1
|
Dwivedi R, Kaushik M, Tripathi M, Dada R, Tiwari P. Unraveling the genetic basis of epilepsy: Recent advances and implications for diagnosis and treatment. Brain Res 2024; 1843:149120. [PMID: 39032529 DOI: 10.1016/j.brainres.2024.149120] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2024] [Revised: 07/05/2024] [Accepted: 07/08/2024] [Indexed: 07/23/2024]
Abstract
Epilepsy, affecting approximately 1% of the global population, manifests as recurring seizures and is heavily influenced by genetic factors. Recent advancements in genetic technologies have revolutionized our understanding of epilepsy's genetic landscape. Key studies, such as the discovery of mutations in ion channels (e.g., SCN1A and SCN2A), neurotransmitter receptors (e.g., GABRA1), and synaptic proteins (e.g., SYNGAP1, KCNQ2), have illuminated critical pathways underlying epilepsy susceptibility and pathogenesis. Genome-wide association studies (GWAS) have identified specific genetic variations linked to epilepsy risk, such as variants near SCN1A and PCDH7, enhancing diagnostic accuracy and enabling personalized treatment strategies. Moreover, epigenetic mechanisms, including DNA methylation (e.g., MBD5), histone modifications (e.g., HDACs), and non-coding RNAs (e.g., miR-134), play pivotal roles in altering gene expression and synaptic plasticity, contributing to epileptogenesis. These discoveries offer promising avenues for therapeutic interventions aimed at improving outcomes for epilepsy patients. Genetic testing has become essential in clinical practice, facilitating precise diagnosis and tailored management approaches based on individual genetic profiles. Furthermore, insights into epigenetic regulation suggest novel therapeutic targets for developing more effective epilepsy treatments. In summary, this review highlights significant progress in understanding the genetic and epigenetic foundations of epilepsy. By integrating findings from key studies and specifying genes involved in epigenetic modifications, we underscore the potential for advanced therapeutic strategies in this complex neurological disorder, emphasizing the importance of personalized medicine approaches in epilepsy management.
Collapse
Affiliation(s)
- Rekha Dwivedi
- Department of Neurology, All India Institute of Medical Sciences (AIIMS), New Delhi 110029, India
| | - Meenakshi Kaushik
- Department of Anatomy, All India Institute of Medical Sciences (AIIMS), New Delhi 110029, India
| | - Manjari Tripathi
- Department of Neurology, All India Institute of Medical Sciences (AIIMS), New Delhi 110029, India
| | - Rima Dada
- Department of Anatomy, All India Institute of Medical Sciences (AIIMS), New Delhi 110029, India
| | - Prabhakar Tiwari
- Department of Anatomy, All India Institute of Medical Sciences (AIIMS), New Delhi 110029, India.
| |
Collapse
|
2
|
Qiu GH, Fu M, Zheng X, Huang C. Protection of the genome and the central exome by peripheral non-coding DNA against DNA damage in health, ageing and age-related diseases. Biol Rev Camb Philos Soc 2024. [PMID: 39327815 DOI: 10.1111/brv.13151] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2023] [Revised: 09/15/2024] [Accepted: 09/18/2024] [Indexed: 09/28/2024]
Abstract
DNA in eukaryotic genomes is under constant assault from both exogenous and endogenous sources, leading to DNA damage, which is considered a major molecular driver of ageing. Fortunately, the genome and the central exome are safeguarded against these attacks by abundant peripheral non-coding DNA. Non-coding DNA codes for small non-coding RNAs that inactivate foreign nucleic acids in the cytoplasm and physically blocks these attacks in the nucleus. Damage to non-coding DNA produced during such blockage is removed in the form of extrachromosomal circular DNA (eccDNA) through nucleic pore complexes. Consequently, non-coding DNA serves as a line of defence for the exome against DNA damage. The total amount of non-coding DNA/heterochromatin declines with age, resulting in a decrease in both physical blockage and eccDNA exclusion, and thus an increase in the accumulation of DNA damage in the nucleus during ageing and in age-related diseases. Here, we summarize recent evidence supporting a protective role of non-coding DNA in healthy and pathological states and argue that DNA damage is the proximate cause of ageing and age-related genetic diseases. Strategies aimed at strengthening the protective role of non-coding DNA/heterochromatin could potentially offer better systematic protection for the dynamic genome and the exome against diverse assaults, reduce the burden of DNA damage to the exome, and thus slow ageing, counteract age-related genetic diseases and promote a healthier life for individuals.
Collapse
Affiliation(s)
- Guo-Hua Qiu
- College of Life Sciences, Longyan University, Longyan, 364012, People's Republic of China
- Fujian Provincial Key Laboratory of Preventive Veterinary Medicine and Biotechnology, Engineering Research Center for the Prevention and Control of Animal-Origin Zoonosis, Key Laboratory for the Prevention and Control of Animal Infectious Diseases and Biotechnology, Fujian Province Universities, Longyan, People's Republic of China
| | - Mingjun Fu
- College of Life Sciences, Longyan University, Longyan, 364012, People's Republic of China
- Fujian Provincial Key Laboratory of Preventive Veterinary Medicine and Biotechnology, Engineering Research Center for the Prevention and Control of Animal-Origin Zoonosis, Key Laboratory for the Prevention and Control of Animal Infectious Diseases and Biotechnology, Fujian Province Universities, Longyan, People's Republic of China
| | - Xintian Zheng
- College of Life Sciences, Longyan University, Longyan, 364012, People's Republic of China
- Fujian Provincial Key Laboratory of Preventive Veterinary Medicine and Biotechnology, Engineering Research Center for the Prevention and Control of Animal-Origin Zoonosis, Key Laboratory for the Prevention and Control of Animal Infectious Diseases and Biotechnology, Fujian Province Universities, Longyan, People's Republic of China
| | - Cuiqin Huang
- College of Life Sciences, Longyan University, Longyan, 364012, People's Republic of China
- Fujian Provincial Key Laboratory of Preventive Veterinary Medicine and Biotechnology, Engineering Research Center for the Prevention and Control of Animal-Origin Zoonosis, Key Laboratory for the Prevention and Control of Animal Infectious Diseases and Biotechnology, Fujian Province Universities, Longyan, People's Republic of China
| |
Collapse
|
3
|
Li J, Wang C, Zhang S, Cai B, Pan B, Sun C, Qi X, Ma C, Fang W, Jin K, Bi X, Jin Z, Zhuang W. Genetic detection of two novel LRP5 pathogenic variants in patients with familial exudative vitreoretinopathy. BMC Ophthalmol 2023; 23:489. [PMID: 38030997 PMCID: PMC10685552 DOI: 10.1186/s12886-023-03243-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2022] [Accepted: 11/23/2023] [Indexed: 12/01/2023] Open
Abstract
BACKGROUND Familial exudative vitreoretinopathy (FEVR) is a genetic eye disorder that leads to abnormal development of retinal blood vessels, resulting in vision impairment. This study aims to identify pathogenic variants by targeted exome sequencing in 9 independent pedigrees with FEVR and characterize the novel pathogenic variants by molecular dynamics simulation. METHODS Clinical data were collected from 9 families with FEVR. The causative genes were screened by targeted next-generation sequencing (TGS) and verified by Sanger sequencing. In silico analyses (SIFT, Polyphen2, Revel, MutationTaster, and GERP + +) were carried out to evaluate the pathogenicity of the variants. Molecular dynamics was simulated to predict protein conformation and flexibility transformation alterations on pathogenesis. Furthermore, molecular docking techniques were employed to explore the interactions and binding properties between LRP5 and DKK1 proteins relevant to the disease. RESULTS A 44% overall detection rate was achieved with four variants including c.4289delC: p.Pro1431Argfs*8, c.2073G > T: p.Trp691Cys, c.1801G > A: p.Gly601Arg in LRP5 and c.633 T > A: p.Tyr211* in TSPAN12 in 4 unrelated probands. Based on in silico analysis and ACMG standard, two of them, c.4289delC: p.Pro1431Argfs*8 and c.2073G > T: p.Trp691Cys of LRP5 were identified as novel pathogenic variants. Based on computational predictions using molecular dynamics simulations and molecular docking, there are indications that these two variants might lead to alterations in the secondary structure and spatial conformation of the protein, potentially impacting its rigidity and flexibility. Furthermore, these pathogenic variants are speculated to potentially influence hydrogen bonding interactions and could result in an increased binding affinity with the DKK1 protein. CONCLUSIONS Two novel genetic variants of the LRP5 gene were identified, expanding the range of mutations associated with FEVR. Through molecular dynamics simulations and molecular docking, the potential impact of these variants on protein structure and their interactions with the DKK1 protein has been explored. These findings provide further support for the involvement of these variants in the pathogenesis of the disease.
Collapse
Affiliation(s)
- Jiayu Li
- Third Clinical Medical College of Ningxia Medical University, Shengli Street, Yinchuan, 750004, Ningxia, China
- Ningxia Eye Hospital, People's Hospital of Ningxia Hui Autonomous Region, Huanghe Road, Yinchuan, 750011, Ningxia, China
| | - Chanjuan Wang
- Ningxia Eye Hospital, People's Hospital of Ningxia Hui Autonomous Region, Huanghe Road, Yinchuan, 750011, Ningxia, China
| | - Shaochi Zhang
- Ningxia Eye Hospital, People's Hospital of Ningxia Hui Autonomous Region, Huanghe Road, Yinchuan, 750011, Ningxia, China
| | - Bo Cai
- Ningxia Eye Hospital, People's Hospital of Ningxia Hui Autonomous Region, Huanghe Road, Yinchuan, 750011, Ningxia, China
| | - Bo Pan
- Ningxia Eye Hospital, People's Hospital of Ningxia Hui Autonomous Region, Huanghe Road, Yinchuan, 750011, Ningxia, China
| | - Caihong Sun
- Third Clinical Medical College of Ningxia Medical University, Shengli Street, Yinchuan, 750004, Ningxia, China
- Ningxia Eye Hospital, People's Hospital of Ningxia Hui Autonomous Region, Huanghe Road, Yinchuan, 750011, Ningxia, China
| | - Xiaolong Qi
- Ningxia Eye Hospital, People's Hospital of Ningxia Hui Autonomous Region, Huanghe Road, Yinchuan, 750011, Ningxia, China
| | - Chunmei Ma
- Ningxia Eye Hospital, People's Hospital of Ningxia Hui Autonomous Region, Huanghe Road, Yinchuan, 750011, Ningxia, China
| | - Wei Fang
- Ningxia Eye Hospital, People's Hospital of Ningxia Hui Autonomous Region, Huanghe Road, Yinchuan, 750011, Ningxia, China
| | - Kangxin Jin
- Beijing Institute of Ophthalmology, Beijing Tongren Eye Center, Beijing Tongren Hospital, Capital Medical University, Beijing, 100005, China
| | - Xiaojun Bi
- Ningxia Eye Hospital, People's Hospital of Ningxia Hui Autonomous Region, Huanghe Road, Yinchuan, 750011, Ningxia, China.
| | - Zibing Jin
- Beijing Institute of Ophthalmology, Beijing Tongren Eye Center, Beijing Tongren Hospital, Capital Medical University, Beijing, 100005, China.
| | - Wenjuan Zhuang
- Third Clinical Medical College of Ningxia Medical University, Shengli Street, Yinchuan, 750004, Ningxia, China.
- Ningxia Eye Hospital, People's Hospital of Ningxia Hui Autonomous Region, Huanghe Road, Yinchuan, 750011, Ningxia, China.
| |
Collapse
|
4
|
Li YP, Shen RJ, Cheng YM, Zhao Q, Jin K, Jin ZB, Zhang S. Exome sequencing in retinal dystrophy patients reveals a novel candidate gene ER membrane protein complex subunit 3. Heliyon 2023; 9:e20146. [PMID: 37809982 PMCID: PMC10559921 DOI: 10.1016/j.heliyon.2023.e20146] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2023] [Revised: 09/05/2023] [Accepted: 09/13/2023] [Indexed: 10/10/2023] Open
Abstract
Inherited retinal dystrophies (IRDs) are a heterogeneous group of visual disorders caused by different pathogenic mutations in genes and regulatory sequences. The endoplasmic reticulum (ER) membrane protein complex (EMC) subunit 3 (EMC3) is the core unit of the EMC insertase that integrates the transmembrane peptides into lipid bilayers, and the function of its cytoplasmic carboxyl terminus remains to be elucidated. In this study, an insertional mutation c.768insT in the C-terminal coding region of EMC3 was identified and associated with dominant IRDs in a five-generation family. This mutation caused a frameshift in the coding sequence and a gain of an additional 16 amino acid residues (p.L256F-fs-ext21) to form a helix structure in the C-terminus of the EMC3 protein. The mutation is heterozygous with an incomplete penetrance, and cosegregates in all patients examined. This finding indicates that the C-terminus of EMC3 is essential for EMC functions and that EMC3 may be a novel candidate gene for retinal degenerative diseases.
Collapse
Affiliation(s)
- Yan-Ping Li
- Laboratory for Stem Cell & Retinal Regeneration, The Eye Hospital, Basic Medical College, Wenzhou Medical University, Wenzhou, 325027, China
| | - Ren-Juan Shen
- Beijing Institute of Ophthalmology, Beijing Tongren Eye Center, Beijing Tongren Hospital, Capital Medical University, Beijing Ophthalmology & Visual Sciences Key Laboratory, Beijing, 100730, China
| | - You-Min Cheng
- Laboratory for Stem Cell & Retinal Regeneration, The Eye Hospital, Basic Medical College, Wenzhou Medical University, Wenzhou, 325027, China
| | - Qingqing Zhao
- Key Laboratory of Structural Biology of Zhejiang Province, School of Life Sciences, Westlake University, Hangzhou, Zhejiang, 310030, China
| | - Kangxin Jin
- Beijing Institute of Ophthalmology, Beijing Tongren Eye Center, Beijing Tongren Hospital, Capital Medical University, Beijing Ophthalmology & Visual Sciences Key Laboratory, Beijing, 100730, China
| | - Zi-Bing Jin
- Laboratory for Stem Cell & Retinal Regeneration, The Eye Hospital, Basic Medical College, Wenzhou Medical University, Wenzhou, 325027, China
- Beijing Institute of Ophthalmology, Beijing Tongren Eye Center, Beijing Tongren Hospital, Capital Medical University, Beijing Ophthalmology & Visual Sciences Key Laboratory, Beijing, 100730, China
| | - Shaodan Zhang
- The Eye Hospital of Wenzhou Medical University, National Clinical Research Center for Ocular Diseases, Glaucoma Research Institute of Wenzhou Medical University, Wenzhou, 325027, China
| |
Collapse
|
5
|
Steensma MJ, Lee YL, Bouwman AC, Pita Barros C, Derks MFL, Bink MCAM, Harlizius B, Huisman AE, Crooijmans RPMA, Groenen MAM, Mulder HA, Rochus CM. Identification and characterisation of de novo germline structural variants in two commercial pig lines using trio-based whole genome sequencing. BMC Genomics 2023; 24:208. [PMID: 37072725 PMCID: PMC10114323 DOI: 10.1186/s12864-023-09296-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2023] [Accepted: 04/04/2023] [Indexed: 04/20/2023] Open
Abstract
BACKGROUND De novo mutations arising in the germline are a source of genetic variation and their discovery broadens our understanding of genetic disorders and evolutionary patterns. Although the number of de novo single nucleotide variants (dnSNVs) has been studied in a number of species, relatively little is known about the occurrence of de novo structural variants (dnSVs). In this study, we investigated 37 deeply sequenced pig trios from two commercial lines to identify dnSVs present in the offspring. The identified dnSVs were characterised by identifying their parent of origin, their functional annotations and characterizing sequence homology at the breakpoints. RESULTS We identified four swine germline dnSVs, all located in intronic regions of protein-coding genes. Our conservative, first estimate of the swine germline dnSV rate is 0.108 (95% CI 0.038-0.255) per generation (one dnSV per nine offspring), detected using short-read sequencing. Two detected dnSVs are clusters of mutations. Mutation cluster 1 contains a de novo duplication, a dnSNV and a de novo deletion. Mutation cluster 2 contains a de novo deletion and three de novo duplications, of which one is inverted. Mutation cluster 2 is 25 kb in size, whereas mutation cluster 1 (197 bp) and the other two individual dnSVs (64 and 573 bp) are smaller. Only mutation cluster 2 could be phased and is located on the paternal haplotype. Mutation cluster 2 originates from both micro-homology as well as non-homology mutation mechanisms, where mutation cluster 1 and the other two dnSVs are caused by mutation mechanisms lacking sequence homology. The 64 bp deletion and mutation cluster 1 were validated through PCR. Lastly, the 64 bp deletion and the 573 bp duplication were validated in sequenced offspring of probands with three generations of sequence data. CONCLUSIONS Our estimate of 0.108 dnSVs per generation in the swine germline is conservative, due to our small sample size and restricted possibilities of dnSV detection from short-read sequencing. The current study highlights the complexity of dnSVs and shows the potential of breeding programs for pigs and livestock species in general, to provide a suitable population structure for identification and characterisation of dnSVs.
Collapse
Affiliation(s)
- Marije J Steensma
- Wageningen University & Research Animal Breeding and Genomics, P.O. Box 338, Wageningen, 6700 AH, the Netherlands.
| | - Y L Lee
- Wageningen University & Research Animal Breeding and Genomics, P.O. Box 338, Wageningen, 6700 AH, the Netherlands
| | - A C Bouwman
- Wageningen University & Research Animal Breeding and Genomics, P.O. Box 338, Wageningen, 6700 AH, the Netherlands
| | - C Pita Barros
- Wageningen University & Research Animal Breeding and Genomics, P.O. Box 338, Wageningen, 6700 AH, the Netherlands
| | - M F L Derks
- Wageningen University & Research Animal Breeding and Genomics, P.O. Box 338, Wageningen, 6700 AH, the Netherlands
- Topigs Norsvin Research Center, Schoenaker 6, Beuningen, 6641 SZ, the Netherlands
| | - M C A M Bink
- Hendrix Genetics, P.O. Box 114, Boxmeer, 5830 AC, the Netherlands
| | - B Harlizius
- Topigs Norsvin Research Center, Schoenaker 6, Beuningen, 6641 SZ, the Netherlands
| | - A E Huisman
- Hendrix Genetics, P.O. Box 114, Boxmeer, 5830 AC, the Netherlands
| | - R P M A Crooijmans
- Wageningen University & Research Animal Breeding and Genomics, P.O. Box 338, Wageningen, 6700 AH, the Netherlands
| | - M A M Groenen
- Wageningen University & Research Animal Breeding and Genomics, P.O. Box 338, Wageningen, 6700 AH, the Netherlands
| | - H A Mulder
- Wageningen University & Research Animal Breeding and Genomics, P.O. Box 338, Wageningen, 6700 AH, the Netherlands
| | - C M Rochus
- University of Guelph, Centre for Genetic Improvement of Livestock, 50 Stone Rd E, Guelph, O N, N1G 2W1, Canada
| |
Collapse
|
6
|
Tabansky I, Tanaka AJ, Wang J, Zhang G, Dujmovic I, Mader S, Jeganathan V, DeAngelis T, Funaro M, Harel A, Messina M, Shabbir M, Nursey V, DeGouvia W, Laurent M, Blitz K, Jindra P, Gudesblatt M, King A, Drulovic J, Yunis E, Brusic V, Shen Y, Keskin DB, Najjar S, Stern JNH. Rare variants and HLA haplotypes associated in patients with neuromyelitis optica spectrum disorders. Front Immunol 2022; 13:900605. [PMID: 36268024 PMCID: PMC9578444 DOI: 10.3389/fimmu.2022.900605] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2022] [Accepted: 07/21/2022] [Indexed: 11/30/2022] Open
Abstract
Neuromyelitis optica spectrum disorders (NMOSD) are rare, debilitating autoimmune diseases of the central nervous system. Many NMOSD patients have antibodies to Aquaporin-4 (AQP4). Prior studies show associations of NMOSD with individual Human Leukocyte Antigen (HLA) alleles and with mutations in the complement pathway and potassium channels. HLA allele associations with NMOSD are inconsistent between populations, suggesting complex relationships between the identified alleles and risk of disease. We used a retrospective case-control approach to identify contributing genetic variants in patients who met the diagnostic criteria for NMOSD and their unaffected family members. Potentially deleterious variants identified in NMOSD patients were compared to members of their families who do not have the disease and to existing databases of human genetic variation. HLA sequences from patients from Belgrade, Serbia, were compared to the frequency of HLA haplotypes in the general population in Belgrade. We analyzed exome sequencing on 40 NMOSD patients and identified rare inherited variants in the complement pathway and potassium channel genes. Haplotype analysis further detected two haplotypes, HLA-A*01, B*08, DRB1*03 and HLA-A*01, B*08, C*07, DRB1*03, DQB1*02, which were more prevalent in NMOSD patients than in unaffected individuals. In silico modeling indicates that HLA molecules within these haplotypes are predicted to bind AQP4 at several sites, potentially contributing to the development of autoimmunity. Our results point to possible autoimmune and neurodegenerative mechanisms that cause NMOSD, and can be used to investigate potential NMOSD drug targets.
Collapse
Affiliation(s)
- Inna Tabansky
- Department of Neurology, Donald and Barbra Zucker School of Medicine at Hofstra/Northwell, Hempstead, NY, United States
- Department of Urology, Donald and Barbra Zucker School of Medicine at Hofstra/Northwell, Hempstead, NY, United States
- Department of Molecular Medicine, Donald and Barbra Zucker School of Medicine at Hofstra/Northwell, Hempstead, NY, United States
- Department of Science Education, Donald and Barbra Zucker School of Medicine at Hofstra/Northwell, Hempstead, NY, United States
- Institute of Molecular Medicine, The Feinstein Institutes for Medical Research, Manhasset, NY, United States
- Department of Neurobiology and Behavior, The Rockefeller University, New York, NY, United States
| | - Akemi J. Tanaka
- Department of Pediatrics, Columbia University College of Physicians and Surgeons, New York, NY, United States
| | - Jiayao Wang
- Department of Pediatrics, Columbia University College of Physicians and Surgeons, New York, NY, United States
- Department of Biomedical Informatics and Department of Systems Biology, Columbia University, New York, NY, United States
| | - Guanglan Zhang
- Department of Computer Science, Boston University, Boston, MA, United States
| | - Irena Dujmovic
- Clinical Center of Serbia University School of Medicine, Belgrade, Serbia
- Department of Neurology, University of North Carolina School of Medicine, Chapel Hill, NC, United States
| | - Simone Mader
- Institute of Molecular Medicine, The Feinstein Institutes for Medical Research, Manhasset, NY, United States
- Biomedical Center and University Hospitals, Ludwig Maximilian University Munich, Munich, Germany
| | - Venkatesh Jeganathan
- Institute of Molecular Medicine, The Feinstein Institutes for Medical Research, Manhasset, NY, United States
| | - Tracey DeAngelis
- Department of Neurology, Neurological Associates of Long Island, New Hyde Park, NY, United States
| | - Michael Funaro
- Department of Neurology, Donald and Barbra Zucker School of Medicine at Hofstra/Northwell, Hempstead, NY, United States
- Department of Urology, Donald and Barbra Zucker School of Medicine at Hofstra/Northwell, Hempstead, NY, United States
- Department of Molecular Medicine, Donald and Barbra Zucker School of Medicine at Hofstra/Northwell, Hempstead, NY, United States
- Department of Science Education, Donald and Barbra Zucker School of Medicine at Hofstra/Northwell, Hempstead, NY, United States
- Institute of Molecular Medicine, The Feinstein Institutes for Medical Research, Manhasset, NY, United States
| | - Asaff Harel
- Department of Neurology, Lenox Hill Hospital, Northwell Health, New York, NY, United States
| | - Mark Messina
- Department of Neurology, Donald and Barbra Zucker School of Medicine at Hofstra/Northwell, Hempstead, NY, United States
- Department of Urology, Donald and Barbra Zucker School of Medicine at Hofstra/Northwell, Hempstead, NY, United States
- Department of Molecular Medicine, Donald and Barbra Zucker School of Medicine at Hofstra/Northwell, Hempstead, NY, United States
- Department of Science Education, Donald and Barbra Zucker School of Medicine at Hofstra/Northwell, Hempstead, NY, United States
- Institute of Molecular Medicine, The Feinstein Institutes for Medical Research, Manhasset, NY, United States
| | - Maya Shabbir
- Institute of Molecular Medicine, The Feinstein Institutes for Medical Research, Manhasset, NY, United States
| | - Vishaan Nursey
- Institute of Molecular Medicine, The Feinstein Institutes for Medical Research, Manhasset, NY, United States
| | - William DeGouvia
- Department of Neurology, Donald and Barbra Zucker School of Medicine at Hofstra/Northwell, Hempstead, NY, United States
- Department of Urology, Donald and Barbra Zucker School of Medicine at Hofstra/Northwell, Hempstead, NY, United States
- Department of Molecular Medicine, Donald and Barbra Zucker School of Medicine at Hofstra/Northwell, Hempstead, NY, United States
- Department of Science Education, Donald and Barbra Zucker School of Medicine at Hofstra/Northwell, Hempstead, NY, United States
- Institute of Molecular Medicine, The Feinstein Institutes for Medical Research, Manhasset, NY, United States
| | - Micheline Laurent
- Department of Neurology, Donald and Barbra Zucker School of Medicine at Hofstra/Northwell, Hempstead, NY, United States
- Department of Urology, Donald and Barbra Zucker School of Medicine at Hofstra/Northwell, Hempstead, NY, United States
- Department of Molecular Medicine, Donald and Barbra Zucker School of Medicine at Hofstra/Northwell, Hempstead, NY, United States
- Department of Science Education, Donald and Barbra Zucker School of Medicine at Hofstra/Northwell, Hempstead, NY, United States
- Institute of Molecular Medicine, The Feinstein Institutes for Medical Research, Manhasset, NY, United States
| | - Karen Blitz
- Department of Neurology, South Shore Neurologic Associates, Patchogue, NY, United States
| | - Peter Jindra
- Division of Abdominal Transplantation, Baylor College of Medicine, Baylor College of Medicine, Houston, TX, United States
| | - Mark Gudesblatt
- Biomedical Center and University Hospitals, Ludwig Maximilian University Munich, Munich, Germany
| | | | - Alejandra King
- Regeneron Genetics Center, Regeneron Pharmaceuticals Inc., Tarrytown, NY, United States
| | - Jelena Drulovic
- Clinical Center of Serbia University School of Medicine, Belgrade, Serbia
| | - Edmond Yunis
- Department of Medical Oncology, Dana-Farber Cancer Institute, Boston, MA, United States
| | - Vladimir Brusic
- School of Computer Science, University of Nottingham Ningbo China, Ningbo, China
| | - Yufeng Shen
- Department of Biomedical Informatics and Department of Systems Biology, Columbia University, New York, NY, United States
| | - Derin B. Keskin
- Department of Translational Immuno-Genomics for Broad Institute of Massachusetts Institute of Technology and Harvard, Cambridge, MA, United States
- Department of Medicine, Brigham and Women’s Hospital, Boston, MA, United States
| | - Souhel Najjar
- Department of Neurology, Lenox Hill Hospital, Northwell Health, New York, NY, United States
| | - Joel N. H. Stern
- Department of Neurology, Donald and Barbra Zucker School of Medicine at Hofstra/Northwell, Hempstead, NY, United States
- Department of Urology, Donald and Barbra Zucker School of Medicine at Hofstra/Northwell, Hempstead, NY, United States
- Department of Molecular Medicine, Donald and Barbra Zucker School of Medicine at Hofstra/Northwell, Hempstead, NY, United States
- Department of Science Education, Donald and Barbra Zucker School of Medicine at Hofstra/Northwell, Hempstead, NY, United States
- Institute of Molecular Medicine, The Feinstein Institutes for Medical Research, Manhasset, NY, United States
- *Correspondence: Joel N. H. Stern, ;
| |
Collapse
|
7
|
Sun JJ, Cai Q, Xu M, Liu YN, Li WR, Li J, Ma L, Cai C, Gong XH, Zeng YT, Ren ZR, Zeng F. Loss of Protein Function Causing Severe Phenotypes of Female-Restricted Wieacker Wolff Syndrome due to a Novel Nonsense Mutation in the ZC4H2 Gene. Genes (Basel) 2022; 13:genes13091558. [PMID: 36140726 PMCID: PMC9498907 DOI: 10.3390/genes13091558] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2022] [Revised: 08/22/2022] [Accepted: 08/23/2022] [Indexed: 11/21/2022] Open
Abstract
Pathogenic variants of zinc finger C4H2-type containing (ZC4H2) on the X chromosome cause a group of genetic diseases termed ZC4H2-associated rare disorders (ZARD), including Wieacker-Wolff Syndrome (WRWF) and Female-restricted Wieacker-Wolff Syndrome (WRWFFR). In the current study, a de novo c.352C>T (p.Gln118*) mutation in ZC4H2 (NM_018684.4) was identified in a female neonate born with severe arthrogryposis multiplex congenita (AMC) and Pierre-Robin sequence (cleft palate and micrognathia). Plasmids containing the wild-type (WT), mutant-type (MT) ZC4H2, or GFP report gene (N) were transfected in 293T cell lines, respectively. RT-qPCR and western blot analysis showed that ZC4H2 protein could not be detected in the 293T cells transfected with MT ZC4H2. The RNA seq results revealed that the expression profile of the MT group was similar to that of the N group but differed significantly from the WT group, indicating that the c.352C>T mutation resulted in the loss of function of ZC4H2. Differentially expressed genes (DEGs) enrichment analysis showed that c.352C>T mutation inhibited the expression levels of a series of genes involved in the oxidative phosphorylation pathway. Subsequently, expression levels of ZC4H2 were knocked down in neural stem cells (NSCs) derived from induced pluripotent stem cells (iPSCs) by lentiviral-expressed small hairpin RNAs (shRNAs) against ZC4H2. The results also demonstrated that decreasing the expression of ZC4H2 significantly reduced the growth of NSCs by affecting the expression of genes related to the oxidative phosphorylation signaling pathway. Taken together, our results strongly suggest that ZC4H2 c.352C>T (p.Gln118*) mutation resulted in the loss of protein function and caused WRWFFR.
Collapse
Affiliation(s)
- Jing-Jing Sun
- Shanghai Institute of Medical Genetics, Shanghai Children’s Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200040, China
- Department of Neonatology, Shanghai Children’s Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200062, China
| | - Qin Cai
- Shanghai Institute of Medical Genetics, Shanghai Children’s Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200040, China
- Department of Histo-Embryology, Genetics and Developmental Biology, Shanghai Jiao Tong University School of Medicine, Shanghai 200025, China
| | - Miao Xu
- Shanghai Institute of Medical Genetics, Shanghai Children’s Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200040, China
| | - Yan-Na Liu
- Shanghai Institute of Medical Genetics, Shanghai Children’s Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200040, China
| | - Wan-Rui Li
- Shanghai Institute of Medical Genetics, Shanghai Children’s Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200040, China
| | - Juan Li
- Department of Neonatology, Shanghai Children’s Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200062, China
| | - Li Ma
- Department of Neonatology, Shanghai Children’s Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200062, China
| | - Cheng Cai
- Department of Neonatology, Shanghai Children’s Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200062, China
| | - Xiao-Hui Gong
- Department of Neonatology, Shanghai Children’s Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200062, China
| | - Yi-Tao Zeng
- Shanghai Institute of Medical Genetics, Shanghai Children’s Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200040, China
- NHC Key Laboratory of Medical Embryogenesis and Developmental Molecular Biology & Shanghai Key Laboratory of Embryo and Reproduction Engineering, Shanghai 200040, China
| | - Zhao-Rui Ren
- Shanghai Institute of Medical Genetics, Shanghai Children’s Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200040, China
| | - Fanyi Zeng
- Shanghai Institute of Medical Genetics, Shanghai Children’s Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200040, China
- Department of Histo-Embryology, Genetics and Developmental Biology, Shanghai Jiao Tong University School of Medicine, Shanghai 200025, China
- NHC Key Laboratory of Medical Embryogenesis and Developmental Molecular Biology & Shanghai Key Laboratory of Embryo and Reproduction Engineering, Shanghai 200040, China
- Correspondence: ; Tel.: +86-21-62472308
| |
Collapse
|
8
|
陈 曦, 王 斯, 薛 恩, 王 雪, 彭 和, 范 梦, 王 梦, 武 轶, 秦 雪, 李 劲, 吴 涛, 朱 洪, 李 静, 周 治, 陈 大, 胡 永. [Exploring the association between de novo mutations and non-syndromic cleft lip with or without palate based on whole exome sequencing of case-parent trios]. BEIJING DA XUE XUE BAO. YI XUE BAN = JOURNAL OF PEKING UNIVERSITY. HEALTH SCIENCES 2022; 54:387-393. [PMID: 35701113 PMCID: PMC9197716 DOI: 10.19723/j.issn.1671-167x.2022.03.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Subscribe] [Scholar Register] [Received: 02/24/2022] [Indexed: 06/15/2023]
Abstract
OBJECTIVE To explore the association between de novo mutations (DNM) and non-syndromic cleft lip with or without palate (NSCL/P) using case-parent trio design. METHODS Whole-exome sequencing was conducted for twenty-two NSCL/P trios and Genome Analysis ToolKit (GATK) was used to identify DNM by comparing the alleles of the cases and their parents. Information of predictable functions was annotated to the locus with SnpEff. Enrichment analysis for DNM was conducted to test the difference between the actual number and the expected number of DNM, and to explore whether there were genes with more DNM than expected. NSCL/P-related genes indicated by previous studies with solid evidence were selected by literature reviewing. Protein-protein interactions analysis was conducted among the genes with protein-altering DNM and NSCL/P-related genes. R package "denovolyzeR" was used for the enrichment analysis (Bonferroni correction: P=0.05/n, n is the number of genes in the whole genome range). Protein-protein interactions among genes with DNM and genes with solid evidence on the risk factors of NSCL/P were predicted depending on the information provided by STRING database. RESULTS A total of 339 908 SNPs were qualified for the subsequent analysis after quality control. The number of high confident DNM identified by GATK was 345. Among those DNM, forty-four DNM were missense mutations, one DNM was nonsense mutation, two DNM were splicing site mutations, twenty DNM were synonymous mutations and others were located in intron or intergenic regions. The results of enrichment analysis showed that the number of protein-altering DNM on the exome regions was larger than expected (P < 0.05), and five genes (KRTCAP2, HMCN2, ANKRD36C, ADGRL2 and DIPK2A) had more DNM than expected (P < 0.05/(2×19 618)). Protein-protein interaction analysis was conducted among forty-six genes with protein-altering DNM and thirteen genes associated with NSCL/P selected by literature reviewing. Six pairs of interactions occurred between the genes with DNM and known NSCL/P-related genes. The score measuring the confidence level of the predicted interaction between RGPD4 and SUMO1 was 0.868, which was higher than the scores for other pairs of genes. CONCLUSION Our study provided novel insights into the development of NSCL/P and demonstrated that functional analyses of genes carrying DNM were warranted to understand the genetic architecture of complex diseases.
Collapse
Affiliation(s)
- 曦 陈
- 北京大学公共卫生学院流行病与卫生统计学系,北京 100191Department of Epidemiology and Biostatistics, Peking University School of Public Health, Beijing 100191, China
| | - 斯悦 王
- 北京大学公共卫生学院流行病与卫生统计学系,北京 100191Department of Epidemiology and Biostatistics, Peking University School of Public Health, Beijing 100191, China
| | - 恩慈 薛
- 北京大学公共卫生学院流行病与卫生统计学系,北京 100191Department of Epidemiology and Biostatistics, Peking University School of Public Health, Beijing 100191, China
| | - 雪珩 王
- 北京大学公共卫生学院流行病与卫生统计学系,北京 100191Department of Epidemiology and Biostatistics, Peking University School of Public Health, Beijing 100191, China
| | - 和香 彭
- 北京大学公共卫生学院流行病与卫生统计学系,北京 100191Department of Epidemiology and Biostatistics, Peking University School of Public Health, Beijing 100191, China
| | - 梦 范
- 北京大学公共卫生学院流行病与卫生统计学系,北京 100191Department of Epidemiology and Biostatistics, Peking University School of Public Health, Beijing 100191, China
| | - 梦莹 王
- 北京大学公共卫生学院流行病与卫生统计学系,北京 100191Department of Epidemiology and Biostatistics, Peking University School of Public Health, Beijing 100191, China
| | - 轶群 武
- 北京大学公共卫生学院流行病与卫生统计学系,北京 100191Department of Epidemiology and Biostatistics, Peking University School of Public Health, Beijing 100191, China
| | - 雪英 秦
- 北京大学公共卫生学院流行病与卫生统计学系,北京 100191Department of Epidemiology and Biostatistics, Peking University School of Public Health, Beijing 100191, China
| | - 劲 李
- 北京大学公共卫生学院流行病与卫生统计学系,北京 100191Department of Epidemiology and Biostatistics, Peking University School of Public Health, Beijing 100191, China
| | - 涛 吴
- 北京大学公共卫生学院流行病与卫生统计学系,北京 100191Department of Epidemiology and Biostatistics, Peking University School of Public Health, Beijing 100191, China
| | - 洪平 朱
- 北京大学口腔医学院·口腔医院口腔颌面外科,国家口腔医学中心,国家口腔疾病临床医学研究中心,口腔生物材料和数字诊疗装备国家工程研究中心,口腔数字医学北京市重点实验室,国家卫生健康委员会口腔医学计算机应用工程技术研究中心,国家药品监督管理局口腔生物材料重点实验室,北京 100081Department of Oral and Maxillofacial Surgery, Peking University School and Hospital of Stomatology & National Center of Stomatology & National Clinical Research Center for Oral Diseases & National Engineering Research Center of Oral Biomaterials and Digital Medical Devices & Beijing Key Laboratory of Digital Stomatology & NHC Research Center of Engineering and Technology for Computerized Dentistry & NMPA Key Laboratory for Dental Materials, Beijing 100081, China
| | - 静 李
- 北京大学口腔医学院·口腔医院儿童口腔科,国家口腔医学中心,国家口腔疾病临床医学研究中心,口腔生物材料和数字诊疗装备国家工程研究中心,口腔数字医学北京市重点实验室,国家卫生健康委员会口腔医学计算机应用工程技术研究中心,国家药品监督管理局口腔生物材料重点实验室,北京 100081Department of Pediatric Dentistry, Peking University School and Hospital of Stomatology & National Center of Stomatology & National Clinical Research Center for Oral Diseases & National Engineering Research Center of Oral Biomaterials and Digital Medical Devices & Beijing Key Laboratory of Digital Stomatology & NHC Research Center of Engineering and Technology for Computerized Dentistry & NMPA Key Laboratory for Dental Materials, Beijing 100081, China
| | - 治波 周
- 北京大学口腔医学院·口腔医院口腔颌面外科,国家口腔医学中心,国家口腔疾病临床医学研究中心,口腔生物材料和数字诊疗装备国家工程研究中心,口腔数字医学北京市重点实验室,国家卫生健康委员会口腔医学计算机应用工程技术研究中心,国家药品监督管理局口腔生物材料重点实验室,北京 100081Department of Oral and Maxillofacial Surgery, Peking University School and Hospital of Stomatology & National Center of Stomatology & National Clinical Research Center for Oral Diseases & National Engineering Research Center of Oral Biomaterials and Digital Medical Devices & Beijing Key Laboratory of Digital Stomatology & NHC Research Center of Engineering and Technology for Computerized Dentistry & NMPA Key Laboratory for Dental Materials, Beijing 100081, China
| | - 大方 陈
- 北京大学公共卫生学院流行病与卫生统计学系,北京 100191Department of Epidemiology and Biostatistics, Peking University School of Public Health, Beijing 100191, China
| | - 永华 胡
- 北京大学公共卫生学院流行病与卫生统计学系,北京 100191Department of Epidemiology and Biostatistics, Peking University School of Public Health, Beijing 100191, China
| |
Collapse
|
9
|
Li H, Nam Y, Huo R, Fu W, Jiang B, Zhou Q, Song D, Yang Y, Jiao Y, Weng J, Yan Z, Di L, Li J, Wang J, Xu H, Wang S, Zhao J, Wen Z, Wang J, Cao Y. De Novo Germline and Somatic Variants Convergently Promote Endothelial-to-Mesenchymal Transition in Simplex Brain Arteriovenous Malformation. Circ Res 2021; 129:825-839. [PMID: 34530633 DOI: 10.1161/circresaha.121.319004] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Abstract
[Figure: see text].
Collapse
Affiliation(s)
- Hao Li
- Neurosurgery, Beijing Tiantan Hospital (H.L., R.H., W.F., Y.J., Jiancong Weng, Z.Y., Jie Wang, H.X., S.W., J.Z., Y.C.), Capital Medical University, China.,China National Clinical Research Center for Neurological Diseases, Beijing, China (H.L., R.H., W.F., Y.J., Jiancong Weng, Z.Y., Jie Wang, H.X., S.W., J.Z., Y.C.)
| | - Yoonhee Nam
- Division of Life Science, State Key Laboratory of Molecular Neuroscience (Y.N., Q.Z., D.S., Z.W., Jiguang Wang), Clear Water Bay, Kowloon, Hong Kong SAR, China
| | - Ran Huo
- Neurosurgery, Beijing Tiantan Hospital (H.L., R.H., W.F., Y.J., Jiancong Weng, Z.Y., Jie Wang, H.X., S.W., J.Z., Y.C.), Capital Medical University, China.,China National Clinical Research Center for Neurological Diseases, Beijing, China (H.L., R.H., W.F., Y.J., Jiancong Weng, Z.Y., Jie Wang, H.X., S.W., J.Z., Y.C.)
| | - Weilun Fu
- Neurosurgery, Beijing Tiantan Hospital (H.L., R.H., W.F., Y.J., Jiancong Weng, Z.Y., Jie Wang, H.X., S.W., J.Z., Y.C.), Capital Medical University, China.,China National Clinical Research Center for Neurological Diseases, Beijing, China (H.L., R.H., W.F., Y.J., Jiancong Weng, Z.Y., Jie Wang, H.X., S.W., J.Z., Y.C.)
| | - Biaobin Jiang
- Chemical and Biological Engineering (B.J., Y.Y., Jiguang Wang), Clear Water Bay, Kowloon, Hong Kong SAR, China.,the Hong Kong University of Science and Technology (B.J.,Y.Y.), Clear Water Bay, Kowloon, Hong Kong SAR, China
| | - Qiuxia Zhou
- Division of Life Science, State Key Laboratory of Molecular Neuroscience (Y.N., Q.Z., D.S., Z.W., Jiguang Wang), Clear Water Bay, Kowloon, Hong Kong SAR, China
| | - Dong Song
- Division of Life Science, State Key Laboratory of Molecular Neuroscience (Y.N., Q.Z., D.S., Z.W., Jiguang Wang), Clear Water Bay, Kowloon, Hong Kong SAR, China
| | - Yingxi Yang
- Chemical and Biological Engineering (B.J., Y.Y., Jiguang Wang), Clear Water Bay, Kowloon, Hong Kong SAR, China.,the Hong Kong University of Science and Technology (B.J.,Y.Y.), Clear Water Bay, Kowloon, Hong Kong SAR, China
| | - Yuming Jiao
- Neurosurgery, Beijing Tiantan Hospital (H.L., R.H., W.F., Y.J., Jiancong Weng, Z.Y., Jie Wang, H.X., S.W., J.Z., Y.C.), Capital Medical University, China.,China National Clinical Research Center for Neurological Diseases, Beijing, China (H.L., R.H., W.F., Y.J., Jiancong Weng, Z.Y., Jie Wang, H.X., S.W., J.Z., Y.C.)
| | - Jiancong Weng
- Neurosurgery, Beijing Tiantan Hospital (H.L., R.H., W.F., Y.J., Jiancong Weng, Z.Y., Jie Wang, H.X., S.W., J.Z., Y.C.), Capital Medical University, China.,China National Clinical Research Center for Neurological Diseases, Beijing, China (H.L., R.H., W.F., Y.J., Jiancong Weng, Z.Y., Jie Wang, H.X., S.W., J.Z., Y.C.)
| | - Zihan Yan
- Neurosurgery, Beijing Tiantan Hospital (H.L., R.H., W.F., Y.J., Jiancong Weng, Z.Y., Jie Wang, H.X., S.W., J.Z., Y.C.), Capital Medical University, China.,China National Clinical Research Center for Neurological Diseases, Beijing, China (H.L., R.H., W.F., Y.J., Jiancong Weng, Z.Y., Jie Wang, H.X., S.W., J.Z., Y.C.)
| | - Lin Di
- Beijing Advanced Innovation Center for Genomics, Biomedical Pioneering Innovation Center, Peking-Tsinghua Center for Life Sciences (L.D.), Peking University, Beijing, China.,School of Life Sciences (L.D.), Peking University, Beijing, China
| | - Jie Li
- School of Life Sciences, Tsinghua-Peking Center for Life Sciences, Tsinghua University, Beijing, China (J.L.)
| | - Jie Wang
- Neurosurgery, Beijing Tiantan Hospital (H.L., R.H., W.F., Y.J., Jiancong Weng, Z.Y., Jie Wang, H.X., S.W., J.Z., Y.C.), Capital Medical University, China.,China National Clinical Research Center for Neurological Diseases, Beijing, China (H.L., R.H., W.F., Y.J., Jiancong Weng, Z.Y., Jie Wang, H.X., S.W., J.Z., Y.C.)
| | - Hongyuan Xu
- Neurosurgery, Beijing Tiantan Hospital (H.L., R.H., W.F., Y.J., Jiancong Weng, Z.Y., Jie Wang, H.X., S.W., J.Z., Y.C.), Capital Medical University, China.,China National Clinical Research Center for Neurological Diseases, Beijing, China (H.L., R.H., W.F., Y.J., Jiancong Weng, Z.Y., Jie Wang, H.X., S.W., J.Z., Y.C.)
| | - Shuo Wang
- Neurosurgery, Beijing Tiantan Hospital (H.L., R.H., W.F., Y.J., Jiancong Weng, Z.Y., Jie Wang, H.X., S.W., J.Z., Y.C.), Capital Medical University, China.,China National Clinical Research Center for Neurological Diseases, Beijing, China (H.L., R.H., W.F., Y.J., Jiancong Weng, Z.Y., Jie Wang, H.X., S.W., J.Z., Y.C.)
| | - Jizong Zhao
- Neurosurgery, Beijing Tiantan Hospital (H.L., R.H., W.F., Y.J., Jiancong Weng, Z.Y., Jie Wang, H.X., S.W., J.Z., Y.C.), Capital Medical University, China.,China National Clinical Research Center for Neurological Diseases, Beijing, China (H.L., R.H., W.F., Y.J., Jiancong Weng, Z.Y., Jie Wang, H.X., S.W., J.Z., Y.C.)
| | - Zilong Wen
- Division of Life Science, State Key Laboratory of Molecular Neuroscience (Y.N., Q.Z., D.S., Z.W., Jiguang Wang), Clear Water Bay, Kowloon, Hong Kong SAR, China.,Greater Bay Biomedical Innocenter, Shenzhen Bay Laboratory, Shenzhen, China (Z.W.)
| | - Jiguang Wang
- Division of Life Science, State Key Laboratory of Molecular Neuroscience (Y.N., Q.Z., D.S., Z.W., Jiguang Wang), Clear Water Bay, Kowloon, Hong Kong SAR, China.,Chemical and Biological Engineering (B.J., Y.Y., Jiguang Wang), Clear Water Bay, Kowloon, Hong Kong SAR, China.,Hong Kong Center for Neurodegenerative Diseases, Hong Kong Science Park, Hong Kong SAR, China (Jiguang Wang)
| | - Yong Cao
- Neurosurgery, Beijing Tiantan Hospital (H.L., R.H., W.F., Y.J., Jiancong Weng, Z.Y., Jie Wang, H.X., S.W., J.Z., Y.C.), Capital Medical University, China.,Beijing Neurosurgical Institute (Y.C.), Capital Medical University, China.,China National Clinical Research Center for Neurological Diseases, Beijing, China (H.L., R.H., W.F., Y.J., Jiancong Weng, Z.Y., Jie Wang, H.X., S.W., J.Z., Y.C.)
| |
Collapse
|
10
|
Xia Z, Wang C, Hancock R, Vandermosten M, Hoeft F. Development of thalamus mediates paternal age effect on offspring reading: A preliminary investigation. Hum Brain Mapp 2021; 42:4580-4596. [PMID: 34219304 PMCID: PMC8410543 DOI: 10.1002/hbm.25567] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2020] [Revised: 05/31/2021] [Accepted: 06/13/2021] [Indexed: 12/20/2022] Open
Abstract
The importance of (inherited) genetic impact in reading development is well established. De novo mutation is another important contributor that is recently gathering interest as a major liability of neurodevelopmental disorders, but has been neglected in reading research to date. Paternal age at childbirth (PatAGE) is known as the most prominent risk factor for de novo mutation, which has been repeatedly shown by molecular genetic studies. As one of the first efforts, we performed a preliminary investigation of the relationship between PatAGE, offspring's reading, and brain structure in a longitudinal neuroimaging study following 51 children from kindergarten through third grade. The results showed that greater PatAGE was significantly associated with worse reading, explaining an additional 9.5% of the variance after controlling for a number of confounds-including familial factors and cognitive-linguistic reading precursors. Moreover, this effect was mediated by volumetric maturation of the left posterior thalamus from ages 5 to 8. Complementary analyses indicated the PatAGE-related thalamic region was most likely located in the pulvinar nuclei and related to the dorsal attention network by using brain atlases, public datasets, and offspring's diffusion imaging data. Altogether, these findings provide novel insights into neurocognitive mechanisms underlying the PatAGE effect on reading acquisition during its earliest phase and suggest promising areas of future research.
Collapse
Affiliation(s)
- Zhichao Xia
- Department of Psychiatry and Weill Institute for NeurosciencesUniversity of CaliforniaSan FranciscoCaliforniaUSA
- State Key Laboratory of Cognitive Neuroscience and Learning & IDG/McGovern Institute for Brain ResearchBeijing Normal UniversityBeijingChina
- School of Systems ScienceBeijing Normal UniversityBeijingChina
| | - Cheng Wang
- Department of Psychiatry and Weill Institute for NeurosciencesUniversity of CaliforniaSan FranciscoCaliforniaUSA
| | - Roeland Hancock
- Department of Psychological Sciences and Brain Imaging Research CenterUniversity of ConnecticutStorrsConnecticutUSA
| | - Maaike Vandermosten
- Department of Psychiatry and Weill Institute for NeurosciencesUniversity of CaliforniaSan FranciscoCaliforniaUSA
- Department of NeuroscienceExperimental ORL, KU LeuvenLeuvenBelgium
| | - Fumiko Hoeft
- Department of Psychiatry and Weill Institute for NeurosciencesUniversity of CaliforniaSan FranciscoCaliforniaUSA
- Department of Psychological Sciences and Brain Imaging Research CenterUniversity of ConnecticutStorrsConnecticutUSA
- Haskins LaboratoriesNew HavenConnecticutUSA
- Department of NeuropsychiatryKeio University School of MedicineShinjuku‐kuTokyoJapan
| |
Collapse
|
11
|
Zhang J, Dai Y, Wu D, Li Y, Xu J. Whole exome sequencing identified FAM149A as a plausible causative gene for congenital hereditary endothelial dystrophy, affecting Nrf2-Antioxidant signaling upon oxidative stress. Free Radic Biol Med 2021; 173:117-124. [PMID: 34303830 DOI: 10.1016/j.freeradbiomed.2021.07.029] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/15/2021] [Revised: 07/13/2021] [Accepted: 07/21/2021] [Indexed: 11/15/2022]
Abstract
BACKGROUND Congenital hereditary endothelial dystrophy (CHED) is a rare genetic disease of the corneal endothelium with a very early onset of bilateral corneal edema due to degeneration and dysfunction of the corneal endothelium. Currently SLC4A11 is the only established causative gene for CHED, but not all these reported CHED patients could be explained by SLC4A11 deficiency, indicating that the genetic predisposition of CHED still requires further exploration. METHODS Trio-based whole-exome sequencing was performed on a CHED patient and his unaffected parents. The GATK2 and an in-house bioinformatics pipeline were applied for variant analyses, following the 2015 American College of Medical Genetics and Genomics (ACMG) guidelines. Potential pathogenic variants were further validated by Sanger sequencing. The expression profiles of FAM149A in cell line, murine tissues or human corneal endothelia were determined by RT-qPCR. Small interfering RNA was used to knock down the expression of FAM149A in vitro. Cell viability was detected by a CCK-8 assay. ROS and 8-OHdG were examined by fluorometric analysis. The nuclear translocation of NRF2 was determined by western blotting. RESULTS We identified a homozygous mutation (NM_015398.3: c.991A > G; p.R331G) in the FAM149A gene that related to the phenotype of CHED. FAM149A was found to be highly expressed in corneal endothelium, and up-regulated upon oxidative stress. Further functional investigations demonstrated that deficiency in FAM149A impaired Nrf2-antioxidant signaling, rendering cells more vulnerable to oxidative stress. Consistently, the expression of FAM149A was significantly reduced in patients with corneal endothelium dysfunction. CONCLUSION This study demonstrated, for the first time, FAM149A as a plausible causative gene for CHED etiology, offering new insight for future investigation targeting CHED.
Collapse
Affiliation(s)
- Jing Zhang
- Eye Institute and Department of Ophthalmology, Eye & ENT Hospital, Fudan University, Shanghai Key Laboratory of Visual Impairment and Restoration, NHC Key Laboratory of Myopia (Fudan University), Shanghai, 200031, China
| | - Yiqin Dai
- Eye Institute and Department of Ophthalmology, Eye & ENT Hospital, Fudan University, Shanghai Key Laboratory of Visual Impairment and Restoration, NHC Key Laboratory of Myopia (Fudan University), Shanghai, 200031, China
| | - Dan Wu
- Eye Institute and Department of Ophthalmology, Eye & ENT Hospital, Fudan University, Shanghai Key Laboratory of Visual Impairment and Restoration, NHC Key Laboratory of Myopia (Fudan University), Shanghai, 200031, China
| | - Yue Li
- Eye Institute and Department of Ophthalmology, Eye & ENT Hospital, Fudan University, Shanghai Key Laboratory of Visual Impairment and Restoration, NHC Key Laboratory of Myopia (Fudan University), Shanghai, 200031, China
| | - Jianjiang Xu
- Eye Institute and Department of Ophthalmology, Eye & ENT Hospital, Fudan University, Shanghai Key Laboratory of Visual Impairment and Restoration, NHC Key Laboratory of Myopia (Fudan University), Shanghai, 200031, China.
| |
Collapse
|
12
|
Liu Y, Zhang JJ, Piao SY, Shen RJ, Ma Y, Xue ZQ, Zhang W, Liu J, Jin ZB, Zhuang WJ. Whole-Exome Sequencing in a Cohort of High Myopia Patients in Northwest China. Front Cell Dev Biol 2021; 9:645501. [PMID: 34222226 PMCID: PMC8250434 DOI: 10.3389/fcell.2021.645501] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2020] [Accepted: 05/27/2021] [Indexed: 11/22/2022] Open
Abstract
High myopia (HM) is one of the leading causes of visual impairment worldwide. In order to expand the myopia gene spectrum in the Chinese population, we investigated genetic mutations in a cohort of 27 families with HM from Northwest China by using whole-exome sequencing (WES). Genetic variations were filtered using bioinformatics tools and cosegregation analysis. A total of 201 candidate mutations were detected, and 139 were cosegregated with the disease in the families. Multistep analysis revealed four missense variants in four unrelated families, including c.904C>T (p.R302C) in CSMD1, c.860G>A (p.R287H) in PARP8, c.G848A (p.G283D) in ADAMTSL1, and c.686A>G (p.H229R) in FNDC3B. These mutations were rare or absent in the Exome Aggregation Consortium (ExAC), 1000 Genomes Project, and Genome Aggregation Database (gnomAD), indicating that they are new candidate disease-causing genes. Our findings not only expand the myopia gene spectrum but also provide reference information for further genetic study of heritable HM.
Collapse
Affiliation(s)
- Yang Liu
- School of Basic Medical Sciences, Third Clinical Medical College of Ningxia Medical University (People’s Hospital of Ningxia Hui Autonomous Region), Yinchuan, China
| | - Jin-Jin Zhang
- Clinical Medical College, Ningxia Medical University, Yinchuan, China
| | - Shun-Yu Piao
- Ningxia Eye Hospital, People’s Hospital of Ningxia Hui Autonomous Region, Third Clinical Medical College of Ningxia Medical University, Yinchuan, China
| | - Ren-Juan Shen
- Beijing Institute of Ophthalmology, Beijing Tongren Eye Center, Beijing Tongren Hospital, Capital Medical University, Beijing Ophthalmology and Visual Science Key Laboratory, Beijing, China
| | - Ya Ma
- Beijing Institute of Ophthalmology, Beijing Tongren Eye Center, Beijing Tongren Hospital, Capital Medical University, Beijing Ophthalmology and Visual Science Key Laboratory, Beijing, China
| | - Zhong-Qi Xue
- Department of Ophthalmology, Affiliated Hospital of Qingdao Binhai University, Qingdao, China
| | - Wen Zhang
- Ningxia Eye Hospital, People’s Hospital of Ningxia Hui Autonomous Region, Third Clinical Medical College of Ningxia Medical University, Yinchuan, China
| | - Juan Liu
- School of Basic Medical Sciences, Third Clinical Medical College of Ningxia Medical University (People’s Hospital of Ningxia Hui Autonomous Region), Yinchuan, China
| | - Zi-Bing Jin
- Beijing Institute of Ophthalmology, Beijing Tongren Eye Center, Beijing Tongren Hospital, Capital Medical University, Beijing Ophthalmology and Visual Science Key Laboratory, Beijing, China
| | - Wen-Juan Zhuang
- Ningxia Eye Hospital, People’s Hospital of Ningxia Hui Autonomous Region, Third Clinical Medical College of Ningxia Medical University, Yinchuan, China
| |
Collapse
|
13
|
Shen RJ, Wang JG, Li Y, Jin ZB. Consanguinity-based analysis of exome sequencing yields likely genetic causes in patients with inherited retinal dystrophy. Orphanet J Rare Dis 2021; 16:278. [PMID: 34130719 PMCID: PMC8204521 DOI: 10.1186/s13023-021-01902-5] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2021] [Accepted: 06/07/2021] [Indexed: 12/11/2022] Open
Abstract
Background Consanguineous families have a relatively high prevalence of genetic disorders caused by bi-allelic mutations in recessive genes. This study aims to evaluate the effectiveness and efficiency of a consanguinity-based exome sequencing approach to capturing genetic mutations in inherited retinal dystrophy families with consanguineous marriages. Methods Ten unrelated consanguineous families with a proband affected by inherited retinal dystrophy were recruited in this study. All participants underwent comprehensive ophthalmic examinations. Whole exome sequencing was performed, followed by a homozygote-prior strategy to rapidly filter disease-causing mutations. Bioinformatic prediction of pathogenicity, Sanger sequencing and co-segregation analysis were carried out for further validation. Results In ten consanguineous families, a total of 10 homozygous mutations in 8 IRD genes were identified, including 2 novel mutations, c.1654_1655delAG (p. R552Afs*5) in gene FAM161A in a patient diagnosed with retinitis pigmentosa, and c.830T > C (p.L277P) in gene CEP78 in a patient diagnosed with cone and rod dystrophy. Conclusion The genetic etiology in consanguineous families with IRD were successfully identified using consanguinity-based analysis of exome sequencing data, suggesting that this approach could provide complementary insights into genetic diagnoses in consanguineous families with variant genetic disorders. Supplementary Information The online version contains supplementary material available at 10.1186/s13023-021-01902-5.
Collapse
Affiliation(s)
- Ren-Juan Shen
- Beijing Institute of Ophthalmology, Beijing Tongren Eye Center, Beijing Tongren Hospital, Capital Medical University, Beijing Ophthalmology & Visual Sciences Key Laboratory, Beijing, China
| | - Jun-Gang Wang
- Department of Ophthalmology, Eye Hospital of Shandong First Medical University, State Key Laboratory Cultivation Base, Shandong Provincial Key Laboratory of Ophthalmology, Shandong Eye Institute, Shandong First Medical University & Shandong Academy of Medical Sciences, Jinan, China
| | - Yang Li
- Beijing Institute of Ophthalmology, Beijing Tongren Eye Center, Beijing Tongren Hospital, Capital Medical University, Beijing Ophthalmology & Visual Sciences Key Laboratory, Beijing, China
| | - Zi-Bing Jin
- Beijing Institute of Ophthalmology, Beijing Tongren Eye Center, Beijing Tongren Hospital, Capital Medical University, Beijing Ophthalmology & Visual Sciences Key Laboratory, Beijing, China.
| |
Collapse
|
14
|
Xu K, Chen DF, Chang H, Shen RJ, Gao H, Wang XF, Feng ZK, Zhang X, Xie Y, Li Y, Jin ZB. Genotype Profile of Global EYS-Associated Inherited Retinal Dystrophy and Clinical Findings in a Large Chinese Cohort. Front Cell Dev Biol 2021; 9:634220. [PMID: 34178978 PMCID: PMC8226124 DOI: 10.3389/fcell.2021.634220] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2020] [Accepted: 05/20/2021] [Indexed: 11/13/2022] Open
Abstract
Purpose The aim of this study was to probe the global profile of the EYS-associated genotype-phenotype trait in the worldwide reported IRD cases and to build a model for predicting disease progression as a reference for clinical consultation. Methods This retrospective study of 420 well-documented IRD cases with mutations in the EYS gene included 39 patients from a genotype-phenotype study of inherited retinal dystrophy (IRD) conducted at the Beijing Institute of Ophthalmology and 381 cases retrieved from global reports. All patients underwent ophthalmic evaluation. Mutations were revealed using next-generation sequencing, followed by Sanger DNA sequencing and real-time quantitative PCR analysis. Multiple regression models and statistical analysis were used to assess the genotype and phenotype characteristics and traits in this large cohort. Results A total of 420 well-defined patients with 841 identified mutations in the EYS gene were successfully obtained. The most common pathogenic variant was a frameshift c.4957dupA (p.S1653Kfs∗2) in exon 26, with an allele frequency of 12.7% (107/841), followed by c.8805C > A (p.Y2935X) in exon 43, with an allele frequency of 5.9% (50/841). Two new hot spots were identified in the Chinese cohort, c.1750G > T (p.E584X) and c.7492G > C (p.A2498P). Several EYS mutation types were identified, with CNV being relatively common. The mean age of onset was 20.54 ± 11.33 (4-46) years. Clinical examinations revealed a typical progression of RPE atrophy from the peripheral area to the macula. Conclusion This large global cohort of 420 IRD cases, with 262 distinct variants, identified genotype-phenotype correlations and mutation spectra with hotspots in the EYS gene.
Collapse
Affiliation(s)
- Ke Xu
- Beijing Ophthalmology and Visual Science Key Laboratory, Beijing Tongren Eye Center, Beijing Tongren Hospital, Beijing Institute of Ophthalmology, Capital Medical University, Beijing, China
| | - De-Fu Chen
- School of Ophthalmology and Optometry, The Eye Hospital, Wenzhou Medical University, Wenzhou, China
| | - Haoyu Chang
- Beijing Ophthalmology and Visual Science Key Laboratory, Beijing Tongren Eye Center, Beijing Tongren Hospital, Beijing Institute of Ophthalmology, Capital Medical University, Beijing, China
| | - Ren-Juan Shen
- Beijing Ophthalmology and Visual Science Key Laboratory, Beijing Tongren Eye Center, Beijing Tongren Hospital, Beijing Institute of Ophthalmology, Capital Medical University, Beijing, China
| | - Hua Gao
- School of Ophthalmology and Optometry, The Eye Hospital, Wenzhou Medical University, Wenzhou, China
| | - Xiao-Fang Wang
- School of Ophthalmology and Optometry, The Eye Hospital, Wenzhou Medical University, Wenzhou, China
| | - Zhuo-Kun Feng
- School of Ophthalmology and Optometry, The Eye Hospital, Wenzhou Medical University, Wenzhou, China
| | - Xiaohui Zhang
- Beijing Ophthalmology and Visual Science Key Laboratory, Beijing Tongren Eye Center, Beijing Tongren Hospital, Beijing Institute of Ophthalmology, Capital Medical University, Beijing, China
| | - Yue Xie
- Beijing Ophthalmology and Visual Science Key Laboratory, Beijing Tongren Eye Center, Beijing Tongren Hospital, Beijing Institute of Ophthalmology, Capital Medical University, Beijing, China
| | - Yang Li
- Beijing Ophthalmology and Visual Science Key Laboratory, Beijing Tongren Eye Center, Beijing Tongren Hospital, Beijing Institute of Ophthalmology, Capital Medical University, Beijing, China
| | - Zi-Bing Jin
- Beijing Ophthalmology and Visual Science Key Laboratory, Beijing Tongren Eye Center, Beijing Tongren Hospital, Beijing Institute of Ophthalmology, Capital Medical University, Beijing, China
| |
Collapse
|
15
|
Chen S, Li XY, Jin JJ, Shen RJ, Mao JY, Cheng FF, Chen ZJ, Linardaki E, Voulgaraki S, Aslanides IM, Jin ZB. Genetic Screening Revealed Latent Keratoconus in Asymptomatic Individuals. Front Cell Dev Biol 2021; 9:650344. [PMID: 34136477 PMCID: PMC8202288 DOI: 10.3389/fcell.2021.650344] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2021] [Accepted: 04/19/2021] [Indexed: 11/13/2022] Open
Abstract
Purpose To adopt molecular screening in asymptomatic individuals at high risk of developing keratoconus as a combinative approach to prevent subclinical patients from post-refractive surgery progressive corneal ectasia. Methods In this study, 79 Chinese and nine Greek families with keratoconus were recruited, including 91 patients with clinically diagnosed keratoconus as well as their asymptomatic but assumptive high-risk first-degree relatives based on underlying genetic factor. Mutational screening of VSX1, TGFBI, and ZEB1 genes and full clinical assessment including Pentacam Scheimpflug tomography were carried out in these individuals. Results Five variants in VSX1 and TGFBI genes were identified in three Chinese families and one Greek family, and four of them were novel ones. Surprisingly, ultra-early corneal changes in Belin/Ambrosio Enhanced Ectasia Display of Pentacam corneal topography together with co-segregated variants were revealed in the relatives who had no self-reported symptoms. Conclusions Variants of VSX1 and TGFBI genes identified in both the clinically diagnosed and subclinical patients may cause the keratoconus through an autosomal dominant inheritance pattern, with different variable expressivity. Combining genetic with Belin/AmbrosioEnhanced Ectasia Display can be used to identify patients with latent keratoconus. This study indicates that genetic testing may play an important supplementary role in re-classifying the disease manifestation and evaluating the preoperative examination of refractive surgery.
Collapse
Affiliation(s)
- Shihao Chen
- Center for Refractive Surgery, The Eye Hospital, Wenzhou Medical University, Wenzhou, China
| | - Xing-Yong Li
- Center for Refractive Surgery, The Eye Hospital, Wenzhou Medical University, Wenzhou, China.,Division of Ophthalmic Genetics, The Eye Hospital, Wenzhou Medical University, National Center for International Research in Regenerative Medicine and Neurogenetics, Wenzhou, China
| | - Jia-Jia Jin
- Division of Ophthalmic Genetics, The Eye Hospital, Wenzhou Medical University, National Center for International Research in Regenerative Medicine and Neurogenetics, Wenzhou, China
| | - Ren-Juan Shen
- Division of Ophthalmic Genetics, The Eye Hospital, Wenzhou Medical University, National Center for International Research in Regenerative Medicine and Neurogenetics, Wenzhou, China.,Beijing Institute of Ophthalmology, Beijing Tongren Eye Center, Beijing Tongren Hospital, Capital Medical University, Beijing Ophthalmology and Visual Sciences Key Laboratory, Beijing, China
| | - Jian-Yang Mao
- Division of Ophthalmic Genetics, The Eye Hospital, Wenzhou Medical University, National Center for International Research in Regenerative Medicine and Neurogenetics, Wenzhou, China
| | - Fei-Fei Cheng
- Division of Ophthalmic Genetics, The Eye Hospital, Wenzhou Medical University, National Center for International Research in Regenerative Medicine and Neurogenetics, Wenzhou, China
| | - Zhen-Ji Chen
- Division of Ophthalmic Genetics, The Eye Hospital, Wenzhou Medical University, National Center for International Research in Regenerative Medicine and Neurogenetics, Wenzhou, China
| | | | | | - Ioannis M Aslanides
- Center for Refractive Surgery, The Eye Hospital, Wenzhou Medical University, Wenzhou, China.,Emmetropia Mediterranean Eye Institute, Heraklion, Greece
| | - Zi-Bing Jin
- Division of Ophthalmic Genetics, The Eye Hospital, Wenzhou Medical University, National Center for International Research in Regenerative Medicine and Neurogenetics, Wenzhou, China.,Beijing Institute of Ophthalmology, Beijing Tongren Eye Center, Beijing Tongren Hospital, Capital Medical University, Beijing Ophthalmology and Visual Sciences Key Laboratory, Beijing, China.,Beijing Advanced Innovation Center for Big Data-Based Precision Medicine, Beihang University and Capital Medical University, Beijing Tongren Hospital, Beijing, China
| |
Collapse
|
16
|
Sun H, Shen XR, Fang ZB, Jiang ZZ, Wei XJ, Wang ZY, Yu XF. Next-Generation Sequencing Technologies and Neurogenetic Diseases. Life (Basel) 2021; 11:life11040361. [PMID: 33921670 PMCID: PMC8072598 DOI: 10.3390/life11040361] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2021] [Revised: 04/05/2021] [Accepted: 04/16/2021] [Indexed: 12/18/2022] Open
Abstract
Next-generation sequencing (NGS) technology has led to great advances in understanding the causes of Mendelian and complex neurological diseases. Owing to the complexity of genetic diseases, the genetic factors contributing to many rare and common neurological diseases remain poorly understood. Selecting the correct genetic test based on cost-effectiveness, coverage area, and sequencing range can improve diagnosis, treatments, and prevention. Whole-exome sequencing and whole-genome sequencing are suitable methods for finding new mutations, and gene panels are suitable for exploring the roles of specific genes in neurogenetic diseases. Here, we provide an overview of the classifications, applications, advantages, and limitations of NGS in research on neurological diseases. We further provide examples of NGS-based explorations and insights of the genetic causes of neurogenetic diseases, including Charcot-Marie-Tooth disease, spinocerebellar ataxias, epilepsy, and multiple sclerosis. In addition, we focus on issues related to NGS-based analyses, including interpretations of variants of uncertain significance, de novo mutations, congenital genetic diseases with complex phenotypes, and single-molecule real-time approaches.
Collapse
Affiliation(s)
| | | | | | | | | | | | - Xue-Fan Yu
- Correspondence: ; Tel.: +86-157-5430-1836
| |
Collapse
|
17
|
Zhang Y, Wang R, Liu Z, Jiang S, Du L, Qiu K, Li F, Wang Q, Jin J, Chen X, Li Z, Wu J, Zhang N. Distinct genetic patterns of shared and unique genes across four neurodevelopmental disorders. Am J Med Genet B Neuropsychiatr Genet 2021; 186:3-15. [PMID: 32929885 DOI: 10.1002/ajmg.b.32821] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/04/2019] [Revised: 06/04/2020] [Accepted: 08/15/2020] [Indexed: 01/09/2023]
Abstract
Neurodevelopmental disorders, including autism spectrum disorder (ASD), intellectual disability (ID), developmental disorders (DD) and epileptic encephalopathy (EE), have a strong clinical comorbidity, which indicates a common genetic etiology across various disorders. However, the underlying genetic mechanisms of comorbidity and specificity remain unknown across neurodevelopmental disorders. Based on de novo mutations, we compared systematically the functional characteristics between shared and unique genes under these disorders, as well as the spatiotemporal trajectory of development in brain and common molecular pathways of all shared genes. We observed that shared genes present more constrained against functional rare genetic variation, and harbor more pathogenic rare variants than do unique genes in each disorder. Furthermore, 71 shared genes formed two clusters related to synaptic transmission, transcription regulation and chromatin regulator. Particularly, we also found that two core genes STXBP1 and SCN2A, that were shared by the four neurodevelopmental disorders showed prominent pleiotropy. Our findings shed light on the shared and specific patterns across neurodevelopmental disorders and will enable us to further comprehend the etiology and provide valuable information for the diagnosis of neurodevelopmental disorders.
Collapse
Affiliation(s)
- Yijia Zhang
- Reproductive Center, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, China
| | - Ruochen Wang
- Institute of Genomic Medicine, Wenzhou Medical University, Wenzhou, China
| | - Zhenwei Liu
- Institute of Genomic Medicine, Wenzhou Medical University, Wenzhou, China
| | - Shan Jiang
- Institute of Genomic Medicine, Wenzhou Medical University, Wenzhou, China
| | - Lifeng Du
- Institute of Genomic Medicine, Wenzhou Medical University, Wenzhou, China
| | - Kairui Qiu
- Institute of Genomic Medicine, Wenzhou Medical University, Wenzhou, China
| | - Fengxia Li
- Institute of Genomic Medicine, Wenzhou Medical University, Wenzhou, China
| | - Qiongdan Wang
- Institute of Genomic Medicine, Wenzhou Medical University, Wenzhou, China
| | - Jing Jin
- Institute of Genomic Medicine, Wenzhou Medical University, Wenzhou, China
| | - Xiaomin Chen
- Institute of Genomic Medicine, Wenzhou Medical University, Wenzhou, China
| | - Zhongshan Li
- Institute of Genomic Medicine, Wenzhou Medical University, Wenzhou, China
| | - Jinyu Wu
- Institute of Genomic Medicine, Wenzhou Medical University, Wenzhou, China
| | - Na Zhang
- Institute of Genomic Medicine, Wenzhou Medical University, Wenzhou, China.,Medicine & Technology School of Zunyi Medical University, Zunyi, China
| |
Collapse
|
18
|
Kanzi AM, San JE, Chimukangara B, Wilkinson E, Fish M, Ramsuran V, de Oliveira T. Next Generation Sequencing and Bioinformatics Analysis of Family Genetic Inheritance. Front Genet 2020; 11:544162. [PMID: 33193618 PMCID: PMC7649788 DOI: 10.3389/fgene.2020.544162] [Citation(s) in RCA: 33] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2020] [Accepted: 09/21/2020] [Indexed: 12/29/2022] Open
Abstract
Mendelian and complex genetic trait diseases continue to burden and affect society both socially and economically. The lack of effective tests has hampered diagnosis thus, the affected lack proper prognosis. Mendelian diseases are caused by genetic mutations in a singular gene while complex trait diseases are caused by the accumulation of mutations in either linked or unlinked genomic regions. Significant advances have been made in identifying novel diseases associated mutations especially with the introduction of next generation and third generation sequencing. Regardless, some diseases are still without diagnosis as most tests rely on SNP genotyping panels developed from population based genetic analyses. Analysis of family genetic inheritance using whole genomes, whole exomes or a panel of genes has been shown to be effective in identifying disease-causing mutations. In this review, we discuss next generation and third generation sequencing platforms, bioinformatic tools and genetic resources commonly used to analyze family based genomic data with a focus on identifying inherited or novel disease-causing mutations. Additionally, we also highlight the analytical, ethical and regulatory challenges associated with analyzing personal genomes which constitute the data used for family genetic inheritance.
Collapse
Affiliation(s)
- Aquillah M. Kanzi
- Kwazulu-Natal Research and Innovation Sequencing Platform (KRISP), School of Laboratory Medicine and Medical Sciences, College of Health Sciences, University of KwaZulu-Natal, Durban, South Africa
| | | | | | | | | | | | | |
Collapse
|
19
|
Melas M, Subbiah S, Saadat S, Rajurkar S, McDonnell KJ. The Community Oncology and Academic Medical Center Alliance in the Age of Precision Medicine: Cancer Genetics and Genomics Considerations. J Clin Med 2020; 9:E2125. [PMID: 32640668 PMCID: PMC7408957 DOI: 10.3390/jcm9072125] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2020] [Revised: 06/28/2020] [Accepted: 07/02/2020] [Indexed: 12/15/2022] Open
Abstract
Recent public policy, governmental regulatory and economic trends have motivated the establishment and deepening of community health and academic medical center alliances. Accordingly, community oncology practices now deliver a significant portion of their oncology care in association with academic cancer centers. In the age of precision medicine, this alliance has acquired critical importance; novel advances in nucleic acid sequencing, the generation and analysis of immense data sets, the changing clinical landscape of hereditary cancer predisposition and ongoing discovery of novel, targeted therapies challenge community-based oncologists to deliver molecularly-informed health care. The active engagement of community oncology practices with academic partners helps with meeting these challenges; community/academic alliances result in improved cancer patient care and provider efficacy. Here, we review the community oncology and academic medical center alliance. We examine how practitioners may leverage academic center precision medicine-based cancer genetics and genomics programs to advance their patients' needs. We highlight a number of project initiatives at the City of Hope Comprehensive Cancer Center that seek to optimize community oncology and academic cancer center precision medicine interactions.
Collapse
Affiliation(s)
- Marilena Melas
- The Steve and Cindy Rasmussen Institute for Genomic Medicine, Nationwide Children’s Hospital, Columbus, OH 43205, USA;
| | - Shanmuga Subbiah
- Department of Medical Oncology and Therapeutics Research, City of Hope Comprehensive Cancer Center, Glendora, CA 91741, USA;
| | - Siamak Saadat
- Department of Medical Oncology and Therapeutics Research, City of Hope Comprehensive Cancer Center, Colton, CA 92324, USA;
| | - Swapnil Rajurkar
- Department of Medical Oncology and Therapeutics Research, City of Hope Comprehensive Cancer Center, Upland, CA 91786, USA;
| | - Kevin J. McDonnell
- Department of Medical Oncology and Therapeutics Research, City of Hope Comprehensive Cancer Center and Beckman Research Institute, Duarte, CA 91010, USA
- Center for Precision Medicine, City of Hope Comprehensive Cancer Center, Duarte, CA 91010, USA
| |
Collapse
|
20
|
Wu KC, Lv JN, Yang H, Yang FM, Lin R, Lin Q, Shen RJ, Wang JB, Duan WH, Hu M, Zhang J, He ZL, Jin ZB. Nonhuman Primate Model of Oculocutaneous Albinism with TYR and OCA2 Mutations. RESEARCH (WASHINGTON, D.C.) 2020; 2020:1658678. [PMID: 32259106 PMCID: PMC7086374 DOI: 10.34133/2020/1658678] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/31/2019] [Accepted: 02/04/2020] [Indexed: 12/27/2022]
Abstract
Human visual acuity is anatomically determined by the retinal fovea. The ontogenetic development of the fovea can be seriously hindered by oculocutaneous albinism (OCA), which is characterized by a disorder of melanin synthesis. Although people of all ethnic backgrounds can be affected, no efficient treatments for OCA have been developed thus far, due partly to the lack of effective animal models. Rhesus macaques are genetically homologous to humans and, most importantly, exhibit structures of the macula and fovea that are similar to those of humans; thus, rhesus macaques present special advantages in the modeling and study of human macular and foveal diseases. In this study, we identified rhesus macaque models with clinical characteristics consistent with those of OCA patients according to observations of ocular behavior, fundus examination, and optical coherence tomography. Genomic sequencing revealed a biallelic p.L312I mutation in TYR and a homozygous p.S788L mutation in OCA2, both of which were further confirmed to affect melanin biosynthesis via in vitro assays. These rhesus macaque models of OCA will be useful animal resources for studying foveal development and for preclinical trials of new therapies for OCA.
Collapse
Affiliation(s)
- Kun-Chao Wu
- Division of Ophthalmic Genetics, The Eye Hospital, Laboratory for Stem Cell & Retinal Regeneration, Institute of Stem Cell Research, Wenzhou Medical University, Wenzhou 325027, China
- National Center for International Research in Regenerative Medicine and Neurogenetics, National Clinical Research Center for Ocular Diseases, State Key Laboratory of Ophthalmology, Optometry and Visual Science, Wenzhou 325027, China
| | - Ji-Neng Lv
- Division of Ophthalmic Genetics, The Eye Hospital, Laboratory for Stem Cell & Retinal Regeneration, Institute of Stem Cell Research, Wenzhou Medical University, Wenzhou 325027, China
- National Center for International Research in Regenerative Medicine and Neurogenetics, National Clinical Research Center for Ocular Diseases, State Key Laboratory of Ophthalmology, Optometry and Visual Science, Wenzhou 325027, China
| | - Hui Yang
- Division of Ophthalmic Genetics, The Eye Hospital, Laboratory for Stem Cell & Retinal Regeneration, Institute of Stem Cell Research, Wenzhou Medical University, Wenzhou 325027, China
- National Center for International Research in Regenerative Medicine and Neurogenetics, National Clinical Research Center for Ocular Diseases, State Key Laboratory of Ophthalmology, Optometry and Visual Science, Wenzhou 325027, China
| | - Feng-Mei Yang
- Institute of Medical Biology, Chinese Academy of Medical Sciences, And Peking Union Medical College (CAMS & PUMC), Yunnan Key Laboratory of Vaccine Research Development on Severe Infectious Disease, Kunming 650118, China
| | - Rui Lin
- Division of Ophthalmic Genetics, The Eye Hospital, Laboratory for Stem Cell & Retinal Regeneration, Institute of Stem Cell Research, Wenzhou Medical University, Wenzhou 325027, China
- National Center for International Research in Regenerative Medicine and Neurogenetics, National Clinical Research Center for Ocular Diseases, State Key Laboratory of Ophthalmology, Optometry and Visual Science, Wenzhou 325027, China
| | - Qiang Lin
- Division of Ophthalmic Genetics, The Eye Hospital, Laboratory for Stem Cell & Retinal Regeneration, Institute of Stem Cell Research, Wenzhou Medical University, Wenzhou 325027, China
- National Center for International Research in Regenerative Medicine and Neurogenetics, National Clinical Research Center for Ocular Diseases, State Key Laboratory of Ophthalmology, Optometry and Visual Science, Wenzhou 325027, China
| | - Ren-Juan Shen
- Division of Ophthalmic Genetics, The Eye Hospital, Laboratory for Stem Cell & Retinal Regeneration, Institute of Stem Cell Research, Wenzhou Medical University, Wenzhou 325027, China
- National Center for International Research in Regenerative Medicine and Neurogenetics, National Clinical Research Center for Ocular Diseases, State Key Laboratory of Ophthalmology, Optometry and Visual Science, Wenzhou 325027, China
| | - Jun-Bin Wang
- Institute of Medical Biology, Chinese Academy of Medical Sciences, And Peking Union Medical College (CAMS & PUMC), Yunnan Key Laboratory of Vaccine Research Development on Severe Infectious Disease, Kunming 650118, China
| | - Wen-Hua Duan
- Department of Ophthalmology, The Second People's Hospital of Yunnan Province, Fourth Affiliated Hospital of Kunming Medical University, Key Laboratory of Yunnan Province for the Prevention and Treatment of Ophthalmology, Kunming 650021, China
| | - Min Hu
- Department of Ophthalmology, The Second People's Hospital of Yunnan Province, Fourth Affiliated Hospital of Kunming Medical University, Key Laboratory of Yunnan Province for the Prevention and Treatment of Ophthalmology, Kunming 650021, China
| | - Jun Zhang
- National Center for International Research in Regenerative Medicine and Neurogenetics, National Clinical Research Center for Ocular Diseases, State Key Laboratory of Ophthalmology, Optometry and Visual Science, Wenzhou 325027, China
- Laboratory of Retinal Physiology & Disease, The Eye Hospital, Wenzhou Medical University, Wenzhou 325027, China
| | - Zhan-Long He
- Institute of Medical Biology, Chinese Academy of Medical Sciences, And Peking Union Medical College (CAMS & PUMC), Yunnan Key Laboratory of Vaccine Research Development on Severe Infectious Disease, Kunming 650118, China
| | - Zi-Bing Jin
- Division of Ophthalmic Genetics, The Eye Hospital, Laboratory for Stem Cell & Retinal Regeneration, Institute of Stem Cell Research, Wenzhou Medical University, Wenzhou 325027, China
- National Center for International Research in Regenerative Medicine and Neurogenetics, National Clinical Research Center for Ocular Diseases, State Key Laboratory of Ophthalmology, Optometry and Visual Science, Wenzhou 325027, China
| |
Collapse
|
21
|
Huang XF, Xiang L, Fang XL, Liu WQ, Zhuang YY, Chen ZJ, Shen RJ, Cheng W, Han RY, Zheng SS, Chen XJ, Liu X, Jin ZB. Functional characterization of CEP250 variant identified in nonsyndromic retinitis pigmentosa. Hum Mutat 2019; 40:1039-1045. [PMID: 30998843 DOI: 10.1002/humu.23759] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2018] [Revised: 03/16/2019] [Accepted: 04/02/2019] [Indexed: 12/29/2022]
Abstract
Retinitis pigmentosa (RP) is the most common manifestation of inherited retinal diseases with high degree of genetic, allelic, and phenotypic heterogeneity. CEP250 encodes the C-Nap1 protein and has been associated with various retinal phenotypes. Here, we report the identification of a mutation (c.562C>T, p.R188*) in the CEP250 in a consanguineous family with nonsyndromic RP. To gain insights into the molecular pathomechanism underlying CEP250 defects and the functional relevance of CEP250 variants in humans, we conducted a functional characterization of CEP250 variant using a novel Cep250 knockin mouse line. Remarkably, the disruption of Cep250 resulted in severe impairment of retinal function and significant retinal morphological alterations. The homozygous knockin mice showed significantly reduced retinal thickness and ERG responses. This study not only broadens the spectrum of phenotypes associated with CEP250 mutations, but also, for the first time, elucidates the function of CEP250 in photoreceptors using a newly established animal model.
Collapse
Affiliation(s)
- Xiu-Feng Huang
- Division of Ophthalmic Genetics, The Eye Hospital, Wenzhou Medical University, Wenzhou, China
- State Key Laboratory of Ophthalmology, Optometry and Vision Science, National International Joint Research Center for Regenerative Medicine and Neurogenetics, Wenzhou Medical University, Wenzhou, China
| | - Lue Xiang
- Division of Ophthalmic Genetics, The Eye Hospital, Wenzhou Medical University, Wenzhou, China
- State Key Laboratory of Ophthalmology, Optometry and Vision Science, National International Joint Research Center for Regenerative Medicine and Neurogenetics, Wenzhou Medical University, Wenzhou, China
| | - Xiao-Long Fang
- Division of Ophthalmic Genetics, The Eye Hospital, Wenzhou Medical University, Wenzhou, China
- State Key Laboratory of Ophthalmology, Optometry and Vision Science, National International Joint Research Center for Regenerative Medicine and Neurogenetics, Wenzhou Medical University, Wenzhou, China
| | - Wei-Qin Liu
- Division of Ophthalmic Genetics, The Eye Hospital, Wenzhou Medical University, Wenzhou, China
- State Key Laboratory of Ophthalmology, Optometry and Vision Science, National International Joint Research Center for Regenerative Medicine and Neurogenetics, Wenzhou Medical University, Wenzhou, China
| | - You-Yuan Zhuang
- Division of Ophthalmic Genetics, The Eye Hospital, Wenzhou Medical University, Wenzhou, China
- State Key Laboratory of Ophthalmology, Optometry and Vision Science, National International Joint Research Center for Regenerative Medicine and Neurogenetics, Wenzhou Medical University, Wenzhou, China
| | - Zhen-Ji Chen
- Division of Ophthalmic Genetics, The Eye Hospital, Wenzhou Medical University, Wenzhou, China
- State Key Laboratory of Ophthalmology, Optometry and Vision Science, National International Joint Research Center for Regenerative Medicine and Neurogenetics, Wenzhou Medical University, Wenzhou, China
| | - Ren-Juan Shen
- Division of Ophthalmic Genetics, The Eye Hospital, Wenzhou Medical University, Wenzhou, China
- State Key Laboratory of Ophthalmology, Optometry and Vision Science, National International Joint Research Center for Regenerative Medicine and Neurogenetics, Wenzhou Medical University, Wenzhou, China
| | - Wan Cheng
- Division of Ophthalmic Genetics, The Eye Hospital, Wenzhou Medical University, Wenzhou, China
- State Key Laboratory of Ophthalmology, Optometry and Vision Science, National International Joint Research Center for Regenerative Medicine and Neurogenetics, Wenzhou Medical University, Wenzhou, China
| | - Ru-Yi Han
- Division of Ophthalmic Genetics, The Eye Hospital, Wenzhou Medical University, Wenzhou, China
- State Key Laboratory of Ophthalmology, Optometry and Vision Science, National International Joint Research Center for Regenerative Medicine and Neurogenetics, Wenzhou Medical University, Wenzhou, China
| | - Si-Si Zheng
- Division of Ophthalmic Genetics, The Eye Hospital, Wenzhou Medical University, Wenzhou, China
- State Key Laboratory of Ophthalmology, Optometry and Vision Science, National International Joint Research Center for Regenerative Medicine and Neurogenetics, Wenzhou Medical University, Wenzhou, China
| | - Xue-Jiao Chen
- Division of Ophthalmic Genetics, The Eye Hospital, Wenzhou Medical University, Wenzhou, China
- State Key Laboratory of Ophthalmology, Optometry and Vision Science, National International Joint Research Center for Regenerative Medicine and Neurogenetics, Wenzhou Medical University, Wenzhou, China
| | - Xiaoling Liu
- State Key Laboratory of Ophthalmology, Optometry and Vision Science, National International Joint Research Center for Regenerative Medicine and Neurogenetics, Wenzhou Medical University, Wenzhou, China
- Department of Medical Retina, The Eye Hospital, Wenzhou Medical University, Wenzhou, China
| | - Zi-Bing Jin
- Division of Ophthalmic Genetics, The Eye Hospital, Wenzhou Medical University, Wenzhou, China
- State Key Laboratory of Ophthalmology, Optometry and Vision Science, National International Joint Research Center for Regenerative Medicine and Neurogenetics, Wenzhou Medical University, Wenzhou, China
| |
Collapse
|
22
|
Abstract
A genetic informed approach sheds new light on the biology of congenital hydrocephalus (CH), on which previous knowledge of the genetic background is scanty. In this issue, Furey et al. (2018) discover that variants in four genes associated with neurogenesis are implicated in CH.
Collapse
Affiliation(s)
- Dennis Lal
- Analytic and Translational Genetics Unit, Massachusetts General Hospital, Boston, MA 02114, USA; Stanley Center for Psychiatric Research, Broad Institute, Cambridge, MA 02142, USA; Cologne Center for Genomics (CCG), University of Cologne, 50931 Cologne, Germany; Genomic Medicine Institute, Lerner Research Institute Cleveland Clinic, Cleveland, OH 44195, USA; Epilepsy Center, Neurological Institute, Cleveland Clinic, Cleveland, OH 44195, USA
| | - Aarno Palotie
- Analytic and Translational Genetics Unit, Massachusetts General Hospital, Boston, MA 02114, USA; Stanley Center for Psychiatric Research, Broad Institute, Cambridge, MA 02142, USA; Program in Medical and Population Genetics, The Broad Institute of MIT and Harvard, Cambridge, MA 02142, USA; Institute for Molecular Medicine Finland, University of Helsinki, 00290 Helsinki, Finland; Psychiatric and Neurodevelopmental Genetics Unit, Department of Psychiatry, Massachusetts General Hospital, Boston, MA 02114, USA; Department of Neurology, Massachusetts General Hospital, Boston, MA 02114, USA.
| |
Collapse
|
23
|
Wang Q, Liu Z, Lin Z, Zhang R, Lu Y, Su W, Li F, Xu X, Tu M, Lou Y, Zhao J, Zheng X. De Novo Germline Mutations in SEMA5A Associated With Infantile Spasms. Front Genet 2019; 10:605. [PMID: 31354784 PMCID: PMC6635550 DOI: 10.3389/fgene.2019.00605] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2018] [Accepted: 06/07/2019] [Indexed: 11/13/2022] Open
Abstract
Infantile spasm (IS) is an early-onset epileptic encephalopathy that usually presents with hypsarrhythmia on an electroencephalogram with developmental impairment or regression. In this study, whole-exome sequencing was performed to detect potential pathogenic de novo mutations, and finally we identified a novel damaging de novo mutation in SEMA5A and a compound heterozygous mutation in CLTCL1 in three sporadic trios with IS. The expression profiling of SEMA5A in the human brain showed that it was mainly highly expressed in the cerebral cortex, during the early brain development stage (8 to 9 post-conception weeks and 0 to 5 months after birth). In addition, we identified a close protein-protein interaction network between SEMA5A and candidate genes associated with epilepsy, autism spectrum disorder (ASD) or intellectual disability. Gene enrichment and function analysis demonstrated that genes interacting with SEMA5A were significantly enriched in several brain regions across early fetal development, including the cortex, cerebellum, striatum and thalamus (q < 0.05), and were involved in axonal, neuronal and synapse-associated processes. Furthermore, SEMA5A and its interacting genes were associated with ASD, epilepsy syndrome and developmental disorders of mental health. Our results provide insightful information indicating that SEMA5A may contribute to the development of the brain and is associated with IS. However, further genetic studies are still needed to evaluate the role of SEMA5A in IS to definitively establish the role of SEMA5A in this disorder.
Collapse
Affiliation(s)
- Qiongdan Wang
- Department of Laboratory Medicine, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, China.,School of Laboratory Medicine and Life Sciences, Wenzhou Medical University, Wenzhou, China
| | - Zhenwei Liu
- Institute of Genomic Medicine, Wenzhou Medical University, Wenzhou, China
| | - Zhongdong Lin
- Department of Pediatric Neurology, The Second Affiliated Hospital and Yuying Children's Hospital, Wenzhou Medical University, Wenzhou, China
| | - Ru Zhang
- School of Laboratory Medicine and Life Sciences, Wenzhou Medical University, Wenzhou, China
| | - Yutian Lu
- Department of Laboratory Medicine, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, China.,School of Laboratory Medicine and Life Sciences, Wenzhou Medical University, Wenzhou, China
| | - Weijue Su
- Department of Obstetrics and Gynecology, The Second Affiliated Hospital and Yuying Children's Hospital, Wenzhou Medical University, Wenzhou, China
| | - Feng Li
- Department of Pediatric Neurology, The Second Affiliated Hospital and Yuying Children's Hospital, Wenzhou Medical University, Wenzhou, China
| | - Xi Xu
- Department of Laboratory Medicine, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, China.,School of Laboratory Medicine and Life Sciences, Wenzhou Medical University, Wenzhou, China
| | - Mengyun Tu
- Department of Laboratory Medicine, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, China.,School of Laboratory Medicine and Life Sciences, Wenzhou Medical University, Wenzhou, China
| | - Yongliang Lou
- School of Laboratory Medicine and Life Sciences, Wenzhou Medical University, Wenzhou, China.,Key Laboratory of Laboratory Medicine, Ministry of Education, Wenzhou, Zhejiang, China
| | - Junzhao Zhao
- Department of Obstetrics and Gynecology, The Second Affiliated Hospital and Yuying Children's Hospital, Wenzhou Medical University, Wenzhou, China
| | - Xiaoqun Zheng
- Department of Laboratory Medicine, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, China.,School of Laboratory Medicine and Life Sciences, Wenzhou Medical University, Wenzhou, China.,Key Laboratory of Laboratory Medicine, Ministry of Education, Wenzhou, Zhejiang, China
| |
Collapse
|
24
|
Cai XB, Wu KC, Zhang X, Lv JN, Jin GH, Xiang L, Chen J, Huang XF, Pan D, Lu B, Lu F, Qu J, Jin ZB. Whole-exome sequencing identified ARL2 as a novel candidate gene for MRCS (microcornea, rod-cone dystrophy, cataract, and posterior staphyloma) syndrome. Clin Genet 2019; 96:61-71. [PMID: 30945270 DOI: 10.1111/cge.13541] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2018] [Revised: 03/20/2019] [Accepted: 03/21/2019] [Indexed: 01/01/2023]
Abstract
Adenosine diphosphate (ADP)-ribosylation factor-like 2 (ARL2) protein participates in a broad range of cellular processes and acts as a mediator for mutant ARL2BP in cilium-associated retinitis pigmentosa and for mutant HRG4 in mitochondria-related photoreceptor degeneration. However, mutant ARL2 has not been linked to any human disease so far. Here, we identified a de novo variant in ARL2 (c.44G > T, p.R15L) in a Chinese pedigree with MRCS (microcornea, rod-cone dystrophy, cataract, and posterior staphyloma) syndrome through whole-exome sequencing and co-segregation analysis. Co-immunoprecipitation assay and immunoblotting confirmed that the mutant ARL2 protein showed a 62% lower binding affinity for HRG4 while a merely 18% lower binding affinity for ARL2BP. Immunofluorescence images of ARL2 and HRG4 co-localizing with cytochrome c in HeLa cells described their relationship with mitochondria. Further analyses of the mitochondrial respiratory chain and adenosine triphosphate production showed significant abnormalities under an ARL2-mutant condition. Finally, we generated transgenic mice to test the pathogenicity of this variant and observed retinal degeneration complicated with microcornea and cataract that were similar to those in our patients. In conclusion, we uncover ARL2 as a novel candidate gene for MRCS syndrome and suggest a mitochondria-related mechanism of the first ARL2 variant through site-directed mutagenesis studies.
Collapse
Affiliation(s)
- Xue-Bi Cai
- Lab for Stem Cell and Retinal Regeneration, Institute of Stem Cell Research; Division of Ophthalmic Genetics, The Eye Hospital, Wenzhou Medical University, Wenzhou, China.,State Key Laboratory of Ophthalmology, Optometry and Vision Science, Wenzhou Medical University, Wenzhou, China
| | - Kun-Chao Wu
- Lab for Stem Cell and Retinal Regeneration, Institute of Stem Cell Research; Division of Ophthalmic Genetics, The Eye Hospital, Wenzhou Medical University, Wenzhou, China.,State Key Laboratory of Ophthalmology, Optometry and Vision Science, Wenzhou Medical University, Wenzhou, China
| | - Xiao Zhang
- Lab for Stem Cell and Retinal Regeneration, Institute of Stem Cell Research; Division of Ophthalmic Genetics, The Eye Hospital, Wenzhou Medical University, Wenzhou, China.,State Key Laboratory of Ophthalmology, Optometry and Vision Science, Wenzhou Medical University, Wenzhou, China
| | - Ji-Neng Lv
- Lab for Stem Cell and Retinal Regeneration, Institute of Stem Cell Research; Division of Ophthalmic Genetics, The Eye Hospital, Wenzhou Medical University, Wenzhou, China.,State Key Laboratory of Ophthalmology, Optometry and Vision Science, Wenzhou Medical University, Wenzhou, China
| | - Guang-Hui Jin
- Lab for Stem Cell and Retinal Regeneration, Institute of Stem Cell Research; Division of Ophthalmic Genetics, The Eye Hospital, Wenzhou Medical University, Wenzhou, China.,State Key Laboratory of Ophthalmology, Optometry and Vision Science, Wenzhou Medical University, Wenzhou, China
| | - Lue Xiang
- Lab for Stem Cell and Retinal Regeneration, Institute of Stem Cell Research; Division of Ophthalmic Genetics, The Eye Hospital, Wenzhou Medical University, Wenzhou, China.,State Key Laboratory of Ophthalmology, Optometry and Vision Science, Wenzhou Medical University, Wenzhou, China
| | - Jie Chen
- State Key Laboratory of Ophthalmology, Optometry and Vision Science, Wenzhou Medical University, Wenzhou, China
| | - Xiu-Feng Huang
- Lab for Stem Cell and Retinal Regeneration, Institute of Stem Cell Research; Division of Ophthalmic Genetics, The Eye Hospital, Wenzhou Medical University, Wenzhou, China.,State Key Laboratory of Ophthalmology, Optometry and Vision Science, Wenzhou Medical University, Wenzhou, China
| | - Deng Pan
- Lab for Stem Cell and Retinal Regeneration, Institute of Stem Cell Research; Division of Ophthalmic Genetics, The Eye Hospital, Wenzhou Medical University, Wenzhou, China.,State Key Laboratory of Ophthalmology, Optometry and Vision Science, Wenzhou Medical University, Wenzhou, China
| | - Bin Lu
- Protein Quality Control and Diseases Laboratory, Institute of Biophysics, School of Life Sciences, Wenzhou Medical University, Wenzhou, China
| | - Fan Lu
- State Key Laboratory of Ophthalmology, Optometry and Vision Science, Wenzhou Medical University, Wenzhou, China
| | - Jia Qu
- State Key Laboratory of Ophthalmology, Optometry and Vision Science, Wenzhou Medical University, Wenzhou, China
| | - Zi-Bing Jin
- Lab for Stem Cell and Retinal Regeneration, Institute of Stem Cell Research; Division of Ophthalmic Genetics, The Eye Hospital, Wenzhou Medical University, Wenzhou, China.,State Key Laboratory of Ophthalmology, Optometry and Vision Science, Wenzhou Medical University, Wenzhou, China
| |
Collapse
|
25
|
Wu J, Yu P, Jin X, Xu X, Li J, Li Z, Wang M, Wang T, Wu X, Jiang Y, Cai W, Mei J, Min Q, Xu Q, Zhou B, Guo H, Wang P, Zhou W, Hu Z, Li Y, Cai T, Wang Y, Xia K, Jiang YH, Sun ZS. Genomic landscapes of Chinese sporadic autism spectrum disorders revealed by whole-genome sequencing. J Genet Genomics 2018; 45:527-538. [PMID: 30392784 DOI: 10.1016/j.jgg.2018.09.002] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2018] [Revised: 08/25/2018] [Accepted: 09/09/2018] [Indexed: 12/12/2022]
Abstract
Autism spectrum disorder (ASD) is a neurodevelopmental disorder with considerable clinical and genetic heterogeneity. In this study, we identified all classes of genomic variants from whole-genome sequencing (WGS) dataset of 32 Chinese trios with ASD, including de novo mutations, inherited variants, copy number variants (CNVs) and genomic structural variants. A higher mutation rate (Poisson test, P < 2.2 × 10-16) in exonic (1.37 × 10-8) and 3'-UTR regions (1.42 × 10-8) was revealed in comparison with that of whole genome (1.05 × 10-8). Using an integrated model, we identified 87 potentially risk genes (P < 0.01) from 4832 genes harboring various rare deleterious variants, including CHD8 and NRXN2, implying that the disorders may be in favor to multiple-hit. In particular, frequent rare inherited mutations of several microcephaly-associated genes (ASPM, WDR62, and ZNF335) were found in ASD. In chromosomal structure analyses, we found four de novo CNVs and one de novo chromosomal rearrangement event, including a de novo duplication of UBE3A-containing region at 15q11.2-q13.1, which causes Angelman syndrome and microcephaly, and a disrupted TNR due to de novo chromosomal translocation t(1; 5)(q25.1; q33.2). Taken together, our results suggest that abnormalities of centrosomal function and chromatin remodeling of the microcephaly-associated genes may be implicated in pathogenesis of ASD. Adoption of WGS as a new yet efficient technique to illustrate the full genetic spectrum in complex disorders, such as ASD, could provide novel insights into pathogenesis, diagnosis and treatment.
Collapse
Affiliation(s)
- Jinyu Wu
- Institute of Genomic Medicine, Wenzhou Medical University, Wenzhou 325000, China
| | - Ping Yu
- Institute of Genomic Medicine, Wenzhou Medical University, Wenzhou 325000, China
| | - Xin Jin
- BGI-Shenzhen, Shenzhen 518083, China
| | - Xiu Xu
- Department of Child Healthcare, Children's Hospital of Fudan University, Shanghai 200032, China
| | - Jinchen Li
- State Key Laboratory of Medical Genetics, Central South University, Changsha 410078, China
| | - Zhongshan Li
- Institute of Genomic Medicine, Wenzhou Medical University, Wenzhou 325000, China
| | | | - Tao Wang
- Institute of Genomic Medicine, Wenzhou Medical University, Wenzhou 325000, China
| | - Xueli Wu
- BGI-Shenzhen, Shenzhen 518083, China
| | - Yi Jiang
- Institute of Genomic Medicine, Wenzhou Medical University, Wenzhou 325000, China
| | - Wanshi Cai
- Beijing Institutes of Life Science, Chinese Academy of Sciences, Beijing 100101, China
| | - Junpu Mei
- BGI-Shenzhen, Shenzhen 518083, China
| | - Qingjie Min
- Institute of Genomic Medicine, Wenzhou Medical University, Wenzhou 325000, China
| | - Qiong Xu
- Department of Child Healthcare, Children's Hospital of Fudan University, Shanghai 200032, China
| | - Bingrui Zhou
- Department of Child Healthcare, Children's Hospital of Fudan University, Shanghai 200032, China
| | - Hui Guo
- State Key Laboratory of Medical Genetics, Central South University, Changsha 410078, China
| | - Ping Wang
- Department of Pediatrics and Neurobiology, Duke University School of Medicine, Durham, NC 27710, USA
| | - Wenhao Zhou
- Department of Child Healthcare, Children's Hospital of Fudan University, Shanghai 200032, China
| | - Zhengmao Hu
- State Key Laboratory of Medical Genetics, Central South University, Changsha 410078, China
| | | | - Tao Cai
- Institute of Genomic Medicine, Wenzhou Medical University, Wenzhou 325000, China
| | - Yi Wang
- Department of Child Healthcare, Children's Hospital of Fudan University, Shanghai 200032, China
| | - Kun Xia
- State Key Laboratory of Medical Genetics, Central South University, Changsha 410078, China.
| | - Yong-Hui Jiang
- Department of Pediatrics and Neurobiology, Duke University School of Medicine, Durham, NC 27710, USA.
| | - Zhong Sheng Sun
- Institute of Genomic Medicine, Wenzhou Medical University, Wenzhou 325000, China; Beijing Institutes of Life Science, Chinese Academy of Sciences, Beijing 100101, China.
| |
Collapse
|