1
|
Quintero JM, Diaz LE, Galve-Roperh I, Bustos RH, Leon MX, Beltran S, Dodd S. The endocannabinoid system as a therapeutic target in neuropathic pain: a review. Expert Opin Ther Targets 2024; 28:739-755. [PMID: 39317147 DOI: 10.1080/14728222.2024.2407824] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2024] [Accepted: 09/19/2024] [Indexed: 09/26/2024]
Abstract
INTRODUCTION This review highlights the critical role of the endocannabinoid system (ECS) in regulating neuropathic pain and explores the therapeutic potential of cannabinoids. Understanding the mechanisms of the ECS, including its receptors, endogenous ligands, and enzymatic routes, can lead to innovative treatments for chronic pain, offering more effective therapies for neuropathic conditions. This review bridges the gap between preclinical studies and clinical applications by emphasizing ECS modulation for better pain management outcomes. AREAS COVERED A review mapped the existing literature on neuropathic pain and the effects of modulating the ECS using natural and synthetic cannabinoids. This analysis examined ECS components and their alterations in neuropathic pain, highlighting the peripheral, spinal, and supraspinal mechanisms. This review aimed to provide a thorough understanding of the therapeutic potential of cannabinoids in the management of neuropathic pain. EXPERT OPINION Advances in cannabinoid research have shown significant potential for the management of chronic neuropathic pain. The study emphasizes the need for high-quality clinical trials and collaborative efforts among researchers, clinicians, and regulatory bodies to ensure safe and effective integration of cannabinoids into pain management protocols. Understanding the mechanisms and optimizing cannabinoid formulations and delivery methods are crucial for enhancing therapeutic outcomes.
Collapse
Affiliation(s)
- Jose-Manuel Quintero
- Department of Clinical Pharmacology, Evidence-Based Therapeutics Group, Faculty of Medicine, Universidad de La Sabana and Clínica Universidad de La Sabana, Chía, Cundinamarca, Colombia
- Doctoral Programme of Biosciences, Universidad de La Sabana, Chía, Colombia
| | | | - Ismael Galve-Roperh
- Department of Biochemistry and Molecular Biology, School of Chemistry and Instituto de Investigación en Neuroquímica, Complutense University, Madrid, Spain
- Instituto Ramón y Cajal de Investigación Sanitaria (IRYCIS) and Centro de Investigación Biomédica en Red sobre Enfermedades Neurodegenerativas (CIBERNED), Madrid, Spain
| | - Rosa-Helena Bustos
- Department of Clinical Pharmacology, Evidence-Based Therapeutics Group, Faculty of Medicine, Universidad de La Sabana and Clínica Universidad de La Sabana, Chía, Cundinamarca, Colombia
| | - Marta-Ximena Leon
- Grupo Dolor y Cuidados Paliativos, Universidad de La Sabana, Chía, Colombia
| | | | - Seetal Dodd
- Faculty of Medicine, Universidad de La Sabana, Chía, Colombia
- IMPACT - The Institute for Mental and Physical Health and Clinical Translation, School of Medicine, Deakin University, Barwon Health, Geelong, Australia
- Centre for Youth Mental Health, University of Melbourne, Parkville, Australia
| |
Collapse
|
2
|
Foyzun T, Whiting M, Velasco KK, Jacobsen JC, Connor M, Grimsey NL. Single nucleotide polymorphisms in the cannabinoid CB 2 receptor: Molecular pharmacology and disease associations. Br J Pharmacol 2024; 181:2391-2412. [PMID: 38802979 DOI: 10.1111/bph.16383] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2023] [Revised: 02/26/2024] [Accepted: 03/09/2024] [Indexed: 05/29/2024] Open
Abstract
Preclinical evidence implicating cannabinoid receptor 2 (CB2) in various diseases has led researchers to question whether CB2 genetics influence aetiology or progression. Associations between conditions and genetic loci are often studied via single nucleotide polymorphism (SNP) prevalence in case versus control populations. In the CNR2 coding exon, ~36 SNPs have high overall population prevalence (minor allele frequencies [MAF] ~37%), including non-synonymous SNP (ns-SNP) rs2501432 encoding CB2 63Q/R. Interspersed are ~27 lower frequency SNPs, four being ns-SNPs. CNR2 introns also harbour numerous SNPs. This review summarises CB2 ns-SNP molecular pharmacology and evaluates evidence from ~70 studies investigating CB2 genetic variants with proposed linkage to disease. Although CNR2 genetic variation has been associated with a wide variety of conditions, including osteoporosis, immune-related disorders, and mental illnesses, further work is required to robustly validate CNR2 disease links and clarify specific mechanisms linking CNR2 genetic variation to disease pathophysiology and potential drug responses.
Collapse
Affiliation(s)
- Tahira Foyzun
- Macquarie Medical School, Faculty of Medicine, Health and Human Sciences, Macquarie University, North Ryde, New South Wales, Australia
| | - Maddie Whiting
- Department of Pharmacology and Clinical Pharmacology, School of Medical Sciences, Faculty of Medical and Health Sciences, University of Auckland, Auckland, New Zealand
- Department of Medicine, School of Medicine, Faculty of Medical and Health Sciences, University of Auckland, Auckland, New Zealand
| | - Kate K Velasco
- Department of Pharmacology and Clinical Pharmacology, School of Medical Sciences, Faculty of Medical and Health Sciences, University of Auckland, Auckland, New Zealand
- Department of Medicine, School of Medicine, Faculty of Medical and Health Sciences, University of Auckland, Auckland, New Zealand
| | - Jessie C Jacobsen
- School of Biological Sciences, Faculty of Science, University of Auckland, Auckland, New Zealand
- Centre for Brain Research, University of Auckland, Auckland, New Zealand
| | - Mark Connor
- Macquarie Medical School, Faculty of Medicine, Health and Human Sciences, Macquarie University, North Ryde, New South Wales, Australia
| | - Natasha L Grimsey
- Department of Pharmacology and Clinical Pharmacology, School of Medical Sciences, Faculty of Medical and Health Sciences, University of Auckland, Auckland, New Zealand
- Centre for Brain Research, University of Auckland, Auckland, New Zealand
- Maurice Wilkins Centre for Molecular Biodiscovery, Auckland, New Zealand
| |
Collapse
|
3
|
Gasbjerg LS, Rasmussen RS, Dragan A, Lindquist P, Melchiorsen JU, Stepniewski TM, Schiellerup S, Tordrup EK, Gadgaard S, Kizilkaya HS, Willems S, Zhong Y, Wang Y, Wright SC, Lauschke VM, Hartmann B, Holst JJ, Selent J, Rosenkilde MM. Altered desensitization and internalization patterns of rodent versus human glucose-dependent insulinotropic polypeptide (GIP) receptors. An important drug discovery challenge. Br J Pharmacol 2024. [PMID: 38952084 DOI: 10.1111/bph.16478] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2023] [Revised: 04/10/2024] [Accepted: 05/06/2024] [Indexed: 07/03/2024] Open
Abstract
BACKGROUND AND PURPOSE The gut hormone glucose-dependent insulinotropic polypeptide (GIP) signals via the GIP receptor (GIPR), resulting in postprandial potentiation of glucose-stimulated insulin secretion. The translation of results from rodent studies to human studies has been challenged by the unexpected effects of GIPR-targeting compounds. We, therefore, investigated the variation between species, focusing on GIPR desensitization and the role of the receptor C-terminus. EXPERIMENTAL APPROACH The GIPR from humans, mice, rats, pigs, dogs and cats was studied in vitro for cognate ligand affinity, G protein activation (cAMP accumulation), recruitment of beta-arrestin and internalization. Variants of the mouse, rat and human GIPRs with swapped C-terminal tails were studied in parallel. KEY RESULTS The human GIPR is more prone to internalization than rodent GIPRs. Despite similar agonist affinities and potencies for Gαs activation, especially, the mouse GIPR shows reduced receptor desensitization, internalization and beta-arrestin recruitment. Using an enzyme-stabilized, long-acting GIP analogue, the species differences were even more pronounced. 'Tail-swapped' human, rat and mouse GIPRs were all fully functional in their Gαs coupling, and the mouse GIPR regained internalization and beta-arrestin 2 recruitment properties with the human tail. The human GIPR lost the ability to recruit beta-arrestin 2 when its own C-terminus was replaced by the rat or mouse tail. CONCLUSIONS AND IMPLICATIONS Desensitization of the human GIPR is dependent on the C-terminal tail. The species-dependent functionality of the C-terminal tail and the different species-dependent internalization patterns, especially between human and mouse GIPRs, are important factors influencing the preclinical evaluation of GIPR-targeting therapeutic compounds.
Collapse
Affiliation(s)
- Lærke Smidt Gasbjerg
- Department of Biomedical Sciences, Faculty of Healthy and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Rasmus Syberg Rasmussen
- Department of Biomedical Sciences, Faculty of Healthy and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Adrian Dragan
- Department of Biomedical Sciences, Faculty of Healthy and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Peter Lindquist
- Department of Biomedical Sciences, Faculty of Healthy and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Josefine Ulrikke Melchiorsen
- Department of Biomedical Sciences, Faculty of Healthy and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Tomasz Maciej Stepniewski
- Research Programme on Biomedical Informatics (GRIB), Hospital del Mar Research Institute and Pompeu Fabra University, Barcelona, Spain
- InterAx Biotech AG, Villigen, Switzerland
- Biological and Chemical Research Centre, Faculty of Chemistry, University of Warsaw, Warsaw, Poland
| | - Sine Schiellerup
- Department of Biomedical Sciences, Faculty of Healthy and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Esther Karen Tordrup
- Department of Biomedical Sciences, Faculty of Healthy and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Sarina Gadgaard
- Department of Biomedical Sciences, Faculty of Healthy and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
- Bainan Biotech, Copenhagen, Denmark
| | - Hüsün Sheyma Kizilkaya
- Department of Biomedical Sciences, Faculty of Healthy and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Sabine Willems
- Department of Physiology and Pharmacology, Karolinska Institutet, Stockholm, Sweden
| | - Yi Zhong
- Department of Physiology and Pharmacology, Karolinska Institutet, Stockholm, Sweden
- College of Pharmaceutical Sciences, Zhejiang University, Hangzhou, China
| | - Yi Wang
- College of Pharmaceutical Sciences, Zhejiang University, Hangzhou, China
- Innovation Institute for Artificial Intelligence in Medicine of Zhejiang University, Hangzhou, China
- National Key Laboratory of Chinese Medicine Modernization, Innovation Center of Yangtze River Delta, Zhejiang University, Jiaxing, China
| | - Shane C Wright
- Department of Physiology and Pharmacology, Karolinska Institutet, Stockholm, Sweden
| | - Volker M Lauschke
- Department of Physiology and Pharmacology, Karolinska Institutet, Stockholm, Sweden
- Dr Margarete Fischer-Bosch Institute of Clinical Pharmacology, Stuttgart, Germany
- University of Tübingen, Tübingen, Germany
| | - Bolette Hartmann
- Department of Biomedical Sciences, Faculty of Healthy and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Jens Juul Holst
- Department of Biomedical Sciences, Faculty of Healthy and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
- Novo Nordisk Center for Basic Metabolic Research, Faculty of Healthy and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Jana Selent
- Research Programme on Biomedical Informatics (GRIB), Hospital del Mar Research Institute and Pompeu Fabra University, Barcelona, Spain
| | - Mette Marie Rosenkilde
- Department of Biomedical Sciences, Faculty of Healthy and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| |
Collapse
|
4
|
Smith NJ, May LT, Grimsey NL. Highlights and hot topics in GPCR research from 'Down Under'. Br J Pharmacol 2024; 181:2091-2094. [PMID: 38798136 DOI: 10.1111/bph.16419] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/29/2024] Open
Abstract
LINKED ARTICLES This article is part of a themed issue Therapeutic Targeting of G Protein-Coupled Receptors: hot topics from the Australasian Society of Clinical and Experimental Pharmacologists and Toxicologists 2021 Virtual Annual Scientific Meeting. To view the other articles in this section visit http://onlinelibrary.wiley.com/doi/10.1111/bph.v181.14/issuetoc.
Collapse
Affiliation(s)
- Nicola J Smith
- Orphan Receptor Laboratory, School of Biomedical Sciences, UNSW Sydney, Sydney, Australia
| | - Lauren T May
- Cardiac GPCR Laboratory, Monash Institute of Pharmaceutical Sciences, Monash University, Melbourne, Australia
| | - Natasha L Grimsey
- Department of Pharmacology and Clinical Pharmacology, School of Medical Sciences, Faculty of Medical and Health Sciences, University of Auckland, Auckland, New Zealand
- Centre for Brain Research, Faculty of Medical and Health Sciences, University of Auckland, Auckland, New Zealand
- Maurice Wilkins Centre for Molecular Biodiscovery, Auckland, New Zealand
| |
Collapse
|
5
|
Rodríguez-Serrano LM, Chávez-Hernández ME. Role of the CB2 Cannabinoid Receptor in the Regulation of Food Intake: A Systematic Review. Int J Mol Sci 2023; 24:17516. [PMID: 38139344 PMCID: PMC10743788 DOI: 10.3390/ijms242417516] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2023] [Revised: 12/01/2023] [Accepted: 12/11/2023] [Indexed: 12/24/2023] Open
Abstract
The CB2 cannabinoid receptor has been found in brain areas that are part of the reward system and has been shown to play a role in food intake regulation. Herein, we conducted a systematic review of studies assessing the role of the CB2 receptor in food intake regulation. Records from the PubMed, Scopus, and EBSCO databases were screened, resulting in 13 studies that were used in the present systematic review, following the PRISMA guidelines. A risk of bias assessment was carried out using the tool of the Systematic Review Center for Laboratory Animal Experimentation (SYRCLE). The studies analyzed used two main strategies: (1) the intraperitoneal or intracerebroventricular administration of a CB2 agonist/antagonist; and (2) depletion of CB2 receptors via knockout in mice. Both strategies are useful in identifying the role of the CB2 receptor in food intake in standard and palatable diets. The conclusions derived from animal models showed that CB2 receptors are necessary for modulating food intake and mediating energy balance.
Collapse
Affiliation(s)
- Luis Miguel Rodríguez-Serrano
- Facultad de Psicología, Universidad Anáhuac México, Universidad Anáhuac Avenue #46, Lomas Anáhuac, Huixquilucan 52786, Mexico;
| | | |
Collapse
|