1
|
Arabi TZ, Alkattan W, Osman NA, Sabbah BN, Ashraf N, Ouban A. Deciphering the role of claudins in lung cancer. Front Oncol 2024; 14:1435535. [PMID: 39364319 PMCID: PMC11446878 DOI: 10.3389/fonc.2024.1435535] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2024] [Accepted: 08/27/2024] [Indexed: 10/05/2024] Open
Abstract
Lung cancer remains a major global health challenge, characterized by aggressive malignancy and poor prognostic outcomes. This review article focuses on the pivotal role of claudins, a family of tight junction proteins, in the pathophysiology of lung cancer. Claudins are integral to maintaining epithelial barrier function and cellular polarity, yet they are intricately involved in the progression and metastasis of lung cancer. The aberrant expression of claudins has been observed across various histological subtypes of lung cancer, indicating their potential as diagnostic and prognostic biomarkers. Specifically, claudins such as claudin-1, -2, -3, -4, and -7 exhibit diverse expression patterns that correlate with tumor aggressiveness, patient survival rates, and response to therapies. Inflammation and cytokine modulation significantly influence claudin expression, affecting tumor microenvironment dynamics and cancer progression. This review also highlights the therapeutic implications of targeting claudins, particularly in cases resistant to conventional treatments. Recent advances in this area suggest that claudin-modulating agents may enhance the efficacy of existing therapies and offer new avenues for targeted interventions. By integrating the latest research, this article aims to provide a comprehensive understanding of claudin's roles in lung cancer and encourages further clinical trials to explore claudin-targeting therapies. This could pave the way for more effective management strategies, improving outcomes for lung cancer patients.
Collapse
Affiliation(s)
| | - Wael Alkattan
- College of Medicine, Alfaisal University, Riyadh, Saudi Arabia
| | | | | | - Nader Ashraf
- College of Medicine, Alfaisal University, Riyadh, Saudi Arabia
| | | |
Collapse
|
2
|
Hana C, Thaw Dar NN, Galo Venegas M, Vulfovich M. Claudins in Cancer: A Current and Future Therapeutic Target. Int J Mol Sci 2024; 25:4634. [PMID: 38731853 PMCID: PMC11083183 DOI: 10.3390/ijms25094634] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2024] [Revised: 04/16/2024] [Accepted: 04/18/2024] [Indexed: 05/13/2024] Open
Abstract
Claudins are a family of 27 proteins that have an important role in the formation of tight junctions. They also have an important function in ion exchange, cell mobility, and the epithelial-to-mesenchymal transition, the latter being very important in cancer invasion and metastasis. Therapeutic targeting of claudins has been investigated to improve cancer outcomes. Recent evidence shows improved outcomes when combining monoclonal antibodies against claudin 18.2 with chemotherapy for patients with gastroesophageal junction cancer. Currently, chimeric antigen receptor T-cells targeting claudin 18 are under investigation. In this review, we will discuss the major functions of claudins, their distribution in the normal as well as cancerous tissues, and their effect in cancer metastasis, with a special focus on the therapeutic targeting of claudins to improve cancer outcomes.
Collapse
Affiliation(s)
- Caroline Hana
- Hematology/Oncology Department, Memorial Healthcare System, Pembroke Pines, FL 33028, USA; (N.N.T.D.); (M.G.V.)
| | | | | | | |
Collapse
|
3
|
Gyulai M, Harko T, Fabian K, Karsko L, Agocs L, Szigeti B, Fillinger J, Szallasi Z, Pipek O, Moldvay J. Claudin expression in pulmonary adenoid cystic carcinoma and mucoepidermoid carcinoma. Pathol Oncol Res 2023; 29:1611328. [PMID: 37621953 PMCID: PMC10444951 DOI: 10.3389/pore.2023.1611328] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/29/2023] [Accepted: 07/27/2023] [Indexed: 08/26/2023]
Abstract
Background: Although the expression of tight junction protein claudins (CLDNs) is well known in common histological subtypes of lung cancer, it has not been investigated in rare lung cancers. The aim of our study was to examine the expression of different CLDNs in pulmonary salivary gland tumors. Methods: 35 rare lung cancers including pathologically confirmed 12 adenoid cystic carcinomas (ACCs) and 23 mucoepidermoid carcinomas (MECs) were collected retrospectively. Immunohistochemical (IHC) staining was performed on formalin fixed paraffin embedded (FFPE) tumor tissues, and CLDN1, -2, -3, -4, -5, -7, and -18 protein expressions were analyzed. The levels of immunopositivity were determined with H-score. Certain pathological characteristics of ACC and MEC samples (tumor grade, presence of necrosis, presence of blood vessel infiltration, and degree of lymphoid infiltration) were also analyzed. Results: CLDN overexpression was observed in both tumor types, especially in CLDN2, -7, and -18 IHC. Markedly different patterns of CLDN expression were found for ACC and MEC tumors, especially for CLDN1, -2, -4, and -7, although none of these trends remained significant after correction for multiple testing. Positive correlations between expressions of CLDN2 and -5, CLDN3 and -4, and CLDN5 and -18 were also demonstrated. Tumors of never-smokers presented lower levels of CLDN18 than tumors of current smokers (p-value: 0.003). Conclusion: This is the first study to comprehensively describe the expression of different CLDNs in lung ACC and MEC. Overexpression of certain CLDNs may pave the way for targeted anti-claudin therapy in these rare histological subtypes of lung cancer.
Collapse
Affiliation(s)
- Marton Gyulai
- County Institute of Pulmonology, Torokbalint, Hungary
- Karoly Racz Doctoral School of Clinical Medicine, Semmelweis University, Budapest, Hungary
| | - Tunde Harko
- Department of Pathology, National Koranyi Institute of Pulmonology, Budapest, Hungary
| | - Katalin Fabian
- Department of Pathology, South-Buda Center Hospital St. Imre University Teaching Hospital, Budapest, Hungary
| | - Luca Karsko
- Department of Thoracic Surgery, National Koranyi Institute of Pulmonology, Budapest, Hungary
| | - Laszlo Agocs
- Department of Thoracic Surgery, National Koranyi Institute of Pulmonology, Budapest, Hungary
- Department of Thoracic Surgery, National Institute of Oncology, Semmelweis University, Budapest, Hungary
| | - Balazs Szigeti
- Department of Pathology, National Koranyi Institute of Pulmonology, Budapest, Hungary
| | - Janos Fillinger
- Department of Pathology, National Koranyi Institute of Pulmonology, Budapest, Hungary
| | - Zoltan Szallasi
- National Koranyi Institute of Pulmonology, Budapest, Hungary
- Department of Bioinformatics, Semmelweis University, Budapest, Hungary
- Computational Health Informatics Program, Boston Children’s Hospital, Harvard Medical School, Boston, MA, United States
- Danish Cancer Society Research Center, Copenhagen, Denmark
| | - Orsolya Pipek
- Department of Physics of Complex Systems, ELTE Eotvos Lorand University, Budapest, Hungary
| | - Judit Moldvay
- Ist Department of Pulmonology, National Koranyi Institute of Pulmonology, Budapest, Hungary
| |
Collapse
|
4
|
Wang DW, Zhang WH, Danil G, Yang K, Hu JK. The role and mechanism of claudins in cancer. Front Oncol 2022; 12:1051497. [PMID: 36620607 PMCID: PMC9818346 DOI: 10.3389/fonc.2022.1051497] [Citation(s) in RCA: 21] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2022] [Accepted: 11/28/2022] [Indexed: 12/24/2022] Open
Abstract
Claudins are a tetraspan membrane protein multigene family that plays a structural and functional role in constructing tight junctions. Claudins perform crucial roles in maintaining cell polarity in epithelial and endothelial cell sheets and controlling paracellular permeability. In the last two decades, increasing evidence indicates that claudin proteins play a major role in controlling paracellular permeability and signaling inside cells. Several types of claudins are dysregulated in various cancers. Depending on where the tumor originated, claudin overexpression or underexpression has been shown to regulate cell proliferation, cell growth, metabolism, metastasis and cell stemness. Epithelial-to-mesenchymal transition is one of the most important functions of claudin proteins in disease progression. However, the exact molecular mechanisms and signaling pathways that explain why claudin proteins are so important to tumorigenesis and progression have not been determined. In addition, claudins are currently being investigated as possible diagnostic and treatment targets. Here, we discuss how claudin-related signaling pathways affect tumorigenesis, tumor progression, and treatment sensitivity.
Collapse
Affiliation(s)
- De-Wen Wang
- Gastric Cancer Center and Laboratory of Gastric Cancer, Department of General Surgery, West China Hospital, Sichuan University, Chengdu, China,State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu, China
| | - Wei-Han Zhang
- Gastric Cancer Center and Laboratory of Gastric Cancer, Department of General Surgery, West China Hospital, Sichuan University, Chengdu, China,State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu, China
| | - Galiullin Danil
- Gastric Cancer Center and Laboratory of Gastric Cancer, Department of General Surgery, West China Hospital, Sichuan University, Chengdu, China,State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu, China,Central Research Laboratory, Bashkir State Medical University, Ufa, Russia
| | - Kun Yang
- Gastric Cancer Center and Laboratory of Gastric Cancer, Department of General Surgery, West China Hospital, Sichuan University, Chengdu, China,State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu, China
| | - Jian-Kun Hu
- Gastric Cancer Center and Laboratory of Gastric Cancer, Department of General Surgery, West China Hospital, Sichuan University, Chengdu, China,State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu, China,*Correspondence: Jian-Kun Hu,
| |
Collapse
|
5
|
Gowrikumar S, Primeaux M, Pravoverov K, Wu C, Szeglin BC, Sauvé CEG, Thapa I, Bastola D, Chen XS, Smith JJ, Singh AB, Dhawan P. A Claudin-Based Molecular Signature Identifies High-Risk, Chemoresistant Colorectal Cancer Patients. Cells 2021; 10:cells10092211. [PMID: 34571860 PMCID: PMC8466455 DOI: 10.3390/cells10092211] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2021] [Revised: 08/13/2021] [Accepted: 08/17/2021] [Indexed: 02/07/2023] Open
Abstract
Identifying molecular characteristics that are associated with aggressive cancer phenotypes through gene expression profiling can help predict treatment responses and clinical outcomes. Claudins are deregulated in colorectal cancer (CRC). In CRC, increased claudin-1 expression results in epithelial-to-mesenchymal transition and metastasis, while claudin-7 functions as a tumor suppressor. In this study, we have developed a molecular signature based on claudin-1 and claudin-7 associated with poor patient survival and chemoresistance. This signature was validated using an integrated approach including publicly available datasets and CRC samples from patients who either responded or did not respond to standard-of-care treatment, CRC cell lines, and patient-derived rectal and colon tumoroids. Transcriptomic analysis from a patient dataset initially yielded 23 genes that were differentially expressed along with higher claudin-1 and decreased claudin-7. From this analysis, we selected a claudins-associated molecular signature including PIK3CA, SLC6A6, TMEM43, and ASAP-1 based on their importance in CRC. The upregulation of these genes and their protein products was validated using multiple CRC patient datasets, in vitro chemoresistant cell lines, and patient-derived tumoroid models. Additionally, blocking these genes improved 5-FU sensitivity in chemoresistant CRC cells. Our findings propose a new claudin-based molecular signature that associates with poor prognosis as well as characteristics of treatment-resistant CRC including chemoresistance, metastasis, and relapse.
Collapse
Affiliation(s)
- Saiprasad Gowrikumar
- Department of Biochemistry and Molecular Biology, University of Nebraska Medical Center, Omaha, NE 68198, USA; (S.G.); (M.P.); (K.P.); (A.B.S.)
| | - Mark Primeaux
- Department of Biochemistry and Molecular Biology, University of Nebraska Medical Center, Omaha, NE 68198, USA; (S.G.); (M.P.); (K.P.); (A.B.S.)
| | - Kristina Pravoverov
- Department of Biochemistry and Molecular Biology, University of Nebraska Medical Center, Omaha, NE 68198, USA; (S.G.); (M.P.); (K.P.); (A.B.S.)
| | - Chao Wu
- Department of Surgery, Colorectal Service, Memorial Sloan Kettering Cancer Center, New York, NY 10065, USA; (C.W.); (B.C.S.); (C.-E.G.S.); (J.J.S.)
- Human Oncology and Pathogenesis Program, Memorial Sloan Kettering Cancer Center, New York, NY 10065, USA
| | - Bryan C. Szeglin
- Department of Surgery, Colorectal Service, Memorial Sloan Kettering Cancer Center, New York, NY 10065, USA; (C.W.); (B.C.S.); (C.-E.G.S.); (J.J.S.)
- Albert Einstein College of Medicine, Bronx, NY 10461, USA
| | - Charles-Etienne Gabriel Sauvé
- Department of Surgery, Colorectal Service, Memorial Sloan Kettering Cancer Center, New York, NY 10065, USA; (C.W.); (B.C.S.); (C.-E.G.S.); (J.J.S.)
| | - Ishwor Thapa
- College of Information Science & Technology, University of Omaha, Omaha, NE 68182, USA; (I.T.); (D.B.)
| | - Dhundy Bastola
- College of Information Science & Technology, University of Omaha, Omaha, NE 68182, USA; (I.T.); (D.B.)
| | - Xi Steven Chen
- Department of Public Health Sciences, Sylvester Comprehensive Cancer Center, University of Miami Miller School of Medicine, Miami, FL 33136, USA;
| | - J. Joshua Smith
- Department of Surgery, Colorectal Service, Memorial Sloan Kettering Cancer Center, New York, NY 10065, USA; (C.W.); (B.C.S.); (C.-E.G.S.); (J.J.S.)
- Human Oncology and Pathogenesis Program, Memorial Sloan Kettering Cancer Center, New York, NY 10065, USA
| | - Amar B. Singh
- Department of Biochemistry and Molecular Biology, University of Nebraska Medical Center, Omaha, NE 68198, USA; (S.G.); (M.P.); (K.P.); (A.B.S.)
- VA Nebraska-Western Iowa Health Care System, Omaha, NE 68105, USA
- Buffet Cancer Center, University of Nebraska Medical Center, Omaha, NE 68105, USA
| | - Punita Dhawan
- Department of Biochemistry and Molecular Biology, University of Nebraska Medical Center, Omaha, NE 68198, USA; (S.G.); (M.P.); (K.P.); (A.B.S.)
- VA Nebraska-Western Iowa Health Care System, Omaha, NE 68105, USA
- Buffet Cancer Center, University of Nebraska Medical Center, Omaha, NE 68105, USA
- Correspondence: ; Tel.: +1-(402)-559-6587
| |
Collapse
|
6
|
Role of Claudin Proteins in Regulating Cancer Stem Cells and Chemoresistance-Potential Implication in Disease Prognosis and Therapy. Int J Mol Sci 2019; 21:ijms21010053. [PMID: 31861759 PMCID: PMC6982342 DOI: 10.3390/ijms21010053] [Citation(s) in RCA: 44] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2019] [Revised: 12/11/2019] [Accepted: 12/13/2019] [Indexed: 12/11/2022] Open
Abstract
Claudins are cell–cell adhesion proteins, which are expressed in tight junctions (TJs), the most common apical cell-cell adhesion. Claudin proteins help to regulate defense and barrier functions, as well as differentiation and polarity in epithelial and endothelial cells. A series of studies have now reported dysregulation of claudin proteins in cancers. However, the precise mechanisms are still not well understood. Nonetheless, studies have clearly demonstrated a causal role of multiple claudins in the regulation of epithelial to mesenchymal transition (EMT), a key feature in the acquisition of a cancer stem cell phenotype in cancer cells. In addition, claudin proteins are known to modulate therapy resistance in cancer cells, a feature associated with cancer stem cells. In this review, we have focused primarily on highlighting the causal link between claudins, cancer stem cells, and therapy resistance. We have also contemplated the significance of claudins as novel targets in improving the efficacy of cancer therapy. Overall, this review provides a much-needed understanding of the emerging role of claudin proteins in cancer malignancy and therapeutic management.
Collapse
|
7
|
Ma L, Yin W, Ma H, Elshoura I, Wang L. Targeting claudin-3 suppresses stem cell-like phenotype in nonsquamous non-small-cell lung carcinoma. Lung Cancer Manag 2019; 8:LMT04. [PMID: 31044015 PMCID: PMC6488947 DOI: 10.2217/lmt-2018-0010] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2018] [Accepted: 11/08/2018] [Indexed: 12/24/2022] Open
Abstract
AIM To determine the role of claudin-3 in cancer stemness in nonsquamous non-small-cell lung carcinoma (NSCLC). MATERIALS & METHODS In vitro/vivo extreme limiting dilution analysis and the side population assay were used to investigate the role of claudin-3 in regulating cancer stemness in nonsquamous NSCLC. RESULTS & CONCLUSION Claudin-3 depletion decreased the formation rates of spheres and tumors and increased cisplatin sensitivity. Claudin-3 was also identified as one downstream target of estrogen receptor-α in regulating cancer stemness. Moreover, targeting CLDN-3 transcription by small molecules including withaferin A, estradiol and fulvestrant suppressed cancer stemness and reversed chemoresistance. These results demonstrated claudin-3 is one positive regulator of cancer stemness in nonsuqamous NSCLC.
Collapse
Affiliation(s)
- Lin Ma
- School of Materials Science & Engineering, South China University of Technology, Guangzhou 510640, China
- R&D Center, Guangzhou Ribobio Co., Ltd, Guangzhou 510663, China
- State Key Laboratory of Pharmaceutical Biotechnology, School of Life Sciences, Nanjing University, Nanjing 210046, China
| | - Wu Yin
- State Key Laboratory of Pharmaceutical Biotechnology, School of Life Sciences, Nanjing University, Nanjing 210046, China
| | - Heliang Ma
- Department of Radiology, Jinan Central Hospital, Jinan, Shandong 250013, China
| | - Ihab Elshoura
- State Key Laboratory of Pharmaceutical Biotechnology, School of Life Sciences, Nanjing University, Nanjing 210046, China
| | - Lan Wang
- Department of Respiratory Medicine, The Affiliated Jiangyin Hospital of Southeast University, Jiangyin 214400, China
| |
Collapse
|
8
|
Kim DH, Lu Q, Chen YH. Claudin-7 modulates cell-matrix adhesion that controls cell migration, invasion and attachment of human HCC827 lung cancer cells. Oncol Lett 2019; 17:2890-2896. [PMID: 30854065 PMCID: PMC6365970 DOI: 10.3892/ol.2019.9909] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2018] [Accepted: 12/31/2018] [Indexed: 11/12/2022] Open
Abstract
Claudins are a family of tight junction proteins, and serve important roles in epithelial barrier, selective ion transports and cancer metastasis. Although the exact role of claudin-7 in human lung cancer has not been completely elucidated, recent clinical studies have demonstrated that claudin-7 is associated with the survival of patients with lung cancer. Our previous studies have demonstrated that claudin-7 forms a protein complex with integrin β1 in human lung cancer cells. The knockdown (KD) of claudin-7 by short hairpin RNA (shRNA) reduced integrin β1 expression and increased the cell proliferative rate, whereas claudin-7 re-expression in the KD cells decreased the cell proliferation. It is unknown as to whether claudin-7 and integrin β1 regulate cell proliferation and invasion synergistically or independently. In the present study, it was observed that ectopic expression of integrin β1 in claudin-7 KD lung cancer cells did not reduce the cell proliferation. However, integrin β1-transfected cells migrated more effectively in wound healing and cell invasion assays and were more adhesive in a cell attachment assay when compared with those of claudin-7 KD cells. This indicates that claudin-7 controls cell proliferation, while cell attachment and motility were regulated partially through integrin β1. Additionally, claudin-7 overexpression in claudin-7 KD cells resulted in an improved ability to attach to the surface of cell culture plates and a higher expression of focal adhesion proteins when compared with claudin-7 non-KD control cells, which supports the role of claudin-7 in cell adhesion and motility. Taken together, these data suggest that claudin-7 regulates cell motility through integrin β1, providing additional insight into the roles of claudins in carcinogenesis and cancer cell metastasis.
Collapse
Affiliation(s)
- Do Hyung Kim
- Department of Anatomy and Cell Biology, Brody School of Medicine, East Carolina University, Greenville, NC 27834, USA
| | - Qun Lu
- Department of Anatomy and Cell Biology, Brody School of Medicine, East Carolina University, Greenville, NC 27834, USA.,Leo Jenkins Cancer Center, Brody School of Medicine, East Carolina University, Greenville, NC 27834, USA
| | - Yan-Hua Chen
- Department of Anatomy and Cell Biology, Brody School of Medicine, East Carolina University, Greenville, NC 27834, USA.,Leo Jenkins Cancer Center, Brody School of Medicine, East Carolina University, Greenville, NC 27834, USA
| |
Collapse
|
9
|
Li Y, Gong Y, Ning X, Peng D, Liu L, He S, Gong K, Zhang C, Li X, Zhou L. Downregulation of CLDN7 due to promoter hypermethylation is associated with human clear cell renal cell carcinoma progression and poor prognosis. JOURNAL OF EXPERIMENTAL & CLINICAL CANCER RESEARCH : CR 2018; 37:276. [PMID: 30428910 PMCID: PMC6234584 DOI: 10.1186/s13046-018-0924-y] [Citation(s) in RCA: 39] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/04/2018] [Accepted: 10/02/2018] [Indexed: 02/07/2023]
Abstract
BACKGROUND Metastasis is the primary cause of death in renal cell carcinoma (RCC). Loss of cell-to-cell adhesion, including tight junctions (TJs) is the initial step in the process of metastasis. Claudin-7 (CLDN7) is a major component of TJs. However, the clinical significance and its regulation of kidney tumorigenesis remain poorly understood. METHODS A total of 120 fresh clear cell RCC (ccRCC) specimens and 144 primary RCC and adjacent nonmalignant renal paraffin specimens were obtained from Department of Urology, Peking University First Hospital. Expression of CLDN7 in ccRCC tissues and cell lines were determined using bioinformatic data mining, quantitative real-time PCR (qRT-PCR), Western blotting and immunostaining. The clinical significance of CLDN7 expression and promoter DNA methylation status was analyzed in ccRCC patients from Peking University First Hospital and The Cancer Genome Atlas. Additionally, the methylation specific-PCR, bisulfite genomic sequencing and demethylation analysis of CLDN7 were performed. Biological functions of CLDN7 were investigated by examining cell proliferation using MTS assays and EdU incorporation assays, cell migration by in vitro wound healing assays and transwell migration assays, cell invasion by transwell invasion assays, and cell apoptosis by flow cytometry. Mouse model experiments were performed to confirm the effects of CLDN7 on tumor growth and metastasis in vivo. The molecular mechanism of CLDN7 function was investigated using gene-set enrichment analysis (GSEA) and high-throughput cDNA sequencing (RNA-Seq) and confirmed by qRT-PCR, Western blot and immunostaining in vitro and in vivo. RESULTS Our findings revealed that CLDN7 is frequently downregulated via hypermethylation of its promoter in ccRCC. CLDN7 can help predict aggressive tumor status and poor prognosis in ccRCC patients. Interestingly, hypermethylation of the CLDN7 promoter was related to advanced ccRCC status and poor prognosis. Moreover, overexpression of CLDN7 induced cell apoptosis, suppressed proliferation, migration and invasion abilities of ccRCC cells both in vitro and in vivo. Additionally, GSEA and RNA-Seq results showed that CLDN7 had negative effects in cancer-associated signaling pathways and (epithelial-mesenchymal transition) EMT-related pathways. These results were validated by qRT-PCR, Western blot and immunostaining. CONCLUSIONS We have demonstrated a previously undescribed role of CLDN7 as a ccRCC suppressor and suggest that loss of CLDN7 potentiates EMT and tumor progression. CLDN7 may serve as a functional tumor suppressor in tumor progression and a potential biomarker and target in patients with ccRCC.
Collapse
Affiliation(s)
- Yifan Li
- Department of Urology, Peking University First Hospital, Beijing, 100034, China.,Institute of Urology, Peking University, Beijing, 100034, China.,National Urological Cancer Center, Beijing, 100034, China
| | - Yanqing Gong
- Department of Urology, Peking University First Hospital, Beijing, 100034, China.,Institute of Urology, Peking University, Beijing, 100034, China.,National Urological Cancer Center, Beijing, 100034, China
| | - Xianghui Ning
- Department of Urology, The First Affiliated Hospital of Zhengzhou University, Henan, 450052, China
| | - Ding Peng
- Department of Urology, Peking University First Hospital, Beijing, 100034, China.,Institute of Urology, Peking University, Beijing, 100034, China.,National Urological Cancer Center, Beijing, 100034, China
| | - Libo Liu
- Department of Urology, Peking University First Hospital, Beijing, 100034, China.,Institute of Urology, Peking University, Beijing, 100034, China.,National Urological Cancer Center, Beijing, 100034, China
| | - Shiming He
- Department of Urology, Peking University First Hospital, Beijing, 100034, China.,Institute of Urology, Peking University, Beijing, 100034, China.,National Urological Cancer Center, Beijing, 100034, China
| | - Kan Gong
- Department of Urology, Peking University First Hospital, Beijing, 100034, China.,Institute of Urology, Peking University, Beijing, 100034, China.,National Urological Cancer Center, Beijing, 100034, China
| | - Cuijian Zhang
- Department of Urology, Peking University First Hospital, Beijing, 100034, China. .,Institute of Urology, Peking University, Beijing, 100034, China. .,National Urological Cancer Center, Beijing, 100034, China.
| | - Xuesong Li
- Department of Urology, Peking University First Hospital, Beijing, 100034, China. .,Institute of Urology, Peking University, Beijing, 100034, China. .,National Urological Cancer Center, Beijing, 100034, China.
| | - Liqun Zhou
- Department of Urology, Peking University First Hospital, Beijing, 100034, China. .,Institute of Urology, Peking University, Beijing, 100034, China. .,National Urological Cancer Center, Beijing, 100034, China.
| |
Collapse
|
10
|
Yang M, Li H, Li Y, Ruan Y, Quan C. Identification of genes and pathways associated with MDR in MCF-7/MDR breast cancer cells by RNA-seq analysis. Mol Med Rep 2018; 17:6211-6226. [PMID: 29512753 PMCID: PMC5928598 DOI: 10.3892/mmr.2018.8704] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2017] [Accepted: 01/15/2018] [Indexed: 12/26/2022] Open
Abstract
Multidrug resistance (MDR) is a major problem in the treatment of breast cancer. In the present study, next-generation sequencing technology was employed to identify differentially expressed genes in MCF-7/MDR cells and MCF-7 cells, and aimed to investigate the underlying molecular mechanisms of MDR in breast cancer. Differentially expressed genes between MCF-7/MDR and MCF-7 cells were selected using software; a total of 2085 genes were screened as differentially expressed in MCF-7/MDR cells. Furthermore, gene ontology (GO) and Kyoto Encyclopedia of Genes and Genomes (KEGG) pathway enrichment analyses were performed using the DAVID database. Finally, a protein-protein interaction network was constructed and the hub genes in the network were analyzed using the STRING database. GO annotation demonstrated that the differentially expressed genes were enriched in various biological processes, including ‘regulation of cell differentiation’, ‘cell development’, ‘neuron development’, ‘movement of cell or subcellular component’ and ‘cell morphogenesis involved in neuron differentiation’. Cellular component analysis by GO revealed that differentially expressed genes were enriched in ‘plasma membrane region’ and ‘extracellular matrix’ terms. Furthermore, KEGG analysis demonstrated that the target genes were enriched in various pathways, including ‘cell adhesion molecules (CAMs)’, ‘calcium signaling pathway’, ‘tight junction’, ‘Wnt signaling pathway’ and ‘pathways in cancer’ terms. A protein-protein interaction network demonstrated that certain hub genes, including cyclin D1, nitric oxide synthase 3 (NOS3), NOTCH3, brain-derived neurotrophic factor (BDNF), paired box 6, neuropeptide Y, phospholipase C β (PLCB) 4, PLCB2 and actin α cardiac muscle 1, may be associated with MDR in breast cancer. Subsequently, RT-qPCR confirmed that the expression of these 9 hub genes was higher in MCF-7/MDR cells compared with MCF-7 cells, consistent with the RNA-sequencing analysis. Additionally, a Cell Counting Kit-8 assay demonstrated that specific inhibitors of NOS3 and BDNF/neurotrophic receptor tyrosine kinase, type 2 signaling reduced the IC50 of MCF-7/MDR cells in response to various anticancer drugs, including adriamycin, cisplatin and 5-fluorouracil. The results of the present study provide novel insights into the mechanism underlying MDR in MCF-7 cells and may identify novel targets for the treatment of breast cancer.
Collapse
Affiliation(s)
- Minlan Yang
- Key Laboratory of Pathobiology, Ministry of Education, College of Basic Medical Sciences, Jilin University, Changchun, Jilin 310021, P.R. China
| | - Hairi Li
- Department of Cellular and Molecular Medicine, University of California, San Diego, CA 92093‑0651, USA
| | - Yanru Li
- Key Laboratory of Pathobiology, Ministry of Education, College of Basic Medical Sciences, Jilin University, Changchun, Jilin 310021, P.R. China
| | - Yang Ruan
- Key Laboratory of Pathobiology, Ministry of Education, College of Basic Medical Sciences, Jilin University, Changchun, Jilin 310021, P.R. China
| | - Chengshi Quan
- Key Laboratory of Pathobiology, Ministry of Education, College of Basic Medical Sciences, Jilin University, Changchun, Jilin 310021, P.R. China
| |
Collapse
|
11
|
Yang M, Li Y, Shen X, Ruan Y, Lu Y, Jin X, Song P, Guo Y, Zhang X, Qu H, Shao Y, Quan C. CLDN6 promotes chemoresistance through GSTP1 in human breast cancer. JOURNAL OF EXPERIMENTAL & CLINICAL CANCER RESEARCH : CR 2017; 36:157. [PMID: 29116019 PMCID: PMC5678781 DOI: 10.1186/s13046-017-0627-9] [Citation(s) in RCA: 47] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/02/2017] [Accepted: 10/24/2017] [Indexed: 12/12/2022]
Abstract
BACKGROUND Claudin-6 (CLDN6), a member of CLDN family and a key component of tight junction, has been reported to function as a tumor suppressor in breast cancer. However, whether CLDN6 plays any role in breast cancer chemoresistance remains unclear. In this study, we investigated the role of CLDN6 in the acquisition of chemoresistance in breast cancer cells. METHODS We manipulated the expression of CLDN6 in MCF-7 and MCF-7/MDR cells with lv-CLDN6 and CLDN6-shRNA and investigated whether CLDN6 manipulation lead to different susceptibilities to several chemotherapeutic agents in these cells. The cytotoxicity of adriamycin (ADM), 5-fluorouracil (5-FU), and cisplatin (DDP) was tested by cck-8 assay. Cell death was determined by DAPI nuclear staining. The enzyme activity of glutanthione S-transferase-p1 (GSTP1) was detected by a GST activity kit. Then lv-GSTP1 and GSTP1-shRNA plasmids were constructed to investigate the potential of GSTP1 in regulating chemoresistance of breast cancer. The TP53-shRNA was adopted to explore the regulation mechanism of GSTP1. Finally, immunohistochemistry was used to explore the relationship between CLDN6 and GSTP1 expression in breast cancer tissues. RESULTS Silencing CLDN6 increased the cytotoxicity of ADM, 5-FU, and DDP in MCF-7/MDR cells. Whereas overexpression of CLDN6 in MCF-7, the parental cell line of MCF-7/MDR expressing low level of CLDN6, increased the resistance to the above drugs. GSTP1 was upregulated in CLDN6-overexpressed MCF-7 cells. RNAi -mediated silencing of CLDN6 downregulated both GSTP1 expression and GST enzyme activity in MCF-7/MDR cells. Overexpresssion of GSTP1 in CLDN6 silenced MCF-7/MDR cells restored chemoresistance, whereas silencing GSTP1 reduced the chemoresistance due to ectopic overexpressed of CLDN6 in MCF-7 cells. These observations were also repeated in TNBC cells Hs578t. We further confirmed that CLDN6 interacted with p53 and promoted translocation of p53 from nucleus to cytoplasm, and both the expression and enzyme activity of GSTP1 were regulated by p53. Clinicopathologic analysis revealed that GSTP1 expression was positively associated with CLDN6 in human breast cancer samples. CONCLUSION High expression of CLDN6 confers chemoresistance on breast cancer which is mediated by GSTP1, the activity of which is regulated by p53. Our findings provide a new insight into mechanisms and strategies to overcome chemoresistance in breast cancer.
Collapse
Affiliation(s)
- Minlan Yang
- The Key Laboratory of Pathobiology, Ministry of Education, College of Basic Medical Sciences, Jilin University, 126 Xinmin Avenue, Changchun, Jilin, 310021, People's Republic of China
| | - Yanru Li
- The Key Laboratory of Pathobiology, Ministry of Education, College of Basic Medical Sciences, Jilin University, 126 Xinmin Avenue, Changchun, Jilin, 310021, People's Republic of China
| | - Xiangfeng Shen
- The Key Laboratory of Pathobiology, Ministry of Education, College of Basic Medical Sciences, Jilin University, 126 Xinmin Avenue, Changchun, Jilin, 310021, People's Republic of China
| | - Yang Ruan
- The Key Laboratory of Pathobiology, Ministry of Education, College of Basic Medical Sciences, Jilin University, 126 Xinmin Avenue, Changchun, Jilin, 310021, People's Republic of China
| | - Yan Lu
- The Key Laboratory of Pathobiology, Ministry of Education, College of Basic Medical Sciences, Jilin University, 126 Xinmin Avenue, Changchun, Jilin, 310021, People's Republic of China
| | - Xiangshu Jin
- The Key Laboratory of Pathobiology, Ministry of Education, College of Basic Medical Sciences, Jilin University, 126 Xinmin Avenue, Changchun, Jilin, 310021, People's Republic of China
| | - Peiye Song
- The Key Laboratory of Pathobiology, Ministry of Education, College of Basic Medical Sciences, Jilin University, 126 Xinmin Avenue, Changchun, Jilin, 310021, People's Republic of China
| | - Yantong Guo
- The Key Laboratory of Pathobiology, Ministry of Education, College of Basic Medical Sciences, Jilin University, 126 Xinmin Avenue, Changchun, Jilin, 310021, People's Republic of China
| | - Xiaoli Zhang
- The Key Laboratory of Pathobiology, Ministry of Education, College of Basic Medical Sciences, Jilin University, 126 Xinmin Avenue, Changchun, Jilin, 310021, People's Republic of China
| | - Huinan Qu
- The Key Laboratory of Pathobiology, Ministry of Education, College of Basic Medical Sciences, Jilin University, 126 Xinmin Avenue, Changchun, Jilin, 310021, People's Republic of China
| | - Yijia Shao
- The Key Laboratory of Pathobiology, Ministry of Education, College of Basic Medical Sciences, Jilin University, 126 Xinmin Avenue, Changchun, Jilin, 310021, People's Republic of China
| | - Chengshi Quan
- The Key Laboratory of Pathobiology, Ministry of Education, College of Basic Medical Sciences, Jilin University, 126 Xinmin Avenue, Changchun, Jilin, 310021, People's Republic of China.
| |
Collapse
|
12
|
Liu F, Koval M, Ranganathan S, Fanayan S, Hancock WS, Lundberg EK, Beavis RC, Lane L, Duek P, McQuade L, Kelleher NL, Baker MS. Systems Proteomics View of the Endogenous Human Claudin Protein Family. J Proteome Res 2016; 15:339-59. [PMID: 26680015 DOI: 10.1021/acs.jproteome.5b00769] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Claudins are the major transmembrane protein components of tight junctions in human endothelia and epithelia. Tissue-specific expression of claudin members suggests that this protein family is not only essential for sustaining the role of tight junctions in cell permeability control but also vital in organizing cell contact signaling by protein-protein interactions. How this protein family is collectively processed and regulated is key to understanding the role of junctional proteins in preserving cell identity and tissue integrity. The focus of this review is to first provide a brief overview of the functional context, on the basis of the extensive body of claudin biology research that has been thoroughly reviewed, for endogenous human claudin members and then ascertain existing and future proteomics techniques that may be applicable to systematically characterizing the chemical forms and interacting protein partners of this protein family in human. The ability to elucidate claudin-based signaling networks may provide new insight into cell development and differentiation programs that are crucial to tissue stability and manipulation.
Collapse
Affiliation(s)
| | - Michael Koval
- Department of Medicine, Division of Pulmonary, Allergy, Critical Care and Sleep Medicine, and Department of Cell Biology, Emory University School of Medicine , 205 Whitehead Biomedical Research Building, 615 Michael Street, Atlanta, Georgia 30322, United States
| | | | | | - William S Hancock
- Barnett Institute and Department of Chemistry and Chemical Biology, Northeastern University , Boston, Massachusetts 02115, United States
| | - Emma K Lundberg
- SciLifeLab, School of Biotechnology, Royal Institute of Technology (KTH) , SE-171 21 Solna, Stockholm, Sweden
| | - Ronald C Beavis
- Department of Biochemistry and Medical Genetics, University of Manitoba , 744 Bannatyne Avenue, Winnipeg, Manitoba R3E 0W3, Canada
| | - Lydie Lane
- SIB-Swiss Institute of Bioinformatics , CMU - Rue Michel-Servet 1, 1211 Geneva, Switzerland
| | - Paula Duek
- SIB-Swiss Institute of Bioinformatics , CMU - Rue Michel-Servet 1, 1211 Geneva, Switzerland
| | | | - Neil L Kelleher
- Department of Chemistry, Department of Molecular Biosciences, and Proteomics Center of Excellence, Northwestern University , 2145 North Sheridan Road, Evanston, Illinois 60208, United States
| | | |
Collapse
|
13
|
Achari C, Winslow S, Larsson C. Down Regulation of CLDND1 Induces Apoptosis in Breast Cancer Cells. PLoS One 2015; 10:e0130300. [PMID: 26083392 PMCID: PMC4470986 DOI: 10.1371/journal.pone.0130300] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2014] [Accepted: 05/19/2015] [Indexed: 11/18/2022] Open
Abstract
Identification of targets for apoptosis induction is important to provide novel therapeutic approaches in breast cancer. Our earlier studies showed that down regulation of protein kinase C δ (PKCδ) induces death in breast cancer cells. In this study we set out to identify previously unrecognized apoptosis regulators in breast cancer cells. To identify candidates, global expression analysis with microarray was performed after down regulation of PKCδ in the basal-like breast cancer cell lines MDA-MB-231, MDA-MB-468 and BT-549. Genes that were down regulated in all cell lines were further studied for survival-supporting effects. The claudin-like CLDND1 was singled out since several independent siRNAs targeting CLDND1 induced cell death in several cell lines. The cell death induced by CLDND1 knockdown was caspase-dependent, suggesting induction of apoptosis. Nuclear fragmentation, cleavage of caspase-3 and PARP and release of cytochrome C from the mitochondria upon CLDND1 depletion demonstrated involvement of the intrinsic apoptotic pathway. Inhibition of MEK1/2 and JNK further potentiated the cell death induction by CLDND1 knockdown. However, CLDND1 down regulation augmented ERK1/2 phosphorylation, which thereby may protect against the apoptosis inducing effects of CLDND1 down regulation. A concomitant inhibition of MEK1/2 suppresses the ERK1/2 phosphorylation and markedly potentiates the cell death following CLDND1 siRNA treatment. There is today little information on the function of CLDND1. These data provide novel information on CLDND1 and highlight it as a novel survival factor in basal-like breast cancer cell lines.
Collapse
Affiliation(s)
- Chandrani Achari
- Translational Cancer Research, Department of Laboratory Medicine, Lund University, Lund, Sweden
| | - Sofia Winslow
- Translational Cancer Research, Department of Laboratory Medicine, Lund University, Lund, Sweden
| | - Christer Larsson
- Translational Cancer Research, Department of Laboratory Medicine, Lund University, Lund, Sweden
- * E-mail:
| |
Collapse
|
14
|
Abstract
The imbalance between bone formation and resorption during bone remodeling has been documented to be a major factor in the pathogenesis of osteoporosis. Recent evidence suggests a significant role for the tight junction proteins, Claudins (Cldns), in the regulation of bone remodeling processes. In terms of function, whereas Cldns act "canonically" as key determinants of paracellular permeability, there is considerable recent evidence to suggest that Cldns also participate in cell signaling, ie, a "noncanonical function". To this end, Cldns have been shown to regulate cell proliferation, differentiation, and gene expression in a variety of cell types. The present review will discuss Cldns' structure, their expression profile, regulation of expression, and their canonical and non- canonical functions in general with special emphasis on bone cells. In order to shed light on the noncanonical functions of Cldns in bone, we will highlight the role of Cldn-18 in regulating bone resorption and osteoclast differentiation. Collectively, we hope to provide a framework for guiding future research on understanding how Cldns modulate osteoblast and osteoclast function and overall bone homeostasis. Such studies should provide valuable insights into the pathogenesis of osteoporosis, and may highlight Cldns as novel targets for the diagnosis and therapeutic management of osteoporosis.
Collapse
Affiliation(s)
- Fatima Z Alshbool
- Musculoskeletal Disease Center (F.Z.A., S.M.), Jerry L. Pettis VA Medical Center, Loma Linda, CA 92357; Departments of Medicine (S.M.), Biochemistry (S.M.), Physiology (S.M.), and Pharmacology (F.Z.A., S.M.), Loma Linda University, Loma Linda, California 92354
| | | |
Collapse
|
15
|
Bateman AR, El-Hachem N, Beck AH, Aerts HJWL, Haibe-Kains B. Importance of collection in gene set enrichment analysis of drug response in cancer cell lines. Sci Rep 2014; 4:4092. [PMID: 24522610 PMCID: PMC3923229 DOI: 10.1038/srep04092] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2013] [Accepted: 01/29/2014] [Indexed: 12/27/2022] Open
Abstract
Gene set enrichment analysis (GSEA) associates gene sets and phenotypes, its use is predicated on the choice of a pre-defined collection of sets. The defacto standard implementation of GSEA provides seven collections yet there are no guidelines for the choice of collections and the impact of such choice, if any, is unknown. Here we compare each of the standard gene set collections in the context of a large dataset of drug response in human cancer cell lines. We define and test a new collection based on gene co-expression in cancer cell lines to compare the performance of the standard collections to an externally derived cell line based collection. The results show that GSEA findings vary significantly depending on the collection chosen for analysis. Henceforth, collections should be carefully selected and reported in studies that leverage GSEA.
Collapse
Affiliation(s)
- Alain R Bateman
- Bioinformatics and Computational Genomics Laboratory, Institut de Recherches Cliniques de Montréal, University of Montreal, Montreal, Quebec, Canada
| | - Nehme El-Hachem
- Bioinformatics and Computational Genomics Laboratory, Institut de Recherches Cliniques de Montréal, University of Montreal, Montreal, Quebec, Canada
| | - Andrew H Beck
- Department of Pathology, Beth Israel Deaconess Medical Center and Harvard Medical School, Boston, MA, USA
| | - Hugo J W L Aerts
- 1] Department of Biostatistics and Computational Biology and Center for Cancer Computational Biology, Dana-Farber Cancer Institute, Boston, MA, USA [2] Department of Radiation Oncology & Radiology, Dana-Farber Cancer Institute, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, USA [3] Department of Radiation Oncology, Maastricht University, Maastricht, The Netherlands
| | - Benjamin Haibe-Kains
- 1] Bioinformatics and Computational Genomics Laboratory, Institut de Recherches Cliniques de Montréal, University of Montreal, Montreal, Quebec, Canada [2] Ontario Cancer Institute, Princess Margaret Cancer Centre, University Health Network, Toronto, Ontario, Canada
| |
Collapse
|
16
|
Kwon MJ. Emerging roles of claudins in human cancer. Int J Mol Sci 2013; 14:18148-80. [PMID: 24009024 PMCID: PMC3794774 DOI: 10.3390/ijms140918148] [Citation(s) in RCA: 159] [Impact Index Per Article: 14.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2013] [Revised: 08/23/2013] [Accepted: 08/27/2013] [Indexed: 02/07/2023] Open
Abstract
Claudins are major integral membrane proteins of tight junctions. Altered expression of several claudin proteins, in particular claudin-1, -3, -4 and -7, has been linked to the development of various cancers. Although their dysregulation in cancer suggests that claudins play a role in tumorigenesis, the exact underlying mechanism remains unclear. The involvement of claudins in tumor progression was suggested by their important role in the migration, invasion and metastasis of cancer cells in a tissue-dependent manner. Recent studies have shown that they play a role in epithelial to mesenchymal transition (EMT), the formation of cancer stem cells or tumor-initiating cells (CSCs/TICs), and chemoresistance, suggesting that claudins are promising targets for the treatment of chemoresistant and recurrent tumors. A recently identified claudin-low breast cancer subtype that is characterized by the enrichment of EMT and stem cell-like features is significantly associated with disease recurrence, underscoring the importance of claudins as predictors of tumor recurrence. The critical role of epigenetic mechanisms in the regulation of claudin expression indicates the possible application of epigenetic therapy to target claudins. A better understanding of the emerging role of claudins in CSC/TICs and chemoresistance may help to develop therapies against recurrent cancers.
Collapse
Affiliation(s)
- Mi Jeong Kwon
- College of Pharmacy, Kyungpook National University, 80 Daehak-ro, Buk-gu, Daegu 702-701, Korea.
| |
Collapse
|
17
|
Hoggard J, Fan J, Lu Z, Lu Q, Sutton L, Chen YH. Claudin-7 increases chemosensitivity to cisplatin through the upregulation of caspase pathway in human NCI-H522 lung cancer cells. Cancer Sci 2013; 104:611-8. [PMID: 23433123 DOI: 10.1111/cas.12135] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2012] [Revised: 02/07/2013] [Accepted: 02/12/2013] [Indexed: 01/08/2023] Open
Abstract
Claudins are a family of tight junction (TJ) integral membrane proteins that play a crucial role in maintaining cell polarity, adhesion, and paracellular permeability. Changes in expression levels of claudin proteins have been associated with human lung cancer. Previously, we have reported that claudin-7 expression is significantly downregulated in human lung carcinomas. To investigate the role of claudin-7 in lung cancer cells after anti-cancer drug treatments, we transfected claudin-7 cDNA into human NCI-H522 lung cancer cells, which have no detectable expression of claudin-7 protein. Flow cytometry analysis demonstrated that cells transfected with claudin-7 had a significantly higher percentage of cell apoptosis when compared to that of vector transfected cell population. The cell viability assayed by MTT and Annexin V was significantly decreased and cell apoptosis was dramatically increased in claudin-7 transfected cells compared to that of vector transfected cells after cisplatin treatment. Cisplatin is an anti-cancer drug clinically used to treat tumors in several tissues including lung tumors. Most importantly, after cisplatin treatment, the expression levels of cleaved caspase-3, -8, and poly adenosine 5'-diphosphate ribose polymerase (PARP) were much higher in claudin-7 transfected cells than in control cells. Furthermore, using the site-directed mutagenesis approach, we identified that claudin-7 was phosphorylated at serine 204 by protein kinase C. Non-phosphorylated claudin-7 mutant showed increased cell viability, suggesting that phosphorylation increases chemosensitivity to cisplatin treatment. We concluded that claudin-7 expression in H522 lung cancer cells increases chemosensitivity to cisplatin through the increased activation of caspase pathway.
Collapse
Affiliation(s)
- John Hoggard
- Department of Anatomy and Cell Biology, East Carolina University, Greenville, NC, USA
| | | | | | | | | | | |
Collapse
|