1
|
Leigh S, Ritchie MG. A history of studies of reproductive isolation between Drosophila pseudoobscura and D. persimilis. Fly (Austin) 2025; 19:2439111. [PMID: 39707709 DOI: 10.1080/19336934.2024.2439111] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2024] [Revised: 12/02/2024] [Accepted: 12/03/2024] [Indexed: 12/23/2024] Open
Abstract
Drosophila pseudoobscura and D. persimilis are a sister species pair that have been used as a model for studies of reproductive isolation and speciation for almost 100 years owing to their close evolutionary history, well characterized genetic differences, and overlapping geographic distribution. There are extensive analyses of both pre- and post-zygotic isolation, including studies of courtship divergence, conspecific sperm precedence (CSP) and how reinforcement by natural selection may or may not act to strengthen isolation in sympatry. Post-zygotic analyses explore the underlying mechanics of reproductive isolation; how inversions may give rise to initial speciation events and misexpression of key genes typically found within inversion regions render hybrid offspring unfit or inviable. We aim here to present a history of studies of reproductive isolation between this species pair, looking at how the field has developed over the last century and identifying the open questions and gaps within the literature.
Collapse
Affiliation(s)
- Stewart Leigh
- Centre for Biological Diversity, School of Biology, University of St Andrews, St Andrews, UK
| | - Michael G Ritchie
- Centre for Biological Diversity, School of Biology, University of St Andrews, St Andrews, UK
| |
Collapse
|
2
|
Verma T, Das S, Dhodi Lobo S, Mishra AK, Bhattacharyya S, Nandy B. Evolution of mate harm resistance in females from Drosophila melanogaster populations selected for faster development and early reproduction. J Evol Biol 2025; 38:111-121. [PMID: 39460733 DOI: 10.1093/jeb/voae138] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2023] [Revised: 08/22/2024] [Accepted: 10/25/2024] [Indexed: 10/28/2024]
Abstract
Interlocus sexual conflict is predicted to result in sexually antagonistic coevolution between male competitive traits, which are also female-detrimental, and mate harm resistance (MHR) in females. Little is known about the connection between life history evolution and sexually antagonistic coevolution. Here, we investigated the evolution of MHR in a set of experimentally evolved populations, where mate-harming ability has been shown to have substantially reduced in males as a correlated response to the selection for faster development and early reproduction. We measured mortality and fecundity in females of these populations and those in their matched controls under different male exposure conditions. We observed that the evolved females were more susceptible to mate harm-suffering from significantly higher mortality under continuous exposure to control males within the 20-day assay period. Though these evolved females are known to have shorter lifespan substantially higher mortality was not observed under virgin and single-mating conditions. We used fecundity data to show that this higher mortality in the experimentally evolved females was not due to the cost of egg production and hence can only be attributed to reduced MHR. Further analysis indicated that this decreased MHR is unlikely to be due purely to the smaller size of these females. Instead, it is more likely to be an indirect experimentally evolved response attributable to the changed breeding ecology and/or male trait evolution. Our results underline the implications of changes in life history traits, including lifespan, for the evolution of MHR in females.
Collapse
Affiliation(s)
- Tanya Verma
- Department of Biological Sciences, Indian Institute of Science Education and Research Berhampur, Odisha, India
| | - Susnato Das
- Institute of Animal Welfare and Animal Husbandry, Friedrich-Loeffler-Institut, Celle, Germany
- Department of Life Sciences, Humboldt-Universität zu Berlin, Berlin, Germany
| | - Saunri Dhodi Lobo
- Department of Biology, Indian Institute of Science Education and Research Pune, Maharashtra, India
| | - Ashish Kumar Mishra
- Department in School of Biiological Sciences, National Institute of Science Education and Research, Odisha, India
| | - Soumi Bhattacharyya
- Department of Insect Symbiosis, Max Planck Institute for Chemical Ecology, Jena, Germany
| | - Bodhisatta Nandy
- Department of Biological Sciences, Indian Institute of Science Education and Research Berhampur, Odisha, India
| |
Collapse
|
3
|
Thayer RC, Polston ES, Xu J, Begun DJ. Regional specialization, polyploidy, and seminal fluid transcripts in the Drosophila female reproductive tract. Proc Natl Acad Sci U S A 2024; 121:e2409850121. [PMID: 39453739 PMCID: PMC11536144 DOI: 10.1073/pnas.2409850121] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2024] [Accepted: 09/20/2024] [Indexed: 10/27/2024] Open
Abstract
Sexual reproduction requires the choreographed interaction of female cells and molecules with sperm and seminal fluid. In internally fertilizing animals, these interactions are managed by specialized tissues within the female reproductive tract (FRT), such as a uterus, glands, and sperm storage organs. However, female somatic reproductive tissues remain understudied, hindering insight into the molecular interactions that support fertility. Here, we report the identification, molecular characterization, and analysis of cell types throughout the somatic FRT in the premier Drosophila melanogaster model system. We find that the uterine epithelia is composed of 11 distinct cell types with well-delineated spatial domains, likely corresponding to functionally specialized surfaces that interact with gametes and reproductive fluids. Polyploidy is pervasive: More than half of lower reproductive tract cells are ≥4C. While seminal fluid proteins (SFPs) are typically thought of as male products that are transferred to females, we find that specialized cell types in the sperm storage organs heavily invest in expressing SFP genes. Rates of amino acid divergence between closely related species indicate heterogeneous evolutionary processes acting on male-limited versus female-expressed seminal fluid genes. Together, our results emphasize that more than 40% of annotated seminal fluid genes are better described as shared components of reproductive transcriptomes, which may function cooperatively to support spermatozoa. More broadly, our work provides the molecular foundation for improved technologies to catalyze the functional characterization of the FRT.
Collapse
Affiliation(s)
- Rachel C. Thayer
- Department of Evolution and Ecology, University of California, Davis, CA95616
| | | | - Jixiang Xu
- Department of Evolution and Ecology, University of California, Davis, CA95616
| | - David J. Begun
- Department of Evolution and Ecology, University of California, Davis, CA95616
| |
Collapse
|
4
|
Córdova-García G, Salazar-Suárez A, Paloma Cabrera-Ferral P, Díaz-Fleischer F, López-Ortega M, Pérez-Staples D. Male condition and seminal fluid affect female host-marking behavior in the Mexican fruit fly. JOURNAL OF INSECT PHYSIOLOGY 2024; 158:104699. [PMID: 39197709 DOI: 10.1016/j.jinsphys.2024.104699] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/01/2024] [Revised: 08/22/2024] [Accepted: 08/25/2024] [Indexed: 09/01/2024]
Abstract
Mating and the transfer of seminal fluid components including male accessory glands (MAGs) proteins can affect oviposition behavior in insects. After oviposition, some species of fruit flies deposit a host-marking pheromone (HMP) on the fruit that discourages oviposition by other females of the same or different species or genus and reduces competition between larvae. However, we know very little about how mating, receiving seminal fluid, or male condition can affect female host marking behavior. Here, we tested how the physiological state of females (mated or unmated), the receipt of seminal fluid, and the condition of the male (wild or sterile) affect oviposition and host-marking behavior (HMB) in Anastrepha ludens (Diptera: Tephritidae). We also determined the efficiency of the host-marking pheromone from mated or unmated females in deterring oviposition. In a further examination of how seminal fluid may be affecting HMB we assessed if there were differences in the size of wild or sterile MAGs and the protein quantity transferred during mating. Our results indicate that receiving seminal fluid increased egg laying and increased time invested in host-marking (HM). Unmated females laid fewer eggs than mated females but invested the same amount of time in depositing host-marking pheromone, which had similar effectiveness in deterring oviposition as that of mated females. Females that mated with sterile males laid the same number of eggs as females that mated with wild males but spent less time depositing host-marking pheromone, which suggests that females detect the condition of the male and invest less in marking hosts. Finally, sterile males had larger accessory glands and transferred more MAGs proteins during mating compared to wild males. Seminal proteins could be manipulating HM behavior and female investment into their current reproductive effort. We are only beginning to understand how male condition and seminal fluid can affect female physiology and maternal investment in HMP.
Collapse
|
5
|
He Z, Fang Y, Zhang F, Liu Y, Cheng X, Wang J, Li D, Chen D, Wu F. Adenine nucleotide translocase 2 (Ant2) is required for individualization of spermatogenesis of Drosophila melanogaster. INSECT SCIENCE 2024; 31:1055-1072. [PMID: 38112480 DOI: 10.1111/1744-7917.13309] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/09/2023] [Revised: 11/12/2023] [Accepted: 11/16/2023] [Indexed: 12/21/2023]
Abstract
Successful completion of spermatogenesis is crucial for the perpetuation of the species. In Drosophila, spermatid individualization, a process involving changes in mitochondrial structure and function is critical to produce functional mature sperm. Ant2, encoding a mitochondrial adenine nucleotide translocase, is highly expressed in male testes and plays a role in energy metabolism in the mitochondria. However, its molecular function remains unclear. Here, we identified an important role of Ant2 in spermatid individualization. In Ant2 knockdown testes, spermatid individualization complexes composed of F-actin cones exhibited a diffuse distribution, and mature sperms were absent in the seminal vesicle, thus leading to male sterility. The most striking effects in Ant2-knockdown spermatids were decrease in tubulin polyglycylation and disruption of proper mitochondria derivatives function. Excessive apoptotic cells were also observed in Ant2-knockdown testes. To further investigate the phenotype of Ant2 knockdown in testes at the molecular level, complementary transcriptome and proteome analyses were performed. At the mRNA level, 868 differentially expressed genes were identified, of which 229 genes were upregulated and 639 were downregulated induced via Ant2 knockdown. iTRAQ-labeling proteome analysis revealed 350 differentially expressed proteins, of which 117 proteins were upregulated and 233 were downregulated. The expression of glutathione transferase (GstD5, GstE5, GstE8, and GstD3), proteins involved in reproduction were significantly regulated at both the mRNA and protein levels. These results indicate that Ant2 is crucial for spermatid maturation by affecting mitochondrial morphogenesis.
Collapse
Affiliation(s)
- Zhen He
- Industrial Crops Institute, Hubei Academy of Agriculture Sciences, Wuhan, China
| | - Yang Fang
- Institute of Evolution & Marine Biodiversity, Ocean University of China, Qingdao, Shandong Province, China
| | - Fengchao Zhang
- Institute of Evolution & Marine Biodiversity, Ocean University of China, Qingdao, Shandong Province, China
| | - Yang Liu
- Institute of Evolution & Marine Biodiversity, Ocean University of China, Qingdao, Shandong Province, China
| | - Xinkai Cheng
- Institute of Evolution & Marine Biodiversity, Ocean University of China, Qingdao, Shandong Province, China
| | - Jiajia Wang
- Institute of Evolution & Marine Biodiversity, Ocean University of China, Qingdao, Shandong Province, China
| | - Dechen Li
- Industrial Crops Institute, Hubei Academy of Agriculture Sciences, Wuhan, China
| | - Dengsong Chen
- Industrial Crops Institute, Hubei Academy of Agriculture Sciences, Wuhan, China
| | - Fan Wu
- Industrial Crops Institute, Hubei Academy of Agriculture Sciences, Wuhan, China
| |
Collapse
|
6
|
Zhang Y, Zhang Q, Ma C, Chen G, Yue Y, Gao X, Yang J, Wan F, Zhou Z. Male-derived phospholipase A2 enhances WD46 expression and increases fertility in Ophraella communa. INSECT SCIENCE 2024. [PMID: 39012243 DOI: 10.1111/1744-7917.13422] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/25/2024] [Revised: 06/11/2024] [Accepted: 06/12/2024] [Indexed: 07/17/2024]
Abstract
Successful bisexual reproduction requires interactions between males and females. Male-derived seminal fluid proteins (SFPs) transferred to females during mating profoundly affect females from pre- to post-mating, and the subsequent shift in female physiology enhances their fertility. SFPs have important evolutionary implications for the fitness of many insects. However, little is known about how females respond to male SFPs. In this study, we identified a male-derived SFP-phospholipase A2 (PLA2) in Ophraella communa. PLA2 is a vital enzyme in eicosanoid biosynthesis; however, it has not been identified as an insect SFP. We found that OcPLA2 is specifically expressed in males, especially in the male accessory glands (MAGs); it is transferred to the female during mating and functions as an SFP to enhance fertility. The expression of a female-derived gene encoding the WD repeat-containing protein 46 (WD46) was upregulated when OcPLA2 entered the female reproductive tract, and this contributed to female egg production by increasing triacylglycerol lipase (TGL) gene expression and the triglyceride (TG) content. This is the first study to identify PLA2 as an SFP in insects. Our findings also shed light on the regulatory role of OcPLA2 in beetle reproduction; the expression of OcPLA2 is initially correlated with female WD46 expression and later with the decline in TGL gene expression and the TG content. This represents a unique mechanism of reproductive regulation by an SFP.
Collapse
Affiliation(s)
- Yan Zhang
- State Key Laboratory for Biology of Plant Diseases and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Qinglu Zhang
- State Key Laboratory for Biology of Plant Diseases and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Chao Ma
- State Key Laboratory for Biology of Plant Diseases and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Guangmei Chen
- State Key Laboratory for Biology of Plant Diseases and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Yang Yue
- State Key Laboratory for Biology of Plant Diseases and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Xuyuan Gao
- Guangxi Key Laboratory of Biology for Crop Diseases and Insect Pests, Institute of Plant Protection, Guangxi Academy of Agricultural Sciences, Nanning, China
| | - Jingfang Yang
- State Key Laboratory for Biology of Plant Diseases and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Fanghao Wan
- State Key Laboratory for Biology of Plant Diseases and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Zhongshi Zhou
- State Key Laboratory for Biology of Plant Diseases and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing, China
- National Nanfan Research Institute, Chinese Academy of Agricultural Sciences, Sanya, Hainan Province, China
| |
Collapse
|
7
|
Park S, Kim MA, Sohn YC. Characterization of myoinhibitory peptide signaling system and its implication in larval metamorphosis and spawning behavior in Pacific abalone. Gen Comp Endocrinol 2024; 353:114521. [PMID: 38621462 DOI: 10.1016/j.ygcen.2024.114521] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/21/2023] [Revised: 03/15/2024] [Accepted: 04/11/2024] [Indexed: 04/17/2024]
Abstract
Myoinhibitory peptides (MIPs) affect various physiological functions, including juvenile hormone signaling, muscle contraction, larval development, and reproduction in invertebrates. Although MIPs are ligands for MIP and/or sex peptide receptors (MIP/SPRs) in diverse arthropods and model organisms belonging to Lophotrochozoa, the MIP signaling system has not yet been fully investigated in mollusks. In this study, we identified the MIP signaling system in the Pacific abalone Haliotis discus hannai (Hdh). Similar to the invertebrate MIPs, a total of eight paracopies of MIPs (named Hdh-MIP1 to Hdh-MIP8), harboring a WX5-7Wamide motif, except for Hdh-MIP2, were found in the Hdh-MIP precursor. Furthermore, we characterized a functional Hdh-MIPR, which responded to the Hdh-MIPs, except for Hdh-MIP2, possibly linked with the PKC/Ca2+ and PKA/cAMP signaling pathways. Hdh-MIPs delayed larval metamorphosis but increased the spawning behavior. These results suggest that the Hdh-MIP signaling system provides insights into the unique function of MIP in invertebrates.
Collapse
Affiliation(s)
- Sungwoo Park
- Department of Marine Bioscience, Gangneung-Wonju National University, Gangneung, Gangwon-do, Republic of Korea
| | - Mi Ae Kim
- East Coast Life Sciences Institute, Gangneung-Wonju National University, Gangneung, Gangwon-do, Republic of Korea
| | - Young Chang Sohn
- Department of Marine Bioscience, Gangneung-Wonju National University, Gangneung, Gangwon-do, Republic of Korea.
| |
Collapse
|
8
|
Gomez RA, Dallai R, Sims-West DJ, Mercati D, Sinka R, Ahmed-Braimah Y, Pitnick S, Dorus S. Proteomic diversification of spermatostyles among six species of whirligig beetles. Mol Reprod Dev 2024; 91:e23745. [PMID: 38785179 PMCID: PMC11246569 DOI: 10.1002/mrd.23745] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2024] [Revised: 04/16/2024] [Accepted: 04/27/2024] [Indexed: 05/25/2024]
Abstract
Seminal fluid protein composition is complex and commonly assumed to be rapidly divergent due to functional interactions with both sperm and the female reproductive tract (FRT), both of which evolve rapidly. In addition to sperm, seminal fluid may contain structures, such as mating plugs and spermatophores. Here, we investigate the evolutionary diversification of a lesser-known ejaculate structure: the spermatostyle, which has independently arisen in several families of beetles and true bugs. We characterized the spermatostyle proteome, in addition to spermatostyle and FRT morphology, in six species of whirligig beetles (family Gyrinidae). Spermatostyles were enriched for proteolytic enzymes, and assays confirmed they possess proteolytic activity. Sperm-leucylaminopeptidases (S-LAPs) were particularly abundant, and their localization to spermatostyles was confirmed by immunohistochemistry. Although there was evidence for functional conservation of spermatostyle proteomes across species, phylogenetic regressions suggest evolutionary covariation between protein composition and the morphology of both spermatostyles and FRTs. We postulate that S-LAPs (and other proteases) have evolved a novel structural role in spermatostyles and discuss spermatostyles as adaptations for delivering male-derived materials to females.
Collapse
Affiliation(s)
- R. Antonio Gomez
- Department of Biology, Center for Reproductive Evolution, Syracuse University, Syracuse, New York, USA
| | - Romano Dallai
- Department of Life Sciences, University of Siena, Siena, Italy
| | - Dylan J. Sims-West
- Department of Biology, Center for Reproductive Evolution, Syracuse University, Syracuse, New York, USA
| | - David Mercati
- Department of Life Sciences, University of Siena, Siena, Italy
| | - Rita Sinka
- Department of Genetics, University of Szeged, Szeged, Hungary
| | - Yasir Ahmed-Braimah
- Department of Biology, Center for Reproductive Evolution, Syracuse University, Syracuse, New York, USA
| | - Scott Pitnick
- Department of Biology, Center for Reproductive Evolution, Syracuse University, Syracuse, New York, USA
| | - Steve Dorus
- Department of Biology, Center for Reproductive Evolution, Syracuse University, Syracuse, New York, USA
| |
Collapse
|
9
|
Peng J, Svetec N, Molina H, Zhao L. The Origin and Evolution of Sex Peptide and Sex Peptide Receptor Interactions. Mol Biol Evol 2024; 41:msae065. [PMID: 38518286 PMCID: PMC11017328 DOI: 10.1093/molbev/msae065] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2023] [Revised: 02/22/2024] [Accepted: 03/18/2024] [Indexed: 03/24/2024] Open
Abstract
Post-mating responses play a vital role in successful reproduction across diverse species. In fruit flies, sex peptide binds to the sex peptide receptor, triggering a series of post-mating responses. However, the origin of sex peptide receptor predates the emergence of sex peptide. The evolutionary origins of the interactions between sex peptide and sex peptide receptor and the mechanisms by which they interact remain enigmatic. In this study, we used ancestral sequence reconstruction, AlphaFold2 predictions, and molecular dynamics simulations to study sex peptide-sex peptide receptor interactions and their origination. Using AlphaFold2 and long-time molecular dynamics simulations, we predicted the structure and dynamics of sex peptide-sex peptide receptor interactions. We show that sex peptide potentially binds to the ancestral states of Diptera sex peptide receptor. Notably, we found that only a few amino acid changes in sex peptide receptor are sufficient for the formation of sex peptide-sex peptide receptor interactions. Ancestral sequence reconstruction and molecular dynamics simulations further reveal that sex peptide receptor interacts with sex peptide through residues that are mostly involved in the interaction interface of an ancestral ligand, myoinhibitory peptides. We propose a potential mechanism whereby sex peptide-sex peptide receptor interactions arise from the preexisting myoinhibitory peptides-sex peptide receptor interface as well as early chance events both inside and outside the preexisting interface that created novel sex peptide-specific sex peptide-sex peptide receptor interactions. Our findings provide new insights into the origin and evolution of sex peptide-sex peptide receptor interactions and their relationship with myoinhibitory peptides-sex peptide receptor interactions.
Collapse
Affiliation(s)
- Junhui Peng
- Laboratory of Evolutionary Genetics and Genomics, The Rockefeller University, New York, NY, USA
| | - Nicolas Svetec
- Laboratory of Evolutionary Genetics and Genomics, The Rockefeller University, New York, NY, USA
| | - Henrik Molina
- Proteomics Resource Center, The Rockefeller University, New York, NY, USA
| | - Li Zhao
- Laboratory of Evolutionary Genetics and Genomics, The Rockefeller University, New York, NY, USA
| |
Collapse
|
10
|
Peng J, Svetec N, Molina H, Zhao L. The Origin and Evolution of Sex Peptide and Sex Peptide Receptor Interactions. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2023.11.19.567744. [PMID: 38013995 PMCID: PMC10680801 DOI: 10.1101/2023.11.19.567744] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/29/2023]
Abstract
Post-mating responses play a vital role in successful reproduction across diverse species. In fruit flies, sex peptide (SP) binds to the sex peptide receptor (SPR), triggering a series of post-mating responses. However, the origin of SPR predates the emergence of SP. The evolutionary origins of the interactions between SP and SPR and the mechanisms by which they interact remain enigmatic. In this study, we used ancestral sequence reconstruction, AlphaFold2 predictions, and molecular dynamics simulations to study SP-SPR interactions and their origination. Using AlphaFold2 and long-time molecular dynamics (MD) simulations, we predicted the structure and dynamics of SP-SPR interactions. We show that SP potentially binds to the ancestral states of Diptera SPR. Notably, we found that only a few amino acid changes in SPR are sufficient for the formation of SP-SPR interactions. Ancestral sequence reconstruction and MD simulations further reveal that SPR interacts with SP through residues that are mostly involved in the interaction interface of an ancestral ligand, myoinhibitory peptides (MIPs). We propose a potential mechanism whereby SP-SPR interactions arise from the pre-existing MIP-SPR interface as well as early chance events both inside and outside the pre-existing interface that created novel SP-specific SP-SPR interactions. Our findings provide new insights into the origin and evolution of SP-SPR interactions and their relationship with MIP-SPR interactions.
Collapse
Affiliation(s)
- Junhui Peng
- Laboratory of Evolutionary Genetics and Genomics, The Rockefeller University, New York, NY, USA
| | - Nicolas Svetec
- Laboratory of Evolutionary Genetics and Genomics, The Rockefeller University, New York, NY, USA
| | - Henrik Molina
- Proteomics Resource Center, The Rockefeller University, New York, NY 10065, USA
| | - Li Zhao
- Laboratory of Evolutionary Genetics and Genomics, The Rockefeller University, New York, NY, USA
| |
Collapse
|
11
|
Hopkins BR, Angus-Henry A, Kim BY, Carlisle JA, Thompson A, Kopp A. Decoupled evolution of the Sex Peptide gene family and Sex Peptide Receptor in Drosophilidae. Proc Natl Acad Sci U S A 2024; 121:e2312380120. [PMID: 38215185 PMCID: PMC10801855 DOI: 10.1073/pnas.2312380120] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2023] [Accepted: 11/16/2023] [Indexed: 01/14/2024] Open
Abstract
Across internally fertilising species, males transfer ejaculate proteins that trigger wide-ranging changes in female behaviour and physiology. Much theory has been developed to explore the drivers of ejaculate protein evolution. The accelerating availability of high-quality genomes now allows us to test how these proteins are evolving at fine taxonomic scales. Here, we use genomes from 264 species to chart the evolutionary history of Sex Peptide (SP), a potent regulator of female post-mating responses in Drosophila melanogaster. We infer that SP first evolved in the Drosophilinae subfamily and has since followed markedly different evolutionary trajectories in different lineages. Outside of the Sophophora-Lordiphosa, SP exists largely as a single-copy gene with independent losses in several lineages. Within the Sophophora-Lordiphosa, the SP gene family has repeatedly and independently expanded. Up to seven copies, collectively displaying extensive sequence variation, are present in some species. Despite these changes, SP expression remains restricted to the male reproductive tract. Alongside, we document considerable interspecific variation in the presence and morphology of seminal microcarriers that, despite the critical role SP plays in microcarrier assembly in D. melanogaster, appears to be independent of changes in the presence/absence or sequence of SP. We end by providing evidence that SP's evolution is decoupled from that of its receptor, Sex Peptide Receptor, in which we detect no evidence of correlated diversifying selection. Collectively, our work describes the divergent evolutionary trajectories that a novel gene has taken following its origin and finds a surprisingly weak coevolutionary signal between a supposedly sexually antagonistic protein and its receptor.
Collapse
Affiliation(s)
- Ben R. Hopkins
- Department of Evolution and Ecology, University of California, Davis, CA95616
| | - Aidan Angus-Henry
- Department of Evolution and Ecology, University of California, Davis, CA95616
| | - Bernard Y. Kim
- Department of Biology, Stanford University, Stanford, CA94305
| | - Jolie A. Carlisle
- Department of Molecular Biology and Genetics, Cornell University, Ithaca, NY14853
| | - Ammon Thompson
- Department of Evolution and Ecology, University of California, Davis, CA95616
| | - Artyom Kopp
- Department of Evolution and Ecology, University of California, Davis, CA95616
| |
Collapse
|
12
|
Hopkins BR, Angus-Henry A, Kim BY, Carlisle JA, Thompson A, Kopp A. Decoupled evolution of the Sex Peptide gene family and Sex Peptide Receptor in Drosophilidae. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.06.29.547128. [PMID: 37425821 PMCID: PMC10327216 DOI: 10.1101/2023.06.29.547128] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/11/2023]
Abstract
Across internally fertilising species, males transfer ejaculate proteins that trigger wide-ranging changes in female behaviour and physiology. Much theory has been developed to explore the drivers of ejaculate protein evolution. The accelerating availability of high-quality genomes now allows us to test how these proteins are evolving at fine taxonomic scales. Here, we use genomes from 264 species to chart the evolutionary history of Sex Peptide (SP), a potent regulator of female post-mating responses in Drosophila melanogaster. We infer that SP first evolved in the Drosophilinae subfamily and has followed markedly different evolutionary trajectories in different lineages. Outside of the Sophophora-Lordiphosa, SP exists largely as a single-copy gene with independent losses in several lineages. Within the Sophophora-Lordiphosa, the SP gene family has repeatedly and independently expanded. Up to seven copies, collectively displaying extensive sequence variation, are present in some species. Despite these changes, SP expression remains restricted to the male reproductive tract. Alongside, we document considerable interspecific variation in the presence and morphology of seminal microcarriers that, despite the critical role SP plays in microcarrier assembly in D. melanogaster, appear to be independent of changes in the presence/absence or sequence of SP. We end by providing evidence that SP's evolution is decoupled from that of its receptor, SPR, in which we detect no evidence of correlated diversifying selection. Collectively, our work describes the divergent evolutionary trajectories that a novel gene has taken following its origin and finds a surprisingly weak coevolutionary signal between a supposedly sexually antagonistic protein and its receptor.
Collapse
Affiliation(s)
- Ben R. Hopkins
- Department of Evolution and Ecology, University of California – Davis, CA, USA
| | - Aidan Angus-Henry
- Department of Evolution and Ecology, University of California – Davis, CA, USA
| | | | - Jolie A. Carlisle
- Department of Molecular Biology and Genetics, Cornell University, Ithaca, NY, USA
| | - Ammon Thompson
- Department of Evolution and Ecology, University of California – Davis, CA, USA
| | - Artyom Kopp
- Department of Evolution and Ecology, University of California – Davis, CA, USA
| |
Collapse
|
13
|
Takashima YA, Majane AC, Begun DJ. Evolution of secondary cell number and position in the Drosophila accessory gland. PLoS One 2023; 18:e0278811. [PMID: 37878630 PMCID: PMC10599531 DOI: 10.1371/journal.pone.0278811] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2022] [Accepted: 04/25/2023] [Indexed: 10/27/2023] Open
Abstract
In animals with internal fertilization, males transfer gametes and seminal fluid during copulation, both of which are required for successful reproduction. In Drosophila and other insects, seminal fluid is produced in the paired accessory gland (AG), the ejaculatory duct, and the ejaculatory bulb. The D. melanogaster AG has emerged as an important model system for this component of male reproductive biology. Seminal fluid proteins produced in the Drosophila AG are required for proper storage and use of sperm by the females, and are also critical for establishing and maintaining a suite of short- and long-term postcopulatory female physiological responses that promote reproductive success. The Drosophila AG is composed of two main cell types. The majority of AG cells, which are referred to as main cells, are responsible for production of many seminal fluid proteins. A minority of cells, about 4%, are referred to as secondary cells. These cells, which are restricted to the distal tip of the D. melanogaster AG, may play an especially important role in the maintenance of the long-term female post-mating response. Many studies of Drosophila AG evolution have suggested that the proteins produced in the gland evolve quickly, as does the transcriptome. Here, we investigate the evolution of secondary cell number and position in the AG in a collection of eight species spanning the entire history of the Drosophila genus. We document a heretofore underappreciated rapid evolutionary rate for both number and position of these specialized AG cells, raising several questions about the developmental, functional, and evolutionary significance of this variation.
Collapse
Affiliation(s)
- Yoko A. Takashima
- Department of Evolution and Ecology, University of California, Davis, California, United States of America
| | - Alex C. Majane
- Department of Evolution and Ecology, University of California, Davis, California, United States of America
| | - David J. Begun
- Department of Evolution and Ecology, University of California, Davis, California, United States of America
| |
Collapse
|
14
|
Zeender V, Pfammatter S, Roschitzki B, Dorus S, Lüpold S. Genotype-by-environment interactions influence the composition of the Drosophila seminal proteome. Proc Biol Sci 2023; 290:20231313. [PMID: 37700651 PMCID: PMC10498039 DOI: 10.1098/rspb.2023.1313] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2023] [Accepted: 08/09/2023] [Indexed: 09/14/2023] Open
Abstract
Ejaculate proteins are key mediators of post-mating sexual selection and sexual conflict, as they can influence both male fertilization success and female reproductive physiology. However, the extent and sources of genetic variation and condition dependence of the ejaculate proteome are largely unknown. Such knowledge could reveal the targets and mechanisms of post-mating selection and inform about the relative costs and allocation of different ejaculate components, each with its own potential fitness consequences. Here, we used liquid chromatography coupled with tandem mass spectrometry to characterize the whole-ejaculate protein composition across 12 isogenic lines of Drosophila melanogaster that were reared on a high- or low-quality diet. We discovered new proteins in the transferred ejaculate and inferred their origin in the male reproductive system. We further found that the ejaculate composition was mainly determined by genotype identity and genotype-specific responses to larval diet, with no clear overall diet effect. Nutrient restriction increased proteolytic protein activity and shifted the balance between reproductive function and RNA metabolism. Our results open new avenues for exploring the intricate role of genotypes and their environment in shaping ejaculate composition, or for studying the functional dynamics and evolutionary potential of the ejaculate in its multivariate complexity.
Collapse
Affiliation(s)
- Valérian Zeender
- Department of Evolutionary Biology and Environmental Studies, University of Zurich, 8057 Zurich, Switzerland
| | - Sibylle Pfammatter
- Functional Genomics Center Zurich, University of Zurich/ETH Zurich, Winterthurerstrasse 190, 8057 Zurich, Switzerland
| | - Bernd Roschitzki
- Functional Genomics Center Zurich, University of Zurich/ETH Zurich, Winterthurerstrasse 190, 8057 Zurich, Switzerland
| | - Steve Dorus
- Center for Reproductive Evolution, Department of Biology, Syracuse University, Syracuse, NY 13244, USA
| | - Stefan Lüpold
- Department of Evolutionary Biology and Environmental Studies, University of Zurich, 8057 Zurich, Switzerland
| |
Collapse
|
15
|
Wolfner MF, Suarez SS, Dorus S. Suspension of hostility: Positive interactions between spermatozoa and female reproductive tracts. Andrology 2023; 11:943-947. [PMID: 36448311 PMCID: PMC10227186 DOI: 10.1111/andr.13349] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2022] [Revised: 11/13/2022] [Accepted: 11/19/2022] [Indexed: 12/03/2022]
Abstract
Interactions between spermatozoa and the female reproductive tract (FRT) are complex, in many cases poorly understood, and likely to contribute to the mechanistic basis of idiopathic infertility. As such, it is not surprising that the FRT was often viewed historically as a "hostile" environment for spermatozoa. The FRT has also been touted as a selective environment to ensure that only the highest quality spermatozoa progress to the oocyte for the opportunity to participate in fertilization. Recent advances, however, are giving rise to a far more nuanced view in which supportive spermatozoa × FRT interactions-in both directions-contribute to beneficial, even essential, effects on fertility. In this perspective article, we discuss several examples of positive spermatozoa × FRT interactions. We believe that these examples, arising in part from studies of taxonomically diverse nonmammalian systems, are useful to efforts to study mammalian spermatozoa × FRT interactions and their relevance to fertility and the advancement of assisted reproductive technologies.
Collapse
Affiliation(s)
- Mariana F. Wolfner
- Department of Molecular Biology and Genetics, Cornell University, Ithaca, New York, USA
| | - Susan S. Suarez
- Department of Biomedical Sciences, Cornell University, Ithaca, New York, USA
| | - Steve Dorus
- Center for Reproductive Evolution, Department of Biology, Syracuse University, Syracuse, New York, USA
| |
Collapse
|
16
|
McQuarrie DWJ, Read AM, Stephens FHS, Civetta A, Soller M. Indel driven rapid evolution of core nuclear pore protein gene promoters. Sci Rep 2023; 13:8035. [PMID: 37198214 DOI: 10.1038/s41598-023-34985-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2023] [Accepted: 05/11/2023] [Indexed: 05/19/2023] Open
Abstract
Nuclear pore proteins (Nups) prominently are among the few genes linked to speciation from hybrid incompatibility in Drosophila. These studies have focused on coding sequence evolution of Nup96 and Nup160 and shown evidence of positive selection driving nucleoporin evolution. Intriguingly, channel Nup54 functionality is required for neuronal wiring underlying the female post-mating response induced by male-derived sex-peptide. A region of rapid evolution in the core promoter of Nup54 suggests a critical role for general transcriptional regulatory elements at the onset of speciation, but whether this is a general feature of Nup genes has not been determined. Consistent with findings for Nup54, additional channel Nup58 and Nup62 promoters also rapidly accumulate insertions/deletions (indels). Comprehensive examination of Nup upstream regions reveals that core Nup complex gene promoters accumulate indels rapidly. Since changes in promoters can drive changes in expression, these results indicate an evolutionary mechanism driven by indel accumulation in core Nup promoters. Compensation of such gene expression changes could lead to altered neuronal wiring, rapid fixation of traits caused by promoter changes and subsequently the rise of new species. Hence, the nuclear pore complex may act as a nexus for species-specific changes via nucleo-cytoplasmic transport regulated gene expression.
Collapse
Affiliation(s)
- David W J McQuarrie
- School of Biosciences, College of Life and Environmental Sciences, University of Birmingham, Edgbaston, Birmingham, B15 2TT, UK
- Birmingham Centre for Genome Biology, University of Birmingham, Edgbaston, Birmingham, B15 2TT, UK
| | - Adam M Read
- School of Biosciences, College of Life and Environmental Sciences, University of Birmingham, Edgbaston, Birmingham, B15 2TT, UK
| | - Frannie H S Stephens
- School of Biosciences, College of Life and Environmental Sciences, University of Birmingham, Edgbaston, Birmingham, B15 2TT, UK
| | - Alberto Civetta
- Department of Biology, University of Winnipeg, Winnipeg, MB, R3B 2E9, Canada.
| | - Matthias Soller
- School of Biosciences, College of Life and Environmental Sciences, University of Birmingham, Edgbaston, Birmingham, B15 2TT, UK.
- Birmingham Centre for Genome Biology, University of Birmingham, Edgbaston, Birmingham, B15 2TT, UK.
| |
Collapse
|
17
|
Schang K, Garant R, Long TA. Phenotypic extremes or extreme phenotypes? On the use of large and small-bodied "phenocopied" Drosophila melanogaster males in studies of sexual selection and conflict. CURRENT RESEARCH IN INSECT SCIENCE 2023; 3:100052. [PMID: 36794123 PMCID: PMC9922682 DOI: 10.1016/j.cris.2023.100052] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/06/2022] [Revised: 01/30/2023] [Accepted: 02/03/2023] [Indexed: 06/18/2023]
Abstract
In the fruit fly, Drosophila melanogaster, variation in body size is influenced by a number of different factors and may be strongly associated with individual condition, performance and success in reproductive competitions. Consequently, intra-sexual variation in size in this model species has been frequently explored in order to better understand how sexual selection and sexual conflict may operate and shape evolutionary trajectories. However, measuring individual flies can often be logistically complicated and inefficient, which can result in limited sample sizes. Instead, many experiments use large and/or small body sizes that are created by manipulating the developmental conditions experienced during the larval stages, resulting in "phenocopied" flies whose phenotypes resemble what is seen at the extremes of a population's size distribution. While this practice is fairly common, there has been remarkedly few direct tests to empirically compare the behaviour or performance of phenocopied flies to similarly-sized individuals that grew up under typical developmental conditions. Contrary to assumptions that phenocopied flies are reasonable approximations, we found that both large and small-bodied phenocopied males frequently differed from their standard development equivalents in their mating frequencies, their lifetime reproductive successes, and in their effects on the fecundity of the females they interacted with. Our results highlight the complicated contributions of environment and genotype to the expression of body size phenotypes and lead us to strongly urge caution in the interpretation of studies solely replying upon phenocopied individuals.
Collapse
Affiliation(s)
- Kyle Schang
- Department of Biology, Wilfrid Laurier University, 75 University Avenue West, Waterloo, ON, Canada
- School of Environment, Resources and Sustainability, Faculty of Environment, University of Waterloo, 200 University Avenue West, Waterloo, ON, Canada
| | - Renée Garant
- Department of Biology, Wilfrid Laurier University, 75 University Avenue West, Waterloo, ON, Canada
- Department of Animal Biosciences, University of Guelph, 50 Stone Road East, Guelph, ON, Canada
| | - Tristan A.F. Long
- Department of Biology, Wilfrid Laurier University, 75 University Avenue West, Waterloo, ON, Canada
| |
Collapse
|
18
|
Hakala SM, Fujioka H, Gapp K, De Gasperin O, Genzoni E, Kilner RM, Koene JM, König B, Linksvayer TA, Meurville MP, Negroni MA, Palejowski H, Wigby S, LeBoeuf AC. Socially transferred materials: why and how to study them. Trends Ecol Evol 2022; 38:446-458. [PMID: 36543692 DOI: 10.1016/j.tree.2022.11.010] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2022] [Revised: 11/21/2022] [Accepted: 11/25/2022] [Indexed: 12/23/2022]
Abstract
When biological material is transferred from one individual's body to another, as in ejaculate, eggs, and milk, secondary donor-produced molecules are often transferred along with the main cargo, and influence the physiology and fitness of the receiver. Both social and solitary animals exhibit such social transfers at certain life stages. The secondary, bioactive, and transfer-supporting components in socially transferred materials have evolved convergently to the point where they are used in applications across taxa and type of transfer. The composition of these materials is typically highly dynamic and context dependent, and their components drive the physiological and behavioral evolution of many taxa. Our establishment of the concept of socially transferred materials unifies this multidisciplinary topic and will benefit both theory and applications.
Collapse
|