1
|
Huang S, Dong W, Lin X, Bian J. Na+/K+-ATPase: ion pump, signal transducer, or cytoprotective protein, and novel biological functions. Neural Regen Res 2024; 19:2684-2697. [PMID: 38595287 PMCID: PMC11168508 DOI: 10.4103/nrr.nrr-d-23-01175] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2023] [Revised: 10/23/2023] [Accepted: 12/09/2023] [Indexed: 04/11/2024] Open
Abstract
Na+/K+-ATPase is a transmembrane protein that has important roles in the maintenance of electrochemical gradients across cell membranes by transporting three Na+ out of and two K+ into cells. Additionally, Na+/K+-ATPase participates in Ca2+-signaling transduction and neurotransmitter release by coordinating the ion concentration gradient across the cell membrane. Na+/K+-ATPase works synergistically with multiple ion channels in the cell membrane to form a dynamic network of ion homeostatic regulation and affects cellular communication by regulating chemical signals and the ion balance among different types of cells. Therefore, it is not surprising that Na+/K+-ATPase dysfunction has emerged as a risk factor for a variety of neurological diseases. However, published studies have so far only elucidated the important roles of Na+/K+-ATPase dysfunction in disease development, and we are lacking detailed mechanisms to clarify how Na+/K+-ATPase affects cell function. Our recent studies revealed that membrane loss of Na+/K+-ATPase is a key mechanism in many neurological disorders, particularly stroke and Parkinson's disease. Stabilization of plasma membrane Na+/K+-ATPase with an antibody is a novel strategy to treat these diseases. For this reason, Na+/K+-ATPase acts not only as a simple ion pump but also as a sensor/regulator or cytoprotective protein, participating in signal transduction such as neuronal autophagy and apoptosis, and glial cell migration. Thus, the present review attempts to summarize the novel biological functions of Na+/K+-ATPase and Na+/K+-ATPase-related pathogenesis. The potential for novel strategies to treat Na+/K+-ATPase-related brain diseases will also be discussed.
Collapse
Affiliation(s)
- Songqiang Huang
- Department of Pharmacology, Joint Laboratory of Guangdong-Hong Kong Universities for Vascular Homeostasis and Diseases, School of Medicine, Southern University of Science and Technology, Shenzhen, Guangdong Province, China
| | - Wanting Dong
- Department of Pharmacology, School of Basic Medicine, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei Province, China
| | - Xiaoqian Lin
- Department of Pharmacology, Joint Laboratory of Guangdong-Hong Kong Universities for Vascular Homeostasis and Diseases, School of Medicine, Southern University of Science and Technology, Shenzhen, Guangdong Province, China
| | - Jinsong Bian
- Department of Pharmacology, Joint Laboratory of Guangdong-Hong Kong Universities for Vascular Homeostasis and Diseases, School of Medicine, Southern University of Science and Technology, Shenzhen, Guangdong Province, China
| |
Collapse
|
2
|
Peng H, He Y, Hu Y, Sheng S, Maitiyasen M, Li J, Liu Y, Hou X, Song H, Yi J. Berbamine promotes ferroptosis of esophageal squamous cell carcinoma by facilitating USP51-mediated GPX4 ubiquitination and degradation. Biomed Pharmacother 2024; 179:117309. [PMID: 39151312 DOI: 10.1016/j.biopha.2024.117309] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2024] [Revised: 08/11/2024] [Accepted: 08/13/2024] [Indexed: 08/19/2024] Open
Abstract
Esophageal cancer ranks among the most prevalent malignant tumors globally. The prognosis for esophageal squamous cell carcinoma remains poor, with a 5-year survival rate below 20 % due to limited advances in therapy. Ferroptosis, a novel form of iron-dependent lipid peroxidation-driven regulated cell death (RCD), shows significant promise in cancer treatment. Berbamine (BBM), a natural bisbenzylisoquinoline alkaloid derived from Berberis amurensis, exhibits anti-tumor effects against various cancers, yet its impact on esophageal cancer remains to be elucidated. This study aimed to explore the role of BBM in inducing ferroptosis in the treatment of esophageal cancer, focusing on its molecular mechanisms. Gene set enrichment analysis(GSEA) analysis highlighted the potential of BBM as an anti-cancer agent through ferroptosis induction. We found that BBM inhibited growth and epithelial-mesenchymal transition (EMT) in esophageal cancer cell lines, promoting Fe accumulation, ROS, and malondialdehyde (MDA) production, thereby triggering cell death. These suppressive effects were successfully reversed by Ferrostatin-1 (Fer-1). Mechanistically, BBM decreased deubiquitination enzyme USP51 levels, leading to ubiquitin degradation and glutathione peroxidase 4(GPX4) instability, and it stimulated ferroptosis. The Overexpression of USP51 mitigated the downregulation of GPX4 induced by BBM.BBM significantly inhibited tumor xenograft growth in nude mice. This discovery positions BBM as a promising therapeutic candidate for the treatment of esophageal cancer.
Collapse
Affiliation(s)
- Hao Peng
- Department of Cardiothoracic Surgery,Jinling Hospital, Affiliated Hospital of Medical School, Nanjing University, Nanjing, China
| | - YuanPeng He
- Department of Cardiothoracic Surgery,Jinling Hospital, Affiliated Hospital of Medical School, Nanjing University, Nanjing, China
| | - Yuepeng Hu
- Jinling Hospital, Affiliated Hospital of Medical School, Nanjing University, Nanjing, China
| | - Siqi Sheng
- Department of Medical Oncology, Jinling Hospital, Affiliated Hospital of Medical School, Nanjing University, Nanjing, China
| | - Maierhaba Maitiyasen
- Department of Cardiothoracic Surgery,Jinling Hospital, Affiliated Hospital of Medical School, Nanjing University, Nanjing, China
| | - Jingfeng Li
- Department of Cardiothoracic Surgery,Jinling Hospital, Affiliated Hospital of Medical School, Nanjing University, Nanjing, China
| | - Yvxuan Liu
- Department of Cardiothoracic Surgery,Jinling Hospital, Affiliated Hospital of Medical School, Nanjing University, Nanjing, China
| | - Xinyu Hou
- Department of Cardiothoracic Surgery,Jinling Hospital, Affiliated Hospital of Medical School, Nanjing University, Nanjing, China
| | - Haizhu Song
- Department of Medical Oncology, Jinling Hospital, Affiliated Hospital of Medical School, Nanjing University, Nanjing, China.
| | - Jun Yi
- Department of Cardiothoracic Surgery,Jinling Hospital, Affiliated Hospital of Medical School, Nanjing University, Nanjing, China.
| |
Collapse
|
3
|
Min K, Karuppannan SK, Tae G. The impact of matrix stiffness on hepatic cell function, liver fibrosis, and hepatocellular carcinoma-Based on quantitative data. BIOPHYSICS REVIEWS 2024; 5:021306. [PMID: 38846007 PMCID: PMC11151446 DOI: 10.1063/5.0197875] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/15/2024] [Accepted: 05/14/2024] [Indexed: 06/09/2024]
Abstract
Over the past few decades, extensive research has explored the development of supportive scaffold materials for in vitro hepatic cell culture, to effectively mimic in vivo microenvironments. It is crucial for hepatic disease modeling, drug screening, and therapeutic evaluations, considering the ethical concerns and practical challenges associated with in vivo experiments. This review offers a comprehensive perspective on hepatic cell culture using bioscaffolds by encompassing all stages of hepatic diseases-from a healthy liver to fibrosis and hepatocellular carcinoma (HCC)-with a specific focus on matrix stiffness. This review begins by providing physiological and functional overviews of the liver. Subsequently, it explores hepatic cellular behaviors dependent on matrix stiffness from previous reports. For hepatic cell activities, softer matrices showed significant advantages over stiffer ones in terms of cell proliferation, migration, and hepatic functions. Conversely, stiffer matrices induced myofibroblastic activation of hepatic stellate cells, contributing to the further progression of fibrosis. Elevated matrix stiffness also correlates with HCC by increasing proliferation, epithelial-mesenchymal transition, metastasis, and drug resistance of HCC cells. In addition, we provide quantitative information on available data to offer valuable perspectives for refining the preparation and development of matrices for hepatic tissue engineering. We also suggest directions for further research on this topic.
Collapse
Affiliation(s)
- Kiyoon Min
- School of Materials Science and Engineering, Gwangju Institute of Science and Technology (GIST), Gwangju 61005, Republic of Korea
| | - Sathish Kumar Karuppannan
- School of Materials Science and Engineering, Gwangju Institute of Science and Technology (GIST), Gwangju 61005, Republic of Korea
| | - Giyoong Tae
- School of Materials Science and Engineering, Gwangju Institute of Science and Technology (GIST), Gwangju 61005, Republic of Korea
| |
Collapse
|
4
|
Chaisupasakul P, Pekthong D, Wangteeraprasert A, Kaewkong W, Somran J, Kaewpaeng N, Parhira S, Srisawang P. Combination of ethyl acetate fraction from Calotropis gigantea stem bark and sorafenib induces apoptosis in HepG2 cells. PLoS One 2024; 19:e0300051. [PMID: 38527038 PMCID: PMC10962855 DOI: 10.1371/journal.pone.0300051] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2023] [Accepted: 02/15/2024] [Indexed: 03/27/2024] Open
Abstract
The cytotoxicity of the ethyl acetate fraction of the Calotropis gigantea (L.) Dryand. (C. gigantea) stem bark extract (CGEtOAc) has been demonstrated in many types of cancers. This study examined the improved cancer therapeutic activity of sorafenib when combined with CGEtOAc in HepG2 cells. The cell viability and cell migration assays were applied in HepG2 cells treated with varying concentrations of CGEtOAc, sorafenib, and their combination. Flow cytometry was used to determine apoptosis, which corresponded with a decline in mitochondrial membrane potential and activation of DNA fragmentation. Reactive oxygen species (ROS) levels were assessed in combination with the expression of the phosphatidylinositol-3-kinase (PI3K)/ protein kinase B (Akt)/ mammalian target of rapamycin (mTOR) pathway, which was suggested for association with ROS-induced apoptosis. Combining CGEtOAc at 400 μg/mL with sorafenib at 4 μM, which were their respective half-IC50 concentrations, significantly inhibited HepG2 viability upon 24 h of exposure in comparison with the vehicle and each single treatment. Consequently, CGEtOAc when combined with sorafenib significantly diminished HepG2 migration and induced apoptosis through a mitochondrial-correlation mechanism. ROS production was speculated to be the primary mechanism of stimulating apoptosis in HepG2 cells after exposure to a combination of CGEtOAc and sorafenib, in association with PI3K/Akt/mTOR pathway suppression. Our results present valuable knowledge to support the development of anticancer regimens derived from the CGEtOAc with the chemotherapeutic agent sorafenib, both of which were administered at half-IC50, which may minimize the toxic implications of cancer treatments while improving the therapeutic effectiveness toward future medical applications.
Collapse
Affiliation(s)
- Pattaraporn Chaisupasakul
- Department of Physiology, Faculty of Medical Science, Naresuan University, Phitsanulok, Thailand
- Center of Excellence for Innovation in Chemistry, Naresuan University, Phitsanulok, Thailand
| | - Dumrongsak Pekthong
- Center of Excellence for Innovation in Chemistry, Naresuan University, Phitsanulok, Thailand
- Department of Pharmacy Practice, Faculty of Pharmaceutical Sciences, Naresuan University, Phitsanulok, Thailand
- Center of Excellence for Environmental Health and Toxicology, Faculty of Pharmaceutical Sciences, Naresuan University, Phitsanulok, Thailand
| | | | - Worasak Kaewkong
- Department of Biochemistry, Faculty of Medical Science, Naresuan University, Phitsanulok, Thailand
| | - Julintorn Somran
- Department of Pathology, Faculty of Medicine, Naresuan University, Phitsanulok, Thailand
| | - Naphat Kaewpaeng
- Center of Excellence for Innovation in Chemistry, Naresuan University, Phitsanulok, Thailand
- Department of Pharmaceutical Chemistry and Pharmacognosy, Faculty of Pharmaceutical Sciences, Naresuan University, Phitsanulok, Thailand
| | - Supawadee Parhira
- Center of Excellence for Innovation in Chemistry, Naresuan University, Phitsanulok, Thailand
- Center of Excellence for Environmental Health and Toxicology, Faculty of Pharmaceutical Sciences, Naresuan University, Phitsanulok, Thailand
- Department of Pharmaceutical Technology, Faculty of Pharmaceutical Sciences, Naresuan University, Phitsanulok, Thailand
| | - Piyarat Srisawang
- Department of Physiology, Faculty of Medical Science, Naresuan University, Phitsanulok, Thailand
- Center of Excellence for Innovation in Chemistry, Naresuan University, Phitsanulok, Thailand
- Center of Excellence in Medical Biotechnology, Faculty of Medical Science, Naresuan University, Phitsanulok, Thailand
| |
Collapse
|
5
|
Wang J, Zhang J, Guo Z, Hua H, Zhang H, Liu Y, Jiang Y. Targeting HSP70 chaperones by rhein sensitizes liver cancer to artemisinin derivatives. PHYTOMEDICINE : INTERNATIONAL JOURNAL OF PHYTOTHERAPY AND PHYTOPHARMACOLOGY 2024; 122:155156. [PMID: 37897861 DOI: 10.1016/j.phymed.2023.155156] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/12/2023] [Revised: 09/15/2023] [Accepted: 10/17/2023] [Indexed: 10/30/2023]
Abstract
BACKGROUND Liver cancer is one of common types of cancer with poor prognosis and limited therapies. Heat shock proteins (HSP) are molecular chaperones that have important roles in tumorigenesis, and emerging as therapeutic targets. Artemisinin and rhein are natural agents from Artemisia annua L. and Rheum undulatum L., respectively. Both rhein and artemisinin have anticancer effects; however, the molecular targets of rhein remain to be identified. It is also unclear whether rhein can synergize with artemisinin derivatives to inhibit liver cancer. PURPOSE We aim to identify the targets of rhein in the treatment of hepatocarcinoma and determine the effects of combining rhein and artemisinin derivatives on liver cancer cells. METHODS The targets of rhein were detected by mass spectrometry and validated by rhein-proteins interaction assays. The effects of rhein on the chaperone activity of HSP72/HSC70/GRP78 were determined by luciferase refolding assays. Cell viability and apoptosis were determined by CCK8 and flow cytometry assays. For in vivo study, xenograft tumor models were established and treated with rhein and artesunate. Tumor growth was monitored regularly. RESULTS Mass spectrometry analysis of rhein-binding proteins in HepG2 cells revealed that HSP72, HSC70 and GRP78 were more profoundly pulled down by rhein-crosslinked sepharose 4B beads compared to the control beads. Further experiments demonstrated that rhein directly interacted with HSP72/HSC70/GRP78 proteins, and inhibit their activity of refolding denatured luciferase. Meanwhile, rhein induced proteasomal degradation of HIF1α and β-catenin. Artesunate or dihydroartemisinin in combination with knockdown of both HSP72 and HSC70 significantly inhibited cell viability. The HSP70/HSC70/GRP78 inhibitors VER-155,008 and rhein phenocopied HSP72/HSC70 knockdown, synergizing with artesunate or dihydroartemisinin to inhibit hepatocarcinoma cell viability. Combinatorial treatment with rhein and artemisinin derivatives significantly induced hepatocarcinoma cell apoptosis, and inhibited tumor growth in vivo. CONCLUSIONS The current study demonstrates that rhein is a novel HSP72/HSC70/GRP78 inhibitor that suppresses the chaperone activity of HSP70s. Dual inhibition of HSP72 and HSC70 can enhance the sensitivity of hepatocarcinoma cells to artemisinin derivatives. Combined treatment with artemisinin derivative and rhein significantly inhibits hepatocarcinoma. Artemisinin derivatives in combination with dual inhibition of HSP72 and HSC70 represents a new approach to improve cancer therapy.
Collapse
Affiliation(s)
- Jiao Wang
- Cancer center, Laboratory of Oncogene, West China Hospital, Sichuan University, China; School of Basic Medicine, Chengdu University of Traditional Chinese Medicine, China
| | - Jin Zhang
- Cancer center, Laboratory of Oncogene, West China Hospital, Sichuan University, China
| | - Zeyu Guo
- Cancer center, Laboratory of Oncogene, West China Hospital, Sichuan University, China
| | - Hui Hua
- Laboratory of Stem Cell Biology, West China Hospital, Sichuan University, China
| | - Hongying Zhang
- Cancer center, Laboratory of Oncogene, West China Hospital, Sichuan University, China
| | - Yongliang Liu
- Cancer center, Laboratory of Oncogene, West China Hospital, Sichuan University, China
| | - Yangfu Jiang
- Cancer center, Laboratory of Oncogene, West China Hospital, Sichuan University, China.
| |
Collapse
|
6
|
Liu L, Liang D, Zheng Q, Zhao M, Lv R, Tang J, Chen N. Berbamine dihydrochloride suppresses the progression of colorectal cancer via RTKs/Akt axis. JOURNAL OF ETHNOPHARMACOLOGY 2023; 303:116025. [PMID: 36496042 DOI: 10.1016/j.jep.2022.116025] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/18/2022] [Accepted: 12/03/2022] [Indexed: 06/17/2023]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE Berberis amurensis Rupr. is used to treat cancer as a traditional herbal medicine. Berbamine (BBM) is a natural bisbenzylisoquinoline alkaloid extracted from Berberis amurensis which possesses multiple pharmacological activity including anticancer. AIM OF THE STUDY To investigate the influence of BBM on the progression of colorectal cancer (CRC) and further explore the underlying mechanism of BBM based on the RTKs/Akt signaling pathway. MATERIALS AND METHODS In vitro, cell viability and colony formation were conducted to detect BBM inhibitory of CRC cell lines. Transwell was detected the ability of migration and invasion by BBM. Apoptosis detection assay, cell cycle assay and the measurement of ROS were detected to confirm the inductive effect of cell apoptosis. RT-qPCR and Western blot to clarify the specific mechanism of anticancer. Finally, we conducted HE staining, Ki67, Tunnel and immunochemistry were confirmed the anti-colorectal cancer activity of BBM from vivo study. RESULTS We found that BBM could inhibit CRC cell lines growth. Moreover, BBM presented an inhibitory effect the ability of migration and invasion in CRC cells. Furthermore, the occurrence of apoptosis was involved in the anti-colorectal cancer role of BBM. BBM also triggered ROS accumulation in CRC cells that might be a key factor for the inductive effect of BBM in cell apoptosis. Cell cycle assay revealed that BBM induced the arrest of G1-S phase and increased the p21 levels but decreased CyclinE1, CyclinE2, CDK6, CyclinD1. RT-qPCR manifested that the down-regulation effect of BBM on AKT1, EGFR, PDGFRα and FGFR4 genes. The results also showed that BBM could decreased the expression levels of phosphor-AKT, PDGFRα, PDGFRβ, EGFR, FGFR3 and FGFR4 which belong to RTKs family. Consistently, BBM remarkably suppressed tumor xenograft growth in nude mice. CONCLUSION Taken together, all the results as presented above suggest that BBM as a novel multitargeted receptor tyrosine kinase inhibitor plays a crucial role in the inhibitory effect of CRC and may be a promising therapeutic agent for the CRC in clinic.
Collapse
Affiliation(s)
- Lu Liu
- State Key Laboratory of Ultrasound in Medicine and Engineering, College of Biomedical Engineering, Chongqing Medical University, Chongqing, China; TCM Regulating Metabolic Diseases Key Laboratory of Sichuan Province, Hospital of Chengdu University of Traditional Chinese Medicine, Chengdu, China.
| | - Dan Liang
- TCM Regulating Metabolic Diseases Key Laboratory of Sichuan Province, Hospital of Chengdu University of Traditional Chinese Medicine, Chengdu, China.
| | - Qiao Zheng
- TCM Regulating Metabolic Diseases Key Laboratory of Sichuan Province, Hospital of Chengdu University of Traditional Chinese Medicine, Chengdu, China.
| | - Maoyuan Zhao
- TCM Regulating Metabolic Diseases Key Laboratory of Sichuan Province, Hospital of Chengdu University of Traditional Chinese Medicine, Chengdu, China.
| | - RuiTing Lv
- Department of Oncology, Hospital of Chengdu University of Traditional Chinese Medicine, Chengdu, China.
| | - Jianyuan Tang
- TCM Regulating Metabolic Diseases Key Laboratory of Sichuan Province, Hospital of Chengdu University of Traditional Chinese Medicine, Chengdu, China.
| | - Nianzhi Chen
- State Key Laboratory of Ultrasound in Medicine and Engineering, College of Biomedical Engineering, Chongqing Medical University, Chongqing, China.
| |
Collapse
|
7
|
Wei L, Wang Z, Jing N, Lu Y, Yang J, Xiao H, Guo H, Sun S, Li M, Zhao D, Li X, Qi W, Zhang Y. Frontier progress of the combination of modern medicine and traditional Chinese medicine in the treatment of hepatocellular carcinoma. Chin Med 2022; 17:90. [PMID: 35907976 PMCID: PMC9338659 DOI: 10.1186/s13020-022-00645-0] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2022] [Accepted: 07/20/2022] [Indexed: 12/17/2022] Open
Abstract
Hepatocellular carcinoma (HCC, accounting for 90% of primary liver cancer) was the sixth most common cancer in the world and the third leading cause of cancer death in 2020. The number of new HCC patients in China accounted for nearly half of that in the world. HCC was of occult and complex onset, with poor prognosis. Clinically, at least 15% of patients with HCC had strong side effects of interventional therapy (IT) and have poor sensitivity to chemotherapy and targeted therapy. Traditional Chinese medicine (TCM), as a multi-target adjuvant therapy, had been shown to play an active anti-tumor role in many previous studies. This review systematically summarized the role of TCM combined with clinically commonly used drugs for the treatment of HCC (including mitomycin C, cyclophosphamide, doxorubicin, 5-fluorouracil, sorafenib, etc.) in the past basic research, and summarized the efficacy of TCM combined with surgery, IT and conventional therapy (CT) in clinical research. It was found that TCM, as an adjuvant treatment, played many roles in the treatment of HCC, including enhancing the tumor inhibition, reducing toxic and side effects, improving chemosensitivity and prolonging survival time of patients. This review summarized the advantages of integrated traditional Chinese and modern medicine in the treatment of HCC and provides a theoretical basis for clinical research.
Collapse
Affiliation(s)
- Lai Wei
- College of Traditional Chinese Medicine, Changchun University of Chinese Medicine, Changchun, 130117, Jilin, China
| | - Zeyu Wang
- Department of Scientific Research, Changchun University of Chinese Medicine, Changchun, 130117, Jilin, China
| | - Niancai Jing
- Department of Integrated Chinese and Western Medicine, Jilin Cancer Hospital, Changchun, 130000, Jilin, China
| | - Yi Lu
- Department of Integrated Chinese and Western Medicine, Jilin Cancer Hospital, Changchun, 130000, Jilin, China
| | - Jili Yang
- Department of Integrated Chinese and Western Medicine, Jilin Cancer Hospital, Changchun, 130000, Jilin, China
| | - Hongyu Xiao
- Department of Integrated Chinese and Western Medicine, Jilin Cancer Hospital, Changchun, 130000, Jilin, China
| | - Huanyu Guo
- Department of Integrated Chinese and Western Medicine, Jilin Cancer Hospital, Changchun, 130000, Jilin, China
| | - Shoukun Sun
- Department of Integrated Chinese and Western Medicine, Jilin Cancer Hospital, Changchun, 130000, Jilin, China
| | - Mingjing Li
- Department of Integrated Chinese and Western Medicine, Jilin Cancer Hospital, Changchun, 130000, Jilin, China
| | - Daqing Zhao
- Northeast Asia Research Institute of Traditional Chinese Medicine, Key Laboratory of Active Substances and Biological Mechanisms of Ginseng Efficacy, Ministry of Education, Jilin Provincial Key Laboratory of Bio-Macromolecules of Chinese Medicine, Changchun University of Chinese Medicine, Changchun, 130117, Jilin, China
| | - Xiangyan Li
- Northeast Asia Research Institute of Traditional Chinese Medicine, Key Laboratory of Active Substances and Biological Mechanisms of Ginseng Efficacy, Ministry of Education, Jilin Provincial Key Laboratory of Bio-Macromolecules of Chinese Medicine, Changchun University of Chinese Medicine, Changchun, 130117, Jilin, China
| | - Wenxiu Qi
- Northeast Asia Research Institute of Traditional Chinese Medicine, Key Laboratory of Active Substances and Biological Mechanisms of Ginseng Efficacy, Ministry of Education, Jilin Provincial Key Laboratory of Bio-Macromolecules of Chinese Medicine, Changchun University of Chinese Medicine, Changchun, 130117, Jilin, China.
| | - Yue Zhang
- Department of Integrated Chinese and Western Medicine, Jilin Cancer Hospital, Changchun, 130000, Jilin, China.
| |
Collapse
|
8
|
Targeting extracellular matrix stiffness and mechanotransducers to improve cancer therapy. J Hematol Oncol 2022; 15:34. [PMID: 35331296 PMCID: PMC8943941 DOI: 10.1186/s13045-022-01252-0] [Citation(s) in RCA: 156] [Impact Index Per Article: 78.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2022] [Accepted: 03/09/2022] [Indexed: 02/06/2023] Open
Abstract
Cancer microenvironment is critical for tumorigenesis and cancer progression. The extracellular matrix (ECM) interacts with tumor and stromal cells to promote cancer cells proliferation, migration, invasion, angiogenesis and immune evasion. Both ECM itself and ECM stiffening-induced mechanical stimuli may activate cell membrane receptors and mechanosensors such as integrin, Piezo1 and TRPV4, thereby modulating the malignant phenotype of tumor and stromal cells. A better understanding of how ECM stiffness regulates tumor progression will contribute to the development of new therapeutics. The rapidly expanding evidence in this research area suggests that the regulators and effectors of ECM stiffness represent potential therapeutic targets for cancer. This review summarizes recent work on the regulation of ECM stiffness in cancer, the effects of ECM stiffness on tumor progression, cancer immunity and drug resistance. We also discuss the potential targets that may be druggable to intervene ECM stiffness and tumor progression. Based on these advances, future efforts can be made to develop more effective and safe drugs to interrupt ECM stiffness-induced oncogenic signaling, cancer progression and drug resistance.
Collapse
|
9
|
Farooqi AA, Wen R, Attar R, Taverna S, Butt G, Xu B. Regulation of Cell-Signaling Pathways by Berbamine in Different Cancers. Int J Mol Sci 2022; 23:ijms23052758. [PMID: 35269900 PMCID: PMC8911410 DOI: 10.3390/ijms23052758] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2022] [Revised: 02/26/2022] [Accepted: 02/26/2022] [Indexed: 12/18/2022] Open
Abstract
Natural product research is a cornerstone of the architectural framework of clinical medicine. Berbamine is a natural, potent, pharmacologically active biomolecule isolated from Berberis amurensis. Berbamine has been shown to modulate different oncogenic cell-signaling pathways in different cancers. In this review, we comprehensively analyze how berbamine modulates deregulated pathways (JAK/STAT, CAMKII/c-Myc) in various cancers. We systematically analyze how berbamine induces activation of the TGF/SMAD pathway for the effective inhibition of cancer progression. We also summarize different nanotechnological strategies currently being used for proficient delivery of berbamine to the target sites. Berbamine has also been reported to demonstrate potent anti-cancer and anti-metastatic effects in tumor-bearing mice. The regulation of non-coding RNAs by berbamine is insufficiently studied, and future studies must converge on the identification of target non-coding RNAs. A better understanding of the regulatory role of berbamine in the modulation of non-coding RNAs and cell-signaling pathways will be advantageous in the effective translation of laboratory findings to clinically effective therapeutics.
Collapse
Affiliation(s)
- Ammad Ahmad Farooqi
- Department of Molecular Oncology, Institute of Biomedical and Genetic Engineering (IBGE), Islamabad 44000, Pakistan;
| | - Ru Wen
- Department of Chemistry, University of Georgia, Athens, GA 30602, USA;
| | - Rukset Attar
- Department of Obstetrics and Gynecology, Yeditepe University, Istanbul 34755, Turkey;
| | - Simona Taverna
- Institute for Biomedical Research and Innovation, National Research Council of Italy, 90146 Palermo, Italy;
- Institute of Translational Pharmacology (IFT-CNR), National Research Council of Italy, 90146 Palermo, Italy
| | - Ghazala Butt
- Institute of Botany, University of the Punjab, Lahore 54590, Pakistan;
| | - Baojun Xu
- Food Science and Technology Program, BNU-HKBU United International College, Zhuhai 519087, China
- Correspondence: ; Tel.: +86-756-2620636
| |
Collapse
|
10
|
Hua H, Zhang H, Chen J, Wang J, Liu J, Jiang Y. Targeting Akt in cancer for precision therapy. J Hematol Oncol 2021; 14:128. [PMID: 34419139 PMCID: PMC8379749 DOI: 10.1186/s13045-021-01137-8] [Citation(s) in RCA: 122] [Impact Index Per Article: 40.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2021] [Accepted: 08/03/2021] [Indexed: 02/08/2023] Open
Abstract
Biomarkers-guided precision therapeutics has revolutionized the clinical development and administration of molecular-targeted anticancer agents. Tailored precision cancer therapy exhibits better response rate compared to unselective treatment. Protein kinases have critical roles in cell signaling, metabolism, proliferation, survival and migration. Aberrant activation of protein kinases is critical for tumor growth and progression. Hence, protein kinases are key targets for molecular targeted cancer therapy. The serine/threonine kinase Akt is frequently activated in various types of cancer. Activation of Akt promotes tumor progression and drug resistance. Since the first Akt inhibitor was reported in 2000, many Akt inhibitors have been developed and evaluated in either early or late stage of clinical trials, which take advantage of liquid biopsy and genomic or molecular profiling to realize personalized cancer therapy. Two inhibitors, capivasertib and ipatasertib, are being tested in phase III clinical trials for cancer therapy. Here, we highlight recent progress of Akt signaling pathway, review the up-to-date data from clinical studies of Akt inhibitors and discuss the potential biomarkers that may help personalized treatment of cancer with Akt inhibitors. In addition, we also discuss how Akt may confer the vulnerability of cancer cells to some kinds of anticancer agents.
Collapse
Affiliation(s)
- Hui Hua
- State Key Laboratory of Biotherapy, Laboratory of Stem Cell Biology, National Clinical Research Center for Geriatrics, West China Hospital, Sichuan University, Chengdu, China
| | - Hongying Zhang
- State Key Laboratory of Biotherapy, Laboratory of Oncogene, Cancer Center, West China Hospital, Sichuan University, Chengdu, 610041, China
| | - Jingzhu Chen
- State Key Laboratory of Biotherapy, Laboratory of Oncogene, Cancer Center, West China Hospital, Sichuan University, Chengdu, 610041, China
| | - Jiao Wang
- School of Basic Medicine, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Jieya Liu
- State Key Laboratory of Biotherapy, Laboratory of Oncogene, Cancer Center, West China Hospital, Sichuan University, Chengdu, 610041, China
| | - Yangfu Jiang
- State Key Laboratory of Biotherapy, Laboratory of Oncogene, Cancer Center, West China Hospital, Sichuan University, Chengdu, 610041, China.
| |
Collapse
|