1
|
Scholz C, Jarquín-Díaz VH, Planillo A, Radchuk V, Scherer C, Schulze C, Ortmann S, Kramer-Schadt S, Heitlinger E. Host weight, seasonality and anthropogenic factors contribute to parasite community differences between urban and rural foxes. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 936:173355. [PMID: 38796016 DOI: 10.1016/j.scitotenv.2024.173355] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/13/2024] [Revised: 05/15/2024] [Accepted: 05/17/2024] [Indexed: 05/28/2024]
Abstract
Pathogens often occur at different prevalence along environmental gradients. This is of particular importance for gradients of anthropogenic impact such as rural-urban transitions presenting a changing interface between humans and wildlife. The assembly of parasite communities is affected by both the external environmental conditions and individual host characteristics. Hosts with low body weight (smaller individuals or animals with poor body condition) might be more susceptible to infection. Furthermore, parasites' mode of transmission might affect their occurrence: rural environments with better availability of intermediate hosts might favour trophic transmission, while urban environments, typically with dense definitive host populations, might favour direct transmission. We here study helminth communities (141 intestinal samples) within the red fox (Vulpes vulpes), a synanthropic host, using DNA metabarcoding of multiple marker genes. We analysed the effect of urbanisation, seasonality and host-intrinsic (weight, sex) variables on helminth communities. Helminth species richness increased in foxes with lower body weight and in winter and spring. Season and urbanisation, however, had strong effects on the community composition, i.e., on the identity of the detected species. Surprisingly, transmission in two-host life cycles (trophic transmission) was more pronounced in urban Berlin than in rural Brandenburg. This disagrees with the prevailing hypothesis that trophically transmitted helminths are less prevalent in urban areas than in rural areas. Generally, co-infestations with multiple helminths and high infection intensity are associated with lighter (younger, smaller or low body condition) animals. Both host-intrinsic traits and environmental drivers together shape parasite community composition and turnover along urban-rural gradients.
Collapse
Affiliation(s)
- Carolin Scholz
- Leibniz Institute for Zoo and Wildlife Research (IZW) in the Forschungsverbund Berlin e.V., Berlin, Germany
| | - Víctor Hugo Jarquín-Díaz
- Leibniz Institute for Zoo and Wildlife Research (IZW) in the Forschungsverbund Berlin e.V., Berlin, Germany; Department of Molecular Parasitology, Institute for Biology, Humboldt University Berlin (HU), Berlin, Germany; Charité - Universitätsmedizin Berlin, Freie Universität Berlin and Humboldt-Universität zu Berlin, Germany; Max-Delbrück-Center for Molecular Medicine in the Helmholtz Association (MDC), Berlin, Germany
| | - Aimara Planillo
- Leibniz Institute for Zoo and Wildlife Research (IZW) in the Forschungsverbund Berlin e.V., Berlin, Germany; Berlin-Brandenburg Institute of Advanced Biodiversity Research (BBIB), Berlin, Germany
| | - Viktoriia Radchuk
- Leibniz Institute for Zoo and Wildlife Research (IZW) in the Forschungsverbund Berlin e.V., Berlin, Germany
| | - Cédric Scherer
- Leibniz Institute for Zoo and Wildlife Research (IZW) in the Forschungsverbund Berlin e.V., Berlin, Germany
| | - Christoph Schulze
- Berlin-Brandenburg State Laboratory (LLBB), Frankfurt (Oder), Germany
| | - Sylvia Ortmann
- Leibniz Institute for Zoo and Wildlife Research (IZW) in the Forschungsverbund Berlin e.V., Berlin, Germany
| | - Stephanie Kramer-Schadt
- Leibniz Institute for Zoo and Wildlife Research (IZW) in the Forschungsverbund Berlin e.V., Berlin, Germany; Berlin-Brandenburg Institute of Advanced Biodiversity Research (BBIB), Berlin, Germany; Institute of Ecology, Technische Universität Berlin, Germany
| | - Emanuel Heitlinger
- Leibniz Institute for Zoo and Wildlife Research (IZW) in the Forschungsverbund Berlin e.V., Berlin, Germany; Department of Molecular Parasitology, Institute for Biology, Humboldt University Berlin (HU), Berlin, Germany.
| |
Collapse
|
2
|
Dickinson ER, Nwafor-Okoli C, Checkley SL, Elkin B, Branigan M, Serrano E, Kutz SJ. Direct and indirect costs of parasitism preceding a population decline of an Arctic ungulate. Sci Rep 2024; 14:17133. [PMID: 39054352 PMCID: PMC11272786 DOI: 10.1038/s41598-024-67904-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2024] [Accepted: 07/17/2024] [Indexed: 07/27/2024] Open
Abstract
Parasites negatively affect the fitness of ungulate hosts directly, and in wild ungulates, these effects may be synzootic with other stressors, such as limited nutritional resources. In the Arctic, muskoxen (Ovibos moschatus) occur in a highly seasonal environment and must rely on finite energetic resources for survival and productivity. We investigated the costs of gastrointestinal nematodes on the body condition and reproductive status of 141 muskoxen, on Banks Island, Canada, when the population was at a peak in numbers and density. Using a Partial Least Squares Path Modelling approach, we found that high adult nematode abundance was associated with lower body condition, and high parasite abundance was associated with female reproduction including the indirect effect through on body condition (n = 87). These findings suggest that individuals prioritize energetic reserves for reproduction over parasite defence. In fall 2003, a severe icing event that restricted access to forage was associated with high overwinter mortality of muskoxen and a population crash. Through direct and indirect costs of parasite infection on body condition and reproduction, the high abundance of parasites may have contributed to the effects of this extreme weather event. Understanding the mechanisms in which parasites impact fitness can help explain the ecological drivers of ungulate populations and predict the interactions between the environment and populations.
Collapse
Affiliation(s)
- Eleanor R Dickinson
- Faculty of Veterinary Medicine, University of Calgary, 3280 University Drive, NW, Calgary, AB, T2N 1N4, Canada.
| | - Chinyere Nwafor-Okoli
- Faculty of Veterinary Medicine, University of Calgary, 3280 University Drive, NW, Calgary, AB, T2N 1N4, Canada
| | - Sylvia L Checkley
- Faculty of Veterinary Medicine, University of Calgary, 3280 University Drive, NW, Calgary, AB, T2N 1N4, Canada
| | - Brett Elkin
- Environment and Natural Resources, Government of the Northwest Territories, Yellowknife, NT, X1A 1Y3, Canada
| | - Marsha Branigan
- Environment and Natural Resources, Government of the Northwest Territories, Inuvik, NT, X0E 0T0, Canada
| | - Emmanuel Serrano
- Wildlife Ecology & Health Group (WE&H), Servei d'Ecopatologia de Fauna Salvatge (SEFaS), Departament de Medicina i Cirurgia Animals, Universitat Autònoma de Barcelona, Bellaterra, Spain
| | - Susan J Kutz
- Faculty of Veterinary Medicine, University of Calgary, 3280 University Drive, NW, Calgary, AB, T2N 1N4, Canada
| |
Collapse
|
3
|
Bogza A, King IL, Maurice CF. Worming into infancy: Exploring helminth-microbiome interactions in early life. Cell Host Microbe 2024; 32:639-650. [PMID: 38723604 DOI: 10.1016/j.chom.2024.04.009] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2024] [Revised: 03/25/2024] [Accepted: 04/04/2024] [Indexed: 06/06/2024]
Abstract
There is rapidly growing awareness of microbiome assembly and function in early-life gut health. Although many factors, such as antibiotic use and highly processed diets, impinge on this process, most research has focused on people residing in high-income countries. However, much of the world's population lives in low- and middle-income countries (LMICs), where, in addition to erratic antibiotic use and suboptimal diets, these groups experience unique challenges. Indeed, many children in LMICs are infected with intestinal helminths. Although helminth infections are strongly associated with diverse developmental co-morbidities and induce profound microbiome changes, few studies have directly examined whether intersecting pathways between these components of the holobiont shape health outcomes in early life. Here, we summarize microbial colonization within the first years of human life, how helminth-mediated changes to the gut microbiome may affect postnatal growth, and why more research on this relationship may improve health across the lifespan.
Collapse
Affiliation(s)
- Andrei Bogza
- Department of Microbiology & Immunology, McGill University, Montreal, QC, Canada; McGill Centre for Microbiome Research, McGill University, Montreal, QC, Canada; Meakins-Christie Laboratories, Research Institute of the McGill University Health Centre, Montreal, QC, Canada; McGill University Research Centre on Complex Traits, Montreal, QC, Canada
| | - Irah L King
- Department of Microbiology & Immunology, McGill University, Montreal, QC, Canada; McGill Centre for Microbiome Research, McGill University, Montreal, QC, Canada; Meakins-Christie Laboratories, Research Institute of the McGill University Health Centre, Montreal, QC, Canada.
| | - Corinne F Maurice
- Department of Microbiology & Immunology, McGill University, Montreal, QC, Canada; McGill Centre for Microbiome Research, McGill University, Montreal, QC, Canada; McGill University Research Centre on Complex Traits, Montreal, QC, Canada.
| |
Collapse
|
4
|
Sarlin PJ, Morris S, Geethambika SB, Gopi L, Muraleedharan M, Thomas JA, Savitha G, Joseph P. Halocercus lagenorhynchi infection in a stranded striped dolphin Stenella coeruleoalba (Meyen, 1833) on the Southwest coastline of India. J Parasit Dis 2024; 48:168-179. [PMID: 38440750 PMCID: PMC10908710 DOI: 10.1007/s12639-024-01646-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2023] [Accepted: 12/29/2023] [Indexed: 03/06/2024] Open
Abstract
Necropsy on a striped dolphin Stenella coeruleoalba (Meyen, 1833) entangled in ghost fishing net and dead while rescuing yielded some helminth parasites, later identified as Halocercus lagenorhynchi. DNA barcoding of the host and parasite and the phylogenetic analysis of the parasite was conducted. This study provides valuable information towards establishing basal data of marine mammal parasite diversity and distribution in the Indian waters. We believe this is the first report of the occurrence of Halocercus lagenorhynchi in marine mammals in India.
Collapse
Affiliation(s)
- Pathissery John Sarlin
- PG and Research Department of Zoology, Fatima Mata National College (Autonomous), University of Kerala, Kollam, India
| | - Sancia Morris
- Institute of Chemical Technology Mumbai, IOC Bhuvneshwar Odisha, Bhubaneswar, India
| | | | - Lijin Gopi
- School of Medicine and Public Health, Department of Medicine, University of Wisconsin, Madison, USA
| | - Megha Muraleedharan
- PG and Research Department of Zoology, Fatima Mata National College (Autonomous), University of Kerala, Kollam, India
| | - Jeniffer Ann Thomas
- PG and Research Department of Zoology, Fatima Mata National College (Autonomous), University of Kerala, Kollam, India
| | - Gayathry Savitha
- PG and Research Department of Zoology, Fatima Mata National College (Autonomous), University of Kerala, Kollam, India
| | | |
Collapse
|
5
|
Holland CV. A walk on the wild side: A review of the epidemiology of Toxocara canis and Toxocara cati in wild hosts. Int J Parasitol Parasites Wildl 2023; 22:216-228. [PMID: 37964985 PMCID: PMC10641444 DOI: 10.1016/j.ijppaw.2023.10.008] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2023] [Revised: 10/15/2023] [Accepted: 10/15/2023] [Indexed: 11/16/2023]
Abstract
Toxocara species are cosmopolitan nematode parasites of companion, domestic and wild hosts. Of the 26 known species of Toxocara, only Toxocara canis and Toxocara cati are definitively zoonotic. The significance of wild carnivores as definitive hosts of T. canis and T. cati respectively, has received far less attention compared to domestic dogs and cats. Complex environmental changes have promoted increasing contact between wildlife, domestic animals and humans that can enhance the risk of pathogen spillover. This review lists a total of 19 species of wild canid host that have been shown to act as definitive hosts for T. canis and a total of 21 species of wild felid host. In general, the number of publications focusing on felid host species is fewer in number, reflecting the general paucity of data on T. cati. The wild canids that have received the most attention in the published literature include the red fox (Vulpes vulpes), the wolf (Canis lupus), and the golden jackal (Canis aureus). The wild felid species that has received the most attention in the published literature is the Eurasian lynx (Lynx lynx). Some non-canid and non-felid hosts also act as definitive hosts of Toxocara species. Certainly, red foxes would appear to be the most significant wild species in terms of their potential to transmit Toxocara to domestic dogs and humans via environmental contamination. This can be explained by their increasing population densities, encroachment into urban areas and their dietary preferences for a wide range of potential paratenic hosts. However, a major challenge remains to assess the relative importance of wild hosts as contributors to environmental contamination with Toxocara ova. Furthermore, one major constraint to our understanding of the significance of wildlife parasitism is a lack of access to samples, particularly from rare host species.
Collapse
Affiliation(s)
- Celia V. Holland
- Department of Zoology, School of Natural Sciences, Trinity College, Dublin 2, Ireland
| |
Collapse
|
6
|
Myrenås E, Näslund J, Persson J, Sundin J. Effects of the invasive swim bladder parasite Anguillicola crassus on health and condition indicators in the European eel. JOURNAL OF FISH DISEASES 2023; 46:1029-1047. [PMID: 37329520 DOI: 10.1111/jfd.13822] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/15/2023] [Revised: 05/30/2023] [Accepted: 05/31/2023] [Indexed: 06/19/2023]
Abstract
Parasites negatively affect biological processes within their hosts, which may alter for example health, growth, and reproductive ability. Non-native invasive parasites, in particular, may have large effects on the endemic hosts, given that the hosts lack evolved specific defences against such parasites. The swim bladder nematode Anguillicola crassus, an invasive parasite originating from Asia, is found in the European eel (Anguilla anguilla, L. 1758), since the 1980s. We investigated whether A. crassus affected several indicators related to health of the European eel (spleen- and liver size, body fat content and relative condition). Our results indicate that during the continental residency of the eels, infection by A. crassus had no major negative impacts on the investigated health indicators at the generally low infection intensities present in this study (median 2-3 visible parasites). Given that many of the adult eels were found to have swim bladder damage, concerns about their spawning migration through deeper oceanic environments can still be raised. To allow further investigations, we suggest that quantification of swim bladder damage should be implemented in eel-monitoring programs. Compared to other parasite pressure parameters, swim bladder damage provides additional information about past infections and future problems.
Collapse
Affiliation(s)
- Elin Myrenås
- Department of Aquatic Resources, Institute of Freshwater Research, Swedish University of Agricultural Sciences, Drottningholm, Sweden
| | - Joacim Näslund
- Department of Aquatic Resources, Institute of Freshwater Research, Swedish University of Agricultural Sciences, Drottningholm, Sweden
| | - John Persson
- Department of Aquatic Resources, Institute of Freshwater Research, Swedish University of Agricultural Sciences, Drottningholm, Sweden
| | - Josefin Sundin
- Department of Aquatic Resources, Institute of Freshwater Research, Swedish University of Agricultural Sciences, Drottningholm, Sweden
| |
Collapse
|
7
|
Reichert MS, Bolek MG, McCullagh EA. Parasite effects on receivers in animal communication: Hidden impacts on behavior, ecology, and evolution. Proc Natl Acad Sci U S A 2023; 120:e2300186120. [PMID: 37459523 PMCID: PMC10372545 DOI: 10.1073/pnas.2300186120] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/20/2023] Open
Abstract
Parasites exert a profound effect on biological processes. In animal communication, parasite effects on signalers are well-known drivers of the evolution of communication systems. Receiver behavior is also likely to be altered when they are parasitized or at risk of parasitism, but these effects have received much less attention. Here, we present a broad framework for understanding the consequences of parasitism on receivers for behavioral, ecological, and evolutionary processes. First, we outline the different kinds of effects parasites can have on receivers, including effects on signal processing from the many parasites that inhabit, occlude, or damage the sensory periphery and the central nervous system or that affect physiological processes that support these organs, and effects on receiver response strategies. We then demonstrate how understanding parasite effects on receivers could answer important questions about the mechanistic causes and functional consequences of variation in animal communication systems. Variation in parasitism levels is a likely source of among-individual differences in response to signals, which can affect receiver fitness and, through effects on signaler fitness, impact population levels of signal variability. The prevalence of parasitic effects on specific sensory organs may be an important selective force for the evolution of elaborate and multimodal signals. Finally, host-parasite coevolution across heterogeneous landscapes will generate geographic variation in communication systems, which could ultimately lead to evolutionary divergence. We discuss applications of experimental techniques to manipulate parasitism levels and point the way forward by calling for integrative research collaborations between parasitologists, neurobiologists, and behavioral and evolutionary ecologists.
Collapse
Affiliation(s)
- Michael S. Reichert
- Department of Integrative Biology, Oklahoma State University, Stillwater, OK74078
| | - Matthew G. Bolek
- Department of Integrative Biology, Oklahoma State University, Stillwater, OK74078
| | | |
Collapse
|
8
|
Gabain IL, Ramsteijn AS, Webster JP. Parasites and childhood stunting - a mechanistic interplay with nutrition, anaemia, gut health, microbiota, and epigenetics. Trends Parasitol 2023; 39:167-180. [PMID: 36707340 DOI: 10.1016/j.pt.2022.12.004] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2022] [Revised: 12/13/2022] [Accepted: 12/16/2022] [Indexed: 01/26/2023]
Abstract
Globally, stunting affects approximately 149.2 million children under 5 years of age. The underlying aetiology and pathophysiological mechanisms leading to stunting remain elusive, and therefore few effective treatment and prevention strategies exist. Crucial evidence directly linking parasites to stunting is often lacking - in part due to the complex nature of stunting, as well as a lack of critical multidisciplinary research amongst key age groups. Here, based on available studies, we present potential mechanistic pathways by which parasitic infection of mother and/or infant may lead to childhood stunting. We highlight the need for future multidisciplinary longitudinal studies and clinical trials aimed at elucidating the most influential factors, and synergies therein, that can lead to stunting, and ultimately towards finding solutions to successfully mitigate against it.
Collapse
Affiliation(s)
- Isobel L Gabain
- Department of Pathobiology and Population Sciences, Royal Veterinary College, University of London, Herts, AL9 7TA, UK; London Centre for Neglected Tropical Diseases Research, Imperial College London Faculty of Medicine, St Mary's Hospital Campus, London, W2 1NY, UK.
| | | | - Joanne P Webster
- Department of Pathobiology and Population Sciences, Royal Veterinary College, University of London, Herts, AL9 7TA, UK; London Centre for Neglected Tropical Diseases Research, Imperial College London Faculty of Medicine, St Mary's Hospital Campus, London, W2 1NY, UK
| |
Collapse
|
9
|
Dickinson ER, Orsel K, Cuyler C, Kutz SJ. Life history matters: Differential effects of abomasal parasites on caribou fitness. Int J Parasitol 2023; 53:221-231. [PMID: 36801266 DOI: 10.1016/j.ijpara.2023.01.001] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2022] [Revised: 01/16/2023] [Accepted: 01/19/2023] [Indexed: 02/18/2023]
Abstract
Parasites can impact wildlife populations through their effects on host fitness and survival. The life history strategies of a parasite species can dictate the mechanisms and timing through which it influences the host. However, unravelling this species-specific effect is difficult as parasites generally occur as part of a broader community of co-infecting parasites. Here, we use a unique study system to explore how life histories of different abomasal nematode species may influence host fitness. We examined abomasal nematodes in two adjacent, but isolated, West Greenland caribou (Rangifer tarandus groenlandicus) populations. One herd of caribou were naturally infected with Ostertagia gruehneri, a common and dominant summer nematode of Rangifer sspp., and the other with Marshallagia marshalli (abundant; winter) and Teladorsagia boreoarcticus (less abundant; summer), allowing us to determine if these nematode species have differing effects on host fitness. Using a Partial Least Squares Path Modelling approach, we found that in the caribou infected with O. gruehneri, higher infection intensity was associated with lower body condition, and that animals with lower body condition were less likely to be pregnant. In caribou infected with M. marshalli and T. boreoarcticus, we found that only M. marshalli infection intensity was negatively related to body condition and pregnancy, but that caribou with a calf at heel were more likely to have higher infection intensities of both nematode species. The differing effects of abomasal nematode species on caribou health outcomes in these herds may be due to parasite species-specific seasonal patterns which influence both transmission dynamics and when the parasites have the greatest impact on host condition. These results highlight the importance of considering parasite life history when testing associations between parasitic infection and host fitness.
Collapse
Affiliation(s)
- Eleanor R Dickinson
- Faculty of Veterinary Medicine, University of Calgary, 3280 University Drive, NW, Calgary, AB T2N 1N4, Canada.
| | - Karin Orsel
- Faculty of Veterinary Medicine, University of Calgary, 3280 University Drive, NW, Calgary, AB T2N 1N4, Canada
| | - Christine Cuyler
- Greenland Institute of Natural Resources, P.O. Box 570, 3900 Nuuk, Greenland
| | - Susan J Kutz
- Faculty of Veterinary Medicine, University of Calgary, 3280 University Drive, NW, Calgary, AB T2N 1N4, Canada
| |
Collapse
|
10
|
Season and prey identity mediate the effect of predators on parasites in rodents: a test of the healthy herds hypothesis. Oecologia 2023; 201:107-118. [PMID: 36414861 DOI: 10.1007/s00442-022-05284-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2021] [Accepted: 11/06/2022] [Indexed: 11/24/2022]
Abstract
The healthy herds hypothesis (HHH) suggests that predators decrease parasitism in their prey. Repeated tests of this hypothesis across a range of taxa and ecosystems have revealed significant variation in the effect of predators on parasites in prey. Differences in the response to predators (1) between prey taxa, (2) between seasons, and (3) before and after catastrophic disturbance are common in natural systems, but typically ignored in empirical tests of the HHH. We used a predator exclusion experiment to measure the effect of these heterogeneities on the tri-trophic interaction among predators, parasites and prey. We experimentally excluded mammalian predators from the habitats of hispid cotton rats (Sigmodon hispidus) and cotton mice (Peromyscus gossypinus) and measured the effect of exclusion on gastrointestinal parasites in these rodents. Our experiment spanned multiple seasons and before and after a prescribed burn. We found that the exclusion of the same predators had opposite effects on the parasites of small mammal prey species. Additionally, we found that the effect of mammal exclusion on parasitism differed before versus after fire disturbance. Finally, we saw that the effect of predator exclusion was highly dependent on prey capture season. Significant effects of exclusion emerged primarily in the fall and winter months. The presence of so many different effects in one relatively simple system suggests that predator effects on parasites in prey are highly context dependent.
Collapse
|
11
|
Abdoli A. Can helminth and malaria infections affect sex ratio at birth in sub-Saharan Africa? Ideas and hypothesis. Trans R Soc Trop Med Hyg 2022; 116:1223-1225. [PMID: 35947958 DOI: 10.1093/trstmh/trac077] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2022] [Revised: 07/21/2022] [Accepted: 07/26/2022] [Indexed: 01/19/2023] Open
Abstract
The sex ratio (ratio of boys to girls) at birth (SRB) is about 1.05 (about 105 males to 100 females) under normal conditions and could be an indicator for monitoring demographic changes. Generally, in comparison with female fetuses, the male fetus is biologically weaker and more vulnerable to prenatal events. SRB is influenced by various factors, such as maternal malnourishment. Remarkably, maternal malnourishment and less energy intake are pivotal factors for declining SRB in humans. As estimates, the SRB is below the normal range in sub-Saharan Africa (1.03) than the normal range (1.05). On the other hand, both malaria and helminth infections are hyperendemic in sub-Saharan Africa and both diseases are associated with maternal malnourishment. Hence, an important question arises, could declining SRB in sub-Saharan Africa be influenced by malaria and helminth infections? Cumulative evidence suggests that malaria and helminth infections could influence SRB by induction of maternal malnourishment. This hypothesis provides new ideas about the variation of SRB in some regions of the world where helminths and malaria are endemic.
Collapse
Affiliation(s)
- Amir Abdoli
- Zoonoses Research Center, Jahrom University of Medical Sciences, PO Box 74148-46199, Jahrom, Iran.,Department of Parasitology and Mycology, Jahrom University of Medical Sciences, PO Box 74148-46199, Jahrom, Iran
| |
Collapse
|