnant Wistar Kyoto rats received subcutaneous injections of dexamethasone (100 μg/kg) daily from gestational day 15–21 or vehicle only as sham controls. The amygdala and paraventricular nucleus (PVN) were micro-punched to extract mRNA for reverse transcription and quantitative polymerase chain reaction for the analysis of the expression of specific genes. In the PVN, the expression of the glucocorticoid receptor NR3C1 was downregulated in female rats in response to programming. The expression of CACNA1C encoding the Cav1.2 pore subunit of L-type voltage-gated calcium channels was downregulated in male and female rats prenatally exposed to dexamethasone. Collectively, the results suggest that prenatal exposure to elevated levels of glucocorticoids plays a role in the dysregulation of the hypothalamic–pituitary–adrenal axis and potentially learning and memory by altering the expression of specific genes within the amygdala and PVN.
Collapse
|
6
|
Kageyama K, Iwasaki Y, Daimon M. Hypothalamic Regulation of Corticotropin-Releasing Factor under Stress and Stress Resilience. Int J Mol Sci 2021; 22:ijms222212242. [PMID: 34830130 PMCID: PMC8621508 DOI: 10.3390/ijms222212242] [Citation(s) in RCA: 25] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2021] [Revised: 11/09/2021] [Accepted: 11/11/2021] [Indexed: 02/07/2023] Open
Abstract
This review addresses the molecular mechanisms of corticotropin-releasing factor (CRF) regulation in the hypothalamus under stress and stress resilience. CRF in the hypothalamus plays a central role in regulating the stress response. CRF stimulates adrenocorticotropic hormone (ACTH) release from the anterior pituitary. ACTH stimulates glucocorticoid secretion from the adrenal glands. Glucocorticoids are essential for stress coping, stress resilience, and homeostasis. The activated hypothalamic-pituitary-adrenal axis is suppressed by the negative feedback from glucocorticoids. Glucocorticoid-dependent repression of cAMP-stimulated Crf promoter activity is mediated by both the negative glucocorticoid response element and the serum response element. Conversely, the inducible cAMP-early repressor can suppress the stress response via inhibition of the cAMP-dependent Crf gene, as can the suppressor of cytokine signaling-3 in the hypothalamus. CRF receptor type 1 is mainly involved in a stress response, depression, anorexia, and seizure, while CRF receptor type 2 mediates “stress coping” mechanisms such as anxiolysis in the brain. Differential effects of FK506-binding immunophilins, FKBP4 and FKBP5, contribute to the efficiency of glucocorticoids under stress resilience. Together, a variety of factors contribute to stress resilience. All these factors would have the differential roles under stress resilience.
Collapse
Affiliation(s)
- Kazunori Kageyama
- Department of Endocrinology and Metabolism, Hirosaki University Graduate School of Medicine, 5 Zaifu-cho, Hirosaki 036-8562, Aomori, Japan;
- Correspondence: ; Tel.: +81-172-39-5062
| | - Yasumasa Iwasaki
- Department of Clinical Nutrition Management Nutrition Course, Faculty of Health Science, Suzuka University of Medical Science, 1001-1 Kishioka-cho, Suzuka 510-0293, Mie, Japan;
| | - Makoto Daimon
- Department of Endocrinology and Metabolism, Hirosaki University Graduate School of Medicine, 5 Zaifu-cho, Hirosaki 036-8562, Aomori, Japan;
| |
Collapse
|
7
|
Adrenergic and Glucocorticoid Receptors in the Pulmonary Health Effects of Air Pollution. TOXICS 2021; 9:toxics9060132. [PMID: 34200050 PMCID: PMC8226814 DOI: 10.3390/toxics9060132] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/16/2021] [Revised: 05/28/2021] [Accepted: 05/31/2021] [Indexed: 01/16/2023]
Abstract
Adrenergic receptors (ARs) and glucocorticoid receptors (GRs) are activated by circulating catecholamines and glucocorticoids, respectively. These receptors regulate the homeostasis of physiological processes with specificity via multiple receptor subtypes, wide tissue-specific distribution, and interactions with other receptors and signaling processes. Based on their physiological roles, ARs and GRs are widely manipulated therapeutically for chronic diseases. Although these receptors play key roles in inflammatory and cellular homeostatic processes, little research has addressed their involvement in the health effects of air pollution. We have recently demonstrated that ozone, a prototypic air pollutant, mediates pulmonary and systemic effects through the activation of these receptors. A single exposure to ozone induces the sympathetic–adrenal–medullary and hypothalamic–pituitary–adrenal axes, resulting in the release of epinephrine and corticosterone into the circulation. These hormones act as ligands for ARs and GRs. The roles of beta AR (βARs) and GRs in ozone-induced pulmonary injury and inflammation were confirmed in a number of studies using interventional approaches. Accordingly, the activation status of ARs and GRs is critical in mediating the health effects of inhaled irritants. In this paper, we review the cellular distribution and functions of ARs and GRs, their lung-specific localization, and their involvement in ozone-induced health effects, in order to capture attention for future research.
Collapse
|