1
|
Stringer EJ, Gruber B, Sarre SD, Wardle GM, Edwards SV, Dickman CR, Greenville AC, Duncan RP. Boom-bust population dynamics drive rapid genetic change. Proc Natl Acad Sci U S A 2024; 121:e2320590121. [PMID: 38621118 PMCID: PMC11067018 DOI: 10.1073/pnas.2320590121] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2023] [Accepted: 03/06/2024] [Indexed: 04/17/2024] Open
Abstract
Increasing environmental threats and more extreme environmental perturbations place species at risk of population declines, with associated loss of genetic diversity and evolutionary potential. While theory shows that rapid population declines can cause loss of genetic diversity, populations in some environments, like Australia's arid zone, are repeatedly subject to major population fluctuations yet persist and appear able to maintain genetic diversity. Here, we use repeated population sampling over 13 y and genotype-by-sequencing of 1903 individuals to investigate the genetic consequences of repeated population fluctuations in two small mammals in the Australian arid zone. The sandy inland mouse (Pseudomys hermannsburgensis) experiences marked boom-bust population dynamics in response to the highly variable desert environment. We show that heterozygosity levels declined, and population differentiation (FST) increased, during bust periods when populations became small and isolated, but that heterozygosity was rapidly restored during episodic population booms. In contrast, the lesser hairy-footed dunnart (Sminthopsis youngsoni), a desert marsupial that maintains relatively stable population sizes, showed no linear declines in heterozygosity. These results reveal two contrasting ways in which genetic diversity is maintained in highly variable environments. In one species, diversity is conserved through the maintenance of stable population sizes across time. In the other species, diversity is conserved through rapid genetic mixing during population booms that restores heterozygosity lost during population busts.
Collapse
Affiliation(s)
- Emily J. Stringer
- Centre for Conservation Ecology and Genomics, Institute for Applied Ecology, University of Canberra, CanberraACT2617, Australia
| | - Bernd Gruber
- Centre for Conservation Ecology and Genomics, Institute for Applied Ecology, University of Canberra, CanberraACT2617, Australia
| | - Stephen D. Sarre
- Centre for Conservation Ecology and Genomics, Institute for Applied Ecology, University of Canberra, CanberraACT2617, Australia
| | - Glenda M. Wardle
- Desert Ecology Research Group, School of Life and Environmental Sciences, The University of Sydney, SydneyNSW2006, Australia
| | - Scott V. Edwards
- Department of Organismic and Evolutionary Biology, Harvard University, Cambridge, MA02138
| | - Christopher R. Dickman
- Desert Ecology Research Group, School of Life and Environmental Sciences, The University of Sydney, SydneyNSW2006, Australia
| | - Aaron C. Greenville
- Desert Ecology Research Group, School of Life and Environmental Sciences, The University of Sydney, SydneyNSW2006, Australia
| | - Richard P. Duncan
- Centre for Conservation Ecology and Genomics, Institute for Applied Ecology, University of Canberra, CanberraACT2617, Australia
| |
Collapse
|
2
|
Hill P, Dickman CR, Dinnage R, Duncan RP, Edwards SV, Greenville A, Sarre SD, Stringer EJ, Wardle GM, Gruber B. Episodic population fragmentation and gene flow reveal a trade-off between heterozygosity and allelic richness. Mol Ecol 2023; 32:6766-6776. [PMID: 37873908 DOI: 10.1111/mec.17174] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2022] [Revised: 10/03/2023] [Accepted: 10/11/2023] [Indexed: 10/25/2023]
Abstract
In episodic environments like deserts, populations of some animal species exhibit irregular fluctuations such that populations are alternately large and connected or small and isolated. Such dynamics are typically driven by periodic resource pulses due, for example, to large but infrequent rainfall events. The repeated population bottlenecks resulting from fragmentation should lower genetic diversity over time, yet species undergoing these fluctuations appear to maintain high levels of genetic diversity. To resolve this apparent paradox, we simulated a metapopulation of constant size undergoing repeat episodes of fragmentation and change in gene flow to mimic outcomes experienced by mammals in an Australian desert. We show that episodic fragmentation and gene flow have contrasting effects on two measures of genetic diversity: heterozygosity and allelic richness. Specifically, fragmentation into many, small subpopulations, coupled with periods of infrequent gene flow, preserves allelic richness at the expense of heterozygosity. In contrast, fragmentation into a few, large subpopulations maintains heterozygosity at the expense of allelic richness. The strength of the trade-off between heterozygosity and allelic richness depends on the amount of gene flow and the frequency of gene flow events. Our results imply that the type of genetic diversity maintained among species living in strongly fluctuating environments will depend on the way populations fragment, with our results highlighting different mechanisms for maintaining allelic richness and heterozygosity in small, fragmented populations.
Collapse
Affiliation(s)
- Peta Hill
- Institute for Applied Ecology, University of Canberra, Bruce, Australian Capital Territory, Australia
| | - Chris R Dickman
- Desert Ecology Research Group, School of Life and Environmental Sciences, The University of Sydney, Sydney, New South Wales, Australia
| | - Russell Dinnage
- Department of Biological Sciences, Florida International University, Miami, Florida, USA
| | - Richard P Duncan
- Institute for Applied Ecology, University of Canberra, Bruce, Australian Capital Territory, Australia
| | - Scott V Edwards
- Department of Organismic and Evolutionary Biology, Harvard University, Cambridge, Massachusetts, USA
| | - Aaron Greenville
- Desert Ecology Research Group, School of Life and Environmental Sciences, The University of Sydney, Sydney, New South Wales, Australia
| | - Stephen D Sarre
- Institute for Applied Ecology, University of Canberra, Bruce, Australian Capital Territory, Australia
| | - Emily J Stringer
- Institute for Applied Ecology, University of Canberra, Bruce, Australian Capital Territory, Australia
| | - Glenda M Wardle
- Desert Ecology Research Group, School of Life and Environmental Sciences, The University of Sydney, Sydney, New South Wales, Australia
| | - Bernd Gruber
- Institute for Applied Ecology, University of Canberra, Bruce, Australian Capital Territory, Australia
| |
Collapse
|
3
|
Ishibashi Y. Preservation of genetic diversity in a highly fragmented population of the gray-sided vole Myodes rufocanus in an intensive farming region. Ecol Evol 2023; 13:e10472. [PMID: 37736279 PMCID: PMC10509600 DOI: 10.1002/ece3.10472] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2023] [Revised: 08/11/2023] [Accepted: 08/18/2023] [Indexed: 09/23/2023] Open
Abstract
Individual dispersal plays an important role in preserving genetic diversity in density-fluctuating populations of arvicoline rodents. When habitats are fragmented and dispersal between habitats is severely constrained, genetic diversity can be lost. Here, I investigated whether genetic diversity in the gray-sided vole Myodes rufocanus was preserved in an intensive farming region in Japan, where voles inhabited isolated windbreak forests along the borders of plowed lands. Genetic structure was examined in 673 vole samples (330 in spring and 343 in fall) collected at 34 windbreak forests located 0.35-20 km apart. A part of the control region (425 bp) of mitochondrial DNA (mtDNA) was sequenced in 673 voles, yielding 76 haplotypes. Genetic differentiation of maternally inherited mtDNA among trapping sites was markedly lower in males than in females in both seasons, indicating strong male-biased dispersal. Genotypes at six microsatellite DNA loci were determined in 494 voles (245 in spring and 249 in fall) from 18 trapping sites, and loci harbored 16-24 alleles. The mean number of alleles per locus (allelic diversity) at trapping sites was positively correlated with the number of examined individuals (density) in both seasons, and the relationship was very similar to that of a previous study performed in much less fragmented populations. The genetic differentiation of microsatellite DNA among trapping sites decreased considerably from spring to fall. In a STRUCTURE analysis with a most probable cluster number of two, closer trapping sites showed more similar mean values of cluster admixture proportions. The present findings indicate that gene flow among isolated windbreak forests, which occurred mainly by dispersal of males, was not restrained in this intensive farming region. Furthermore, the results suggest that genetic diversity in the study population was preserved as well as in less fragmented populations.
Collapse
Affiliation(s)
- Yasuyuki Ishibashi
- Hokkaido Research CenterForestry and Forest Products Research InstituteSapporoJapan
| |
Collapse
|
4
|
Dominguez JC, Calero-Riestra M, Olea PP, Malo JE, Burridge CP, Proft K, Illanas S, Viñuela J, García JT. Lack of detectable genetic isolation in the cyclic rodent Microtus arvalis despite large landscape fragmentation owing to transportation infrastructures. Sci Rep 2021; 11:12534. [PMID: 34131199 PMCID: PMC8206325 DOI: 10.1038/s41598-021-91824-w] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2021] [Accepted: 05/31/2021] [Indexed: 02/05/2023] Open
Abstract
Although roads are widely seen as dispersal barriers, their genetic consequences for animals that experience large fluctuations in population density are poorly documented. We developed a spatially paired experimental design to assess the genetic impacts of roads on cyclic voles (Microtus arvalis) during a high-density phase in North-Western Spain. We compared genetic patterns from 15 paired plots bisected by three different barrier types, using linear mixed models and computing effect sizes to assess the importance of each type, and the influence of road features like width or the age of the infrastructure. Evidence of effects by roads on genetic diversity and differentiation were lacking. We speculate that the recurrent (each 3-5 generations) episodes of massive dispersal associated with population density peaks can homogenize populations and mitigate the possible genetic impact of landscape fragmentation by roads. This study highlights the importance of developing spatially replicated experimental designs that allow us to consider the large natural spatial variation in genetic parameters. More generally, these results contribute to our understanding of the not well explored effects of habitat fragmentation on dispersal in species showing "boom-bust" dynamics.
Collapse
Affiliation(s)
- Julio C Dominguez
- IREC, Instituto de Investigación en Recursos Cinegéticos (CSIC-UCLM-JCCM), Ronda de Toledo, 12, 13071, Ciudad Real, Spain.
| | - María Calero-Riestra
- IREC, Instituto de Investigación en Recursos Cinegéticos (CSIC-UCLM-JCCM), Ronda de Toledo, 12, 13071, Ciudad Real, Spain
| | - Pedro P Olea
- Terrestrial Ecology Group (TEG-UAM), Departamento de Ecología, Facultad de Ciencias, Universidad Autónoma de Madrid, C/Darwin 2, 28049, Madrid, Spain
- Centro de Investigación en Biodiversidad y Cambio Global (CIBC-UAM), Universidad Autónoma de Madrid, C. Darwin 2, 28049, Madrid, Spain
| | - Juan E Malo
- Terrestrial Ecology Group (TEG-UAM), Departamento de Ecología, Facultad de Ciencias, Universidad Autónoma de Madrid, C/Darwin 2, 28049, Madrid, Spain
- Centro de Investigación en Biodiversidad y Cambio Global (CIBC-UAM), Universidad Autónoma de Madrid, C. Darwin 2, 28049, Madrid, Spain
| | - Christopher P Burridge
- Discipline of Biological Sciences, University of Tasmania, Private Bag 55, Hobart, TAS, 7001, Australia
| | - Kirstin Proft
- Discipline of Biological Sciences, University of Tasmania, Private Bag 55, Hobart, TAS, 7001, Australia
| | - Sonia Illanas
- IREC, Instituto de Investigación en Recursos Cinegéticos (CSIC-UCLM-JCCM), Ronda de Toledo, 12, 13071, Ciudad Real, Spain
| | - Javier Viñuela
- IREC, Instituto de Investigación en Recursos Cinegéticos (CSIC-UCLM-JCCM), Ronda de Toledo, 12, 13071, Ciudad Real, Spain
| | - Jesús T García
- IREC, Instituto de Investigación en Recursos Cinegéticos (CSIC-UCLM-JCCM), Ronda de Toledo, 12, 13071, Ciudad Real, Spain
| |
Collapse
|
5
|
Ishibashi Y, Takahashi K. Role of individual dispersal in genetic resilience in fluctuating populations of the gray-sided vole Myodes rufocanus. Ecol Evol 2021; 11:3407-3421. [PMID: 33841793 PMCID: PMC8019057 DOI: 10.1002/ece3.7300] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2020] [Revised: 01/16/2021] [Accepted: 01/19/2021] [Indexed: 11/28/2022] Open
Abstract
Population densities of the gray-sided vole Myodes rufocanus fluctuate greatly within and across years in Japan. Here, to investigate the role of individual dispersal in maintaining population genetic diversity, we examined how genetic diversity varied during fluctuations in density by analyzing eight microsatellite loci in voles sampled three times per year for 5 years, using two fixed trapping grids (approximately 0.5 ha each). At each trapping session, all captured voles at each trapping grid were removed. The STRUCTURE program was used to analyze serially collected samples to examine how population crashes were related to temporal variability, based on local-scale genetic compositions in each population. In total, 461 and 527 voles were captured at each trapping grid during this study. The number of voles captured during each trapping session (i.e., vole density) varied considerably at both grids. Although patterns in fluctuations were not synchronized between grids, the peak densities were similar. At both grids, the mean allele number recorded at each trapping session was strongly, positively, and nonlinearly correlated with density. STRUCTURE analyses revealed that the proportions of cluster compositions among individuals at each grid differed markedly before and after the crash phase, implying the long-distance dispersal of voles from remote areas at periods of low density. The present results suggest that, in gray-sided vole populations, genetic diversity varies with density largely at the local scale; in contrast, genetic variation in a metapopulation is well-preserved at the regional scale due to the density-dependent dispersal behaviors of individuals. By influencing the dispersal patterns of individuals, fluctuations in density affect metapopulation structure spatially and temporally, while the levels of genetic diversity are preserved in a metapopulation.
Collapse
Affiliation(s)
- Yasuyuki Ishibashi
- Hokkaido Research CenterForestry and Forest Products Research InstituteSapporoJapan
| | - Kenichi Takahashi
- Hokkaido Institute of Public HealthSapporoJapan
- Present address:
Hokkaido Pest Control AssociationSapporoJapan
| |
Collapse
|
6
|
Lotsander A, Hasselgren M, Larm M, Wallén J, Angerbjörn A, Norén K. Low Persistence of Genetic Rescue Across Generations in the Arctic Fox (Vulpes lagopus). J Hered 2021; 112:276-285. [PMID: 33738472 PMCID: PMC8141685 DOI: 10.1093/jhered/esab011] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2020] [Accepted: 03/17/2021] [Indexed: 12/11/2022] Open
Abstract
Genetic rescue can facilitate the recovery of small and isolated populations suffering from inbreeding depression. Long-term effects are however complex, and examples spanning over multiple generations under natural conditions are scarce. The aim of this study was to test for long-term effects of natural genetic rescue in a small population of Scandinavian Arctic foxes (Vulpes lagopus). By combining a genetically verified pedigree covering almost 20 years with a long-term dataset on individual fitness (n = 837 individuals), we found no evidence for elevated fitness in immigrant F2 and F3 compared to native inbred foxes. Population inbreeding levels showed a fluctuating increasing trend and emergence of inbreeding within immigrant lineages shortly after immigration. Between 0–5 and 6–9 years post immigration, the average number of breeding adults decreased by almost 22% and the average proportion of immigrant ancestry rose from 14% to 27%. Y chromosome analysis revealed that 2 out of 3 native male lineages were lost from the gene pool, but all founders represented at the time of immigration were still contributing to the population at the end of the study period through female descendants. The results highlight the complexity of genetic rescue and suggest that beneficial effects can be brief. Continuous gene flow may be needed for small and threatened populations to recover and persist in a longer time perspective.
Collapse
Affiliation(s)
- Anna Lotsander
- Department of Zoology, Stockholm University, Stockholm, Sweden
| | | | - Malin Larm
- Department of Zoology, Stockholm University, Stockholm, Sweden
| | - Johan Wallén
- Department of Zoology, Stockholm University, Stockholm, Sweden
| | | | - Karin Norén
- Department of Zoology, Stockholm University, Stockholm, Sweden
| |
Collapse
|
7
|
The Temporal Dynamics of Background Selection in Nonequilibrium Populations. Genetics 2020; 214:1019-1030. [PMID: 32071195 DOI: 10.1534/genetics.119.302892] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2019] [Accepted: 01/30/2020] [Indexed: 01/06/2023] Open
Abstract
Neutral genetic diversity across the genome is determined by the complex interplay of mutation, demographic history, and natural selection. While the direct action of natural selection is limited to functional loci across the genome, its impact can have effects on nearby neutral loci due to genetic linkage. These effects of selection at linked sites, referred to as genetic hitchhiking and background selection (BGS), are pervasive across natural populations. However, only recently has there been a focus on the joint consequences of demography and selection at linked sites, and some empirical studies have come to apparently contradictory conclusions as to their combined effects. To understand the relationship between demography and selection at linked sites, we conducted an extensive forward simulation study of BGS under a range of demographic models. We found that the relative levels of diversity in BGS and neutral regions vary over time and that the initial dynamics after a population size change are often in the opposite direction of the long-term expected trajectory. Our detailed observations of the temporal dynamics of neutral diversity in the context of selection at linked sites in nonequilibrium populations provide new intuition about why patterns of diversity under BGS vary through time in natural populations and help reconcile previously contradictory observations. Most notably, our results highlight that classical models of BGS are poorly suited for predicting diversity in nonequilibrium populations.
Collapse
|
8
|
Choi S, Grocutt E, Erlandsson R, Angerbjörn A. Parent personality is linked to juvenile mortality and stress behavior in the arctic fox (Vulpes lagopus). Behav Ecol Sociobiol 2019. [DOI: 10.1007/s00265-019-2772-y] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Abstract
Abstract
Life history theory predicts that individuals will differ in their risk-taking behavior according to their expected future fitness. Understanding consequences of such individual variation within a behavioral trait is crucial in explaining potential trade-offs between different traits and in predicting future dynamics in changing environments. Here, we studied individuals in a wild arctic fox population to explore if (1) individual variation in risk-taking behaviors of adult arctic foxes and in stress-dealing behaviors of their juveniles exist and are consistent over time to verify the existence of personality traits; (2) those behavioral traits in adults and juveniles are correlated; (3) they can explain fitness-related components (i.e., juvenile physical condition, mortality rate). We presented simple field experiments assessing behavioral traits by observing adult reactions toward approaching observers, and juvenile behaviors while trapping. Through the experiments, we found highly consistent individual variation of adults in vigilance and boldness levels, and more flexible juvenile behavioral traits categorized as investigating, passive, and escaping. The offspring of bolder adults exhibited more investigating behaviors and were less passive than the offspring of shy adults. Juvenile physical condition was not related to their mortality nor any behavioral traits of either parents or themselves. Lastly, highly investigating and active juveniles with bold parents had significantly lower mortality rates. This shows that interactions between parent personality and juvenile behavioral traits affect a fitness-related component in the life history of individuals.
Significance statement
The recent surge of interest in consistent individual difference in behavior, also called as animal personality, has already focused on its fitness consequences, but few studies have investigated the interactions between parent and offspring personality, and their ecological consequences. Moreover, this has rarely been studied in wild canids. The arctic fox is a charismatic species showing wide individual variation in behaviors. They live in highly fluctuating tundra ecosystems providing different selection regimes, making it even more eco-evolutionarily intriguing. Yet, few studies looked into behavioral traits and their importance in this system. While introducing simple methods to improve personality research in the wild, we provide a unique example of how variation in both parents and their juveniles collectively works for group dynamics in a cyclic population. This provides a firm basic for understanding behavior-mediated dynamics and opens up broader questions on how fluctuating environments exert varying pressures on individual differences.
Collapse
|
9
|
Larroque J, Legault S, Johns R, Lumley L, Cusson M, Renaut S, Levesque RC, James PMA. Temporal variation in spatial genetic structure during population outbreaks: Distinguishing among different potential drivers of spatial synchrony. Evol Appl 2019; 12:1931-1945. [PMID: 31700536 PMCID: PMC6824080 DOI: 10.1111/eva.12852] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2018] [Revised: 07/08/2019] [Accepted: 07/09/2019] [Indexed: 02/06/2023] Open
Abstract
Spatial synchrony is a common characteristic of spatio-temporal population dynamics across many taxa. While it is known that both dispersal and spatially autocorrelated environmental variation (i.e., the Moran effect) can synchronize populations, the relative contributions of each, and how they interact, are generally unknown. Distinguishing these mechanisms and their effects on synchrony can help us to better understand spatial population dynamics, design conservation and management strategies, and predict climate change impacts. Population genetic data can be used to tease apart these two processes as the spatio-temporal genetic patterns they create are expected to be different. A challenge, however, is that genetic data are often collected at a single point in time, which may introduce context-specific bias. Spatio-temporal sampling strategies can be used to reduce bias and to improve our characterization of the drivers of spatial synchrony. Using spatio-temporal analyses of genotypic data, our objective was to identify the relative support for these two mechanisms to the spatial synchrony in population dynamics of the irruptive forest insect pest, the spruce budworm (Choristoneura fumiferana), in Quebec (Canada). AMOVA, cluster analysis, isolation by distance, and sPCA were used to characterize spatio-temporal genomic variation using 1,370 SBW larvae sampled over four years (2012-2015) and genotyped at 3,562 SNP loci. We found evidence of overall weak spatial genetic structure that decreased from 2012 to 2015 and a genetic diversity homogenization among the sites. We also found genetic evidence of a long-distance dispersal event over >140 km. These results indicate that dispersal is the key mechanism involved in driving population synchrony of the outbreak. Early intervention management strategies that aim to control source populations have the potential to be effective through limiting dispersal. However, the timing of such interventions relative to outbreak progression is likely to influence their probability of success.
Collapse
Affiliation(s)
- Jeremy Larroque
- Département de Sciences BiologiquesUniversité de MontréalMontréalQuebecCanada
| | - Simon Legault
- Département de Sciences BiologiquesUniversité de MontréalMontréalQuebecCanada
| | - Rob Johns
- Canadian Forest ServiceNatural Resources CanadaFrederictonNew BrunswickCanada
| | - Lisa Lumley
- Royal Alberta MuseumEdmontonAlbertaCanada
- Laurentian Forestry CentreNatural Resources CanadaQuebec CityQuebecCanada
| | - Michel Cusson
- Laurentian Forestry CentreNatural Resources CanadaQuebec CityQuebecCanada
| | - Sébastien Renaut
- Département de Sciences Biologiques, Institut de Recherche en Biologie VégétaleUniversité de MontréalMontréalQuebecCanada
| | - Roger C. Levesque
- Institut de biologie intégrative et des systèmesUniversité LavalQuebec CityQuebecCanada
| | - Patrick M. A. James
- Département de Sciences BiologiquesUniversité de MontréalMontréalQuebecCanada
| |
Collapse
|
10
|
Erlandson MA, Mori BA, Coutu C, Holowachuk J, Olfert OO, Gariepy TD, Hegedus DD. Examining population structure of a bertha armyworm, Mamestra configurata (Lepidoptera: Noctuidae), outbreak in western North America: Implications for gene flow and dispersal. PLoS One 2019; 14:e0218993. [PMID: 31247053 PMCID: PMC6597092 DOI: 10.1371/journal.pone.0218993] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2018] [Accepted: 06/13/2019] [Indexed: 12/01/2022] Open
Abstract
The bertha armyworm (BAW), Mamestra configurata, is a significant pest of canola (Brassica napus L. and B. rapa L.) in western North America that undergoes cyclical outbreaks every 6-8 years. During peak outbreaks millions of dollars are spent on insecticidal control and, even with control efforts, subsequent damage can result in losses worth millions of dollars. Despite the importance of this pest insect, information is lacking on the dispersal ability of BAW and the genetic variation of populations from across its geographic range which may underlie potential differences in their susceptibility to insecticides or pathogens. Here, we examined the genetic diversity of BAW populations during an outbreak across its geographic range in western North America. First, mitochondrial cytochrome oxidase 1 (CO1) barcode sequences were used to confirm species identification of insects captured in a network of pheromone traps across the range, followed by haplotype analyses. We then sequenced the BAW genome and used double-digest restriction site associated DNA sequencing, mapped to the genome, to identify 1000s of single nucleotide polymorphisms (SNP) markers. CO1 haplotype analysis identified 9 haplotypes distributed across 28 sample locations and three laboratory-reared colonies. Analysis of genotypic data from both the CO1 and SNP markers revealed little population structure across BAW's vast range. The CO1 haplotype pattern showed a star-like phylogeny which is often associated with species whose population abundance and range has recently expanded and combined with pheromone trap data, indicates the outbreak may have originated from a single focal point in central Saskatchewan. The relatively recent introduction of canola and rapid expansion of the canola growing region across western North America, combined with the cyclical outbreaks of BAW caused by precipitous population crashes, has likely selected for a genetically homogenous BAW population adapted to this crop.
Collapse
Affiliation(s)
- Martin A. Erlandson
- Saskatoon Research and Development Centre, Agriculture and Agri-Food Canada, Saskatoon, SK CANADA
| | - Boyd A. Mori
- Saskatoon Research and Development Centre, Agriculture and Agri-Food Canada, Saskatoon, SK CANADA
| | - Cathy Coutu
- Saskatoon Research and Development Centre, Agriculture and Agri-Food Canada, Saskatoon, SK CANADA
| | - Jennifer Holowachuk
- Saskatoon Research and Development Centre, Agriculture and Agri-Food Canada, Saskatoon, SK CANADA
| | - Owen O. Olfert
- Saskatoon Research and Development Centre, Agriculture and Agri-Food Canada, Saskatoon, SK CANADA
| | - Tara D. Gariepy
- London Research and Development Centre, Agriculture and Agri-Food Canada, London, ON CANADA
| | - Dwayne D. Hegedus
- Saskatoon Research and Development Centre, Agriculture and Agri-Food Canada, Saskatoon, SK CANADA
| |
Collapse
|
11
|
Myers JH. Population cycles: generalities, exceptions and remaining mysteries. Proc Biol Sci 2019; 285:rspb.2017.2841. [PMID: 29563267 DOI: 10.1098/rspb.2017.2841] [Citation(s) in RCA: 48] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2017] [Accepted: 02/28/2018] [Indexed: 01/17/2023] Open
Abstract
Population cycles are one of nature's great mysteries. For almost a hundred years, innumerable studies have probed the causes of cyclic dynamics in snowshoe hares, voles and lemmings, forest Lepidoptera and grouse. Even though cyclic species have very different life histories, similarities in mechanisms related to their dynamics are apparent. In addition to high reproductive rates and density-related mortality from predators, pathogens or parasitoids, other characteristics include transgenerational reduced reproduction and dispersal with increasing-peak densities, and genetic similarity among populations. Experiments to stop cyclic dynamics and comparisons of cyclic and noncyclic populations provide some understanding but both reproduction and mortality must be considered. What determines variation in amplitude and periodicity of population outbreaks remains a mystery.
Collapse
Affiliation(s)
- Judith H Myers
- Department of Zoology, University of British Columbia, Vancouver, BC, Canada V6T 1Z4
| |
Collapse
|
12
|
Hasselgren M, Angerbjörn A, Eide NE, Erlandsson R, Flagstad Ø, Landa A, Wallén J, Norén K. Genetic rescue in an inbred Arctic fox ( Vulpes lagopus) population. Proc Biol Sci 2019; 285:rspb.2017.2814. [PMID: 29593110 DOI: 10.1098/rspb.2017.2814] [Citation(s) in RCA: 26] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2017] [Accepted: 03/02/2018] [Indexed: 12/22/2022] Open
Abstract
Isolation of small populations can reduce fitness through inbreeding depression and impede population growth. Outcrossing with only a few unrelated individuals can increase demographic and genetic viability substantially, but few studies have documented such genetic rescue in natural mammal populations. We investigate the effects of immigration in a subpopulation of the endangered Scandinavian arctic fox (Vulpes lagopus), founded by six individuals and isolated for 9 years at an extremely small population size. Based on a long-term pedigree (105 litters, 543 individuals) combined with individual fitness traits, we found evidence for genetic rescue. Natural immigration and gene flow of three outbred males in 2010 resulted in a reduction in population average inbreeding coefficient (f), from 0.14 to 0.08 within 5 years. Genetic rescue was further supported by 1.9 times higher juvenile survival and 1.3 times higher breeding success in immigrant first-generation offspring compared with inbred offspring. Five years after immigration, the population had more than doubled in size and allelic richness increased by 41%. This is one of few studies that has documented genetic rescue in a natural mammal population suffering from inbreeding depression and contributes to a growing body of data demonstrating the vital connection between genetics and individual fitness.
Collapse
Affiliation(s)
- Malin Hasselgren
- Department of Zoology, Stockholm University, 10691 Stockholm, Sweden
| | - Anders Angerbjörn
- Department of Zoology, Stockholm University, 10691 Stockholm, Sweden
| | - Nina E Eide
- Norwegian Institute for Nature Research, 7485 Trondheim, Norway
| | - Rasmus Erlandsson
- Department of Zoology, Stockholm University, 10691 Stockholm, Sweden
| | | | - Arild Landa
- Norwegian Institute for Nature Research, 7485 Trondheim, Norway
| | - Johan Wallén
- Department of Zoology, Stockholm University, 10691 Stockholm, Sweden
| | - Karin Norén
- Department of Zoology, Stockholm University, 10691 Stockholm, Sweden
| |
Collapse
|
13
|
Barraquand F, Louca S, Abbott KC, Cobbold CA, Cordoleani F, DeAngelis DL, Elderd BD, Fox JW, Greenwood P, Hilker FM, Murray DL, Stieha CR, Taylor RA, Vitense K, Wolkowicz GS, Tyson RC. Moving forward in circles: challenges and opportunities in modelling population cycles. Ecol Lett 2017. [DOI: 10.1111/ele.12789] [Citation(s) in RCA: 89] [Impact Index Per Article: 11.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023]
Affiliation(s)
- Frédéric Barraquand
- Department of Arctic and Marine Biology University of Tromsø Tromsø Norway
- Integrative and Theoretical Ecology Chair, LabEx COTE University of Bordeaux Pessac France
| | - Stilianos Louca
- Institute of Applied Mathematics University of British Columbia Vancouver BC Canada
| | - Karen C. Abbott
- Department of Biology Case Western Reserve University Cleveland OH USA
| | | | - Flora Cordoleani
- Institute of Marine Science University of California Santa Cruz Santa Cruz CA USA
- Southwest Fisheries Science Center Santa Cruz CA USA
| | | | - Bret D. Elderd
- Department of Biological Sciences Lousiana State University Baton Rouge LA USA
| | - Jeremy W. Fox
- Department of Biological Sciences University of Calgary Calgary ABCanada
| | | | - Frank M. Hilker
- Institute of Environmental Systems Research, School of Mathematics/Computer Science Osnabrück University Osnabrück Germany
| | - Dennis L. Murray
- Integrative Wildlife Conservation Lab Trent University Peterborough ONCanada
| | - Christopher R. Stieha
- Department of Biology Case Western Reserve University Cleveland OH USA
- Department of Entomology Cornell University Ithaca NY USA
| | - Rachel A. Taylor
- Department of Integrative Biology University of South Florida Tampa FLUSA
| | - Kelsey Vitense
- Department of Fisheries, Wildlife, and Conservation Biology University of Minnesota Saint Paul MN USA
| | - Gail S.K. Wolkowicz
- Department of Mathematics and Statistics McMaster University Hamilton ON Canada
| | - Rebecca C. Tyson
- Department of Mathematics and Statistics University of British Columbia Okanagan Kelowna BC Canada
| |
Collapse
|
14
|
Lagerholm VK, Norén K, Ehrich D, Ims RA, Killengreen ST, Abramson NI, Niemimaa J, Angerbjörn A, Henttonen H, Dalén L. Run to the hills: gene flow among mountain areas leads to low genetic differentiation in the Norwegian lemming. Biol J Linn Soc Lond 2017. [DOI: 10.1093/biolinnean/blw020] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022]
|
15
|
Row JR, Wilson PJ, Murray DL. The genetic underpinnings of population cyclicity: establishing expectations for the genetic anatomy of cycling populations. OIKOS 2016. [DOI: 10.1111/oik.02736] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- Jeffrey R. Row
- Dept of Biology; Trent University; Peterborough ON, K9J 7B8 Canada
| | - Paul J. Wilson
- Dept of Biology; Trent University; Peterborough ON, K9J 7B8 Canada
| | - Dennis L. Murray
- Dept of Biology; Trent University; Peterborough ON, K9J 7B8 Canada
| |
Collapse
|
16
|
Lidicker WZ. Genetic and spatial structuring of the California vole (Microtus californicus) through a multiannual density peak and decline. J Mammal 2015. [DOI: 10.1093/jmammal/gyv122] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
|
17
|
Faulks L, Svanbäck R, Eklöv P, Östman Ö. Genetic and morphological divergence along the littoral-pelagic axis in two common and sympatric fishes: perch,Perca fluviatilis(Percidae) and roach,Rutilus rutilus(Cyprinidae). Biol J Linn Soc Lond 2015. [DOI: 10.1111/bij.12452] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Affiliation(s)
- Leanne Faulks
- Department of Ecology and Genetics - Animal Ecology; Evolutionary Biology Centre; Uppsala University; Norbyvägen 18D 75236 Uppsala Sweden
| | - Richard Svanbäck
- Department of Ecology and Genetics - Limnology; Evolutionary Biology Centre; Uppsala University; Norbyvägen 18D 75236 Uppsala Sweden
| | - Peter Eklöv
- Department of Ecology and Genetics - Limnology; Evolutionary Biology Centre; Uppsala University; Norbyvägen 18D 75236 Uppsala Sweden
| | - Örjan Östman
- Department of Ecology and Genetics - Animal Ecology; Evolutionary Biology Centre; Uppsala University; Norbyvägen 18D 75236 Uppsala Sweden
| |
Collapse
|
18
|
James PMA, Cooke B, Brunet BMT, Lumley LM, Sperling FAH, Fortin MJ, Quinn VS, Sturtevant BR. Life-stage differences in spatial genetic structure in an irruptive forest insect: implications for dispersal and spatial synchrony. Mol Ecol 2015; 24:296-309. [PMID: 25439007 DOI: 10.1111/mec.13025] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2014] [Revised: 11/23/2014] [Accepted: 11/26/2014] [Indexed: 11/30/2022]
Abstract
Dispersal determines the flux of individuals, energy and information and is therefore a key determinant of ecological and evolutionary dynamics. Yet, it remains difficult to quantify its importance relative to other factors. This is particularly true in cyclic populations in which demography, drift and dispersal contribute to spatio-temporal variability in genetic structure. Improved understanding of how dispersal influences spatial genetic structure is needed to disentangle the multiple processes that give rise to spatial synchrony in irruptive species. In this study, we examined spatial genetic structure in an economically important irruptive forest insect, the spruce budworm (Choristoneura fumiferana) to better characterize how dispersal, demography and ecological context interact to influence spatial synchrony in a localized outbreak. We characterized spatial variation in microsatellite allele frequencies using 231 individuals and seven geographic locations. We show that (i) gene flow among populations is likely very high (Fst ≈ 0); (ii) despite an overall low level of genetic structure, important differences exist between adult (moth) and juvenile (larvae) life stages; and (iii) the localized outbreak is the likely source of moths captured elsewhere in our study area. This study demonstrates the potential of using molecular methods to distinguish residents from migrants and for understanding how dispersal contributes to spatial synchronization. In irruptive populations, the strength of genetic structure depends on the timing of data collection (e.g. trough vs. peak), location and dispersal. Taking into account this ecological context allows us to make more general characterizations of how dispersal can affect spatial synchrony in irruptive populations.
Collapse
Affiliation(s)
- Patrick M A James
- Département de Sciences Biologiques, CP 6128 Succursale Centre-Ville, Université de Montréal, Pavillon Marie-Victorin, Montréal, QC, Canada, H3C 3J7
| | | | | | | | | | | | | | | |
Collapse
|
19
|
Franklin MT, Myers JH, Cory JS. Genetic similarity of island populations of tent caterpillars during successive outbreaks. PLoS One 2014; 9:e96679. [PMID: 24858905 PMCID: PMC4032236 DOI: 10.1371/journal.pone.0096679] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2013] [Accepted: 04/11/2014] [Indexed: 11/18/2022] Open
Abstract
Cyclic or fluctuating populations experience regular periods of low population density. Genetic bottlenecks during these periods could give rise to temporal or spatial genetic differentiation of populations. High levels of movement among increasing populations, however, could ameliorate any differences and could also synchronize the dynamics of geographically separated populations. We use microsatellite markers to investigate the genetic differentiation of four island and one mainland population of western tent caterpillars, Malacosoma californicum pluviale, in two periods of peak or pre-peak density separated by 8 years. Populations showed high levels of genetic variation and little genetic differentiation either temporally between peaks or spatially among sites. Mitochondrial haplotypes were also shared between one island population and one mainland population in the two years studied. An isolation-by-distance analysis showed the FST values of the two geographically closest populations to have the highest level of differentiation in both years. We conclude that high levels of dispersal among populations maintain both synchrony of population dynamics and override potential genetic differentiation that might occur during population troughs. As far we are aware, this is the first time that genetic similarity between temporally separated population outbreaks in insects has been investigated. A review of genetic data for both vertebrate and invertebrate species of cyclic animals shows that a lack of spatial genetic differentiation is typical, and may result from high levels of dispersal associated with fluctuating dynamics.
Collapse
Affiliation(s)
- Michelle T. Franklin
- Department of Biological Sciences, Simon Fraser University, Burnaby, BC, Canada
- Department of Zoology, and Biodiversity Research Centre, University of British Columbia, Vancouver, BC, Canada
| | - Judith H. Myers
- Department of Zoology, and Biodiversity Research Centre, University of British Columbia, Vancouver, BC, Canada
| | - Jenny S. Cory
- Department of Biological Sciences, Simon Fraser University, Burnaby, BC, Canada
| |
Collapse
|