Mohmedi Kartalaei Z, Kooch Y, Dianati Tilaki GA. Litter and soil properties under woody and non-woody vegetation types: Implication for ecosystem management in a mountainous semi-arid landscape.
JOURNAL OF ENVIRONMENTAL MANAGEMENT 2023;
348:119238. [PMID:
37820433 DOI:
10.1016/j.jenvman.2023.119238]
[Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/02/2023] [Revised: 09/14/2023] [Accepted: 10/02/2023] [Indexed: 10/13/2023]
Abstract
There are contrasting reports about whether and how vegetation types influence litter and soil properties. Accurate and comprehensive assessment of the complex relationship between vegetation types, litter and soil characteristics in semi-arid mountain landscapes is almost unknown. Thus, the purpose of this research was to study the effects of (1) Carpinus orientalis Miller., (2) Crataegus melanocarpa M.B., (3) Rhamnus pallasii Fisch. and C.A.Mey, (4) Agropyron longiaristatum Boiss, (5) Bromus tomentolus Bioss. and (6) Hordeum vulgare L. on litter properties and soil physical, chemical, biochemical and biological features in northern Iran. A sampling of the organic layer (litter) and mineral soil (30 × 30 cm) from a depth of 0-10 cm was done for all characteristics in the summer season and for soil microclimate and biological characteristics in the summer and fall seasons. A total of 90 litter samples, 90 soil samples in summer and 90 soil samples in fall (6 vegetation types × 2 seasons × 15 samples) were taken from the area and transferred to the laboratory. Results showed that the Carpinus improved litter properties, soil organic matter contents, total N and available nutrients (P, K, Ca and Mg) and enzyme activities (urease, acid phosphatase, arylsulfatase and invertase). In addition, the population of earthworm groups (epigeic, anecic, and endogeic), acarina, collembola, nematodes, protozoa (especially in the fall season) and bacteria and fungi (especially in the summer season) under Carpinus significantly increased. Data analysis demonstrated higher soil fertility and biological activities in the woody vegetation, which can be assigned to the higher litter input and nutrients. Overall, the findings of this study showed that woody vegetation, especially Carpinus, can improve soil properties at high altitudes of mountainous, semi-arid sites that are often considered as especially fragile and sensitive ecosystems.
Collapse