1
|
Oszoli I, Zachar I. Group-selection via aggregative propagule-formation enables cooperative multicellularity in an individual based, spatial model. PLoS Comput Biol 2024; 20:e1012107. [PMID: 38713735 PMCID: PMC11101088 DOI: 10.1371/journal.pcbi.1012107] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2023] [Revised: 05/17/2024] [Accepted: 04/24/2024] [Indexed: 05/09/2024] Open
Abstract
The emergence of multicellularity is one of the major transitions in evolution that happened multiple times independently. During aggregative multicellularity, genetically potentially unrelated lineages cooperate to form transient multicellular groups. Unlike clonal multicellularity, aggregative multicellular organisms do not rely on kin selection instead other mechanisms maintain cooperation against cheater phenotypes that benefit from cooperators but do not contribute to groups. Spatiality with limited diffusion can facilitate group selection, as interactions among individuals are restricted to local neighbourhoods only. Selection for larger size (e.g. avoiding predation) may facilitate the emergence of aggregation, though it is unknown, whether and how much role such selection played during the evolution of aggregative multicellularity. We have investigated the effect of spatiality and the necessity of predation on the stability of aggregative multicellularity via individual-based modelling on the ecological timescale. We have examined whether aggregation facilitates the survival of cooperators in a temporally heterogeneous environment against cheaters, where only a subset of the population is allowed to periodically colonize a new, resource-rich habitat. Cooperators constitutively produce adhesive molecules to promote aggregation and propagule-formation while cheaters spare this expense to grow faster but cannot aggregate on their own, hence depending on cooperators for long-term survival. We have compared different population-level reproduction modes with and without individual selection (predation) to evaluate the different hypotheses. In a temporally homogeneous environment without propagule-based colonization, cheaters always win. Predation can benefit cooperators, but it is not enough to maintain the necessary cooperator amount in successive dispersals, either randomly or by fragmentation. Aggregation-based propagation however can ensure the adequate ratio of cooperators-to-cheaters in the propagule and is sufficient to do so even without predation. Spatiality combined with temporal heterogeneity helps cooperators via group selection, thus facilitating aggregative multicellularity. External stress selecting for larger size (e.g. predation) may facilitate aggregation, however, according to our results, it is neither necessary nor sufficient for aggregative multicellularity to be maintained when there is effective group-selection.
Collapse
Affiliation(s)
- István Oszoli
- Department of Plant Systematics, Ecology and Theoretical Biology, Eötvös Loránd University, Budapest, Hungary
| | - István Zachar
- Department of Plant Systematics, Ecology and Theoretical Biology, Eötvös Loránd University, Budapest, Hungary
- HUN-REN Institute of Evolution, Centre for Ecological Research, Budapest, Hungary
| |
Collapse
|
2
|
Mesquita G, Haustrate A, Mihalache A, Soret B, Cordier C, Desruelles E, Duval E, Pethö Z, Prevarskaya N, Schwab A, Lehen’kyi V. TRPV6 Channel Is Involved in Pancreatic Ductal Adenocarcinoma Aggressiveness and Resistance to Chemotherapeutics. Cancers (Basel) 2023; 15:5769. [PMID: 38136316 PMCID: PMC10741494 DOI: 10.3390/cancers15245769] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2023] [Revised: 11/20/2023] [Accepted: 11/29/2023] [Indexed: 12/24/2023] Open
Abstract
Pancreatic ductal adenocarcinoma (PDAC) stands as a highly aggressive and lethal cancer, characterized by a grim prognosis and scarce treatment alternatives. Within this context, TRPV6, a calcium-permeable channel, emerges as a noteworthy candidate due to its overexpression in various cancers, capable of influencing the cell behavior in different cancer entities. Nonetheless, the exact expression pattern and functional significance of TRPV6 in the context of PDAC remains enigmatic. This study scrutinizes the expression of TRPV6 in tissue specimens obtained from 46 PDAC patients across distinct stages and grades. We manipulated TRPV6 expression (knockdown, overexpression) in the human PDAC cell lines Panc-1 and Capan-1. Subsequently, we analyzed its impact on multiple facets, encompassing Ca2+ influx, proliferation, apoptosis, migration, chemoresistance, and tumor growth, both in vitro and in vivo. Notably, the data indicate a direct correlation between TRPV6 expression levels, tumor stage, and grade, establishing a link between TRPV6 and PDAC proliferation in tissue samples. Decreasing TRPV6 expression via knockdown hampered Ca2+ influx, resulting in diminished proliferation and viability in both cell lines, and cell cycle progression in Panc-1. The knockdown simultaneously led to an increase in apoptotic rates and increased the susceptibility of cells to 5-FU and gemcitabine treatments. Moreover, it accelerated migration and promoted collective movement among Panc-1 cells. Conversely, TRPV6 overexpression yielded opposing outcomes in terms of proliferation in Panc-1 and Capan-1, and the migration of Panc-1 cells. Intriguingly, both TRPV6 knockdown and overexpression diminished the process of tumor formation in vivo. This intricate interplay suggests that PDAC aggressiveness relies on a fine-tuned TRPV6 expression, raising its profile as a putative therapeutic target.
Collapse
Affiliation(s)
- Gonçalo Mesquita
- Laboratory of Cell Physiology, INSERM U1003, Laboratory of Excellence Ion Channel Science and Therapeutics, Department of Biology, Faculty of Science and Technologies, University of Lille, 59650 Villeneuve d’Ascq, France (E.D.); (N.P.)
- Institute of Physiology II, University of Muenster, Robert-Koch-Str. 27b, 48149 Muenster, Germany;
| | - Aurélien Haustrate
- Laboratory of Cell Physiology, INSERM U1003, Laboratory of Excellence Ion Channel Science and Therapeutics, Department of Biology, Faculty of Science and Technologies, University of Lille, 59650 Villeneuve d’Ascq, France (E.D.); (N.P.)
| | - Adriana Mihalache
- Service d’Anatomie et de Cytologie Pathologiques, Groupement des Hôpitaux de l’Institut Catholique de Lille (GHICL), 59000 Lille, France; (A.M.); (E.D.)
| | - Benjamin Soret
- Laboratory of Cell Physiology, INSERM U1003, Laboratory of Excellence Ion Channel Science and Therapeutics, Department of Biology, Faculty of Science and Technologies, University of Lille, 59650 Villeneuve d’Ascq, France (E.D.); (N.P.)
- Institute of Physiology II, University of Muenster, Robert-Koch-Str. 27b, 48149 Muenster, Germany;
| | - Clément Cordier
- Laboratory of Cell Physiology, INSERM U1003, Laboratory of Excellence Ion Channel Science and Therapeutics, Department of Biology, Faculty of Science and Technologies, University of Lille, 59650 Villeneuve d’Ascq, France (E.D.); (N.P.)
| | - Emilie Desruelles
- Laboratory of Cell Physiology, INSERM U1003, Laboratory of Excellence Ion Channel Science and Therapeutics, Department of Biology, Faculty of Science and Technologies, University of Lille, 59650 Villeneuve d’Ascq, France (E.D.); (N.P.)
| | - Erika Duval
- Service d’Anatomie et de Cytologie Pathologiques, Groupement des Hôpitaux de l’Institut Catholique de Lille (GHICL), 59000 Lille, France; (A.M.); (E.D.)
| | - Zoltan Pethö
- Institute of Physiology II, University of Muenster, Robert-Koch-Str. 27b, 48149 Muenster, Germany;
| | - Natalia Prevarskaya
- Laboratory of Cell Physiology, INSERM U1003, Laboratory of Excellence Ion Channel Science and Therapeutics, Department of Biology, Faculty of Science and Technologies, University of Lille, 59650 Villeneuve d’Ascq, France (E.D.); (N.P.)
| | - Albrecht Schwab
- Institute of Physiology II, University of Muenster, Robert-Koch-Str. 27b, 48149 Muenster, Germany;
| | - V’yacheslav Lehen’kyi
- Laboratory of Cell Physiology, INSERM U1003, Laboratory of Excellence Ion Channel Science and Therapeutics, Department of Biology, Faculty of Science and Technologies, University of Lille, 59650 Villeneuve d’Ascq, France (E.D.); (N.P.)
| |
Collapse
|
3
|
Mantilla G, Peréz-Gordones MC, Cisneros-Montufar S, Benaim G, Navarro JC, Mendoza M, Ramírez-Iglesias JR. Structural Analysis and Diversity of Calmodulin-Binding Domains in Membrane and Intracellular Ca2+-ATPases. J Membr Biol 2022; 256:159-174. [PMID: 36454258 DOI: 10.1007/s00232-022-00275-5] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2022] [Accepted: 11/11/2022] [Indexed: 12/03/2022]
Abstract
The plasma membrane and autoinhibited Ca2+-ATPases contribute to the Ca2+ homeostasis in a wide variety of organisms. The enzymatic activity of these pumps is stimulated by calmodulin, which interacts with the target protein through the calmodulin-binding domain (CaMBD). Most information about this region is related to all calmodulin modulated proteins, which indicates general chemical properties and there is no established relation between Ca2+ pump sequences and taxonomic classification. Thus, the aim of this study was to perform an in silico analysis of the CaMBD from several Ca2+-ATPases, in order to determine their diversity and to detect specific patterns and amino acid selection in different species. Patterns related to potential and confirmed CaMBD were detected using sequences retrieved from the literature. The occurrence of these patterns was determined across 120 sequences from 17 taxonomical classes, which were analyzed by a phylogenetic tree to establish phylogenetic groups. Predicted physicochemical characteristics including hydropathy and net charge were calculated for each group of sequences. 22 Ca2+-ATPases sequences from animals, unicellular eukaryotes, and plants were retrieved from bioinformatic databases. These sequences allow us to establish the Patterns 1(GQILWVRGLTRLQTQ), 3(KNPSLEALQRW), and 4(SRWRRLQAEHVKK), which are present at the beginning of putative CaMBD of metazoan, parasites, and land plants. A pattern 2 (IRVVNAFR) was consistently found at the end of most analyzed sequences. The amino acid preference in the CaMBDs changed depending on the phylogenetic groups, with predominance of several aliphatic and charged residues, to confer amphiphilic properties. The results here displayed show a conserved mechanism to contribute to the Ca2+ homeostasis across evolution and may help to detect putative CaMBDs.
Collapse
Affiliation(s)
- Génesis Mantilla
- Research Group of Emerging and Neglected Diseases, Ecoepidemiology and Biodiversity. Health Sciences Faculty, Universidad Internacional SEK (UISEK), Quito, Ecuador
- Faculty of Engineering and Applied Sciences, Universidad Internacional SEK (UISEK), Quito, Ecuador
| | - María C Peréz-Gordones
- Instituto de Biología Experimental (IBE), Universidad Central de Venezuela (UCV), Caracas, Venezuela
| | - Soledad Cisneros-Montufar
- Research Group of Emerging and Neglected Diseases, Ecoepidemiology and Biodiversity. Health Sciences Faculty, Universidad Internacional SEK (UISEK), Quito, Ecuador
- Faculty of Engineering and Applied Sciences, Universidad Internacional SEK (UISEK), Quito, Ecuador
| | - Gustavo Benaim
- Instituto de Biología Experimental (IBE), Universidad Central de Venezuela (UCV), Caracas, Venezuela
- Instituto de Estudios Avanzados (IDEA), Caracas, Venezuela
| | - Juan-Carlos Navarro
- Research Group of Emerging and Neglected Diseases, Ecoepidemiology and Biodiversity. Health Sciences Faculty, Universidad Internacional SEK (UISEK), Quito, Ecuador
- Program of Master in Biomedicine, Health Sciences Faculty, Universidad Internacional SEK (UISEK), Quito, Ecuador
| | - Marta Mendoza
- Centro de Estudios Biomédicos y Veterinarios, Instituto de Estudios Científicos y Tecnológicos (IDECYT), Universidad Nacional Experimental Simón Rodríguez, Caracas, Venezuela
| | - José R Ramírez-Iglesias
- Research Group of Emerging and Neglected Diseases, Ecoepidemiology and Biodiversity. Health Sciences Faculty, Universidad Internacional SEK (UISEK), Quito, Ecuador.
- Program of Master in Biomedicine, Health Sciences Faculty, Universidad Internacional SEK (UISEK), Quito, Ecuador.
| |
Collapse
|
4
|
Zhao A, Liu N, Jiang G, Xu L, Yao M, Zhang Y, Xue B, Ma B, Chang D, Feng Y, Jiang Y, Liu J, Zhou G. Combination of panax ginseng and ginkgo biloba extracts attenuate cerebral ischemia injury with modulation of NLRP3 inflammasome and CAMK4/CREB pathway. Front Pharmacol 2022; 13:980449. [PMID: 36091745 PMCID: PMC9452960 DOI: 10.3389/fphar.2022.980449] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2022] [Accepted: 08/03/2022] [Indexed: 11/22/2022] Open
Abstract
Stroke is a major cause of death and disability throughout the world. A combination of Panax Ginseng and Ginkgo biloba extracts (CGGE) is an effective treatment for nervous system diseases, but the neuroprotective mechanism underlying CGGE remains unclear. Both network analysis and experimental research were employed to explore the potential mechanism of CGGE in treating ischemic stroke (IS). Network analysis identified a total number of 133 potential targets for 34 active ingredients and 239 IS-related targets. What’s more, several processes that might involve the regulation of CGGE against IS were identified, including long-term potentiation, cAMP signaling pathway, neurotrophin signaling pathway, and Nod-like receptor signaling pathway. Our studies in animal models suggested that CGGE could reduce inflammatory response by inhibiting the activity of Nod-like receptor, pyrin containing 3 (NLRP3) inflammasome, and maintain the balance of glutamate (Glu)/gamma-aminobutyric acid (GABA) via activating calmodulin-dependent protein kinase type Ⅳ (CAMK4)/cyclic AMP-responsive element-binding protein (CREB) pathway. These findings indicated the neuroprotective effects of CGGE, possibly improving neuroinflammation and excitotoxicity by regulating the NLRP3 inflammasome and CAMK4/CREB pathway.
Collapse
Affiliation(s)
- Aimei Zhao
- Department of Acupuncture and Moxibustion, Neuroscience Centre, Integrated Hospital of Traditional Chinese Medicine, Southern Medical University, Guangzhou, China
- Beijing Key Laboratory of Pharmacology of Chinese Materia, Institute of Basic Medical Sciences, Xiyuan Hospital of China Academy of Chinese Medical Sciences, Beijing, China
| | - Nan Liu
- Beijing Increasepharm Safety and Efficacy Co. Ltd., Beijing, China
| | - Guozhi Jiang
- Shineway Pharmaceutical Group Co. Ltd., Shijiazhuang, China
| | - Li Xu
- Beijing Key Laboratory of Pharmacology of Chinese Materia, Institute of Basic Medical Sciences, Xiyuan Hospital of China Academy of Chinese Medical Sciences, Beijing, China
| | - Mingjiang Yao
- Beijing Key Laboratory of Pharmacology of Chinese Materia, Institute of Basic Medical Sciences, Xiyuan Hospital of China Academy of Chinese Medical Sciences, Beijing, China
| | - Yehao Zhang
- Beijing Key Laboratory of Pharmacology of Chinese Materia, Institute of Basic Medical Sciences, Xiyuan Hospital of China Academy of Chinese Medical Sciences, Beijing, China
| | - Bingjie Xue
- Beijing Key Laboratory of Pharmacology of Chinese Materia, Institute of Basic Medical Sciences, Xiyuan Hospital of China Academy of Chinese Medical Sciences, Beijing, China
| | - Bo Ma
- Beijing Key Laboratory of Pharmacology of Chinese Materia, Institute of Basic Medical Sciences, Xiyuan Hospital of China Academy of Chinese Medical Sciences, Beijing, China
| | - Dennis Chang
- NICM, Western Sydney University, Penrith, NSW, Australia
| | - Yujing Feng
- Department of Anesthesiology, Punan Hospital, Shanghai, China
| | - Yunyao Jiang
- School of Pharmaceutical Sciences, Institute for Chinese Materia Medica, Tsinghua University, Beijing, China
- *Correspondence: Yunyao Jiang, ; Jianxun Liu, ; Guoping Zhou,
| | - Jianxun Liu
- Beijing Key Laboratory of Pharmacology of Chinese Materia, Institute of Basic Medical Sciences, Xiyuan Hospital of China Academy of Chinese Medical Sciences, Beijing, China
- *Correspondence: Yunyao Jiang, ; Jianxun Liu, ; Guoping Zhou,
| | - Guoping Zhou
- Department of Acupuncture and Moxibustion, Neuroscience Centre, Integrated Hospital of Traditional Chinese Medicine, Southern Medical University, Guangzhou, China
- *Correspondence: Yunyao Jiang, ; Jianxun Liu, ; Guoping Zhou,
| |
Collapse
|
5
|
Dynamics of Myosin II Filaments during Wound Repair in Dividing Cells. Cells 2021; 10:cells10051229. [PMID: 34067877 PMCID: PMC8156316 DOI: 10.3390/cells10051229] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2021] [Revised: 05/14/2021] [Accepted: 05/15/2021] [Indexed: 12/16/2022] Open
Abstract
Wound repair of cell membranes is essential for cell survival. Myosin II contributes to wound pore closure by interacting with actin filaments in larger cells; however, its role in smaller cells is unclear. In this study, we observed wound repair in dividing cells for the first time. The cell membrane in the cleavage furrow, where myosin II localized, was wounded by laserporation. Upon wounding, actin transiently accumulated, and myosin II transiently disappeared from the wound site. Ca2+ influx from the external medium triggered both actin and myosin II dynamics. Inhibition of calmodulin reduced both actin and myosin II dynamics. The wound closure time in myosin II-null cells was the same as that in wild-type cells, suggesting that myosin II is not essential for wound repair. We also found that disassembly of myosin II filaments by phosphorylation did not contribute to their disappearance, indicating a novel mechanism for myosin II delocalization from the cortex. Furthermore, we observed that several furrow-localizing proteins such as GAPA, PakA, myosin heavy chain kinase C, PTEN, and dynamin disappeared upon wounding. Herein, we discuss the possible mechanisms of myosin dynamics during wound repair.
Collapse
|
6
|
Kim WD, Yap SQ, Huber RJ. A Proteomics Analysis of Calmodulin-Binding Proteins in Dictyostelium discoideum during the Transition from Unicellular Growth to Multicellular Development. Int J Mol Sci 2021; 22:ijms22041722. [PMID: 33572113 PMCID: PMC7915506 DOI: 10.3390/ijms22041722] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2020] [Revised: 01/22/2021] [Accepted: 02/05/2021] [Indexed: 11/24/2022] Open
Abstract
Calmodulin (CaM) is an essential calcium-binding protein within eukaryotes. CaM binds to calmodulin-binding proteins (CaMBPs) and influences a variety of cellular and developmental processes. In this study, we used immunoprecipitation coupled with mass spectrometry (LC-MS/MS) to reveal over 500 putative CaM interactors in the model organism Dictyostelium discoideum. Our analysis revealed several known CaMBPs in Dictyostelium and mammalian cells (e.g., myosin, calcineurin), as well as many novel interactors (e.g., cathepsin D). Gene ontology (GO) term enrichment and Search Tool for the Retrieval of Interacting proteins (STRING) analyses linked the CaM interactors to several cellular and developmental processes in Dictyostelium including cytokinesis, gene expression, endocytosis, and metabolism. The primary localizations of the CaM interactors include the nucleus, ribosomes, vesicles, mitochondria, cytoskeleton, and extracellular space. These findings are not only consistent with previous work on CaM and CaMBPs in Dictyostelium, but they also provide new insight on their diverse cellular and developmental roles in this model organism. In total, this study provides the first in vivo catalogue of putative CaM interactors in Dictyostelium and sheds additional light on the essential roles of CaM and CaMBPs in eukaryotes.
Collapse
Affiliation(s)
- William D. Kim
- Environmental and Life Sciences Graduate Program, Trent University, Peterborough, ON K9L 0G2, Canada; (W.D.K.); (S.Q.Y.)
| | - Shyong Q. Yap
- Environmental and Life Sciences Graduate Program, Trent University, Peterborough, ON K9L 0G2, Canada; (W.D.K.); (S.Q.Y.)
| | - Robert J. Huber
- Department of Biology, Trent University, Peterborough, ON K9L 0G2, Canada
- Correspondence: ; Tel.: +1-705-748-1011 (ext. 7316)
| |
Collapse
|
7
|
Rojas-Pirela M, Andrade-Alviárez D, Rojas V, Kemmerling U, Cáceres AJ, Michels PA, Concepción JL, Quiñones W. Phosphoglycerate kinase: structural aspects and functions, with special emphasis on the enzyme from Kinetoplastea. Open Biol 2020; 10:200302. [PMID: 33234025 PMCID: PMC7729029 DOI: 10.1098/rsob.200302] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022] Open
Abstract
Phosphoglycerate kinase (PGK) is a glycolytic enzyme that is well conserved among the three domains of life. PGK is usually a monomeric enzyme of about 45 kDa that catalyses one of the two ATP-producing reactions in the glycolytic pathway, through the conversion of 1,3-bisphosphoglycerate (1,3BPGA) to 3-phosphoglycerate (3PGA). It also participates in gluconeogenesis, catalysing the opposite reaction to produce 1,3BPGA and ADP. Like most other glycolytic enzymes, PGK has also been catalogued as a moonlighting protein, due to its involvement in different functions not associated with energy metabolism, which include pathogenesis, interaction with nucleic acids, tumorigenesis progression, cell death and viral replication. In this review, we have highlighted the overall aspects of this enzyme, such as its structure, reaction kinetics, activity regulation and possible moonlighting functions in different protistan organisms, especially both free-living and parasitic Kinetoplastea. Our analysis of the genomes of different kinetoplastids revealed the presence of open-reading frames (ORFs) for multiple PGK isoforms in several species. Some of these ORFs code for unusually large PGKs. The products appear to contain additional structural domains fused to the PGK domain. A striking aspect is that some of these PGK isoforms are predicted to be catalytically inactive enzymes or ‘dead’ enzymes. The roles of PGKs in kinetoplastid parasites are analysed, and the apparent significance of the PGK gene duplication that gave rise to the different isoforms and their expression in Trypanosoma cruzi is discussed.
Collapse
Affiliation(s)
- Maura Rojas-Pirela
- Instituto de Biología, Facultad de Ciencias, Pontificia Universidad Católica de Valparaiso, Valparaiso 2373223, Chile
| | - Diego Andrade-Alviárez
- Laboratorio de Enzimología de Parásitos, Departamento de Biología, Facultad de Ciencias, Universidad de Los Andes, Mérida 5101, Venezuela
| | - Verónica Rojas
- Instituto de Biología, Facultad de Ciencias, Pontificia Universidad Católica de Valparaiso, Valparaiso 2373223, Chile
| | - Ulrike Kemmerling
- Instituto de Ciencias Biomédicas, Universidad de Chile, Facultad de Medicina, Santiago de Chile 8380453, Santigo de Chile
| | - Ana J Cáceres
- Laboratorio de Enzimología de Parásitos, Departamento de Biología, Facultad de Ciencias, Universidad de Los Andes, Mérida 5101, Venezuela
| | - Paul A Michels
- Centre for Immunity, Infection and Evolution, The King's Buildings, Edinburgh EH9 3FL, UK.,Centre for Translational and Chemical Biology, School of Biological Sciences, The University of Edinburgh, The King's Buildings, Edinburgh EH9 3FL, UK
| | - Juan Luis Concepción
- Laboratorio de Enzimología de Parásitos, Departamento de Biología, Facultad de Ciencias, Universidad de Los Andes, Mérida 5101, Venezuela
| | - Wilfredo Quiñones
- Laboratorio de Enzimología de Parásitos, Departamento de Biología, Facultad de Ciencias, Universidad de Los Andes, Mérida 5101, Venezuela
| |
Collapse
|
8
|
O’Day DH, Taylor RJ, Myre MA. Calmodulin and Calmodulin Binding Proteins in Dictyostelium: A Primer. Int J Mol Sci 2020; 21:E1210. [PMID: 32054133 PMCID: PMC7072818 DOI: 10.3390/ijms21041210] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2019] [Revised: 02/01/2020] [Accepted: 02/03/2020] [Indexed: 01/11/2023] Open
Abstract
Dictyostelium discoideum is gaining increasing attention as a model organism for the study of calcium binding and calmodulin function in basic biological events as well as human diseases. After a short overview of calcium-binding proteins, the structure of Dictyostelium calmodulin and the conformational changes effected by calcium ion binding to its four EF hands are compared to its human counterpart, emphasizing the highly conserved nature of this central regulatory protein. The calcium-dependent and -independent motifs involved in calmodulin binding to target proteins are discussed with examples of the diversity of calmodulin binding proteins that have been studied in this amoebozoan. The methods used to identify and characterize calmodulin binding proteins is covered followed by the ways Dictyostelium is currently being used as a system to study several neurodegenerative diseases and how it could serve as a model for studying calmodulinopathies such as those associated with specific types of heart arrythmia. Because of its rapid developmental cycles, its genetic tractability, and a richly endowed stock center, Dictyostelium is in a position to become a leader in the field of calmodulin research.
Collapse
Affiliation(s)
- Danton H. O’Day
- Cell and Systems Biology, University of Toronto, Toronto, ON M5S 3G5, Canada
- Department of Biology, University of Toronto Mississauga, Mississauga, ON L6L 1X3, Canada
| | - Ryan J. Taylor
- Department of Biological Sciences, Kennedy College of Sciences, University of Massachusetts Lowell, Lowell, MA 01854, USA; (R.J.T.); (M.A.M.)
| | - Michael A. Myre
- Department of Biological Sciences, Kennedy College of Sciences, University of Massachusetts Lowell, Lowell, MA 01854, USA; (R.J.T.); (M.A.M.)
| |
Collapse
|
9
|
Villalobo A, Berchtold MW. The Role of Calmodulin in Tumor Cell Migration, Invasiveness, and Metastasis. Int J Mol Sci 2020; 21:ijms21030765. [PMID: 31991573 PMCID: PMC7037201 DOI: 10.3390/ijms21030765] [Citation(s) in RCA: 55] [Impact Index Per Article: 13.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2019] [Revised: 01/18/2020] [Accepted: 01/21/2020] [Indexed: 12/12/2022] Open
Abstract
Calmodulin (CaM) is the principal Ca2+ sensor protein in all eukaryotic cells, that upon binding to target proteins transduces signals encoded by global or subcellular-specific changes of Ca2+ concentration within the cell. The Ca2+/CaM complex as well as Ca2+-free CaM modulate the activity of a vast number of enzymes, channels, signaling, adaptor and structural proteins, and hence the functionality of implicated signaling pathways, which control multiple cellular functions. A basic and important cellular function controlled by CaM in various ways is cell motility. Here we discuss the role of CaM-dependent systems involved in cell migration, tumor cell invasiveness, and metastasis development. Emphasis is given to phosphorylation/dephosphorylation events catalyzed by myosin light-chain kinase, CaM-dependent kinase-II, as well as other CaM-dependent kinases, and the CaM-dependent phosphatase calcineurin. In addition, the role of the CaM-regulated small GTPases Rac1 and Cdc42 (cell division cycle protein 42) as well as CaM-binding adaptor/scaffold proteins such as Grb7 (growth factor receptor bound protein 7), IQGAP (IQ motif containing GTPase activating protein) and AKAP12 (A kinase anchoring protein 12) will be reviewed. CaM-regulated mechanisms in cancer cells responsible for their greater migratory capacity compared to non-malignant cells, invasion of adjacent normal tissues and their systemic dissemination will be discussed, including closely linked processes such as the epithelial–mesenchymal transition and the activation of metalloproteases. This review covers as well the role of CaM in establishing metastatic foci in distant organs. Finally, the use of CaM antagonists and other blocking techniques to downregulate CaM-dependent systems aimed at preventing cancer cell invasiveness and metastasis development will be outlined.
Collapse
Affiliation(s)
- Antonio Villalobo
- Cancer and Human Molecular Genetics Area—Oto-Neurosurgery Research Group, University Hospital La Paz Research Institute (IdiPAZ), Paseo de la Castellana 261, E-28046 Madrid, Spain
- Correspondence: (A.V.); (M.W.B.)
| | - Martin W. Berchtold
- Department of Biology, University of Copenhagen, 13 Universitetsparken, DK-2100 Copenhagen, Denmark
- Correspondence: (A.V.); (M.W.B.)
| |
Collapse
|