1
|
Searle JB, Pardo-Manuel de Villena F. Meiotic Drive and Speciation. Annu Rev Genet 2024; 58:341-363. [PMID: 39585909 DOI: 10.1146/annurev-genet-111523-102603] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2024]
Abstract
Meiotic drive is the biased transmission of alleles from heterozygotes, contrary to Mendel's laws, and reflects intragenomic conflict rather than organism-level Darwinian selection. Theory has been developed as to how centromeric properties can promote female meiotic drive and how conflict between the X and Y chromosomes in males can promote male meiotic drive. There are empirical data that fit both the centromere drive and sex chromosome drive models. Sex chromosome drive may have relevance to speciation through the buildup of Dobzhansky-Muller incompatibilities involving drive and suppressor systems, studied particularly in Drosophila. Centromere drive may promote fixation of chromosomal rearrangements involving the centromere, and those fixed rearrangements may contribute to reproductive isolation, studied particularly in the house mouse. Genome-wide tests suggest that meiotic drive promotes allele fixation with regularity, and those studying the genomics of speciation need to be aware of the potential impact of such fixations on reproductive isolation. New species can originate in many different ways (including multiple factors acting together), and a substantial body of work on meiotic drive point to it being one of the processes involved.
Collapse
Affiliation(s)
- Jeremy B Searle
- Department of Ecology and Evolutionary Biology, Cornell University, Ithaca, New York, USA;
| | | |
Collapse
|
2
|
Bernegossi AM, Galindo DJ, Peres PHF, Vozdova M, Cernohorska H, Kubickova S, Kadlcikova D, Rubes J, Duarte JMB. Comparative karyotype analysis of the red brocket deer (M. americana sensu lato and M. rufa) complex: evidence of drastic chromosomal evolution and implications on speciation process. J Appl Genet 2024; 65:601-614. [PMID: 38662189 DOI: 10.1007/s13353-024-00861-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2023] [Revised: 01/14/2024] [Accepted: 03/21/2024] [Indexed: 04/26/2024]
Abstract
Chromosomal rearrangements are often associated with playing a role in the speciation process. However, the underlying mechanism that favors the genetic isolation associated with chromosomal changes remains elusive. In this sense, the genus Mazama is recognized by its high level of karyotype diversity among species with similar morphology. A cryptic species complex has been identified within the genus, with the red brocket deer (Mazama americana and Mazama rufa) being the most impressive example. The chromosome variation was clustered in cytotypes with diploid numbers ranging from 42 to 53 and was correlated with geographical location. We conducted an analysis of chromosome evolution of the red brocket deer complex using comparative chromosome painting and Bacterial Artificial Chromosome (BAC) clones among different cytotypes. The aim was to deepen our understanding of the karyotypic relationships within the red brocket, thereby elucidating the significant chromosome variation among closely related species. This underscores the significance of chromosome changes as a key evolutionary process shaping their genomes. The results revealed the presence of three distinct cytogenetic lineages characterized by significant karyotypic divergence, suggesting the existence of efficient post-zygotic barriers. Tandem fusions constitute the main mechanism driving karyotype evolution, following a few centric fusions, inversion X-autosomal fusions. The BAC mapping has improved our comprehension of the karyotypic relationships within the red brocket deer complex, prompting questions regarding the role of these changes in the speciation process. We propose the red brocket as a model group to investigate how chromosomal changes contribute to isolation and explore the implications of these changes in taxonomy and conservation.
Collapse
Affiliation(s)
- Agda Maria Bernegossi
- Deer Research and Conservation Center (NUPECCE), School of Agricultural and Veterinarian Sciences, São Paulo State University (UNESP), Jaboticabal, Sao Paulo, 14884-900, Brazil
| | - David Javier Galindo
- Deer Research and Conservation Center (NUPECCE), School of Agricultural and Veterinarian Sciences, São Paulo State University (UNESP), Jaboticabal, Sao Paulo, 14884-900, Brazil.
- Laboratory of Animal Reproduction, Faculty of Veterinary Medicine, National University of San Marcos, San Borja, 15021, Lima, Peru.
| | - Pedro Henrique Faria Peres
- Deer Research and Conservation Center (NUPECCE), School of Agricultural and Veterinarian Sciences, São Paulo State University (UNESP), Jaboticabal, Sao Paulo, 14884-900, Brazil
| | - Miluse Vozdova
- Central European Institute of Technology-Veterinary Research Institute, 621 00, Brno, Czech Republic
| | - Halina Cernohorska
- Central European Institute of Technology-Veterinary Research Institute, 621 00, Brno, Czech Republic
| | - Svatava Kubickova
- Central European Institute of Technology-Veterinary Research Institute, 621 00, Brno, Czech Republic
| | - Dita Kadlcikova
- Central European Institute of Technology-Veterinary Research Institute, 621 00, Brno, Czech Republic
| | - Jiri Rubes
- Central European Institute of Technology-Veterinary Research Institute, 621 00, Brno, Czech Republic
| | - José Maurício Barbanti Duarte
- Deer Research and Conservation Center (NUPECCE), School of Agricultural and Veterinarian Sciences, São Paulo State University (UNESP), Jaboticabal, Sao Paulo, 14884-900, Brazil.
| |
Collapse
|
3
|
Kretschmer R, Santos de Souza M, Gunski RJ, Del Valle Garnero A, de Freitas TRO, Zefa E, Toma GA, Cioffi MDB, Herculano Corrêa de Oliveira E, O'Connor RE, Griffin DK. Understanding the chromosomal evolution in cuckoos (Aves, Cuculiformes): a journey through unusual rearrangements. Genome 2024; 67:168-177. [PMID: 38346285 DOI: 10.1139/gen-2023-0101] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/02/2024]
Abstract
The Cuculiformes are a family of over 150 species that live in a range of habitats, such as forests, savannas, and deserts. Here, bacterial artificial chromosome (BAC) probes (75 from chicken and 14 from zebra finch macrochromosomes 1-10 +ZW and for microchromosomes 11-28 (except 16)) were used to investigate chromosome homologies between chicken and the squirrel cuckoo (Piaya cayana). In addition, repetitive DNA probes were applied to characterize the chromosome organization and to explore the role of these sequences in the karyotype evolution of P. cayana. We also applied BAC probes for chicken chromosome 17 and Z to the guira cuckoo (Guira guira) to test whether this species has an unusual Robertsonian translocation between a microchromosome and the Z chromosome, recently described in the smooth-billed ani (Crotophaga ani). Our results revealed extensive chromosome reorganization with inter- and intrachromosomal rearrangements in P. cayana, including a conspicuous chromosome size and heterochromatin polymorphism on chromosome pair 20. Furthermore, we confirmed that the Z-autosome Robertsonian translocation found in C. ani is also found in G. guira, not P. cayana. These findings suggest that this translocation occurred prior to the divergence between C. ani and G. guira, but after the divergence with P. cayana.
Collapse
Affiliation(s)
- Rafael Kretschmer
- School of Biosciences, University of Kent, Canterbury, Kent, CT2 7NJ, UK
- Departamento de Ecologia, Zoologia e Genética, Instituto de Biologia, Universidade Federal de Pelotas, Pelotas 96010-900, RS, Brazil
| | - Marcelo Santos de Souza
- Laboratório de Diversidade Genética Animal, Universidade Federal do Pampa, São Gabriel, Rio Grande do Sul 97300-162, Brazil
| | - Ricardo José Gunski
- Laboratório de Diversidade Genética Animal, Universidade Federal do Pampa, São Gabriel, Rio Grande do Sul 97300-162, Brazil
| | - Analía Del Valle Garnero
- Laboratório de Diversidade Genética Animal, Universidade Federal do Pampa, São Gabriel, Rio Grande do Sul 97300-162, Brazil
| | | | - Edison Zefa
- Departamento de Ecologia, Zoologia e Genética, Instituto de Biologia, Universidade Federal de Pelotas, Pelotas 96010-900, RS, Brazil
| | - Gustavo Akira Toma
- Departamento de Genética e Evolução, Universidade Federal de São Carlos, São Carlos, São Paulo 13565-905, Brazil
| | - Marcelo de Bello Cioffi
- Departamento de Genética e Evolução, Universidade Federal de São Carlos, São Carlos, São Paulo 13565-905, Brazil
| | - Edivaldo Herculano Corrêa de Oliveira
- Laboratório de Cultura de Tecidos e Citogenética, SAMAM, Instituto Evandro Chagas, Ananindeua, Pará 67030-000, Brazil
- Instituto de Ciências Exatas e Naturais, Universidade Federal do Pará, Belém, Pará 66075-110, Brazil
| | - Rebecca E O'Connor
- School of Biosciences, University of Kent, Canterbury, Kent, CT2 7NJ, UK
| | - Darren K Griffin
- School of Biosciences, University of Kent, Canterbury, Kent, CT2 7NJ, UK
| |
Collapse
|
4
|
Marín-García C, Álvarez-González L, Marín-Gual L, Casillas S, Picón J, Yam K, Garcias-Ramis MM, Vara C, Ventura J, Ruiz-Herrera A. Multiple Genomic Landscapes of Recombination and Genomic Divergence in Wild Populations of House Mice-The Role of Chromosomal Fusions and Prdm9. Mol Biol Evol 2024; 41:msae063. [PMID: 38513632 PMCID: PMC10991077 DOI: 10.1093/molbev/msae063] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2023] [Revised: 02/21/2024] [Accepted: 03/14/2024] [Indexed: 03/23/2024] Open
Abstract
Chromosomal fusions represent one of the most common types of chromosomal rearrangements found in nature. Yet, their role in shaping the genomic landscape of recombination and hence genome evolution remains largely unexplored. Here, we take advantage of wild mice populations with chromosomal fusions to evaluate the effect of this type of structural variant on genomic landscapes of recombination and divergence. To this aim, we combined cytological analysis of meiotic crossovers in primary spermatocytes with inferred analysis of recombination rates based on linkage disequilibrium using single nucleotide polymorphisms. Our results suggest the presence of a combined effect of Robertsonian fusions and Prdm9 allelic background, a gene involved in the formation of meiotic double strand breaks and postzygotic reproductive isolation, in reshaping genomic landscapes of recombination. We detected a chromosomal redistribution of meiotic recombination toward telomeric regions in metacentric chromosomes in mice with Robertsonian fusions when compared to nonfused mice. This repatterning was accompanied by increased levels of crossover interference and reduced levels of estimated recombination rates between populations, together with high levels of genomic divergence. Interestingly, we detected that Prdm9 allelic background was a major determinant of recombination rates at the population level, whereas Robertsonian fusions showed limited effects, restricted to centromeric regions of fused chromosomes. Altogether, our results provide new insights into the effect of Robertsonian fusions and Prdm9 background on meiotic recombination.
Collapse
Affiliation(s)
- Cristina Marín-García
- Departament de Biologia Cel·lular, Fisiologia i Immunologia, Universitat Autònoma de Barcelona, Cerdanyola del Vallès 08193, Barcelona, Spain
- Institut de Biotecnologia i Biomedicina, Universitat Autònoma de Barcelona, Cerdanyola del Vallès 08193, Barcelona, Spain
| | - Lucía Álvarez-González
- Departament de Biologia Cel·lular, Fisiologia i Immunologia, Universitat Autònoma de Barcelona, Cerdanyola del Vallès 08193, Barcelona, Spain
- Institut de Biotecnologia i Biomedicina, Universitat Autònoma de Barcelona, Cerdanyola del Vallès 08193, Barcelona, Spain
| | - Laia Marín-Gual
- Departament de Biologia Cel·lular, Fisiologia i Immunologia, Universitat Autònoma de Barcelona, Cerdanyola del Vallès 08193, Barcelona, Spain
- Institut de Biotecnologia i Biomedicina, Universitat Autònoma de Barcelona, Cerdanyola del Vallès 08193, Barcelona, Spain
| | - Sònia Casillas
- Institut de Biotecnologia i Biomedicina, Universitat Autònoma de Barcelona, Cerdanyola del Vallès 08193, Barcelona, Spain
- Departament de Genètica i Microbiologia, Universitat Autònoma de Barcelona, Cerdanyola del Vallès 08193, Barcelona, Spain
| | - Judith Picón
- Departament de Biologia Cel·lular, Fisiologia i Immunologia, Universitat Autònoma de Barcelona, Cerdanyola del Vallès 08193, Barcelona, Spain
- Institut de Biotecnologia i Biomedicina, Universitat Autònoma de Barcelona, Cerdanyola del Vallès 08193, Barcelona, Spain
| | - Keren Yam
- Departament de Biologia Cel·lular, Fisiologia i Immunologia, Universitat Autònoma de Barcelona, Cerdanyola del Vallès 08193, Barcelona, Spain
- Institut de Biotecnologia i Biomedicina, Universitat Autònoma de Barcelona, Cerdanyola del Vallès 08193, Barcelona, Spain
| | - María Magdalena Garcias-Ramis
- Departament de Biologia Cel·lular, Fisiologia i Immunologia, Universitat Autònoma de Barcelona, Cerdanyola del Vallès 08193, Barcelona, Spain
- Institut de Biotecnologia i Biomedicina, Universitat Autònoma de Barcelona, Cerdanyola del Vallès 08193, Barcelona, Spain
| | - Covadonga Vara
- Departament de Biologia Cel·lular, Fisiologia i Immunologia, Universitat Autònoma de Barcelona, Cerdanyola del Vallès 08193, Barcelona, Spain
- Institut de Biotecnologia i Biomedicina, Universitat Autònoma de Barcelona, Cerdanyola del Vallès 08193, Barcelona, Spain
| | - Jacint Ventura
- Departament de Biologia Animal, Biologia Vegetal i Ecologia, Universitat Autònoma de Barcelona, Cerdanyola del Vallès 08193, Barcelona, Spain
- Small Mammals Research Unit, Granollers Museum of Natural Sciences, Granollers 08402, Barcelona, Spain
| | - Aurora Ruiz-Herrera
- Departament de Biologia Cel·lular, Fisiologia i Immunologia, Universitat Autònoma de Barcelona, Cerdanyola del Vallès 08193, Barcelona, Spain
- Institut de Biotecnologia i Biomedicina, Universitat Autònoma de Barcelona, Cerdanyola del Vallès 08193, Barcelona, Spain
| |
Collapse
|
5
|
Berdan EL, Aubier TG, Cozzolino S, Faria R, Feder JL, Giménez MD, Joron M, Searle JB, Mérot C. Structural Variants and Speciation: Multiple Processes at Play. Cold Spring Harb Perspect Biol 2024; 16:a041446. [PMID: 38052499 PMCID: PMC10910405 DOI: 10.1101/cshperspect.a041446] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/07/2023]
Abstract
Research on the genomic architecture of speciation has increasingly revealed the importance of structural variants (SVs) that affect the presence, abundance, position, and/or direction of a nucleotide sequence. SVs include large chromosomal rearrangements such as fusion/fissions and inversions and translocations, as well as smaller variants such as duplications, insertions, and deletions (CNVs). Although we have ample evidence that SVs play a key role in speciation, the underlying mechanisms differ depending on the type and length of the SV, as well as the ecological, demographic, and historical context. We review predictions and empirical evidence for classic processes such as underdominance due to meiotic aberrations and the coupling effect of recombination suppression before exploring how recent sequencing methodologies illuminate the prevalence and diversity of SVs. We discuss specific properties of SVs and their impact throughout the genome, highlighting that multiple processes are at play, and possibly interacting, in the relationship between SVs and speciation.
Collapse
Affiliation(s)
- Emma L Berdan
- Department of Marine Sciences, Gothenburg University, Gothenburg 40530, Sweden
- Bioinformatics Core, Department of Biostatistics, Harvard T.H. Chan School of Public Health, Harvard Medical School, Boston, Massachusetts 02115, USA
| | - Thomas G Aubier
- Laboratoire Évolution & Diversité Biologique, Université Paul Sabatier Toulouse III, UMR 5174, CNRS/IRD, 31077 Toulouse, France
- Department of Biology, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina 27599, USA
| | - Salvatore Cozzolino
- Department of Biology, University of Naples Federico II, Complesso Universitario di Monte S. Angelo, 80126 Napoli, Italia
| | - Rui Faria
- CIBIO, Centro de Investigação em Biodiversidade e Recursos Genéticos, InBIO, Laboratório Associado, Universidade do Porto, Vairão, Portugal
- BIOPOLIS Program in Genomics, Biodiversity and Land Planning, CIBIO, 4485-661 Vairão, Portugal
| | - Jeffrey L Feder
- Department of Biological Sciences, University of Notre Dame, Notre Dame, Indiana 46556, USA
| | - Mabel D Giménez
- Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Instituto de Genética Humana de Misiones (IGeHM), Parque de la Salud de la Provincia de Misiones "Dr. Ramón Madariaga," N3300KAZ Posadas, Misiones, Argentina
- Facultad de Ciencias Exactas, Químicas y Naturales, Universidad Nacional de Misiones, N3300LQH Posadas, Misiones, Argentina
| | - Mathieu Joron
- Centre d'Ecologie Fonctionnelle et Evolutive, Université de Montpellier, CNRS, EPHE, IRD, Montpellier, France
| | - Jeremy B Searle
- Department of Ecology and Evolutionary Biology, Cornell University, Ithaca, New York 14853, USA
| | - Claire Mérot
- CNRS, UMR 6553 Ecobio, OSUR, Université de Rennes, 35000 Rennes, France
| |
Collapse
|
6
|
Matveevsky SN, Kolomiets OL, Shchipanov NA, Pavlova SV. Natural male hybrid common shrews with a very long chromosomal multivalent at meiosis appear not to be completely sterile. JOURNAL OF EXPERIMENTAL ZOOLOGY. PART B, MOLECULAR AND DEVELOPMENTAL EVOLUTION 2024; 342:45-58. [PMID: 38059675 DOI: 10.1002/jez.b.23232] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/07/2023] [Revised: 11/09/2023] [Accepted: 11/19/2023] [Indexed: 12/08/2023]
Abstract
Among 36 known chromosomal hybrid zones of the common shrew Sorex araneus, the Moscow-Seliger hybrid zone is of special interest because inter-racial complex heterozygotes (F1 hybrids) produce the longest meiotic configuration, consisting of 11 chromosomes with monobrachial homology (undecavalent or chain-of-eleven: CXI). Different studies suggest that such a multivalent may negatively affect meiotic progression and in general should significantly reduce fertility of hybrids. In this work, by immunocytochemical and electron microscopy methods, we investigated for the first time chromosome synapsis, recombination and meiotic silencing in pachytene spermatocytes of natural inter-racial heterozygous shrew males carrying CXI configurations. Despite some abnormalities detected in spermatocytes, such as associations of chromosomes, stretched centromeres, and the absence of recombination nodules in some arms of the multivalent, a large number of morphologically normal spermatozoa were observed. Possible low stringency of pachytene checkpoints may mean that even very long meiotic configurations do not cause complete sterility of such complex inter-racial heterozygotes.
Collapse
Affiliation(s)
- Sergey N Matveevsky
- Cytogenetics Laboratory, Vavilov Institute of General Genetics, Russian Academy of Sciences, Moscow, Russia
| | - Oxana L Kolomiets
- Cytogenetics Laboratory, Vavilov Institute of General Genetics, Russian Academy of Sciences, Moscow, Russia
| | - Nikolay A Shchipanov
- Laboratory of Population Ecology, A.N. Severtsov Institute of Ecology and Evolution, Russian Academy of Sciences, Moscow, Russia
| | - Svetlana V Pavlova
- Laboratory of Population Ecology, A.N. Severtsov Institute of Ecology and Evolution, Russian Academy of Sciences, Moscow, Russia
| |
Collapse
|
7
|
Fornel R, Maestri R, Cordeiro-Estrela P, Sanfelice D, de Freitas TRO. Cranial morphological variation of Ctenomys lami (Rodentia: Ctenomyidae) in a restricted geographical distribution. Genet Mol Biol 2023; 46:e20230130. [PMID: 37963285 PMCID: PMC10655944 DOI: 10.1590/1678-4685-gmb-2023-0130] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2023] [Accepted: 10/06/2023] [Indexed: 11/16/2023] Open
Abstract
The relationship between chromosomal and morphological variation in mammals is poorly understood. We analyzed the cranial size and shape variation in Ctenomys lami concerning to the geographic variation in their chromosome numbers. This subterranean rodent occurs in a narrow range of sand-dunes in the Coastal Plain of southern Brazil. This species presents a high karyotypic variation with diploid numbers varying from 2n = 54 to 2n = 58, involving the fission and fusion of chromosome pairs 1 and 2. Due to different chromosome rearrangement frequencies along their geographic distribution, four karyotypic blocks were proposed. This study, explored cranium shape and size variation in geographical, chromosomal polymorphism, and chromosome rearrangements contexts to test whether the four karyotypic blocks reflect morphologically distinct units. For this, we measured 89 craniums using geometric morphometrics and used uni and multivariate statistics to discriminate the predicted groups and test for an association among chromosomal and morphological variation. Our results show the size and shape of sexual dimorphism, with males larger than females, and support the existence of four karyotypic blocks for Ctenomys lami based on morphological variation. However, our results do not support a direct relationship between chromosomal and cranial morphological variation in C. lami.
Collapse
Affiliation(s)
- Rodrigo Fornel
- Universidade Regional Integrada do Alto Uruguai e das Missões,
Campus Erechim, Departamento de Ciências Biológicas, Erechim, RS, Brazil
| | - Renan Maestri
- Universidade Federal do Rio Grande do Sul, Departamento de Ecologia,
Porto Alegre, RS, Brazil
| | - Pedro Cordeiro-Estrela
- Universidade Federal da Paraíba, Departamento de Sistemática e
Ecologia, João Pessoa, PB, Brazil
| | - Daniela Sanfelice
- Instituto Federal de Educação, Ciência e Tecnologia do Rio Grande do
Sul, Campus Restinga, Porto Alegre, RS, Brazil
| | | |
Collapse
|
8
|
Machado CRD, Azambuja M, Domit C, da Fonseca GF, Glugoski L, Gazolla CB, de Almeida RB, Pucci MB, Pires TT, Nogaroto V, Vicari MR. Integrating morphological, molecular and cytogenetic data for F2 sea turtle hybrids diagnosis revealed balanced chromosomal sets. J Evol Biol 2023; 36:1595-1608. [PMID: 37885128 DOI: 10.1111/jeb.14236] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2023] [Revised: 06/19/2023] [Accepted: 07/10/2023] [Indexed: 10/28/2023]
Abstract
Hybridization could be considered part of the evolutionary history of many species. The hybridization among sea turtle species on the Brazilian coast is atypical and occurs where nesting areas and reproductive seasons overlap. Integrated analysis of morphology and genetics is still scarce, and there is no evidence of the parental chromosome set distribution in sea turtle interspecific hybrids. In this study, chromosome markers previously established for pure sea turtle species were combined with morphological and molecular analyses aiming to recognize genetic composition and chromosome sets in possible interspecific hybrids initially identified by mixed morphology. The data showed that one hybrid could be an F2 individual among Caretta caretta × Eretmochelys imbricata × Chelonia mydas, and another is resulting from backcross between C. caretta × Lepidochelys olivacea. Native alleles of different parental lineages were reported in the hybrids, and, despite this, it was verified that the hybrid chromosome sets were still balanced. Thus, how sea turtle hybridism can affect genetic features in the long term is a concern, as the implications of the crossing-over in hybrid chromosomal sets and the effects on genetic function are still unpredictable.
Collapse
Affiliation(s)
- Caroline Regina Dias Machado
- Programa de Pós-Graduação em Genética, Departamento de Genética, Universidade Federal do Paraná, Centro Politécnico, Curitiba, Paraná, Brazil
| | - Matheus Azambuja
- Programa de Pós-Graduação em Genética, Departamento de Genética, Universidade Federal do Paraná, Centro Politécnico, Curitiba, Paraná, Brazil
| | - Camila Domit
- Laboratório de Ecologia e Conservação, Universidade Federal do Paraná, Pontal do Paraná, Paraná, Brazil
| | - Gabriel Fraga da Fonseca
- Laboratório de Ecologia e Conservação, Universidade Federal do Paraná, Pontal do Paraná, Paraná, Brazil
| | - Larissa Glugoski
- Programa de Pós-Graduação em Genética Evolutiva e Biologia Molecular, Universidade Federal de São Carlos, São Carlos, São Paulo, Brazil
| | - Camilla Borges Gazolla
- Programa de Pós-Graduação em Genética, Departamento de Genética, Universidade Federal do Paraná, Centro Politécnico, Curitiba, Paraná, Brazil
| | - Rafael Bonfim de Almeida
- Programa de Pós-Graduação em Genética, Departamento de Genética, Universidade Federal do Paraná, Centro Politécnico, Curitiba, Paraná, Brazil
| | - Marcela Baer Pucci
- Programa de Pós-Graduação em Genética Evolutiva e Biologia Molecular, Universidade Federal de São Carlos, São Carlos, São Paulo, Brazil
| | | | - Viviane Nogaroto
- Departamento de Biologia Estrutural, Molecular e Genética, Universidade Estadual de Ponta Grossa, Ponta Grossa, Paraná, Brazil
| | - Marcelo Ricardo Vicari
- Programa de Pós-Graduação em Genética, Departamento de Genética, Universidade Federal do Paraná, Centro Politécnico, Curitiba, Paraná, Brazil
- Departamento de Biologia Estrutural, Molecular e Genética, Universidade Estadual de Ponta Grossa, Ponta Grossa, Paraná, Brazil
| |
Collapse
|
9
|
Prazdnikov DV. Chromosome complements of Channalucius and C.striata from Phu Quoc Island and karyotypic evolution in snakehead fishes (Actinopterygii, Channidae). COMPARATIVE CYTOGENETICS 2023; 17:1-12. [PMID: 36761446 PMCID: PMC9836404 DOI: 10.3897/compcytogen.v17.i1.94943] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 09/16/2022] [Accepted: 12/19/2022] [Indexed: 06/18/2023]
Abstract
Snakehead fishes of the family Channidae are obligatory air-breathers freshwater predators, the vast majority of which belong to the genus Channa Scopoli, 1777. Channa species are characterized by high karyotypic diversity due to various types of chromosomal rearrangements. It is assumed that, in addition to the lifestyle, fragmentation and isolation of snakehead populations contribute to an increase in karyotypic diversity. However, the chromosome complements of many isolated populations of widespread Channa species remain unknown, and the direction of karyotype transformations is poorly understood. This paper describes the previously unstudied karyotypes of Channalucius (Cuvier, 1831) and C.striata (Bloch, 1793) from Phu Quoc Island and analyzes the trends of karyotypic evolution in the genus Channa. In C.lucius, the karyotypes are differed in the number of chromosome arms (2n = 48, NF = 50 and 51), while in C.striata, the karyotypes are differed in the diploid chromosome number (2n = 44 and 43, NF = 48). A comparative cytogenetic analysis showed that the main trend of karyotypic evolution of Channa species is associated with a decrease in the number of chromosomes and an increase in the number of chromosome arms, mainly due to fusions and pericentric inversions. The data obtained support the assumption that fragmentation and isolation of populations, especially of continental islands, contribute to the karyotypic diversification of snakeheads and are of interest for further cytogenetic studies of Channidae.
Collapse
Affiliation(s)
- Denis V Prazdnikov
- Severtsov Institute of Ecology and Evolution, Russian Academy of Sciences, Leninsky pr. 33, Moscow, 119071, Russia Severtsov Institute of Ecology and Evolution, Russian Academy of Sciences Moscow Russia
| |
Collapse
|
10
|
Widespread chromosomal rearrangements preceded genetic divergence in a monitor lizard, Varanus acanthurus (Varanidae). Chromosome Res 2023; 31:9. [PMID: 36745262 PMCID: PMC9902428 DOI: 10.1007/s10577-023-09715-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2022] [Revised: 11/12/2022] [Accepted: 11/28/2022] [Indexed: 02/07/2023]
Abstract
Chromosomal rearrangements are often associated with local adaptation and speciation because they suppress recombination, and as a result, rearrangements have been implicated in disrupting gene flow. Although there is strong evidence to suggest that chromosome rearrangements are a factor in genetic isolation of divergent populations, the underlying mechanism remains elusive. Here, we applied an integrative cytogenetics and genomics approach testing whether chromosomal rearrangements are the initial process, or a consequence, of population divergence in the dwarf goanna, Varanus acanthurus. Specifically, we tested whether chromosome rearrangements are indicators of genetic barriers that can be used to identify divergent populations by looking at gene flow within and between populations with rearrangements. We found that gene flow was present between individuals with chromosome rearrangements within populations, but there was no gene flow between populations that had similar chromosome rearrangements. Moreover, we identified a correlation between reduced genetic variation in populations with a higher frequency of homozygous submetacentric individuals. These findings suggest that chromosomal rearrangements were widespread prior to divergence, and because we found populations with higher frequencies of submetacentric chromosomes were associated with lower genetic diversity, this could indicate that polymorphisms within populations are early indicators of genetic drift.
Collapse
|
11
|
Harringmeyer OS, Hoekstra HE. Chromosomal inversion polymorphisms shape the genomic landscape of deer mice. Nat Ecol Evol 2022; 6:1965-1979. [PMID: 36253543 PMCID: PMC9715431 DOI: 10.1038/s41559-022-01890-0] [Citation(s) in RCA: 20] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2022] [Accepted: 08/17/2022] [Indexed: 12/15/2022]
Abstract
Chromosomal inversions are an important form of structural variation that can affect recombination, chromosome structure and fitness. However, because inversions can be challenging to detect, the prevalence and hence the significance of inversions segregating within species remains largely unknown, especially in natural populations of mammals. Here, by combining population-genomic and long-read sequencing analyses in a single, widespread species of deer mouse (Peromyscus maniculatus), we identified 21 polymorphic inversions that are large (1.5-43.8 Mb) and cause near-complete suppression of recombination when heterozygous (0-0.03 cM Mb-1). We found that inversion breakpoints frequently occur in centromeric and telomeric regions and are often flanked by long inverted repeats (0.5-50 kb), suggesting that they probably arose via ectopic recombination. By genotyping inversions in populations across the species' range, we found that the inversions are often widespread and do not harbour deleterious mutational loads, and many are likely to be maintained as polymorphisms by divergent selection. Comparisons of forest and prairie ecotypes of deer mice revealed 13 inversions that contribute to differentiation between populations, of which five exhibit significant associations with traits implicated in local adaptation. Taken together, these results show that inversion polymorphisms have a significant impact on recombination, genome structure and genetic diversity in deer mice and likely facilitate local adaptation across the widespread range of this species.
Collapse
Affiliation(s)
- Olivia S Harringmeyer
- Department of Organismic & Evolutionary Biology, Department of Molecular & Cellular Biology, Museum of Comparative Zoology and Howard Hughes Medical Institute, Harvard University, Cambridge, MA, USA.
| | - Hopi E Hoekstra
- Department of Organismic & Evolutionary Biology, Department of Molecular & Cellular Biology, Museum of Comparative Zoology and Howard Hughes Medical Institute, Harvard University, Cambridge, MA, USA.
| |
Collapse
|
12
|
Chromosome Evolution of the Liolaemus monticola (Liolaemidae) Complex: Chromosomal and Molecular Aspects. Animals (Basel) 2022; 12:ani12233372. [PMID: 36496893 PMCID: PMC9737244 DOI: 10.3390/ani12233372] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2022] [Revised: 11/25/2022] [Accepted: 11/27/2022] [Indexed: 12/03/2022] Open
Abstract
Chromosomal rearrangements can directly influence population differentiation and speciation. The Liolaemus monticola complex in Chile is a unique model consisting of several chromosome races arranged in a latitudinal sequence of increasing karyotype complexity from south to north. Here, we compared chromosomal and mitochondrial cytochrome b data from 15 localities across the northern geographic distribution of L. monticola. We expanded the distribution of the previously described Multiple Fissions race (re-described as MF2), in the Coastal range between the Aconcagua River and the Petorca River, and described a new Multiple Fissions 1 (MF1) race in the Andean range. Both races present centric fissions in pairs 1 and 2, as well as a pericentric inversion in one fission product of pair 2 that changes the NOR position. Additionally, we detected a new chromosomal race north of the Petorca River, the Northern Modified 2 (NM2) race, which is polymorphic for novel centric fissions in pairs 3 and 4. Our results increase the number of chromosomal races in L. monticola to seven, suggesting a complex evolutionary history of chromosomal rearrangements, population isolation by barriers, and hybridization. These results show the relevant role of chromosome mutations in evolution, especially for highly speciose groups such as Liolaemus lizards.
Collapse
|
13
|
Triant DA, Pearson WR. Comparison of detection methods and genome quality when quantifying nuclear mitochondrial insertions in vertebrate genomes. Front Genet 2022; 13:984513. [PMID: 36482890 PMCID: PMC9723244 DOI: 10.3389/fgene.2022.984513] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2022] [Accepted: 11/03/2022] [Indexed: 01/27/2024] Open
Abstract
The integration of mitochondrial genome fragments into the nuclear genome is well documented, and the transfer of these mitochondrial nuclear pseudogenes (numts) is thought to be an ongoing evolutionary process. With the increasing number of eukaryotic genomes available, genome-wide distributions of numts are often surveyed. However, inconsistencies in genome quality can reduce the accuracy of numt estimates, and methods used for identification can be complicated by the diverse sizes and ages of numts. Numts have been previously characterized in rodent genomes and it was postulated that they might be more prevalent in a group of voles with rapidly evolving karyotypes. Here, we examine 37 rodent genomes, and an additional 26 vertebrate genomes, while also considering numt detection methods. We identify numts using DNA:DNA and protein:translated-DNA similarity searches and compare numt distributions among rodent and vertebrate taxa to assess whether some groups are more susceptible to transfer. A combination of protein sequence comparisons (protein:translated-DNA) and BLASTN genomic DNA searches detect 50% more numts than genomic DNA:DNA searches alone. In addition, higher-quality RefSeq genomes produce lower estimates of numts than GenBank genomes, suggesting that lower quality genome assemblies can overestimate numts abundance. Phylogenetic analysis shows that mitochondrial transfers are not associated with karyotypic diversity among rodents. Surprisingly, we did not find a strong correlation between numt counts and genome size. Estimates using DNA: DNA analyses can underestimate the amount of mitochondrial DNA that is transferred to the nucleus.
Collapse
Affiliation(s)
- Deborah A. Triant
- Department of Biochemistry and Molecular Genetics, University of Virginia, Charlottesville, VA, United States
| | | |
Collapse
|
14
|
Hager ER, Harringmeyer OS, Wooldridge TB, Theingi S, Gable JT, McFadden S, Neugeboren B, Turner KM, Jensen JD, Hoekstra HE. A chromosomal inversion contributes to divergence in multiple traits between deer mouse ecotypes. Science 2022; 377:399-405. [PMID: 35862520 PMCID: PMC9571565 DOI: 10.1126/science.abg0718] [Citation(s) in RCA: 35] [Impact Index Per Article: 11.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
How locally adapted ecotypes are established and maintained within a species is a long-standing question in evolutionary biology. Using forest and prairie ecotypes of deer mice (Peromyscus maniculatus), we characterized the genetic basis of variation in two defining traits-tail length and coat color-and discovered a 41-megabase chromosomal inversion linked to both. The inversion frequency is 90% in the dark, long-tailed forest ecotype; decreases across a habitat transition; and is absent from the light, short-tailed prairie ecotype. We implicate divergent selection in maintaining the inversion at frequencies observed in the wild, despite high levels of gene flow, and explore fitness benefits that arise from suppressed recombination within the inversion. We uncover a key role for a large, previously uncharacterized inversion in the evolution and maintenance of classic mammalian ecotypes.
Collapse
Affiliation(s)
- Emily R Hager
- Department of Molecular and Cellular Biology, Department of Organismic and Evolutionary Biology, Museum of Comparative Zoology, and Howard Hughes Medical Institute, Harvard University, Cambridge, MA 02138, USA
| | - Olivia S Harringmeyer
- Department of Molecular and Cellular Biology, Department of Organismic and Evolutionary Biology, Museum of Comparative Zoology, and Howard Hughes Medical Institute, Harvard University, Cambridge, MA 02138, USA
| | - T Brock Wooldridge
- Department of Molecular and Cellular Biology, Department of Organismic and Evolutionary Biology, Museum of Comparative Zoology, and Howard Hughes Medical Institute, Harvard University, Cambridge, MA 02138, USA
| | - Shunn Theingi
- Department of Molecular and Cellular Biology, Department of Organismic and Evolutionary Biology, Museum of Comparative Zoology, and Howard Hughes Medical Institute, Harvard University, Cambridge, MA 02138, USA
| | - Jacob T Gable
- Department of Molecular and Cellular Biology, Department of Organismic and Evolutionary Biology, Museum of Comparative Zoology, and Howard Hughes Medical Institute, Harvard University, Cambridge, MA 02138, USA
| | - Sade McFadden
- Department of Molecular and Cellular Biology, Department of Organismic and Evolutionary Biology, Museum of Comparative Zoology, and Howard Hughes Medical Institute, Harvard University, Cambridge, MA 02138, USA
| | - Beverly Neugeboren
- Department of Molecular and Cellular Biology, Department of Organismic and Evolutionary Biology, Museum of Comparative Zoology, and Howard Hughes Medical Institute, Harvard University, Cambridge, MA 02138, USA
| | - Kyle M Turner
- Department of Molecular and Cellular Biology, Department of Organismic and Evolutionary Biology, Museum of Comparative Zoology, and Howard Hughes Medical Institute, Harvard University, Cambridge, MA 02138, USA
| | - Jeffrey D Jensen
- School of Life Sciences, Arizona State University, Tempe, AZ 85287, USA
| | - Hopi E Hoekstra
- Department of Molecular and Cellular Biology, Department of Organismic and Evolutionary Biology, Museum of Comparative Zoology, and Howard Hughes Medical Institute, Harvard University, Cambridge, MA 02138, USA
| |
Collapse
|
15
|
Peres PHF, Luduvério DJ, Bernegossi AM, Galindo DJ, Nascimento GB, Oliveira ML, Sandoval EDP, Vozdova M, Kubickova S, Cernohorska H, Duarte JMB. Revalidation of Mazama rufa (Illiger 1815) (Artiodactyla: Cervidae) as a Distinct Species out of the Complex Mazama americana (Erxleben 1777). Front Genet 2022; 12:742870. [PMID: 34970296 PMCID: PMC8712859 DOI: 10.3389/fgene.2021.742870] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2021] [Accepted: 11/09/2021] [Indexed: 11/13/2022] Open
Abstract
The red brocket deer Mazama americana Erxleben, 1777 is considered a polyphyletic complex of cryptic species with wide chromosomal divergence. Evidence indicates that the observed chromosomal divergences result in reproductive isolation. The description of a neotype for M. americana allowed its genetic characterization and represented a comparative basis to resolve the taxonomic uncertainties of the group. Thus, we designated a neotype for the synonym Mazama rufa Illiger, 1815 and tested its recognition as a distinct species from the M. americana complex with the analysis of morphological, cytogenetic and molecular data. We also evaluated its distribution by sampling fecal DNA in the wild. Morphological data from craniometry and body biometry indicated an overlap of quantitative measurements between M. rufa and the entire M. americana complex. The phylogenetic hypothesis obtained through mtDNA confirmed the reciprocal monophyly relationship between M. americana and M. rufa, and both were identified as distinct molecular operational taxonomic units by the General Mixed Yule Coalescent species delimitation analysis. Finally, classic cytogenetic data and fluorescence in situ hybridization with whole chromosome painting probes showed M. rufa with a karyotype of 2n = 52, FN = 56. Comparative analysis indicate that at least fifteen rearrangements separate M. rufa and M. americana (sensu stricto) karyotypes, which confirmed their substantial chromosomal divergence. This divergence should represent an important reproductive barrier and allow its characterization as a distinct and valid species. Genetic analysis of fecal samples demonstrated a wide distribution of M. rufa in the South American continent through the Atlantic Forest, Cerrado and south region of Amazon. Thus, we conclude for the revalidation of M. rufa as a distinct species under the concept of biological isolation, with its karyotype as the main diagnostic character. The present work serves as a basis for the taxonomic review of the M. americana complex, which should be mainly based on cytogenetic characterization and directed towards a better sampling of the Amazon region, the evaluation of available names in the species synonymy and a multi-locus phylogenetic analysis.
Collapse
Affiliation(s)
- Pedro H F Peres
- Deer Research and Conservation Center (NUPECCE), São Paulo State University (UNESP), Jaboticabal, Brazil
| | - Douglas J Luduvério
- Deer Research and Conservation Center (NUPECCE), São Paulo State University (UNESP), Jaboticabal, Brazil
| | - Agda Maria Bernegossi
- Deer Research and Conservation Center (NUPECCE), São Paulo State University (UNESP), Jaboticabal, Brazil
| | - David J Galindo
- Faculty of Veterinary Medicine, National University of San Marcos (UNMSM), Lima, Peru
| | | | - Márcio L Oliveira
- Deer Research and Conservation Center (NUPECCE), São Paulo State University (UNESP), Jaboticabal, Brazil
| | | | | | | | | | | |
Collapse
|
16
|
Qi W, Hu C, Zhao D, Li X. SIRT1-SIRT7 in Diabetic Kidney Disease: Biological Functions and Molecular Mechanisms. Front Endocrinol (Lausanne) 2022; 13:801303. [PMID: 35634495 PMCID: PMC9136398 DOI: 10.3389/fendo.2022.801303] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/25/2021] [Accepted: 04/15/2022] [Indexed: 12/14/2022] Open
Abstract
Diabetic kidney disease (DKD) is a severe microvascular complication in patients with diabetes and is one of the main causes of renal failure. The current clinical treatment methods for DKD are not completely effective, and further exploration of the molecular mechanisms underlying the pathology of DKD is necessary to improve and promote the treatment strategy. Sirtuins are class III histone deacetylases, which play an important role in many biological functions, including DNA repair, apoptosis, cell cycle, oxidative stress, mitochondrial function, energy metabolism, lifespan, and aging. In the last decade, research on sirtuins and DKD has gained increasing attention, and it is important to summarize the relationship between DKD and sirtuins to increase the awareness of DKD and improve the cure rates. We have found that miRNAs, lncRNAs, compounds, or drugs that up-regulate the activity and expression of sirtuins play protective roles in renal function. Therefore, in this review, we summarize the biological functions, molecular targets, mechanisms, and signaling pathways of SIRT1-SIRT7 in DKD models. Existing research has shown that sirtuins have the potential as effective targets for the clinical treatment of DKD. This review aims to lay a solid foundation for clinical research and provide a theoretical basis to slow the development of DKD in patients.
Collapse
Affiliation(s)
- Wenxiu Qi
- Jilin Ginseng Academy, Key Laboratory of Active Substances and Biological Mechanisms of Ginseng Efficacy, Ministry of Education, Jilin Provincial Key Laboratory of Bio-Macromolecules of Chinese Medicine, Changchun University of Chinese Medicine, Changchun, China
- *Correspondence: Wenxiu Qi,
| | - Cheng Hu
- College of Laboratory Medicine, Jilin Medical University, Jilin City, China
| | - Daqing Zhao
- Jilin Ginseng Academy, Key Laboratory of Active Substances and Biological Mechanisms of Ginseng Efficacy, Ministry of Education, Jilin Provincial Key Laboratory of Bio-Macromolecules of Chinese Medicine, Changchun University of Chinese Medicine, Changchun, China
| | - Xiangyan Li
- Jilin Ginseng Academy, Key Laboratory of Active Substances and Biological Mechanisms of Ginseng Efficacy, Ministry of Education, Jilin Provincial Key Laboratory of Bio-Macromolecules of Chinese Medicine, Changchun University of Chinese Medicine, Changchun, China
| |
Collapse
|
17
|
Liu Z, Roesti M, Marques D, Hiltbrunner M, Saladin V, Peichel CL. Chromosomal fusions facilitate adaptation to divergent environments in threespine stickleback. Mol Biol Evol 2021; 39:6462204. [PMID: 34908155 PMCID: PMC8826639 DOI: 10.1093/molbev/msab358] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
Chromosomal fusions are hypothesized to facilitate adaptation to divergent environments, both by bringing together previously unlinked adaptive alleles and by creating regions of low recombination that facilitate the linkage of adaptive alleles; but, there is little empirical evidence to support this hypothesis. Here, we address this knowledge gap by studying threespine stickleback (Gasterosteus aculeatus), in which ancestral marine fish have repeatedly adapted to freshwater across the northern hemisphere. By comparing the threespine and ninespine stickleback (Pungitius pungitius) genomes to a de novo assembly of the fourspine stickleback (Apeltes quadracus) and an outgroup species, we find two chromosomal fusion events involving the same chromosomes have occurred independently in the threespine and ninespine stickleback lineages. On the fused chromosomes in threespine stickleback, we find an enrichment of quantitative trait loci underlying traits that contribute to marine versus freshwater adaptation. By comparing whole-genome sequences of freshwater and marine threespine stickleback populations, we also find an enrichment of regions under divergent selection on these two fused chromosomes. There is elevated genetic diversity within regions under selection in the freshwater population, consistent with a simulation study showing that gene flow can increase diversity in genomic regions associated with local adaptation and our demographic models showing gene flow between the marine and freshwater populations. Integrating our results with previous studies, we propose that these fusions created regions of low recombination that enabled the formation of adaptative clusters, thereby facilitating freshwater adaptation in the face of recurrent gene flow between marine and freshwater threespine sticklebacks.
Collapse
Affiliation(s)
- Zuyao Liu
- Division of Evolutionary Ecology, Institute of Ecology and Evolution, University of Bern, Bern, Switzerland
| | - Marius Roesti
- Division of Evolutionary Ecology, Institute of Ecology and Evolution, University of Bern, Bern, Switzerland
| | - David Marques
- Division of Aquatic Ecology and Evolution, Institute of Ecology and Evolution, University of Bern, Bern, Switzerland.,Department of Fish Ecology and Evolution, Centre for Ecology, Evolution, and Biogeochemistry, Swiss Federal Institute of Aquatic Science and Technology (EAWAG), Kastanienbaum, Switzerland.,Natural History Museum Basel, Basel, Switzerland
| | - Melanie Hiltbrunner
- Division of Evolutionary Ecology, Institute of Ecology and Evolution, University of Bern, Bern, Switzerland
| | - Verena Saladin
- Division of Evolutionary Ecology, Institute of Ecology and Evolution, University of Bern, Bern, Switzerland
| | - Catherine L Peichel
- Division of Evolutionary Ecology, Institute of Ecology and Evolution, University of Bern, Bern, Switzerland
| |
Collapse
|
18
|
Guzmán NV, Kemppainen P, Monti D, Castillo ERD, Rodriguero MS, Sánchez-Restrepo AF, Cigliano MM, Confalonieri VA. Stable inversion clines in a grasshopper species group despite complex geographical history. Mol Ecol 2021; 31:1196-1215. [PMID: 34862997 DOI: 10.1111/mec.16305] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2020] [Revised: 11/24/2021] [Accepted: 11/29/2021] [Indexed: 11/27/2022]
Abstract
Chromosomal inversions are known to play roles in adaptation and differentiation in many species. They involve clusters of correlated genes (i.e., loci in linkage disequilibrium, LD) possibly associated with environmental variables. The grasshopper "species complex" Trimerotropis pallidipennis comprises several genetic lineages distributed from North to South America in arid and semi-arid high-altitude environments. The southernmost lineage, Trimerotropis sp., segregates for four to seven putative inversions that display clinal variation, possibly through adaptation to temperate environments. We analysed chromosomal, mitochondrial and genome-wide single nucleotide polymorphism data in 19 Trimerotropis sp. populations mainly distributed along two altitudinal gradients (MS and Ju). Populations across Argentina comprise two main chromosomally and genetically differentiated lineages: one distributed across the southernmost border of the "Andes Centrales," adding evidence for a differentiation hotspot in this area; and the other widely distributed in Argentina. Within the latter, network analytical approaches to LD found three clusters of correlated loci (LD-clusters), with inversion karyotypes explaining >79% of the genetic variation. Outlier loci associated with environmental variables mapped to two of these LD-clusters. Furthermore, despite the complex geographical history indicated by population genetic analyses, the clines in inversion karyotypes have remained stable for more than 20 generations, implicating their role in adaptation and differentiation within this lineage. We hypothesize that these clines could be the consequence of a coupling between extrinsic postzygotic barriers and spatially varying selection along environmental gradients resulting in a hybrid zone. These results provide a framework for future investigations about candidate genes implicated in rapid adaptation to new environments.
Collapse
Affiliation(s)
- Noelia V Guzmán
- Departamento de Ecología, Genética y Evolución, FCEyN, Universidad de Buenos Aires (UBA), IEGEBA (Consejo Nacional de Investigaciones Científicas y Tecnológicas (CONICET)/UBA), Ciudad Universitaria, Buenos Aires, Argentina
| | - Petri Kemppainen
- Ecological Genetics Research Unit, Organismal and Evolutionary Biology Research Programme, Faculty of Biological and Environmental Sciences, University of Helsinki, Helsinki, Finland
| | - Daniela Monti
- Departamento de Ecología, Genética y Evolución, FCEyN, Universidad de Buenos Aires (UBA), IEGEBA (Consejo Nacional de Investigaciones Científicas y Tecnológicas (CONICET)/UBA), Ciudad Universitaria, Buenos Aires, Argentina
| | - Elio R D Castillo
- Laboratorio de Genética Evolutiva "Dr. Claudio J. Bidau", FCEQyN, Universidad Nacional de Misiones (UNaM), Instituto de Biología Subtropical (IBS) (CONICET/UNaM), LQH, Posadas, Misiones, Argentina
| | - Marcela S Rodriguero
- Departamento de Ecología, Genética y Evolución, FCEyN, Universidad de Buenos Aires (UBA), IEGEBA (Consejo Nacional de Investigaciones Científicas y Tecnológicas (CONICET)/UBA), Ciudad Universitaria, Buenos Aires, Argentina
| | - Andrés F Sánchez-Restrepo
- Departamento de Ecología, Genética y Evolución, FCEyN, Universidad de Buenos Aires (UBA), IEGEBA (Consejo Nacional de Investigaciones Científicas y Tecnológicas (CONICET)/UBA), Ciudad Universitaria, Buenos Aires, Argentina.,Fundación para el Estudio de Especies Invasivas (FuEDEI), Hurlingham, Buenos Aires, Argentina
| | - Maria Marta Cigliano
- Museo de La Plata, Centro de Estudios Parasitológicos y de Vectores (CEPAVE- CONICET/UNLP), Universidad Nacional de la Plata, Buenos Aires, Argentina
| | - Viviana A Confalonieri
- Departamento de Ecología, Genética y Evolución, FCEyN, Universidad de Buenos Aires (UBA), IEGEBA (Consejo Nacional de Investigaciones Científicas y Tecnológicas (CONICET)/UBA), Ciudad Universitaria, Buenos Aires, Argentina
| |
Collapse
|
19
|
Watson KB, Lehnert SJ, Bentzen P, Kess T, Einfeldt A, Duffy S, Perriman B, Lien S, Kent M, Bradbury IR. Environmentally associated chromosomal structural variation influences fine-scale population structure of Atlantic Salmon (Salmo salar). Mol Ecol 2021; 31:1057-1075. [PMID: 34862998 DOI: 10.1111/mec.16307] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2021] [Revised: 10/25/2021] [Accepted: 11/19/2021] [Indexed: 01/17/2023]
Abstract
Chromosomal rearrangements (e.g., inversions, fusions, and translocations) have long been associated with environmental variation in wild populations. New genomic tools provide the opportunity to examine the role of these structural variants in shaping adaptive differences within and among wild populations of non-model organisms. In Atlantic Salmon (Salmo salar), variations in chromosomal rearrangements exist across the species natural range, yet the role and importance of these structural variants in maintaining adaptive differences among wild populations remains poorly understood. We genotyped Atlantic Salmon (n = 1429) from 26 populations within a highly genetically structured region of southern Newfoundland, Canada with a 220K SNP array. Multivariate analysis, across two independent years, consistently identified variation in a structural variant (translocation between chromosomes Ssa01 and Ssa23), previously associated with evidence of trans-Atlantic secondary contact, as the dominant factor influencing population structure in the region. Redundancy analysis suggested that variation in the Ssa01/Ssa23 chromosomal translocation is strongly correlated with temperature. Our analyses suggest environmentally mediated selection acting on standing genetic variation in genomic architecture introduced through secondary contact may underpin fine-scale local adaptation in Placentia Bay, Newfoundland, Canada, a large and deep embayment, highlighting the importance of chromosomal structural variation as a driver of contemporary adaptive divergence.
Collapse
Affiliation(s)
- K Beth Watson
- Department of Biology, Dalhousie University, Halifax, Nova Scotia, Canada.,Northwest Atlantic Fisheries Centre, Fisheries and Oceans Canada, St. John's, Newfoundland and Labrador, Canada
| | - Sarah J Lehnert
- Northwest Atlantic Fisheries Centre, Fisheries and Oceans Canada, St. John's, Newfoundland and Labrador, Canada
| | - Paul Bentzen
- Department of Biology, Dalhousie University, Halifax, Nova Scotia, Canada
| | - Tony Kess
- Northwest Atlantic Fisheries Centre, Fisheries and Oceans Canada, St. John's, Newfoundland and Labrador, Canada
| | - Antony Einfeldt
- Department of Biology, Dalhousie University, Halifax, Nova Scotia, Canada
| | - Steven Duffy
- Northwest Atlantic Fisheries Centre, Fisheries and Oceans Canada, St. John's, Newfoundland and Labrador, Canada
| | - Ben Perriman
- Department of Biology, Dalhousie University, Halifax, Nova Scotia, Canada
| | - Sigbjørn Lien
- Department of Animal and Aquacultural Sciences (IHA), Faculty of Life Sciences (BIOVIT), Centre for Integrative Genetics (CIGENE), Norwegian University of Life Sciences (NMBU), Ås, Norway
| | - Matthew Kent
- Department of Animal and Aquacultural Sciences (IHA), Faculty of Life Sciences (BIOVIT), Centre for Integrative Genetics (CIGENE), Norwegian University of Life Sciences (NMBU), Ås, Norway
| | - Ian R Bradbury
- Department of Biology, Dalhousie University, Halifax, Nova Scotia, Canada.,Northwest Atlantic Fisheries Centre, Fisheries and Oceans Canada, St. John's, Newfoundland and Labrador, Canada
| |
Collapse
|
20
|
Denys C, Jacquet F, Kadjo B, Missoup AD, Aniskine V, de Bellocq JG, Soropogui B, Douno M, Sylla M, Nicolas V, Lalis A, Monadjem A. Shrews (Mammalia, Eulipotyphla) from a biodiversity hotspot, Mount Nimba (West Africa), with a field identification key to species. ZOOSYSTEMA 2021. [DOI: 10.5252/zoosystema2021v43a30] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
Affiliation(s)
- Christiane Denys
- Institut de Systématique, évolution, Biodiversité (ISYEB), Muséum national d'Histoire naturelle, CNRS, Sorbonne Université, EPHE, Université des Antilles UMR 7205, case postale 51, 57 rue Cuvier, F-75231 Paris cedex 05 (France)
| | - François Jacquet
- Institut de Systématique, évolution, Biodiversité (ISYEB), Muséum national d'Histoire naturelle, CNRS, Sorbonne Université, EPHE, Université des Antilles UMR 7205, case postale 51, 57 rue Cuvier, F-75231 Paris cedex 05 (France)
| | - Blaise Kadjo
- Laboratoire de Zoologie et Biologie – UFR Biosciences-Université Félix Houphouët-Boigny (Côte d'Ivoire)
| | - Alain Didier Missoup
- Zoology Unit, Laboratory of Biology and Physiology of Animal Organisms, Faculty of Science, University of Douala, POBox 24157 Douala (Cameroon)
| | - Vladimir Aniskine
- Severtsov Institute of Ecology and Evolution, Russian Academy of Sciences, Leninskii pr 33, 117071 Moscow (Russia)
| | - Joelle Goüy de Bellocq
- Institute of Vertebrate Biology, Research Facility Studenec, Czech Academy of Sciences, Květná 8, 603 65 Brno (Czech Republic)
| | - Barré Soropogui
- Projet de Recherche sur les Fièvres Hemorragiques en Guinée, C.H.U. Donka, 5680 Conakry (Guinea)
| | - Mory Douno
- Centre de Gestion de l'Environnement des monts Nimba et Simandou (CEGENS), ministère de l'Environnement des Eaux et Forêts (Guinea)
| | - Morlaye Sylla
- Centre d'études et de Recherches sur les Petits Animaux, Université Gamal Abdel Nasser, 2580 Conakry (Guinea)
| | - Violaine Nicolas
- Institut de Systématique, évolution, Biodiversité (ISYEB), Muséum national d'Histoire naturelle, CNRS, Sorbonne Université, EPHE, Université des Antilles, UMR 7205, case postale 51, 57 rue Cuvier, F-75231 Paris cedex 05 (France) ;
| | - Aude Lalis
- Institut de Systématique, évolution, Biodiversité (ISYEB), Muséum national d'Histoire naturelle, CNRS, Sorbonne Université, EPHE, Université des Antilles, UMR 7205, case postale 51, 57 rue Cuvier, F-75231 Paris cedex 05 (France) ;
| | - Ara Monadjem
- Department of Biological Sciences, University of Eswatini, Private Bag 4, Kwaluseni, Eswatini & Mammal Research Institute, Department of Zoology & Entomology, University of Pretoria, Private Bag 20, Hatfield 0028, Pretoria (South Africa)
| |
Collapse
|
21
|
Kartavtseva IV, Sheremetyeva IN, Pavlenko MV. Intraspecies multiple chromosomal variations including rare tandem fusion in the Russian Far Eastern endemic evoron vole Alexandromysevoronensis (Rodentia, Arvicolinae). COMPARATIVE CYTOGENETICS 2021; 15:393-411. [PMID: 34900116 PMCID: PMC8629904 DOI: 10.3897/compcytogen.v15.i4.67112] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/12/2021] [Accepted: 09/23/2021] [Indexed: 06/01/2023]
Abstract
The vole Alexandromysevoronensis (Kovalskaya et Sokolov, 1980) with its two chromosomal races, "Evoron" (2n = 38-41, NF = 54-59) and "Argi" (2n = 34, 36, 37, NF = 51-56) is the endemic vole found in the Russian Far East. For the "Argi" chromosomal race, individuals from two isolated populations in mountain regions were investigated here for the first time using GTG-, GTC-, NOR methods. In the area under study, 8 new karyotype variants have been registered. The karyotype with 2n = 34 has a rare tandem fusion of three autosomes: two biarmed (Mev6 and Mev7) and one acrocentric (Mev14) to form a large biarmed chromosome (Mev6/7/14), all of which reveal a heterozygous state. For A.evoronensis, the variation in the number of chromosomes exceeded the known estimate of 2n = 34, 36 and amounted to 2n = 34, 36, 38-41. The combination of all the variations of chromosomes for the species made it possible to describe 20 variants of the A.evoronensis karyotype, with 11 chromosomes being involved in multiple structural rearrangements. In the "Evoron" chromosomal race 4 chromosomes (Mev1, Mev4, Mev17, and Mev18) and in the "Argi" chromosomal race 9 chromosomes (Mev6, Mev7, Mev14, Mev13, Mev11, Mev15, Mev17, Mev18, and Mev19) were observed. Tandem and Robertsonian rearrangements (Mev17/18 and Mev17.18) were revealed in both chromosomal races "Evoron" and "Argi".
Collapse
Affiliation(s)
- Irina V. Kartavtseva
- Federal Scientific Center of the East Asia Terrestrial Biodiversity Far Eastern Branch of Russian Academy of Sciences, Vladivostok 690022, Russia
| | - Irina N. Sheremetyeva
- Federal Scientific Center of the East Asia Terrestrial Biodiversity Far Eastern Branch of Russian Academy of Sciences, Vladivostok 690022, Russia
| | - Marina V. Pavlenko
- Federal Scientific Center of the East Asia Terrestrial Biodiversity Far Eastern Branch of Russian Academy of Sciences, Vladivostok 690022, Russia
| |
Collapse
|
22
|
Ceraulo S, Perelman PL, Dumas F. Massive LINE‐1 retrotransposon enrichment in tamarins of the Cebidae family (Platyrrhini, Primates) and its significance for genome evolution. J ZOOL SYST EVOL RES 2021. [DOI: 10.1111/jzs.12536] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- Simona Ceraulo
- Department of “Scienze e Tecnologie Biologiche, Chimiche e Farmaceutiche (STEBICEF)” University of Palermo Palermo Italy
| | | | - Francesca Dumas
- Department of “Scienze e Tecnologie Biologiche, Chimiche e Farmaceutiche (STEBICEF)” University of Palermo Palermo Italy
| |
Collapse
|
23
|
Berdan EL, Blanckaert A, Slotte T, Suh A, Westram AM, Fragata I. Unboxing mutations: Connecting mutation types with evolutionary consequences. Mol Ecol 2021; 30:2710-2723. [PMID: 33955064 DOI: 10.1111/mec.15936] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2021] [Revised: 03/30/2021] [Accepted: 04/20/2021] [Indexed: 01/09/2023]
Abstract
A key step in understanding the genetic basis of different evolutionary outcomes (e.g., adaptation) is to determine the roles played by different mutation types (e.g., SNPs, translocations and inversions). To do this we must simultaneously consider different mutation types in an evolutionary framework. Here, we propose a research framework that directly utilizes the most important characteristics of mutations, their population genetic effects, to determine their relative evolutionary significance in a given scenario. We review known population genetic effects of different mutation types and show how these may be connected to different evolutionary outcomes. We provide examples of how to implement this framework and pinpoint areas where more data, theory and synthesis are needed. Linking experimental and theoretical approaches to examine different mutation types simultaneously is a critical step towards understanding their evolutionary significance.
Collapse
Affiliation(s)
- Emma L Berdan
- Department of Ecology, Environment and Plant Sciences, Science for Life Laboratory, Stockholm University, Stockholm, Sweden
| | | | - Tanja Slotte
- Department of Ecology, Environment and Plant Sciences, Science for Life Laboratory, Stockholm University, Stockholm, Sweden
| | - Alexander Suh
- School of Biological Sciences - Organisms and the Environment, University of East Anglia, Norwich, UK.,Department of Organismal Biology - Systematic Biology, Science for Life Laboratory, Uppsala University, Uppsala, Sweden
| | - Anja M Westram
- IST Austria, Klosterneuburg, Austria.,Faculty of Biosciences and Aquaculture, Nord University, Bodø, Norway
| | - Inês Fragata
- cE3c - Centre for Ecology, Evolution and Environmental Changes, Faculdade de Ciências, Universidade de Lisboa, Lisboa, Portugal
| |
Collapse
|
24
|
Abstract
Chromosome size and morphology vary within and among species, but little is known about the proximate or ultimate causes of these differences. Cichlid fish species in the tribe Oreochromini share an unusual giant chromosome that is ∼3 times longer than the other chromosomes. This giant chromosome functions as a sex chromosome in some of these species. We test two hypotheses of how this giant sex chromosome may have evolved. The first hypothesis proposes that it evolved by accumulating repetitive elements as recombination was reduced around a dominant sex determination locus, as suggested by canonical models of sex chromosome evolution. An alternative hypothesis is that the giant sex chromosome originated via the fusion of an autosome with a highly repetitive B chromosome, one of which carried a sex determination locus. We test these hypotheses using comparative analysis of chromosome-scale cichlid and teleost genomes. We find that the giant sex chromosome consists of three distinct regions based on patterns of recombination, gene and transposable element content, and synteny to the ancestral autosome. The WZ sex determination locus encompasses the last ∼105 Mb of the 134-Mb giant chromosome. The last 47 Mb of the giant chromosome shares no obvious homology to any ancestral chromosome. Comparisons across 69 teleost genomes reveal that the giant sex chromosome contains unparalleled amounts of endogenous retroviral elements, immunoglobulin genes, and long noncoding RNAs. The results favor the B chromosome fusion hypothesis for the origin of the giant chromosome.
Collapse
Affiliation(s)
- Matthew A Conte
- Department of Biology, University of Maryland, College Park, MD, USA
| | - Frances E Clark
- Department of Biology, University of Maryland, College Park, MD, USA
| | - Reade B Roberts
- Department of Biological Sciences, North Carolina State University, Raleigh, NC, USA
| | - Luohao Xu
- Department of Neuroscience and Developmental Biology, University of Vienna, Vienna, Austria
| | - Wenjing Tao
- Key Laboratory of Freshwater Fish Reproduction and Development (Ministry of Education), School of Life Sciences, Southwest University, Chongqing, China
| | - Qi Zhou
- Department of Neuroscience and Developmental Biology, University of Vienna, Vienna, Austria
- MOE Laboratory of Biosystems Homeostasis & Protection, Life Sciences Institute, Zhejiang University, Hangzhou, China
| | - Deshou Wang
- Key Laboratory of Freshwater Fish Reproduction and Development (Ministry of Education), School of Life Sciences, Southwest University, Chongqing, China
| | - Thomas D Kocher
- Department of Biology, University of Maryland, College Park, MD, USA
| |
Collapse
|
25
|
Berdan EL, Blanckaert A, Butlin RK, Bank C. Deleterious mutation accumulation and the long-term fate of chromosomal inversions. PLoS Genet 2021; 17:e1009411. [PMID: 33661924 PMCID: PMC7963061 DOI: 10.1371/journal.pgen.1009411] [Citation(s) in RCA: 51] [Impact Index Per Article: 12.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2020] [Revised: 03/16/2021] [Accepted: 02/10/2021] [Indexed: 01/31/2023] Open
Abstract
Chromosomal inversions contribute widely to adaptation and speciation, yet they present a unique evolutionary puzzle as both their allelic content and frequency evolve in a feedback loop. In this simulation study, we quantified the role of the allelic content in determining the long-term fate of the inversion. Recessive deleterious mutations accumulated on both arrangements with most of them being private to a given arrangement. This led to increasing overdominance, allowing for the maintenance of the inversion polymorphism and generating strong non-adaptive divergence between arrangements. The accumulation of mutations was mitigated by gene conversion but nevertheless led to the fitness decline of at least one homokaryotype under all considered conditions. Surprisingly, this fitness degradation could be permanently halted by the branching of an arrangement into multiple highly divergent haplotypes. Our results highlight the dynamic features of inversions by showing how the non-adaptive evolution of allelic content can play a major role in the fate of the inversion.
Collapse
Affiliation(s)
- Emma L. Berdan
- Department of Marine Sciences, University of Gothenburg, Göteborg, Sweden
| | | | - Roger K. Butlin
- Department of Marine Sciences, University of Gothenburg, Göteborg, Sweden
- Department of Animal and Plant Sciences, University of Sheffield, Sheffield, United Kingdom
| | - Claudia Bank
- Instituto Gulbenkian de Ciência, Oeiras, Portugal
- Institute of Ecology and Evolution, University of Bern, Switzerland
| |
Collapse
|
26
|
Kartavtseva IV, Sheremetyeva IN, Pavlenko MV. Multiple Chromosomal Polymorphism of “Evoron” Chromosomal Race of the Evoron Vole (Rodentia, Arvicolinae). RUSS J GENET+ 2021. [DOI: 10.1134/s1022795421010087] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
27
|
Chromosomal Polymorphism and Speciation: The Case of the Genus Mazama (Cetartiodactyla; Cervidae). Genes (Basel) 2021; 12:genes12020165. [PMID: 33530376 PMCID: PMC7911811 DOI: 10.3390/genes12020165] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2020] [Revised: 01/21/2021] [Accepted: 01/23/2021] [Indexed: 02/06/2023] Open
Abstract
Chromosomal polymorphism plays a major role in speciation processes in mammals with high rates of karyotypic evolution, as observed in the family Cervidae. One remarkable example is the genus Mazama that comprises wide inter- and intra-specific chromosomal variability. To evaluate the impact of chromosomal polymorphisms as reproductive barriers within the genus Mazama, inter-specific hybrids between Mazama gouazoubira and Mazama nemorivaga (MGO × MNE) and intra-specific hybrids between cytotypes of Mazama americana (MAM) differing by a tandem (TF) or centric fusion (Robertsonian translocations—RT) were evaluated. MGO × MNE hybrid fertility was evaluated by the seminal quality and testicular histology. MAM hybrids estimation of the meiotic segregation products was performed by sperm-FISH analysis. MGO × MNE hybrids analyses showed different degrees of fertility reduction, from severe subfertility to complete sterility. Regarding MAM, RT, and TF carriers showed a mean value for alternate segregation rate of 97.74%, and 67.23%, and adjacent segregation rate of 1.80%, and 29.07%, respectively. Our results suggested an efficient post-zygotic barrier represented by severe fertility reduction for MGO × MNE and MAM with heterozygous TF. Nevertheless, RT did not show a severe effect on the reproductive fitness in MAM. Our data support the validity of MGO and MNE as different species and reveals cryptic species within MAM.
Collapse
|
28
|
Berdan EL, Fuller RC, Kozak GM. Genomic landscape of reproductive isolation in Lucania killifish: The role of sex loci and salinity. J Evol Biol 2020; 34:157-174. [PMID: 33118222 PMCID: PMC7894299 DOI: 10.1111/jeb.13725] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2019] [Revised: 10/01/2020] [Accepted: 10/14/2020] [Indexed: 01/24/2023]
Abstract
Adaptation to different environments can directly and indirectly generate reproductive isolation between species. Bluefin killifish (Lucania goodei) and rainwater killifish (L. parva) are sister species that have diverged across a salinity gradient and are reproductively isolated by habitat, behavioural, extrinsic and intrinsic post-zygotic isolation. We asked if salinity adaptation contributes indirectly to other forms of reproductive isolation via linked selection and hypothesized that low recombination regions, such as sex chromosomes or chromosomal rearrangements, might facilitate this process. We conducted QTL mapping in backcrosses between L. parva and L. goodei to explore the genetic architecture of salinity tolerance, behavioural isolation and intrinsic isolation. We mapped traits relative to a chromosome that has undergone a centric fusion in L. parva (relative to L. goodei). We found that the sex locus appears to be male determining (XX-XY), was located on the fused chromosome and was implicated in intrinsic isolation. QTL associated with salinity tolerance were spread across the genome and did not overly co-localize with regions associated with behavioural or intrinsic isolation. This preliminary analysis of the genetic architecture of reproductive isolation between Lucania species does not support the hypothesis that divergent natural selection for salinity tolerance led to behavioural and intrinsic isolation as a by-product. Combined with previous studies in this system, our work suggests that adaptation as a function of salinity contributes to habitat isolation and that reinforcement may have contributed to the evolution of behavioural isolation instead, possibly facilitated by linkage between behavioural isolation and intrinsic isolation loci on the fused chromosome.
Collapse
Affiliation(s)
- Emma L Berdan
- Department of Marine Sciences, University of Gothenburg, Gothenburg, Sweden
| | - Rebecca C Fuller
- Department of Animal Biology, University of Illinois Urbana-Champaign, Champaign, IL, USA
| | - Genevieve M Kozak
- Department of Biology, University of Massachusetts-Dartmouth, Dartmouth, MA, USA
| |
Collapse
|
29
|
Sun C, Li J, Dong J, Niu Y, Hu J, Lian J, Li W, Li J, Tian Y, Shi Q, Ye X. Chromosome-level genome assembly for the largemouth bass Micropterus salmoides provides insights into adaptation to fresh and brackish water. Mol Ecol Resour 2020; 21:301-315. [PMID: 32985096 DOI: 10.1111/1755-0998.13256] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2020] [Revised: 08/19/2020] [Accepted: 08/24/2020] [Indexed: 12/16/2022]
Abstract
Largemouth bass (LMB; Micropterus salmoides) has been an economically important fish in North America, Europe, and China. This study obtained a chromosome-level genome assembly of LMB using PacBio and Hi-C sequencing. The final assembled genome is 964 Mb, with contig N50 and scaffold N50 values of 1.23 Mb and 36.48 Mb, respectively. Combining with RNA sequencing data, we annotated a total of 23,701 genes. Chromosomal assembly and syntenic analysis proved that, unlike most Perciformes with the popular haploid chromosome number of 24, LMB has only 23 chromosomes (Chr), among which the Chr1 seems to be resulted from a chromosomal fusion event. LMB is phylogenetically closely related to European seabass and spotted seabass, diverging 64.1 million years ago (mya) from the two seabass species. Eight gene families comprising 294 genes associated with ionic regulation were identified through positive selection, transcriptome and genome comparisons. These genes involved in iron facilitated diffusion (such as claudin, aquaporins, sodium channel protein and so on) and others related to ion active transport (such as sodium/potassium-transporting ATPase and sodium/calcium exchanger). The claudin gene family, which is critical for regulating cell tight junctions and osmotic homeostasis, showed a significant expansion in LMB with 27 family members and 68 copies for salinity adaptation. In summary, we reported the first high-quality LMB genome, and provided insights into the molecular mechanisms of LMB adaptation to fresh and brackish water. The chromosome-level LMB genome will also be a valuable genomic resource for in-depth biological and evolutionary studies, germplasm conservation and genetic breeding of LMB.
Collapse
Affiliation(s)
- Chengfei Sun
- Key Laboratory of Tropical and Subtropical Fishery Resource Application and Cultivation, Ministry of Agriculture and Rural Affairs, Pearl River Fisheries Research Institute, Chinese Academy of Fishery Sciences, Guangzhou, China
| | - Jia Li
- Shenzhen Key Laboratory of Marine Genomics, Guangdong Provincial Key Laboratory of Molecular Breeding in Marine Economic Animals, BGI Academy of Marine Sciences, BGI Marine, BGI, Shenzhen, China
| | - Junjian Dong
- Key Laboratory of Tropical and Subtropical Fishery Resource Application and Cultivation, Ministry of Agriculture and Rural Affairs, Pearl River Fisheries Research Institute, Chinese Academy of Fishery Sciences, Guangzhou, China
| | | | - Jie Hu
- Key Laboratory of Tropical and Subtropical Fishery Resource Application and Cultivation, Ministry of Agriculture and Rural Affairs, Pearl River Fisheries Research Institute, Chinese Academy of Fishery Sciences, Guangzhou, China
| | | | - Wuhui Li
- Key Laboratory of Tropical and Subtropical Fishery Resource Application and Cultivation, Ministry of Agriculture and Rural Affairs, Pearl River Fisheries Research Institute, Chinese Academy of Fishery Sciences, Guangzhou, China
| | - Jiang Li
- Biozeron Shenzhen Inc., Shenzhen, China
| | - Yuanyuan Tian
- Key Laboratory of Tropical and Subtropical Fishery Resource Application and Cultivation, Ministry of Agriculture and Rural Affairs, Pearl River Fisheries Research Institute, Chinese Academy of Fishery Sciences, Guangzhou, China
| | - Qiong Shi
- Shenzhen Key Laboratory of Marine Genomics, Guangdong Provincial Key Laboratory of Molecular Breeding in Marine Economic Animals, BGI Academy of Marine Sciences, BGI Marine, BGI, Shenzhen, China
| | - Xing Ye
- Key Laboratory of Tropical and Subtropical Fishery Resource Application and Cultivation, Ministry of Agriculture and Rural Affairs, Pearl River Fisheries Research Institute, Chinese Academy of Fishery Sciences, Guangzhou, China
| |
Collapse
|
30
|
Lukhtanov VA, Dincă V, Friberg M, Vila R, Wiklund C. Incomplete Sterility of Chromosomal Hybrids: Implications for Karyotype Evolution and Homoploid Hybrid Speciation. Front Genet 2020; 11:583827. [PMID: 33193715 PMCID: PMC7594530 DOI: 10.3389/fgene.2020.583827] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2020] [Accepted: 09/14/2020] [Indexed: 11/17/2022] Open
Abstract
Heterozygotes for major chromosomal rearrangements such as fusions and fissions are expected to display a high level of sterility due to problems during meiosis. However, some species, especially plants and animals with holocentric chromosomes, are known to tolerate chromosomal heterozygosity even for multiple rearrangements. Here, we studied male meiotic chromosome behavior in four hybrid generations (F1–F4) between two chromosomal races of the Wood White butterfly Leptidea sinapis differentiated by at least 24 chromosomal fusions/fissions. Previous work showed that these hybrids were fertile, although their fertility was reduced as compared to crosses within chromosomal races. We demonstrate that (i) F1 hybrids are highly heterozygous with nearly all chromosomes participating in the formation of trivalents at the first meiotic division, and (ii) that from F1 to F4 the number of trivalents decreases and the number of bivalents increases. We argue that the observed process of chromosome sorting would, if continued, result in a new homozygous chromosomal race, i.e., in a new karyotype with intermediate chromosome number and, possibly, in a new incipient homoploid hybrid species. We also discuss the segregational model of karyotype evolution and the chromosomal model of homoploid hybrid speciation.
Collapse
Affiliation(s)
- Vladimir A Lukhtanov
- Department of Karyosystematics, Zoological Institute of Russian Academy of Sciences, Saint Petersburg, Russia
| | - Vlad Dincă
- Ecology and Genetics Research Unit, University of Oulu, Oulu, Finland.,Institut de Biologia Evolutiva (CSIC-Universitat Pompeu Fabra), Barcelona, Spain
| | - Magne Friberg
- Biodiversity Unit, Department of Biology, Lund University, Lund, Sweden
| | - Roger Vila
- Institut de Biologia Evolutiva (CSIC-Universitat Pompeu Fabra), Barcelona, Spain
| | | |
Collapse
|
31
|
Bulatova NS, Nadzhafova RS, Kostin DS, Lavrenchenko L, Spangenberg VE. Tandem Fusions in Evolution of Ethiopian Endemic Rodents. RUSS J GENET+ 2020. [DOI: 10.1134/s1022795420090045] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
32
|
Nicolas V, Gerbault-Seureau M, Delapre A, Bed'Hom B. Small mammal inventory in the Lama forest reserve (south Benin), with new cytogenetical data. JOURNAL OF VERTEBRATE BIOLOGY 2020. [DOI: 10.25225/jvb.20009] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022]
Affiliation(s)
- Violaine Nicolas
- Institut de Systématique, Evolution, Biodiversité (ISYEB), Muséum national d'Histoire naturelle, CNRS, Sorbonne Université, EPHE, Université des Antilles, CP51, 57 rue Cuvier, 75005 Paris, France; e-mail: , michele.gerbault-seur
| | - Michèle Gerbault-Seureau
- Institut de Systématique, Evolution, Biodiversité (ISYEB), Muséum national d'Histoire naturelle, CNRS, Sorbonne Université, EPHE, Université des Antilles, CP51, 57 rue Cuvier, 75005 Paris, France; e-mail: , michele.gerbault-seur
| | - Arnaud Delapre
- Institut de Systématique, Evolution, Biodiversité (ISYEB), Muséum national d'Histoire naturelle, CNRS, Sorbonne Université, EPHE, Université des Antilles, CP51, 57 rue Cuvier, 75005 Paris, France; e-mail: , michele.gerbault-seur
| | - Bertrand Bed'Hom
- Institut de Systématique, Evolution, Biodiversité (ISYEB), Muséum national d'Histoire naturelle, CNRS, Sorbonne Université, EPHE, Université des Antilles, CP51, 57 rue Cuvier, 75005 Paris, France; e-mail: , michele.gerbault-seur
| |
Collapse
|
33
|
Volleth M, Volleth M, Müller S, Anwarali Khan FA, Yong HS, Heller KG, Baker RJ, Ray DA, Sotero-Caio CG. Cytogenetic Investigations in Emballonuroidea. I. Taphozoinae and Emballonurinae Karyotypes Evolve at Different Rates and Share No Derived Chromosomal Characters. ACTA CHIROPTEROLOGICA 2020. [DOI: 10.3161/15081109acc2019.21.2.002] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Affiliation(s)
- Marianne Volleth
- Department of Human Genetics, Otto-von-Guericke University, Leipziger Strasse 44, 39120 Magdeburg, Germany
| | - Marianne Volleth
- Department of Human Genetics, Otto-von-Guericke University, Leipziger Strasse 44, 39120 Magdeburg, Germany
| | - Stefan Müller
- Institute of Human Genetics, Munich University Hospital, Ludwig-Maximilians University, Goethestrasse 29, 80336 Munich, Germany
| | - Faisal A. Anwarali Khan
- Faculty of Resource Science and Technology, Universiti Malaysia Sarawak, 94300 Kota Samarahan, Sarawak, Malaysia
| | - Hoi-Sen Yong
- Institute of Biological Sciences, University of Malaya, 50603 Kuala Lumpur, Malaysia
| | | | - Robert J. Baker
- Department of Biological Sciences, Texas Tech University, 2901 Main Street, 79409-43131, Lubbock, Texas, USA
| | - David A Ray
- Department of Biological Sciences, Texas Tech University, 2901 Main Street, 79409-43131, Lubbock, Texas, USA
| | - Cibele G. Sotero-Caio
- Department of Biological Sciences, Texas Tech University, 2901 Main Street, 79409-43131, Lubbock, Texas, USA
| |
Collapse
|
34
|
Chromosomal Differentiation in Genetically Isolated Populations of the Marsh-Specialist Crocidura suaveolens (Mammalia: Soricidae). Genes (Basel) 2020; 11:genes11030270. [PMID: 32131436 PMCID: PMC7140822 DOI: 10.3390/genes11030270] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2020] [Revised: 02/26/2020] [Accepted: 02/27/2020] [Indexed: 12/12/2022] Open
Abstract
The genus Crocidura represents a remarkable model for the study of chromosome evolution. This is the case of the lesser white-toothed shrew (Crocidura suaveolens), a representative of the Palearctic group. Although continuously distributed from Siberia to Central Europe, C. suaveolens is a rare, habitat-specialist species in the southwesternmost limit of its distributional range, in the Gulf of Cádiz (Iberian Peninsula). In this area, C. suaveolens is restricted to genetically isolated populations associated to the tidal marches of five rivers (Guadiana, Piedras, Odiel, Tinto and Guadalquivir). This particular distributional range provides a unique opportunity to investigate whether genetic differentiation and habitat specialization was accompanied by chromosomal variation. In this context, the main objective of this study was to determinate the chromosomal characteristics of the habitat-specialist C. suaveolens in Southwestern Iberia, as a way to understand the evolutionary history of this species in the Iberian Peninsula. A total of 41 individuals from six different populations across the Gulf of Cádiz were collected and cytogenetically characterized. We detected four different karyotypes, with diploid numbers (2n) ranging from 2n = 40 to 2n = 43. Two of them (2n = 41 and 2n = 43) were characterized by the presence of B-chromosomes. The analysis of karyotype distribution across lineages and populations revealed an association between mtDNA population divergence and chromosomal differentiation. C. suaveolens populations in the Gulf of Cádiz provide a rare example of true karyotypic polymorphism potentially associated to genetic isolation and habitat specialization in which to investigate the evolutionary significance of chromosomal variation in mammals and their contribution to phenotypic and ecological divergence.
Collapse
|
35
|
Romanenko SA, Lyapunova EA, Saidov AS, O'Brien PCM, Serdyukova NA, Ferguson-Smith MA, Graphodatsky AS, Bakloushinskaya I. Chromosome Translocations as a Driver of Diversification in Mole Voles Ellobius (Rodentia, Mammalia). Int J Mol Sci 2019; 20:E4466. [PMID: 31510061 PMCID: PMC6769443 DOI: 10.3390/ijms20184466] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2019] [Revised: 09/04/2019] [Accepted: 09/09/2019] [Indexed: 12/23/2022] Open
Abstract
The involvement of chromosome changes in the initial steps of speciation is controversial. Here we examine diversification trends within the mole voles Ellobius, a group of subterranean rodents. The first description of their chromosome variability was published almost 40 years ago. Studying the G-band structure of chromosomes in numerous individuals revealed subsequent homologous, step-by-step, Robertsonian translocations, which changed diploid numbers from 54 to 30. Here we used a molecular cytogenetic strategy which demonstrates that chromosomal translocations are not always homologous; consequently, karyotypes with the same diploid number can carry different combinations of metacentrics. We further showed that at least three chromosomal forms with 2n = 34 and distinct metacentrics inhabit the Pamir-Alay mountains. Each of these forms independently hybridized with E. tancrei, 2n = 54, forming separate hybrid zones. The chromosomal variations correlate slightly with geographic barriers. Additionally, we confirmed that the emergence of partial or monobrachial homology appeared to be a strong barrier for hybridization in nature, in contradistinction to experiments which we reported earlier. We discuss the possibility of whole arm reciprocal translocations for mole voles. Our findings suggest that chromosomal translocations lead to diversification and speciation.
Collapse
Affiliation(s)
- Svetlana A Romanenko
- Institute of Molecular and Cellular Biology, Siberian Branch, Russian Academy of Sciences, 630090 Novosibirsk, Russia.
- Department of Natural Sciences, Novosibirsk State University, 630090 Novosibirsk, Russia.
| | - Elena A Lyapunova
- Koltzov Institute of Developmental Biology, Russian Academy of Sciences, 119334 Moscow, Russia.
| | - Abdusattor S Saidov
- Institute of Zoology and Parasitology, Academy of Sciences of Tajikistan, Dushanbe 734025, Tajikistan.
| | - Patricia C M O'Brien
- Cambridge Resource Centre for Comparative Genomics, Department of Veterinary Medicine, University of Cambridge, Cambridge, CB3 0ES, UK
| | - Natalia A Serdyukova
- Institute of Molecular and Cellular Biology, Siberian Branch, Russian Academy of Sciences, 630090 Novosibirsk, Russia.
| | - Malcolm A Ferguson-Smith
- Cambridge Resource Centre for Comparative Genomics, Department of Veterinary Medicine, University of Cambridge, Cambridge, CB3 0ES, UK
| | - Alexander S Graphodatsky
- Institute of Molecular and Cellular Biology, Siberian Branch, Russian Academy of Sciences, 630090 Novosibirsk, Russia.
- Department of Natural Sciences, Novosibirsk State University, 630090 Novosibirsk, Russia.
| | - Irina Bakloushinskaya
- Koltzov Institute of Developmental Biology, Russian Academy of Sciences, 119334 Moscow, Russia.
| |
Collapse
|
36
|
Kartavtseva IV, Vasilieva TV, Sheremetyeva IN, Lemskaya NA, Moroldoev IV, Golenishchev FN. Genetic Variability of Three Isolated Populations of the Muya Valley Vole Alexandromys mujanensis Orlov et Kovalskaja, 1978 (Rodentia, Arvicolinae). RUSS J GENET+ 2019. [DOI: 10.1134/s1022795419080076] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
37
|
Bakloushinskaya I, Lyapunova EA, Saidov AS, Romanenko SA, O’Brien PC, Serdyukova NA, Ferguson-Smith MA, Matveevsky S, Bogdanov AS. Rapid chromosomal evolution in enigmatic mammal with XX in both sexes, the Alay mole vole Ellobiusalaicus Vorontsov et al., 1969 (Mammalia, Rodentia). COMPARATIVE CYTOGENETICS 2019; 13:147-177. [PMID: 31275526 PMCID: PMC6597615 DOI: 10.3897/compcytogen.v13i2.34224] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/01/2019] [Accepted: 05/28/2019] [Indexed: 06/01/2023]
Abstract
Evolutionary history and taxonomic position for cryptic species may be clarified by using molecular and cytogenetic methods. The subterranean rodent, the Alay mole vole Ellobiusalaicus Vorontsov et al., 1969 is one of three sibling species constituting the subgenus Ellobius Fischer, 1814, all of which lost the Y chromosome and obtained isomorphic XX sex chromosomes in both males and females. E.alaicus is evaluated by IUCN as a data deficient species because their distribution, biology, and genetics are almost unknown. We revealed specific karyotypic variability (2n = 52-48) in E.alaicus due to different Robertsonian translocations (Rbs). Two variants of hybrids (2n = 53, different Rbs) with E.tancrei Blasius, 1884 were found at the Northern slopes of the Alay Ridge and in the Naryn district, Kyrgyzstan. We described the sudden change in chromosome numbers from 2n = 50 to 48 and specific karyotype structure for mole voles, which inhabit the entrance to the Alay Valley (Tajikistan), and revealed their affiliation as E.alaicus by cytochrome b and fragments of nuclear XIST and Rspo1 genes sequencing. To date, it is possible to expand the range of E.alaicus from the Alay Valley (South Kyrgyzstan) up to the Ferghana Ridge and the Naryn Basin, Tien Shan at the north-east and to the Pamir-Alay Mountains (Tajikistan) at the west. The closeness of E.tancrei and E.alaicus is supported, whereas specific chromosome and molecular changes, as well as geographic distribution, verified the species status for E.alaicus. The case of Ellobius species accented an unevenness in rates of chromosome and nucleotide changes along with morphological similarity, which is emblematic for cryptic species.
Collapse
Affiliation(s)
- Irina Bakloushinskaya
- Koltzov Institute of Developmental Biology, Russian Academy of Sciences, Moscow, RussiaKoltzov Institute of Developmental Biology, Russian Academy of SciencesMoscowRussia
| | - Elena A. Lyapunova
- Koltzov Institute of Developmental Biology, Russian Academy of Sciences, Moscow, RussiaKoltzov Institute of Developmental Biology, Russian Academy of SciencesMoscowRussia
| | - Abdusattor S. Saidov
- Pavlovsky Institute of Zoology and Parasitology, Academy of Sciences of Republic of Tajikistan, Dushanbe, TajikistanPavlovsky Institute of Zoology and Parasitology, Academy of Sciences of Republic of TajikistanDushanbeTajikistan
| | - Svetlana A. Romanenko
- Institute of Molecular and Cellular Biology, Siberian Branch RAS, Novosibirsk, RussiaInstitute of Molecular and Cellular Biology, Siberian Branch of Russian Academy of SciencesNovosibirskRussia
- Novosibirsk State University, Novosibirsk, RussiaNovosibirsk State UniversityNovosibirskRussia
| | - Patricia C.M. O’Brien
- Cambridge Resource Centre for Comparative Genomics, Department of Veterinary Medicine, University of Cambridge, Cambridge, UKUniversity of CambridgeCambridgeUnited Kingdom
| | - Natalia A. Serdyukova
- Institute of Molecular and Cellular Biology, Siberian Branch RAS, Novosibirsk, RussiaInstitute of Molecular and Cellular Biology, Siberian Branch of Russian Academy of SciencesNovosibirskRussia
| | - Malcolm A. Ferguson-Smith
- Cambridge Resource Centre for Comparative Genomics, Department of Veterinary Medicine, University of Cambridge, Cambridge, UKUniversity of CambridgeCambridgeUnited Kingdom
| | - Sergey Matveevsky
- Vavilov Institute of General Genetics, Russian Academy of Sciences, Moscow, RussiaVavilov Institute of General Genetics, Russian Academy of SciencesMoscowRussia
| | - Alexey S. Bogdanov
- Koltzov Institute of Developmental Biology, Russian Academy of Sciences, Moscow, RussiaKoltzov Institute of Developmental Biology, Russian Academy of SciencesMoscowRussia
| |
Collapse
|
38
|
Bikchurina TI, Tomgorova EK, Torgasheva AA, Bagirov VA, Volkova NA, Borodin PM. Chromosome synapsis, recombination and epigenetic modification in rams heterozygous for metacentric chromosome 3 of the domestic sheep Ovis aries and acrocentric homologs of the argali Ovis ammon. Vavilovskii Zhurnal Genet Selektsii 2019. [DOI: 10.18699/vj19.502] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022] Open
Abstract
Hybridization of domestic animal breeds with their wild relatives is a promising method for increasing the genetic diversity of farm animals. Resource populations derived from the hybridization of various breeds of domestic sheep with mouflon and argali are an important source of breeding material. The karyotypes of argali and domestic sheep differ for a Robertsonian translocation, which occurred in the common ancestor of mouflon and domestic sheep (Ovis aries) due to the centric fusion of chromosomes 5 and 11 of the argali (O. ammon) into chromosome 3 of sheep. It is known that heterozygosity for translocation can lead to synapsis, recombination and chromosome segregation abnormalities in meiosis. Meiosis in the heterozygotes for translocation that distinguishes the karyotypes of sheep and argali has not yet been studied. We examined synapsis, recombination, and epigenetic modification of chromosomes involved in this rearrangement in heterozygous rams using immunolocalization of key proteins of meiosis. In the majority of cells, we observed complete synapsis between the sheep metacentric chromosome and two argali acrocentric chromosomes with the formation of a trivalent. In a small proportion of cells at the early pachytene stage we observed delayed synapsis in pericentromeric regions of the trivalent. Unpaired sites were subjected to epigenetic modification, namely histone H2A.X phosphorylation. However, by the end of the pachytene, these abnormalities had been completely eliminated. Asynapsis was replaced by a nonhomologous synapsis between the centromeric regions of the acrocentric chromosomes. By the end of the pachytene, the γH2A.X signal had been preserved only at the XY bivalent and was absent from the trivalent. The translocation trivalent did not differ from the normal bivalents of metacentric chromosomes for the number and distribution of recombination sites as well as for the degree of centromeric and crossover interference. Thus, we found that heterozygosity for the domestic sheep chromosome 3 and argali chromosomes 5 and 11 does not cause significant alterations in key processes of prophase I meiosis and, therefore, should not lead to a decrease in fertility of the offspring from interspecific sheep hybridization.
Collapse
Affiliation(s)
- T. I. Bikchurina
- Institute of Cytology and Genetics, SB RAS; Novosibirsk State University; Federal Scientific Center for Animal Husbandry – VIZH named after academician L.K. Ernst
| | - E. K. Tomgorova
- Federal Scientific Center for Animal Husbandry – VIZH named after academician L.K. Ernst
| | - A. A. Torgasheva
- Institute of Cytology and Genetics, SB RAS; Novosibirsk State University; Federal Scientific Center for Animal Husbandry – VIZH named after academician L.K. Ernst
| | - V. A. Bagirov
- Federal Scientific Center for Animal Husbandry – VIZH named after academician L.K. Ernst
| | - N. A. Volkova
- Federal Scientific Center for Animal Husbandry – VIZH named after academician L.K. Ernst
| | - P. M. Borodin
- Institute of Cytology and Genetics, SB RAS; Novosibirsk State University; Federal Scientific Center for Animal Husbandry – VIZH named after academician L.K. Ernst
| |
Collapse
|
39
|
Matur F, Yanchukov A, Çolak F, Sözen M. Two major clades of blind mole rats (Nannospalax sp.) revealed by mtDNA and microsatellite genotyping in Western and Central Turkey. Mamm Biol 2019. [DOI: 10.1016/j.mambio.2018.11.004] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
|
40
|
Wellband K, Mérot C, Linnansaari T, Elliott JAK, Curry RA, Bernatchez L. Chromosomal fusion and life history-associated genomic variation contribute to within-river local adaptation of Atlantic salmon. Mol Ecol 2018; 28:1439-1459. [PMID: 30506831 DOI: 10.1111/mec.14965] [Citation(s) in RCA: 42] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2018] [Revised: 11/01/2018] [Accepted: 11/02/2018] [Indexed: 12/30/2022]
Abstract
Chromosomal inversions have been implicated in facilitating adaptation in the face of high levels of gene flow, but whether chromosomal fusions also have similar potential remains poorly understood. Atlantic salmon are usually characterized by population structure at multiple spatial scales; however, this is not the case for tributaries of the Miramichi River in North America. To resolve genetic relationships between populations in this system and the potential for known chromosomal fusions to contribute to adaptation, we genotyped 728 juvenile salmon using a 50 K SNP array. Consistent with previous work, we report extremely weak overall population structuring (Global FST = 0.004) and failed to support hierarchical structure between the river's two main branches. We provide the first genomic characterization of a previously described polymorphic fusion between chromosomes 8 and 29. Fusion genomic characteristics included high LD, reduced heterozygosity in the fused homokaryotes, and strong divergence between the fused and the unfused rearrangement. Population structure based on fusion karyotype was five times stronger than neutral variation (FST = 0.019), and the frequency of the fusion was associated with summer precipitation supporting a hypothesis that this rearrangement may contribute local adaptation despite weak neutral differentiation. Additionally, both outlier variation among populations and a polygenic framework for characterizing adaptive variation in relation to climate identified a 250-Kb region of chromosome 9, including the gene six6 that has previously been linked to age-at-maturity and run-timing for this species. Overall, our results indicate that adaptive processes, independent of major river branching, are more important than neutral processes for structuring these populations.
Collapse
Affiliation(s)
- Kyle Wellband
- Canadian Rivers Institute, Department of Biology, University of New Brunswick, Fredericton, New Brunswick, Canada.,Institut de Biologie Intégrative et des Systèmes, Université Laval, Québec, Quebec, Canada
| | - Claire Mérot
- Institut de Biologie Intégrative et des Systèmes, Université Laval, Québec, Quebec, Canada
| | - Tommi Linnansaari
- Canadian Rivers Institute, Department of Biology, University of New Brunswick, Fredericton, New Brunswick, Canada.,Faculty of Forestry and Environmental Management, University of New Brunswick, Fredericton, New Brunswick, Canada
| | - J A K Elliott
- Cooke Aquaculture Inc, Oak Bay, New Brunswick, Canada
| | - R Allen Curry
- Canadian Rivers Institute, Department of Biology, University of New Brunswick, Fredericton, New Brunswick, Canada.,Faculty of Forestry and Environmental Management, University of New Brunswick, Fredericton, New Brunswick, Canada
| | - Louis Bernatchez
- Institut de Biologie Intégrative et des Systèmes, Université Laval, Québec, Quebec, Canada
| |
Collapse
|
41
|
O’Connor RE, Farré M, Joseph S, Damas J, Kiazim L, Jennings R, Bennett S, Slack EA, Allanson E, Larkin DM, Griffin DK. Chromosome-level assembly reveals extensive rearrangement in saker falcon and budgerigar, but not ostrich, genomes. Genome Biol 2018; 19:171. [PMID: 30355328 PMCID: PMC6201548 DOI: 10.1186/s13059-018-1550-x] [Citation(s) in RCA: 46] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2018] [Accepted: 09/24/2018] [Indexed: 01/23/2023] Open
Abstract
BACKGROUND The number of de novo genome sequence assemblies is increasing exponentially; however, relatively few contain one scaffold/contig per chromosome. Such assemblies are essential for studies of genotype-to-phenotype association, gross genomic evolution, and speciation. Inter-species differences can arise from chromosomal changes fixed during evolution, and we previously hypothesized that a higher fraction of elements under negative selection contributed to avian-specific phenotypes and avian genome organization stability. The objective of this study is to generate chromosome-level assemblies of three avian species (saker falcon, budgerigar, and ostrich) previously reported as karyotypically rearranged compared to most birds. We also test the hypothesis that the density of conserved non-coding elements is associated with the positions of evolutionary breakpoint regions. RESULTS We used reference-assisted chromosome assembly, PCR, and lab-based molecular approaches, to generate chromosome-level assemblies of the three species. We mapped inter- and intrachromosomal changes from the avian ancestor, finding no interchromosomal rearrangements in the ostrich genome, despite it being previously described as chromosomally rearranged. We found that the average density of conserved non-coding elements in evolutionary breakpoint regions is significantly reduced. Fission evolutionary breakpoint regions have the lowest conserved non-coding element density, and intrachromomosomal evolutionary breakpoint regions have the highest. CONCLUSIONS The tools used here can generate inexpensive, efficient chromosome-level assemblies, with > 80% assigned to chromosomes, which is comparable to genomes assembled using high-density physical or genetic mapping. Moreover, conserved non-coding elements are important factors in defining where rearrangements, especially interchromosomal, are fixed during evolution without deleterious effects.
Collapse
Affiliation(s)
| | - Marta Farré
- Department of Comparative Biomedical Sciences, Royal Veterinary College, University of London, London, UK
| | - Sunitha Joseph
- School of Biosciences, University of Kent, Canterbury, UK
| | - Joana Damas
- Department of Comparative Biomedical Sciences, Royal Veterinary College, University of London, London, UK
| | - Lucas Kiazim
- School of Biosciences, University of Kent, Canterbury, UK
| | | | - Sophie Bennett
- School of Biosciences, University of Kent, Canterbury, UK
| | - Eden A Slack
- Department of Comparative Biomedical Sciences, Royal Veterinary College, University of London, London, UK
| | - Emily Allanson
- Department of Comparative Biomedical Sciences, Royal Veterinary College, University of London, London, UK
| | - Denis M Larkin
- Department of Comparative Biomedical Sciences, Royal Veterinary College, University of London, London, UK
| | | |
Collapse
|
42
|
Versatility of multivalent orientation, inverted meiosis, and rescued fitness in holocentric chromosomal hybrids. Proc Natl Acad Sci U S A 2018; 115:E9610-E9619. [PMID: 30266792 DOI: 10.1073/pnas.1802610115] [Citation(s) in RCA: 49] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022] Open
Abstract
Chromosomal rearrangements (e.g., fusions/fissions) have the potential to drive speciation. However, their accumulation in a population is generally viewed as unlikely, because chromosomal heterozygosity should lead to meiotic problems and aneuploid gametes. Canonical meiosis involves segregation of homologous chromosomes in meiosis I and sister chromatid segregation during meiosis II. In organisms with holocentric chromosomes, which are characterized by kinetic activity distributed along almost the entire chromosome length, this order may be inverted depending on their metaphase I orientation. Here we analyzed the evolutionary role of this intrinsic versatility of holocentric chromosomes, which is not available to monocentric ones, by studying F1 to F4 hybrids between two chromosomal races of the Wood White butterfly (Leptidea sinapis), separated by at least 24 chromosomal fusions/fissions. We found that these chromosomal rearrangements resulted in multiple meiotic multivalents, and, contrary to the theoretical prediction, the hybrids displayed relatively high reproductive fitness (42% of that of the control lines) and regular behavior of meiotic chromosomes. In the hybrids, we also discovered inverted meiosis, in which the first and critical stage of chromosome number reduction was replaced by the less risky stage of sister chromatid separation. We hypothesize that the ability to invert the order of the main meiotic events facilitates proper chromosome segregation and hence rescues fertility and viability in chromosomal hybrids, potentially promoting dynamic karyotype evolution and chromosomal speciation.
Collapse
|
43
|
Carta A, Bedini G, Peruzzi L. Unscrambling phylogenetic effects and ecological determinants of chromosome number in major angiosperm clades. Sci Rep 2018; 8:14258. [PMID: 30250220 PMCID: PMC6155329 DOI: 10.1038/s41598-018-32515-x] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2017] [Accepted: 09/10/2018] [Indexed: 11/09/2022] Open
Abstract
As variations in the chromosome number are recognized to be of evolutionary interest but are also widely debated in the literature, we aimed to quantitatively test for possible relationships among the chromosome number, plant traits, and environmental factors. In particular, the chromosome number and drivers of its variation were examined in 801 Italian endemic vascular plants, for a total of 1364 accessions. We estimated phylogenetic inertia and adaptation in chromosome number - based on an Ornstein-Uhlenbeck process - and related chromosome numbers with other plant traits and environmental variables. Phylogenetic effects in chromosome number varied among the examined clades but were generally high. Chromosome numbers were poorly related to large scale climatic conditions, while a stronger relationship with categorical variables was found. Specifically, open, disturbed, drought-prone habitats selected for low chromosome numbers, while perennial herbs, living in shaded, stable environments were associated with high chromosome numbers. Altogether, our findings support an evolutionary role of chromosome number variation, and we argue that environmental stability favours higher recombination rates in comparison to unstable environments. In addition, by comparing the results of models testing for the evolvability of 2n and of x, we provide insight into the presumptive ecological significance of polyploidy.
Collapse
Affiliation(s)
- Angelino Carta
- Department of Biology, Unit of Botany, University of Pisa, via Derna 1, 56126, Pisa, Italy.
| | - Gianni Bedini
- Department of Biology, Unit of Botany, University of Pisa, via Derna 1, 56126, Pisa, Italy
| | - Lorenzo Peruzzi
- Department of Biology, Unit of Botany, University of Pisa, via Derna 1, 56126, Pisa, Italy
| |
Collapse
|
44
|
Adega F, Matoso Silva R, Kjöllerström HJ, Vercammen P, Raudsepp T, Collares-Pereira MJ, Fernandes C, do Mar Oom M, Chaves R. Comparative Chromosome Painting in Genets (Carnivora, Viverridae, Genetta), the Only Known Feliforms with a Highly Rearranged Karyotype. Cytogenet Genome Res 2018; 156:35-44. [PMID: 30086546 DOI: 10.1159/000491868] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 03/26/2018] [Indexed: 11/19/2022] Open
Abstract
Mammalian carnivores have been extensively studied by cross-species chromosome painting, which indicated a high degree of karyotypic conservatism in the cat-like suborder Feliformia relative to the ancestral carnivore karyotype (ACK). The first exception to this high degree of karyotypic conservation in feliforms was recently confirmed in genets, mesocarnivores belonging to the basal family Viverridae. Here, we present a comparative analysis of the chromosome rearrangements among 2 subspecies of the small-spotted genet Genetta genetta (the Iberian nominate and the Arabian grantii) and the panther genet G. maculata, the 2 most common and widespread genets, using whole-chromosome paints from the domestic cat (Felis catus). The chromosome homology maps and the presence of numerous interstitial telomeric sites in both genet species strengthen the hypothesis that a highly rearranged karyotype compared to the ACK may occur throughout Genetta. The karyotype of G. maculata appears to have undergone more rearrangements than that of G. genetta, which is an older lineage. Notably, we identified a tandem fusion distinguishing G. g. genetta and G. g.grantii. As G. g. grantii is morphologically and genetically distinctive, and tandem fusions have been associated with substantial postzygotic isolation in mammals, this cytogenetic finding flags the subspecies for future taxonomic investigations.
Collapse
|
45
|
Thybert D, Roller M, Navarro FCP, Fiddes I, Streeter I, Feig C, Martin-Galvez D, Kolmogorov M, Janoušek V, Akanni W, Aken B, Aldridge S, Chakrapani V, Chow W, Clarke L, Cummins C, Doran A, Dunn M, Goodstadt L, Howe K, Howell M, Josselin AA, Karn RC, Laukaitis CM, Jingtao L, Martin F, Muffato M, Nachtweide S, Quail MA, Sisu C, Stanke M, Stefflova K, Van Oosterhout C, Veyrunes F, Ward B, Yang F, Yazdanifar G, Zadissa A, Adams DJ, Brazma A, Gerstein M, Paten B, Pham S, Keane TM, Odom DT, Flicek P. Repeat associated mechanisms of genome evolution and function revealed by the Mus caroli and Mus pahari genomes. Genome Res 2018; 28:448-459. [PMID: 29563166 PMCID: PMC5880236 DOI: 10.1101/gr.234096.117] [Citation(s) in RCA: 78] [Impact Index Per Article: 11.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2017] [Accepted: 03/05/2018] [Indexed: 12/31/2022]
Abstract
Understanding the mechanisms driving lineage-specific evolution in both primates and rodents has been hindered by the lack of sister clades with a similar phylogenetic structure having high-quality genome assemblies. Here, we have created chromosome-level assemblies of the Mus caroli and Mus pahari genomes. Together with the Mus musculus and Rattus norvegicus genomes, this set of rodent genomes is similar in divergence times to the Hominidae (human-chimpanzee-gorilla-orangutan). By comparing the evolutionary dynamics between the Muridae and Hominidae, we identified punctate events of chromosome reshuffling that shaped the ancestral karyotype of Mus musculus and Mus caroli between 3 and 6 million yr ago, but that are absent in the Hominidae. Hominidae show between four- and sevenfold lower rates of nucleotide change and feature turnover in both neutral and functional sequences, suggesting an underlying coherence to the Muridae acceleration. Our system of matched, high-quality genome assemblies revealed how specific classes of repeats can play lineage-specific roles in related species. Recent LINE activity has remodeled protein-coding loci to a greater extent across the Muridae than the Hominidae, with functional consequences at the species level such as reproductive isolation. Furthermore, we charted a Muridae-specific retrotransposon expansion at unprecedented resolution, revealing how a single nucleotide mutation transformed a specific SINE element into an active CTCF binding site carrier specifically in Mus caroli, which resulted in thousands of novel, species-specific CTCF binding sites. Our results show that the comparison of matched phylogenetic sets of genomes will be an increasingly powerful strategy for understanding mammalian biology.
Collapse
Affiliation(s)
- David Thybert
- European Molecular Biology Laboratory, European Bioinformatics Institute, Wellcome Genome Campus, Hinxton, Cambridge CB10 1SD, United Kingdom
- Earlham Institute, Norwich Research Park, Norwich NR4 7UH, United Kingdom
| | - Maša Roller
- European Molecular Biology Laboratory, European Bioinformatics Institute, Wellcome Genome Campus, Hinxton, Cambridge CB10 1SD, United Kingdom
| | - Fábio C P Navarro
- Yale University Medical School, Computational Biology and Bioinformatics Program, New Haven, Connecticut 06520, USA
| | - Ian Fiddes
- Department of Biomolecular Engineering, University of California, Santa Cruz, California 95064, USA
| | - Ian Streeter
- European Molecular Biology Laboratory, European Bioinformatics Institute, Wellcome Genome Campus, Hinxton, Cambridge CB10 1SD, United Kingdom
| | - Christine Feig
- University of Cambridge, Cancer Research UK Cambridge Institute, Robinson Way, Cambridge CB2 0RE, United Kingdom
| | - David Martin-Galvez
- European Molecular Biology Laboratory, European Bioinformatics Institute, Wellcome Genome Campus, Hinxton, Cambridge CB10 1SD, United Kingdom
| | - Mikhail Kolmogorov
- Department of Computer Science and Engineering, University of California, San Diego, La Jolla, California 92092, USA
| | - Václav Janoušek
- Department of Zoology, Faculty of Science, Charles University in Prague, 128 44 Prague, Czech Republic
| | - Wasiu Akanni
- European Molecular Biology Laboratory, European Bioinformatics Institute, Wellcome Genome Campus, Hinxton, Cambridge CB10 1SD, United Kingdom
| | - Bronwen Aken
- European Molecular Biology Laboratory, European Bioinformatics Institute, Wellcome Genome Campus, Hinxton, Cambridge CB10 1SD, United Kingdom
| | - Sarah Aldridge
- University of Cambridge, Cancer Research UK Cambridge Institute, Robinson Way, Cambridge CB2 0RE, United Kingdom
- Wellcome Sanger Institute, Wellcome Genome Campus, Hinxton, Cambridge, CB10 1SA, United Kingdom
| | - Varshith Chakrapani
- European Molecular Biology Laboratory, European Bioinformatics Institute, Wellcome Genome Campus, Hinxton, Cambridge CB10 1SD, United Kingdom
| | - William Chow
- Wellcome Sanger Institute, Wellcome Genome Campus, Hinxton, Cambridge, CB10 1SA, United Kingdom
| | - Laura Clarke
- European Molecular Biology Laboratory, European Bioinformatics Institute, Wellcome Genome Campus, Hinxton, Cambridge CB10 1SD, United Kingdom
| | - Carla Cummins
- European Molecular Biology Laboratory, European Bioinformatics Institute, Wellcome Genome Campus, Hinxton, Cambridge CB10 1SD, United Kingdom
| | - Anthony Doran
- Wellcome Sanger Institute, Wellcome Genome Campus, Hinxton, Cambridge, CB10 1SA, United Kingdom
| | - Matthew Dunn
- Wellcome Sanger Institute, Wellcome Genome Campus, Hinxton, Cambridge, CB10 1SA, United Kingdom
| | - Leo Goodstadt
- Wellcome Trust Centre for Human Genetics, Oxford OX3 7BN, United Kingdom
| | - Kerstin Howe
- Yale University Medical School, Computational Biology and Bioinformatics Program, New Haven, Connecticut 06520, USA
| | - Matthew Howell
- European Molecular Biology Laboratory, European Bioinformatics Institute, Wellcome Genome Campus, Hinxton, Cambridge CB10 1SD, United Kingdom
| | - Ambre-Aurore Josselin
- European Molecular Biology Laboratory, European Bioinformatics Institute, Wellcome Genome Campus, Hinxton, Cambridge CB10 1SD, United Kingdom
| | - Robert C Karn
- Department of Medicine, College of Medicine, University of Arizona, Tuscon, Arizona 85724, USA
| | - Christina M Laukaitis
- Department of Medicine, College of Medicine, University of Arizona, Tuscon, Arizona 85724, USA
| | - Lilue Jingtao
- Wellcome Sanger Institute, Wellcome Genome Campus, Hinxton, Cambridge, CB10 1SA, United Kingdom
| | - Fergal Martin
- European Molecular Biology Laboratory, European Bioinformatics Institute, Wellcome Genome Campus, Hinxton, Cambridge CB10 1SD, United Kingdom
| | - Matthieu Muffato
- European Molecular Biology Laboratory, European Bioinformatics Institute, Wellcome Genome Campus, Hinxton, Cambridge CB10 1SD, United Kingdom
| | - Stefanie Nachtweide
- Institute of Mathematics and Computer Science, University of Greifswald, Greifswald 17487, Germany
| | - Michael A Quail
- Wellcome Sanger Institute, Wellcome Genome Campus, Hinxton, Cambridge, CB10 1SA, United Kingdom
| | - Cristina Sisu
- Yale University Medical School, Computational Biology and Bioinformatics Program, New Haven, Connecticut 06520, USA
| | - Mario Stanke
- Institute of Mathematics and Computer Science, University of Greifswald, Greifswald 17487, Germany
| | - Klara Stefflova
- University of Cambridge, Cancer Research UK Cambridge Institute, Robinson Way, Cambridge CB2 0RE, United Kingdom
| | - Cock Van Oosterhout
- School of Environmental Sciences, University of East Anglia, Norwich Research Park, Norwich NR4 7TJ, United Kingdom
| | - Frederic Veyrunes
- Institut des Sciences de l'Evolution de Montpellier, Université Montpellier/CNRS, 34095 Montpellier, France
| | - Ben Ward
- Earlham Institute, Norwich Research Park, Norwich NR4 7UH, United Kingdom
| | - Fengtang Yang
- Wellcome Sanger Institute, Wellcome Genome Campus, Hinxton, Cambridge, CB10 1SA, United Kingdom
| | - Golbahar Yazdanifar
- Department of Medicine, College of Medicine, University of Arizona, Tuscon, Arizona 85724, USA
| | - Amonida Zadissa
- European Molecular Biology Laboratory, European Bioinformatics Institute, Wellcome Genome Campus, Hinxton, Cambridge CB10 1SD, United Kingdom
| | - David J Adams
- Wellcome Sanger Institute, Wellcome Genome Campus, Hinxton, Cambridge, CB10 1SA, United Kingdom
| | - Alvis Brazma
- European Molecular Biology Laboratory, European Bioinformatics Institute, Wellcome Genome Campus, Hinxton, Cambridge CB10 1SD, United Kingdom
| | - Mark Gerstein
- Yale University Medical School, Computational Biology and Bioinformatics Program, New Haven, Connecticut 06520, USA
| | - Benedict Paten
- Department of Biomolecular Engineering, University of California, Santa Cruz, California 95064, USA
| | - Son Pham
- Bioturing Inc, San Diego, California 92121, USA
| | - Thomas M Keane
- European Molecular Biology Laboratory, European Bioinformatics Institute, Wellcome Genome Campus, Hinxton, Cambridge CB10 1SD, United Kingdom
- Wellcome Sanger Institute, Wellcome Genome Campus, Hinxton, Cambridge, CB10 1SA, United Kingdom
| | - Duncan T Odom
- University of Cambridge, Cancer Research UK Cambridge Institute, Robinson Way, Cambridge CB2 0RE, United Kingdom
- Wellcome Sanger Institute, Wellcome Genome Campus, Hinxton, Cambridge, CB10 1SA, United Kingdom
| | - Paul Flicek
- European Molecular Biology Laboratory, European Bioinformatics Institute, Wellcome Genome Campus, Hinxton, Cambridge CB10 1SD, United Kingdom
- Wellcome Sanger Institute, Wellcome Genome Campus, Hinxton, Cambridge, CB10 1SA, United Kingdom
| |
Collapse
|
46
|
Fuller ZL, Haynes GD, Richards S, Schaeffer SW. Genomics of natural populations: Evolutionary forces that establish and maintain gene arrangements inDrosophila pseudoobscura. Mol Ecol 2017; 26:6539-6562. [DOI: 10.1111/mec.14381] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2017] [Revised: 10/04/2017] [Accepted: 10/07/2017] [Indexed: 12/19/2022]
Affiliation(s)
- Zachary L. Fuller
- Department of Biology; 208 Erwin W. Mueller Laboratory; The Pennsylvania State University; University Park PA USA
| | - Gwilym D. Haynes
- Department of Biology; 208 Erwin W. Mueller Laboratory; The Pennsylvania State University; University Park PA USA
| | - Stephen Richards
- Human Genome Sequencing Center; Baylor College of Medicine; Houston TX USA
| | - Stephen W. Schaeffer
- Department of Biology; 208 Erwin W. Mueller Laboratory; The Pennsylvania State University; University Park PA USA
| |
Collapse
|
47
|
Chromosome Evolution in Connection with Repetitive Sequences and Epigenetics in Plants. Genes (Basel) 2017; 8:genes8100290. [PMID: 29064432 PMCID: PMC5664140 DOI: 10.3390/genes8100290] [Citation(s) in RCA: 49] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2017] [Revised: 10/16/2017] [Accepted: 10/18/2017] [Indexed: 01/18/2023] Open
Abstract
Chromosome evolution is a fundamental aspect of evolutionary biology. The evolution of chromosome size, structure and shape, number, and the change in DNA composition suggest the high plasticity of nuclear genomes at the chromosomal level. Repetitive DNA sequences, which represent a conspicuous fraction of every eukaryotic genome, particularly in plants, are found to be tightly linked with plant chromosome evolution. Different classes of repetitive sequences have distinct distribution patterns on the chromosomes. Mounting evidence shows that repetitive sequences may play multiple generative roles in shaping the chromosome karyotypes in plants. Furthermore, recent development in our understanding of the repetitive sequences and plant chromosome evolution has elucidated the involvement of a spectrum of epigenetic modification. In this review, we focused on the recent evidence relating to the distribution pattern of repetitive sequences in plant chromosomes and highlighted their potential relevance to chromosome evolution in plants. We also discussed the possible connections between evolution and epigenetic alterations in chromosome structure and repatterning, such as heterochromatin formation, centromere function, and epigenetic-associated transposable element inactivation.
Collapse
|
48
|
Romanenko SA, Serdyukova NA, Perelman PL, Pavlova SV, Bulatova NS, Golenishchev FN, Stanyon R, Graphodatsky AS. Intrachromosomal Rearrangements in Rodents from the Perspective of Comparative Region-Specific Painting. Genes (Basel) 2017; 8:E215. [PMID: 28867774 PMCID: PMC5615349 DOI: 10.3390/genes8090215] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2017] [Revised: 08/22/2017] [Accepted: 08/23/2017] [Indexed: 01/31/2023] Open
Abstract
It has long been hypothesized that chromosomal rearrangements play a central role in different evolutionary processes, particularly in speciation and adaptation. Interchromosomal rearrangements have been extensively mapped using chromosome painting. However, intrachromosomal rearrangements have only been described using molecular cytogenetics in a limited number of mammals, including a few rodent species. This situation is unfortunate because intrachromosomal rearrangements are more abundant than interchromosomal rearrangements and probably contain essential phylogenomic information. Significant progress in the detection of intrachromosomal rearrangement is now possible, due to recent advances in molecular biology and bioinformatics. We investigated the level of intrachromosomal rearrangement in the Arvicolinae subfamily, a species-rich taxon characterized by very high rate of karyotype evolution. We made a set of region specific probes by microdissection for a single syntenic region represented by the p-arm of chromosome 1 of Alexandromys oeconomus, and hybridized the probes onto the chromosomes of four arvicolines (Microtus agrestis, Microtus arvalis, Myodes rutilus, and Dicrostonyx torquatus). These experiments allowed us to show the intrachromosomal rearrangements in the subfamily at a significantly higher level of resolution than previously described. We found a number of paracentric inversions in the karyotypes of M. agrestis and M. rutilus, as well as multiple inversions and a centromere shift in the karyotype of M. arvalis. We propose that during karyotype evolution, arvicolines underwent a significant number of complex intrachromosomal rearrangements that were not previously detected.
Collapse
Affiliation(s)
- Svetlana A Romanenko
- Institute of Molecular and Cellular Biology, Siberian Branch of the Russian Academy of Sciences, 630090 Novosibirsk, Russia.
- Synthetic Biological Unit, Novosibirsk State University, 630090 Novosibirsk, Russia.
| | - Natalya A Serdyukova
- Institute of Molecular and Cellular Biology, Siberian Branch of the Russian Academy of Sciences, 630090 Novosibirsk, Russia.
| | - Polina L Perelman
- Institute of Molecular and Cellular Biology, Siberian Branch of the Russian Academy of Sciences, 630090 Novosibirsk, Russia.
- Synthetic Biological Unit, Novosibirsk State University, 630090 Novosibirsk, Russia.
| | - Svetlana V Pavlova
- A.N. Severtsov Institute of Ecology and Evolution, Russian Academy of Sciences, 119071 Moscow, Russia.
| | - Nina S Bulatova
- A.N. Severtsov Institute of Ecology and Evolution, Russian Academy of Sciences, 119071 Moscow, Russia.
| | | | - Roscoe Stanyon
- Department of Biology, Anthropology Laboratories, University of Florence, 50122 Florence, Italy.
| | - Alexander S Graphodatsky
- Institute of Molecular and Cellular Biology, Siberian Branch of the Russian Academy of Sciences, 630090 Novosibirsk, Russia.
- Synthetic Biological Unit, Novosibirsk State University, 630090 Novosibirsk, Russia.
| |
Collapse
|
49
|
Potter S, Bragg JG, Blom MPK, Deakin JE, Kirkpatrick M, Eldridge MDB, Moritz C. Chromosomal Speciation in the Genomics Era: Disentangling Phylogenetic Evolution of Rock-wallabies. Front Genet 2017; 8:10. [PMID: 28265284 PMCID: PMC5301020 DOI: 10.3389/fgene.2017.00010] [Citation(s) in RCA: 60] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2016] [Accepted: 01/18/2017] [Indexed: 12/24/2022] Open
Abstract
The association of chromosome rearrangements (CRs) with speciation is well established, and there is a long history of theory and evidence relating to "chromosomal speciation." Genomic sequencing has the potential to provide new insights into how reorganization of genome structure promotes divergence, and in model systems has demonstrated reduced gene flow in rearranged segments. However, there are limits to what we can understand from a small number of model systems, which each only tell us about one episode of chromosomal speciation. Progressing from patterns of association between chromosome (and genic) change, to understanding processes of speciation requires both comparative studies across diverse systems and integration of genome-scale sequence comparisons with other lines of evidence. Here, we showcase a promising example of chromosomal speciation in a non-model organism, the endemic Australian marsupial genus Petrogale. We present initial phylogenetic results from exon-capture that resolve a history of divergence associated with extensive and repeated CRs. Yet it remains challenging to disentangle gene tree heterogeneity caused by recent divergence and gene flow in this and other such recent radiations. We outline a way forward for better integration of comparative genomic sequence data with evidence from molecular cytogenetics, and analyses of shifts in the recombination landscape and potential disruption of meiotic segregation and epigenetic programming. In all likelihood, CRs impact multiple cellular processes and these effects need to be considered together, along with effects of genic divergence. Understanding the effects of CRs together with genic divergence will require development of more integrative theory and inference methods. Together, new data and analysis tools will combine to shed light on long standing questions of how chromosome and genic divergence promote speciation.
Collapse
Affiliation(s)
- Sally Potter
- Research School of Biology, Australian National University, ActonACT, Australia
- Australian Museum Research Institute, Australian Museum, SydneyNSW, Australia
| | - Jason G. Bragg
- National Herbarium of New South Wales, The Royal Botanic Gardens and Domain Trust, SydneyNSW, Australia
| | - Mozes P. K. Blom
- Department of Bioinformatics and Genetics, Swedish Museum of Natural HistoryStockholm, Sweden
| | - Janine E. Deakin
- Institute for Applied Ecology, University of Canberra, BruceACT, Australia
| | - Mark Kirkpatrick
- Department of Integrative Biology, University of Texas, AustinTX, USA
| | - Mark D. B. Eldridge
- Australian Museum Research Institute, Australian Museum, SydneyNSW, Australia
| | - Craig Moritz
- Research School of Biology, Australian National University, ActonACT, Australia
| |
Collapse
|
50
|
Martinez PA, Jacobina UP, Fernandes RV, Brito C, Penone C, Amado TF, Fonseca CR, Bidau CJ. A comparative study on karyotypic diversification rate in mammals. Heredity (Edinb) 2016; 118:366-373. [PMID: 27804966 DOI: 10.1038/hdy.2016.110] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2016] [Revised: 09/19/2016] [Accepted: 09/27/2016] [Indexed: 01/23/2023] Open
Abstract
Chromosomal rearrangements have a relevant role in organismic evolution. However, little is known about the mechanisms that lead different phylogenetic clades to have different chromosomal rearrangement rates. Here, we investigate the causes behind the wide karyotypic diversity exhibited by mammals. In particular, we analyzed the role of metabolic, reproductive, biogeographic and genomic characteristics on the rates of macro- and microstructural karyotypic diversification (rKD) using comparative phylogenetic methods. We found evidence that reproductive characteristics such as larger litter size per year and longevity, by allowing a higher number of meioses in absolute time, favor a higher probability of chromosomal change. Furthermore, families with large geographic distributions but containing species with restricted geographic ranges showed a greater probability of fixation of macrostructural chromosomal changes in different geographic areas. Finally, rKD does not evolve by Brownian motion because the mutation rate depends on the concerted evolution of repetitive sequences. The decisive factors of rKD evolution will be natural selection, genetic drift and meiotic drive that will eventually allow or not the fixation of the rearrangements. Our results indicate that mammalian karyotypic diversity is influenced by historical and adaptive mechanisms where reproductive and genomic factors modulate the rate of chromosomal change.
Collapse
Affiliation(s)
- P A Martinez
- PIBi Lab-Laboratorio de Pesquisas Integrativas em Biodiversidade, Pós-Graduação em Ecologia e Conservação, Universidade Federal de Sergipe, São Cristovão, Brazil
| | | | - R V Fernandes
- Departamento de Ecologia, Universidade Federal do Rio Grande do Norte, Natal, Brazil
| | - C Brito
- Departamento de Ecologia, Universidade Federal do Rio Grande do Norte, Natal, Brazil
| | - C Penone
- Institute of Plant Science, University of Bern, Bern, Switzerland
| | - T F Amado
- BioMa-Biodiversity and Macroecology Lab, Department of Biology and Geology, Physics and Inorganic Chemistry, Rey Juan Carlos University, Mostoles, Spain
| | - C R Fonseca
- Departamento de Ecologia, Universidade Federal do Rio Grande do Norte, Natal, Brazil
| | - C J Bidau
- Paraná y Los Claveles, Garupá, Argentina
| |
Collapse
|