1
|
Ten A, Kumeiko V, Farniev V, Gao H, Shevtsov M. Tumor Microenvironment Modulation by Cancer-Derived Extracellular Vesicles. Cells 2024; 13:682. [PMID: 38667297 PMCID: PMC11049026 DOI: 10.3390/cells13080682] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2024] [Revised: 04/06/2024] [Accepted: 04/11/2024] [Indexed: 04/28/2024] Open
Abstract
The tumor microenvironment (TME) plays an important role in the process of tumorigenesis, regulating the growth, metabolism, proliferation, and invasion of cancer cells, as well as contributing to tumor resistance to the conventional chemoradiotherapies. Several types of cells with relatively stable phenotypes have been identified within the TME, including cancer-associated fibroblasts (CAFs), tumor-associated macrophages (TAMs), neutrophils, and natural killer (NK) cells, which have been shown to modulate cancer cell proliferation, metastasis, and interaction with the immune system, thus promoting tumor heterogeneity. Growing evidence suggests that tumor-cell-derived extracellular vesicles (EVs), via the transfer of various molecules (e.g., RNA, proteins, peptides, and lipids), play a pivotal role in the transformation of normal cells in the TME into their tumor-associated protumorigenic counterparts. This review article focuses on the functions of EVs in the modulation of the TME with a view to how exosomes contribute to the transformation of normal cells, as well as their importance for cancer diagnosis and therapy.
Collapse
Affiliation(s)
- Artem Ten
- School of Medicine and Life Sciences, Far Eastern Federal University, 690922 Vladivostok, Russia; (A.T.); (V.K.); (V.F.)
| | - Vadim Kumeiko
- School of Medicine and Life Sciences, Far Eastern Federal University, 690922 Vladivostok, Russia; (A.T.); (V.K.); (V.F.)
| | - Vladislav Farniev
- School of Medicine and Life Sciences, Far Eastern Federal University, 690922 Vladivostok, Russia; (A.T.); (V.K.); (V.F.)
| | - Huile Gao
- Key Laboratory of Drug-Targeting and Drug Delivery System of the Education Ministry, Sichuan Engineering Laboratory for Plant-Sourced Drug and Sichuan Research Center for Drug Precision Industrial Technology, West China School of Pharmacy, Sichuan University, Chengdu 610064, China;
| | - Maxim Shevtsov
- School of Medicine and Life Sciences, Far Eastern Federal University, 690922 Vladivostok, Russia; (A.T.); (V.K.); (V.F.)
- Laboratory of Biomedical Nanotechnologies, Institute of Cytology of the Russian Academy of Sciences, Tikhoretsky Ave., 4, 194064 St. Petersburg, Russia
- Personalized Medicine Centre, Almazov National Medical Research Centre, Akkuratova Str., 2, 197341 St. Petersburg, Russia
- Department of Radiation Oncology, Technishe Universität München (TUM), Klinikum Rechts der Isar, Ismaninger Str., 22, 81675 Munich, Germany
| |
Collapse
|
2
|
Nguyen HNT, Vuong CK, Fukushige M, Usuda M, Takagi LK, Yamashita T, Obata-Yasuoka M, Hamada H, Osaka M, Tsukada T, Hiramatsu Y, Ohneda O. Extracellular vesicles derived from SARS-CoV-2 M-protein-induced triple negative breast cancer cells promoted the ability of tissue stem cells supporting cancer progression. Front Oncol 2024; 14:1346312. [PMID: 38515582 PMCID: PMC10955079 DOI: 10.3389/fonc.2024.1346312] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2023] [Accepted: 02/22/2024] [Indexed: 03/23/2024] Open
Abstract
Introduction SARS-CoV-2 infection increases the risk of worse outcomes in cancer patients, including those with breast cancer. Our previous study reported that the SARS-CoV-2 membrane protein (M-protein) promotes the malignant transformation of triple-negative breast cancer cells (triple-negative BCC). Methods In the present study, the effects of M-protein on the ability of extracellular vesicles (EV) derived from triple-negative BCC to regulate the functions of tissue stem cells facilitating the tumor microenvironment were examined. Results Our results showed that EV derived from M-protein-induced triple-negative BCC (MpEV) significantly induced the paracrine effects of adipose tissue-derived mesenchymal stem cells (ATMSC) on non-aggressive BCC, promoting the migration, stemness phenotypes, and in vivo metastasis of BCC, which is related to PGE2/IL1 signaling pathways, in comparison to EV derived from normal triple-negative BCC (nEV). In addition to ATMSC, the effects of MpEV on endothelial progenitor cells (EPC), another type of tissue stem cells, were examined. Our data suggested that EPC uptaking MpEV acquired a tumor endothelial cell-like phenotype, with increasing angiogenesis and the ability to support the aggressiveness and metastasis of non-aggressive BCC. Discussion Taken together, our findings suggest the role of SARS-CoV-2 M-protein in altering the cellular communication between cancer cells and other non-cancer cells inside the tumor microenvironment via EV. Specifically, M-proteins induced the ability of EV derived from triple-negative BCC to promote the functions of non-cancer cells, such as tissue stem cells, in tumorigenesis.
Collapse
Affiliation(s)
- Hoai-Nga Thi Nguyen
- Laboratory of Regenerative Medicine and Stem Cell Biology, Graduate School of Comprehensive Human Science, University of Tsukuba, Tsukuba, Japan
| | - Cat-Khanh Vuong
- Laboratory of Regenerative Medicine and Stem Cell Biology, Graduate School of Comprehensive Human Science, University of Tsukuba, Tsukuba, Japan
| | - Mizuho Fukushige
- Laboratory of Regenerative Medicine and Stem Cell Biology, Graduate School of Comprehensive Human Science, University of Tsukuba, Tsukuba, Japan
| | - Momoko Usuda
- Laboratory of Regenerative Medicine and Stem Cell Biology, Graduate School of Comprehensive Human Science, University of Tsukuba, Tsukuba, Japan
| | - Liora Kaho Takagi
- Laboratory of Regenerative Medicine and Stem Cell Biology, Graduate School of Comprehensive Human Science, University of Tsukuba, Tsukuba, Japan
| | - Toshiharu Yamashita
- Laboratory of Regenerative Medicine and Stem Cell Biology, Graduate School of Comprehensive Human Science, University of Tsukuba, Tsukuba, Japan
| | - Mana Obata-Yasuoka
- Department of Obstetrics and Gynecology, University of Tsukuba, Tsukuba, Japan
| | - Hiromi Hamada
- Department of Obstetrics and Gynecology, University of Tsukuba, Tsukuba, Japan
| | - Motoo Osaka
- Department of Cardiovascular Surgery, University of Tsukuba, Tsukuba, Japan
| | - Toru Tsukada
- Department of Cardiovascular Surgery, University of Tsukuba, Tsukuba, Japan
| | - Yuji Hiramatsu
- Department of Cardiovascular Surgery, University of Tsukuba, Tsukuba, Japan
| | - Osamu Ohneda
- Laboratory of Regenerative Medicine and Stem Cell Biology, Graduate School of Comprehensive Human Science, University of Tsukuba, Tsukuba, Japan
| |
Collapse
|
3
|
Kharouf N, Flanagan TW, Alamodi AA, Al Hmada Y, Hassan SY, Shalaby H, Santourlidis S, Hassan SL, Haikel Y, Megahed M, Brodell RT, Hassan M. CD133-Dependent Activation of Phosphoinositide 3-Kinase /AKT/Mammalian Target of Rapamycin Signaling in Melanoma Progression and Drug Resistance. Cells 2024; 13:240. [PMID: 38334632 PMCID: PMC10854812 DOI: 10.3390/cells13030240] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2023] [Revised: 01/24/2024] [Accepted: 01/25/2024] [Indexed: 02/10/2024] Open
Abstract
Melanoma frequently harbors genetic alterations in key molecules leading to the aberrant activation of PI3K and its downstream pathways. Although the role of PI3K/AKT/mTOR in melanoma progression and drug resistance is well documented, targeting the PI3K/AKT/mTOR pathway showed less efficiency in clinical trials than might have been expected, since the suppression of the PI3K/mTOR signaling pathway-induced feedback loops is mostly associated with the activation of compensatory pathways such as MAPK/MEK/ERK. Consequently, the development of intrinsic and acquired resistance can occur. As a solid tumor, melanoma is notorious for its heterogeneity. This can be expressed in the form of genetically divergent subpopulations including a small fraction of cancer stem-like cells (CSCs) and non-cancer stem cells (non-CSCs) that make the most of the tumor mass. Like other CSCs, melanoma stem-like cells (MSCs) are characterized by their unique cell surface proteins/stemness markers and aberrant signaling pathways. In addition to its function as a robust marker for stemness properties, CD133 is crucial for the maintenance of stemness properties and drug resistance. Herein, the role of CD133-dependent activation of PI3K/mTOR in the regulation of melanoma progression, drug resistance, and recurrence is reviewed.
Collapse
Affiliation(s)
- Naji Kharouf
- Institut National de la Santé et de la Recherche Médicale, University of Strasbourg, 67000 Strasbourg, France; (N.K.); (Y.H.)
- Department of Operative Dentistry and Endodontics, Dental Faculty, University of Strasbourg, 67000 Strasbourg, France
| | - Thomas W. Flanagan
- Department of Pharmacology and Experimental Therapeutics, LSU Health Sciences Center, New Orleans, LA 70112, USA;
| | | | - Youssef Al Hmada
- Department of Pathology, University of Mississippi Medical Center, Jackson, MS 39216, USA; (Y.A.H.); (R.T.B.)
| | - Sofie-Yasmin Hassan
- Department of Pharmacy, Faculty of Science, Heinrich-Heine University Duesseldorf, 40225 Dusseldorf, Germany;
| | - Hosam Shalaby
- Department of Urology, School of Medicine, Tulane University, New Orleans, LA 70112, USA;
| | - Simeon Santourlidis
- Epigenetics Core Laboratory, Institute of Transplantation Diagnostics and Cell Therapeutics, Medical Faculty, Heinrich-Heine University Duesseldorf, 40225 Duesseldorf, Germany;
| | - Sarah-Lilly Hassan
- Department of Chemistry, Faculty of Science, Heinrich-Heine University Duesseldorf, 40225 Dusseldorf, Germany;
| | - Youssef Haikel
- Institut National de la Santé et de la Recherche Médicale, University of Strasbourg, 67000 Strasbourg, France; (N.K.); (Y.H.)
- Department of Operative Dentistry and Endodontics, Dental Faculty, University of Strasbourg, 67000 Strasbourg, France
- Pôle de Médecine et Chirurgie Bucco-Dentaire, Hôpital Civil, Hôpitaux Universitaire de Strasbourg, 67000 Strasbourg, France
| | - Mossad Megahed
- Clinic of Dermatology, University Hospital of Aachen, 52074 Aachen, Germany;
| | - Robert T. Brodell
- Department of Pathology, University of Mississippi Medical Center, Jackson, MS 39216, USA; (Y.A.H.); (R.T.B.)
| | - Mohamed Hassan
- Institut National de la Santé et de la Recherche Médicale, University of Strasbourg, 67000 Strasbourg, France; (N.K.); (Y.H.)
- Department of Operative Dentistry and Endodontics, Dental Faculty, University of Strasbourg, 67000 Strasbourg, France
- Research Laboratory of Surgery-Oncology, Department of Surgery, Tulane University School of Medicine, New Orleans, LA 70112, USA
| |
Collapse
|
4
|
Kamal MV, Damerla RR, Dikhit PS, Kumar NAN. Prostaglandin-endoperoxide synthase 2 (PTGS2) gene expression and its association with genes regulating the VEGF signaling pathway in head and neck squamous cell carcinoma. J Oral Biol Craniofac Res 2023; 13:567-574. [PMID: 37559688 PMCID: PMC10407435 DOI: 10.1016/j.jobcr.2023.07.002] [Citation(s) in RCA: 12] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2023] [Revised: 06/30/2023] [Accepted: 07/20/2023] [Indexed: 08/11/2023] Open
Abstract
Introduction The PTGS2 gene codes for the cyclooxygenase-2 (COX-2) enzyme that catalyzes the committed step in prostaglandin (PG) synthesis. Various in-vivo and in-vitro data suggest that prostaglandin E2 mediates as a signaling molecule for activating the VEGF signaling pathway (VSP), forming an association between COX-2 and VSP. Several chemotherapy regimens increasingly rely on preventing the synthesis of PGs. The targeted and metronomic chemotherapy agents, which suppress the COX-2 enzymes, have a major role in suppressing the oral cancer cascade. Hence, this study was designed to understand the pattern of PTGS2 expression and genes regulating VSP in head and neck cancers. Methods PTGS2 expression was analyzed in the TCGA database computationally with the help of the UALCAN web-server. The expression of VEGF signaling pathway genes was mined, and their expression pattern was determined. Co-expression analysis was done to elucidate the association between VEGF signaling genes and PTGS2. The ShineyGo web server was used for gene set enrichment. Results Significantly high PTGS2 expression was observed in tumor samples. Further genes regulating VEGF signaling were significantly overexpressed in tumor samples. Co-expression analysis results showed a significant positive correlation between PTGS2 and angiogenesis-regulating genes. The majority of the genes were enriched for angiogenesis pathways. Conclusion PTGS2 was significantly expressed in head and neck cancer, and its expression was associated with genes regulating angiogenesis.
Collapse
Affiliation(s)
- Mehta Vedant Kamal
- Department of Surgical Oncology, Kasturba Medical College, Manipal Academy of Higher Education, Manipal, Karnataka, 576104, India
| | - Rama Rao Damerla
- Department of Medical Genetics, Kasturba Medical College, Manipal Academy of Higher Education, Manipal, Karnataka, 576104, India
| | - Punit Singh Dikhit
- Department of Surgical Oncology, Kasturba Medical College, Manipal Academy of Higher Education, Manipal, Karnataka, 576104, India
| | - Naveena AN Kumar
- Department of Surgical Oncology, Kasturba Medical College, Manipal Academy of Higher Education, Manipal, Karnataka, 576104, India
| |
Collapse
|
5
|
Gu Y, Becker MA, Müller L, Reuss K, Umlauf F, Tang T, Menger MD, Laschke MW. MicroRNAs in Tumor Endothelial Cells: Regulation, Function and Therapeutic Applications. Cells 2023; 12:1692. [PMID: 37443725 PMCID: PMC10340284 DOI: 10.3390/cells12131692] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2023] [Revised: 06/16/2023] [Accepted: 06/20/2023] [Indexed: 07/15/2023] Open
Abstract
Tumor endothelial cells (TECs) are key stromal components of the tumor microenvironment, and are essential for tumor angiogenesis, growth and metastasis. Accumulating evidence has shown that small single-stranded non-coding microRNAs (miRNAs) act as powerful endogenous regulators of TEC function and blood vessel formation. This systematic review provides an up-to-date overview of these endothelial miRNAs. Their expression is mainly regulated by hypoxia, pro-angiogenic factors, gap junctions and extracellular vesicles, as well as long non-coding RNAs and circular RNAs. In preclinical studies, they have been shown to modulate diverse fundamental angiogenesis-related signaling pathways and proteins, including the vascular endothelial growth factor (VEGF)/VEGF receptor (VEGFR) pathway; the rat sarcoma virus (Ras)/rapidly accelerated fibrosarcoma (Raf)/mitogen-activated protein kinase kinase (MEK)/extracellular signal-regulated kinase (ERK) pathway; the phosphoinositide 3-kinase (PI3K)/AKT pathway; and the transforming growth factor (TGF)-β/TGF-β receptor (TGFBR) pathway, as well as krüppel-like factors (KLFs), suppressor of cytokine signaling (SOCS) and metalloproteinases (MMPs). Accordingly, endothelial miRNAs represent promising targets for future anti-angiogenic cancer therapy. To achieve this, it will be necessary to further unravel the regulatory and functional networks of endothelial miRNAs and to develop safe and efficient TEC-specific miRNA delivery technologies.
Collapse
Affiliation(s)
- Yuan Gu
- Institute for Clinical & Experimental Surgery, Saarland University, 66421 Saar, Germany; (M.A.B.); (L.M.); (K.R.); (F.U.); (T.T.); (M.D.M.); (M.W.L.)
| | | | | | | | | | | | | | | |
Collapse
|
6
|
Zheng D, Zhou J, Qian L, Liu X, Chang C, Tang S, Zhang H, Zhou S. Biomimetic nanoparticles drive the mechanism understanding of shear-wave elasticity stiffness in triple negative breast cancers to predict clinical treatment. Bioact Mater 2023; 22:567-587. [DOI: 10.1016/j.bioactmat.2022.10.025] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2022] [Revised: 09/20/2022] [Accepted: 10/24/2022] [Indexed: 11/06/2022] Open
|
7
|
Asl ER, Rostamzadeh D, Duijf PHG, Mafi S, Mansoori B, Barati S, Cho WC, Mansoori B. Mutant P53 in the formation and progression of the tumor microenvironment: Friend or foe. Life Sci 2023; 315:121361. [PMID: 36608871 DOI: 10.1016/j.lfs.2022.121361] [Citation(s) in RCA: 9] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2022] [Revised: 12/20/2022] [Accepted: 12/29/2022] [Indexed: 01/07/2023]
Abstract
TP53 is the most frequently mutated gene in human cancer. It encodes the tumor suppressor protein p53, which suppresses tumorigenesis by acting as a critical transcription factor that can induce the expression of many genes controlling a plethora of fundamental cellular processes, including cell cycle progression, survival, apoptosis, and DNA repair. Missense mutations are the most frequent type of mutations in the TP53 gene. While these can have variable effects, they typically impair p53 function in a dominant-negative manner, thereby altering intra-cellular signaling pathways and promoting cancer development. Additionally, it is becoming increasingly apparent that p53 mutations also have non-cell autonomous effects that influence the tumor microenvironment (TME). The TME is a complex and heterogeneous milieu composed of both malignant and non-malignant cells, including cancer-associated fibroblasts (CAFs), adipocytes, pericytes, different immune cell types, such as tumor-associated macrophages (TAMs) and T and B lymphocytes, as well as lymphatic and blood vessels and extracellular matrix (ECM). Recently, a large body of evidence has demonstrated that various types of p53 mutations directly affect TME. They fine-tune the inflammatory TME and cell fate reprogramming, which affect cancer progression. Notably, re-educating the p53 signaling pathway in the TME may be an effective therapeutic strategy in combating cancer. Therefore, it is timely to here review the recent advances in our understanding of how TP53 mutations impact the fate of cancer cells by reshaping the TME.
Collapse
Affiliation(s)
- Elmira Roshani Asl
- Department of Biochemistry, Saveh University of Medical Sciences, Saveh, Iran
| | - Davoud Rostamzadeh
- Department of Clinical Biochemistry, Yasuj University of Medical Sciences, Yasuj, Iran; Medicinal Plants Research Center, Yasuj University of Medical Sciences, Yasuj, Iran
| | - Pascal H G Duijf
- School of Biomedical Sciences, Faculty of Health, Queensland University of Technology, Brisbane, QLD, Australia; Centre for Genomics and Personalised Health, Queensland University of Technology, Brisbane, QLD, Australia; Centre for Data Science, Queensland University of Technology, Brisbane, QLD, Australia; Cancer and Aging Research Program, Queensland University of Technology, Brisbane, QLD, Australia; Institute of Clinical Medicine, Faculty of Medicine, University of Oslo, Oslo, Norway; Department of Medical Genetics, Oslo University Hospital, Oslo, Norway
| | - Sahar Mafi
- Department of Clinical Biochemistry, Yasuj University of Medical Sciences, Yasuj, Iran; Medicinal Plants Research Center, Yasuj University of Medical Sciences, Yasuj, Iran
| | - Behnaz Mansoori
- Immunology Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Shirin Barati
- Department of Anatomy, Saveh University of Medical Sciences, Saveh, Iran
| | - William C Cho
- Department of Clinical Oncology, Queen Elizabeth Hospital, Hong Kong, Hong Kong
| | - Behzad Mansoori
- The Wistar Institute, Molecular & Cellular Oncogenesis Program, Philadelphia, PA, United States.
| |
Collapse
|
8
|
Furumido J, Maishi N, Yanagawa-Matsuda A, Kikuchi H, Matsumoto R, Osawa T, Abe T, Matsuno Y, Shinohara N, Hida Y, Hida K. Stroma biglycan expression can be a prognostic factor in prostate cancers. Int J Urol 2023; 30:147-154. [PMID: 36305810 DOI: 10.1111/iju.15080] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2022] [Accepted: 09/27/2022] [Indexed: 11/30/2022]
Abstract
OBJECTIVES This study analyzes the relationship between biglycan expression in prostate cancer and clinicopathological parameters to clarify the potential link between biglycan and prognosis and progression to castration-resistant prostate cancer (CRPC). METHODS We retrospectively analyzed 60 cases of prostate cancer patients who underwent robot-assisted laparoscopic radical prostatectomy in Hokkaido University Hospital. RESULTS Biglycan was expressed in the tumor stroma but not in tumor cells. There was no significant relationship with biochemical recurrence (p = 0.5237), but the expression of biglycan was 36.1% in the group with progression to CRPC. This indicates a significant relationship with progression to CRPC (p = 0.0182). Furthermore, the expression of biglycan-positive blood vessels was significantly higher (15.9%) in the group with biochemical recurrence than in the group without biochemical recurrence (8.5%) (p = 0.0169). The biglycan-positive vessels were 28.6% in the group with progression to CRPC, which was significantly higher than that in the group without progression to CRPC (p < 0.0001). CONCLUSION This is the first study to show that stroma biglycan is a useful prognostic factor for prostate cancer.
Collapse
Affiliation(s)
- Jun Furumido
- Vascular Biology and Molecular Pathology, Hokkaido University Faculty of Dental Medicine, Sapporo, Hokkaido, Japan.,Department of Renal and Genitourinary Surgery, Hokkaido University Graduate School of Medicine, Sapporo, Hokkaido, Japan
| | - Nako Maishi
- Vascular Biology and Molecular Pathology, Hokkaido University Faculty of Dental Medicine, Sapporo, Hokkaido, Japan
| | - Aya Yanagawa-Matsuda
- Vascular Biology and Molecular Pathology, Hokkaido University Faculty of Dental Medicine, Sapporo, Hokkaido, Japan
| | - Hiroshi Kikuchi
- Department of Renal and Genitourinary Surgery, Hokkaido University Graduate School of Medicine, Sapporo, Hokkaido, Japan
| | - Ryuji Matsumoto
- Department of Renal and Genitourinary Surgery, Hokkaido University Graduate School of Medicine, Sapporo, Hokkaido, Japan
| | - Takahiro Osawa
- Department of Renal and Genitourinary Surgery, Hokkaido University Graduate School of Medicine, Sapporo, Hokkaido, Japan
| | - Takashige Abe
- Department of Renal and Genitourinary Surgery, Hokkaido University Graduate School of Medicine, Sapporo, Hokkaido, Japan
| | - Yoshihiro Matsuno
- Department of Surgical Pathology, Hokkaido University Hospital, Sapporo, Hokkaido, Japan
| | - Nobuo Shinohara
- Department of Renal and Genitourinary Surgery, Hokkaido University Graduate School of Medicine, Sapporo, Hokkaido, Japan
| | - Yasuhiro Hida
- Department of Cardiovascular and Thoracic Surgery, Hokkaido University Faculty of Medicine, Sapporo, Hokkaido, Japan.,Department of Advanced Robotic and Endoscopic Surgery, School of Medicine, Fujita Health University, Toyoake, Aichi, Japan
| | - Kyoko Hida
- Vascular Biology and Molecular Pathology, Hokkaido University Faculty of Dental Medicine, Sapporo, Hokkaido, Japan
| |
Collapse
|
9
|
Prostate Cancer Tumor Stroma: Responsibility in Tumor Biology, Diagnosis and Treatment. Cancers (Basel) 2022; 14:cancers14184412. [PMID: 36139572 PMCID: PMC9496870 DOI: 10.3390/cancers14184412] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2022] [Revised: 09/05/2022] [Accepted: 09/06/2022] [Indexed: 12/24/2022] Open
Abstract
Simple Summary The crosstalk between prostate stroma and its epithelium is essential to tissue homeostasis. Likewise, reciprocal signaling between tumor cells and the stromal compartment is required in tumor progression to facilitate or stimulate key processes such as cell proliferation and invasion. The aim of the present work was to review the current state of knowledge on the significance of tumor stroma in the genesis, progression and therapeutic response of prostate carcinoma. Additionally, we addressed the future therapeutic opportunities. Abstract Prostate cancer (PCa) is a common cancer among males globally, and its occurrence is growing worldwide. Clinical decisions about the combination of therapies are becoming highly relevant. However, this is a heterogeneous disease, ranging widely in prognosis. Therefore, new approaches are needed based on tumor biology, from which further prognostic assessments can be established and complementary strategies can be identified. The knowledge of both the morphological structure and functional biology of the PCa stroma compartment can provide new diagnostic, prognostic or therapeutic possibilities. In the present review, we analyzed the aspects related to the tumor stromal component (both acellular and cellular) in PCa, their influence on tumor behavior and the therapeutic response and their consideration as a new therapeutic target.
Collapse
|
10
|
Deciphering Tumour Heterogeneity: From Tissue to Liquid Biopsy. Cancers (Basel) 2022; 14:cancers14061384. [PMID: 35326534 PMCID: PMC8946040 DOI: 10.3390/cancers14061384] [Citation(s) in RCA: 32] [Impact Index Per Article: 16.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2022] [Revised: 03/04/2022] [Accepted: 03/05/2022] [Indexed: 12/12/2022] Open
Abstract
Simple Summary Most malignant tumours are highly heterogeneous at molecular and phenotypic levels. Tumour variability poses challenges for the management of patients, as it arises between patients and even evolves in space and time within a single patient. Currently, treatment-decision making usually relies on the molecular characteristics of a limited tumour tissue sample at the time of diagnosis or disease progression but does not take into account the complexity of the bulk tumours and their constant evolution over time. In this review, we explore the extent of tumour heterogeneity and report the mechanisms that promote and sustain this diversity in cancers. We summarise the clinical strikes of tumour diversity in the management of patients with cancer. Finally, we discuss the current material and technological approaches that are relevant to adequately appreciate tumour heterogeneity. Abstract Human solid malignancies harbour a heterogeneous set of cells with distinct genotypes and phenotypes. This heterogeneity is installed at multiple levels. A biological diversity is commonly observed between tumours from different patients (inter-tumour heterogeneity) and cannot be fully captured by the current consensus molecular classifications for specific cancers. To extend the complexity in cancer, there are substantial differences from cell to cell within an individual tumour (intra-tumour heterogeneity, ITH) and the features of cancer cells evolve in space and time. Currently, treatment-decision making usually relies on the molecular characteristics of a limited tumour tissue sample at the time of diagnosis or disease progression but does not take into account the complexity of the bulk tumours and their constant evolution over time. In this review, we explore the extent of tumour heterogeneity with an emphasis on ITH and report the mechanisms that promote and sustain this diversity in cancers. We summarise the clinical strikes of ITH in the management of patients with cancer. Finally, we discuss the current material and technological approaches that are relevant to adequately appreciate ITH.
Collapse
|
11
|
Ayoub NM, Jaradat SK, Al-Shami KM, Alkhalifa AE. Targeting Angiogenesis in Breast Cancer: Current Evidence and Future Perspectives of Novel Anti-Angiogenic Approaches. Front Pharmacol 2022; 13:838133. [PMID: 35281942 PMCID: PMC8913593 DOI: 10.3389/fphar.2022.838133] [Citation(s) in RCA: 28] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2021] [Accepted: 02/03/2022] [Indexed: 12/12/2022] Open
Abstract
Angiogenesis is a vital process for the growth and dissemination of solid cancers. Numerous molecular pathways are known to drive angiogenic switch in cancer cells promoting the growth of new blood vessels and increased incidence of distant metastasis. Several angiogenesis inhibitors are clinically available for the treatment of different types of advanced solid cancers. These inhibitors mostly belong to monoclonal antibodies or small-molecule tyrosine kinase inhibitors targeting the classical vascular endothelial growth factor (VEGF) and its receptors. Nevertheless, breast cancer is one example of solid tumors that had constantly failed to respond to angiogenesis inhibitors in terms of improved survival outcomes of patients. Accordingly, it is of paramount importance to assess the molecular mechanisms driving angiogenic signaling in breast cancer to explore suitable drug targets that can be further investigated in preclinical and clinical settings. This review summarizes the current evidence for the effect of clinically available anti-angiogenic drugs in breast cancer treatment. Further, major mechanisms associated with intrinsic or acquired resistance to anti-VEGF therapy are discussed. The review also describes evidence from preclinical and clinical studies on targeting novel non-VEGF angiogenic pathways in breast cancer and several approaches to the normalization of tumor vasculature by targeting pericytes, utilization of microRNAs and extracellular tumor-associate vesicles, using immunotherapeutic drugs, and nanotechnology.
Collapse
Affiliation(s)
- Nehad M. Ayoub
- Department of Clinical Pharmacy, Faculty of Pharmacy, Jordan University of Science and Technology (JUST), Irbid, Jordan
- *Correspondence: Nehad M. Ayoub,
| | - Sara K. Jaradat
- Department of Clinical Pharmacy, Faculty of Pharmacy, Jordan University of Science and Technology (JUST), Irbid, Jordan
| | - Kamal M. Al-Shami
- Department of Drug Discovery and Development, Harrison School of Pharmacy, Auburn University, Auburn, AL, United States
| | - Amer E. Alkhalifa
- Department of Clinical Pharmacy, Faculty of Pharmacy, Jordan University of Science and Technology (JUST), Irbid, Jordan
| |
Collapse
|
12
|
Jarboe T, Tuli NY, Chakraborty S, Maniyar RR, DeSouza N, Xiu-Min Li, Moscatello A, Geliebter J, Tiwari RK. Inflammatory Components of the Thyroid Cancer Microenvironment: An Avenue for Identification of Novel Biomarkers. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2021; 1350:1-31. [PMID: 34888842 DOI: 10.1007/978-3-030-83282-7_1] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
The incidence of thyroid cancer in the United States is on the rise with an appreciably high disease recurrence rate of 20-30%. Anaplastic thyroid cancer (ATC), although rare in occurrence, is an aggressive form of cancer with limited treatment options and bleak cure rates. This chapter uses discussions of in vitro models that are representative of papillary, anaplastic, and follicular thyroid cancer to evaluate the crosstalk between specific cells of the tumor microenvironment (TME), which serves as a highly heterogeneous realm of signaling cascades and metabolism that are associated with tumorigenesis. The cellular constituents of the TME carry out varying characteristic immunomodulatory functions that are discussed throughout this chapter. The aforementioned cell types include cancer-associated fibroblasts (CAFs), endothelial cells (ECs), and cancer stem cells (CSCs), as well as specific immune cells, including natural killer (NK) cells, dendritic cells (DCs), mast cells, T regulatory (Treg) cells, CD8+ T cells, and tumor-associated macrophages (TAMs). TAM-mediated inflammation is associated with a poor prognosis of thyroid cancer, and the molecular basis of the cellular crosstalk between macrophages and thyroid cancer cells with respect to inducing a metastatic phenotype is not yet known. The dynamic nature of the physiological transition to pathological metastatic phenotypes when establishing the TME encompasses a wide range of characteristics that are further explored within this chapter, including the roles of somatic mutations and epigenetic alterations that drive the genetic heterogeneity of cancer cells, allowing for selective advantages that aid in their proliferation. Induction of these proliferating cells is typically accomplished through inflammatory induction, whereby chronic inflammation sets up a constant physiological state of inflammatory cell recruitment. The secretions of these inflammatory cells can alter the genetic makeup of proliferating cells, which can in turn, promote tumor growth.This chapter also presents an in-depth analysis of molecular interactions within the TME, including secretory cytokines and exosomes. Since the exosomal cargo of a cell is a reflection and fingerprint of the originating parental cells, the profiling of exosomal miRNA derived from thyroid cancer cells and macrophages in the TME may serve as an important step in biomarker discovery. Identification of a distinct set of tumor suppressive miRNAs downregulated in ATC-secreted exosomes indicates their role in the regulation of tumor suppressive genes that may increase the metastatic propensity of ATC. Additionally, the high expression of pro-inflammatory cytokines in studies looking at thyroid cancer and activated macrophage conditioned media suggests the existence of an inflammatory TME in thyroid cancer. New findings are suggestive of the presence of a metastatic niche in ATC tissues that is influenced by thyroid tumor microenvironment secretome-induced epithelial to mesenchymal transition (EMT), mediated by a reciprocal interaction between the pro-inflammatory M1 macrophages and the thyroid cancer cells. Thus, targeting the metastatic thyroid carcinoma microenvironment could offer potential therapeutic benefits and should be explored further in preclinical and translational models of human metastatic thyroid cancer.
Collapse
Affiliation(s)
- Tara Jarboe
- Departments of Pathology, Microbiology and Immunology, New York Medical College, Valhalla, NY, USA
| | - Neha Y Tuli
- Departments of Pathology, Microbiology and Immunology, New York Medical College, Valhalla, NY, USA
| | - Sanjukta Chakraborty
- Departments of Pathology, Microbiology and Immunology, New York Medical College, Valhalla, NY, USA.,Weill Cornell Medicine, New York, NY, USA
| | - Rachana R Maniyar
- Departments of Pathology, Microbiology and Immunology, New York Medical College, Valhalla, NY, USA.,Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - Nicole DeSouza
- Departments of Pathology, Microbiology and Immunology, New York Medical College, Valhalla, NY, USA
| | - Xiu-Min Li
- Departments of Pathology, Microbiology and Immunology, New York Medical College, Valhalla, NY, USA
| | | | - Jan Geliebter
- Departments of Pathology, Microbiology and Immunology, New York Medical College, Valhalla, NY, USA
| | - Raj K Tiwari
- Departments of Pathology, Microbiology and Immunology, New York Medical College, Valhalla, NY, USA.
| |
Collapse
|
13
|
Zahedipour F, Zamani P, Jamialahmadi K, Jaafari MR, Sahebkar A. Vaccines targeting angiogenesis in melanoma. Eur J Pharmacol 2021; 912:174565. [PMID: 34656608 DOI: 10.1016/j.ejphar.2021.174565] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2021] [Revised: 09/28/2021] [Accepted: 10/11/2021] [Indexed: 12/15/2022]
Abstract
Angiogenesis has a significant role in metastasis and progression of melanoma. Even small tumors may be susceptible to metastasis and hence lead to a worse outcome in patients with melanoma. One of the anti-angiogenic treatment approaches that is undergoing comprehensive study is specific immunotherapy. While tumor cells are challenging targets for immunotherapy due to their genetic instability and heterogeneity, endothelial cells (ECs) are genetically stable. Therefore, vaccines targeting angiogenesis in melanoma are appropriate choices that target both tumor cells and ECs while capable of inducing strong, anti-tumor immune responses with limited toxicity. The main targets of angiogenesis are VEGFs and their receptors but other potential targets have also been investigated, especially in preclinical studies. Various types of vaccines that target angiogenesis in melanoma have been studied including DNA, peptide, protein, dendritic cell-based, and endothelial cell vaccines. This review outlines a number of target antigens that are important for potential progress in developing vaccines for targeting angiogenesis in melanoma. We also discuss different types of vaccines that have been investigated, delivery mechanisms and popular adjuvants, and suggest ways to improve future clinical outcomes.
Collapse
Affiliation(s)
- Fatemeh Zahedipour
- Student Research Committee, Faculty of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran; Department of Medical Biotechnology and Nanotechnology, Faculty of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran; Nanotechnology Research Center, Pharmaceutical Technology Institute, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Parvin Zamani
- Nanotechnology Research Center, Pharmaceutical Technology Institute, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Khadijeh Jamialahmadi
- Department of Medical Biotechnology and Nanotechnology, Faculty of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran; Biotechnology Research Center, Pharmaceutical Technology Institute, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Mahmoud Reza Jaafari
- Nanotechnology Research Center, Pharmaceutical Technology Institute, Mashhad University of Medical Sciences, Mashhad, Iran; Department of Pharmaceutical Nanotechnology, School of Pharmacy, Mashhad University of Medical Sciences, Mashhad, Iran.
| | - Amirhossein Sahebkar
- Biotechnology Research Center, Pharmaceutical Technology Institute, Mashhad University of Medical Sciences, Mashhad, Iran; Applied Biomedical Research Center, Mashhad University of Medical Sciences, Mashhad, Iran; School of Medicine, The University of Western Australia, Perth, Australia; School of Pharmacy, Mashhad University of Medical Sciences, Mashhad, Iran.
| |
Collapse
|
14
|
Varrone F, Mandrich L, Caputo E. Melanoma Immunotherapy and Precision Medicine in the Era of Tumor Micro-Tissue Engineering: Where Are We Now and Where Are We Going? Cancers (Basel) 2021; 13:5788. [PMID: 34830940 PMCID: PMC8616100 DOI: 10.3390/cancers13225788] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2021] [Revised: 11/05/2021] [Accepted: 11/12/2021] [Indexed: 11/16/2022] Open
Abstract
Malignant melanoma still remains a cancer with very poor survival rates, although it is at the forefront of personalized medicine. Most patients show partial responses and disease progressed due to adaptative resistance mechanisms, preventing long-lasting clinical benefits to the current treatments. The response to therapies can be shaped by not only taking into account cancer cell heterogeneity and plasticity, but also by its structural context as well as the cellular component of the tumor microenvironment (TME). Here, we review the recent development in the field of immunotherapy and target-based therapy and how, in the era of tumor micro-tissue engineering, ex-vivo assays could help to enhance our melanoma biology knowledge in its complexity, translating it in the development of successful therapeutic strategies, as well as in the prediction of therapeutic benefits.
Collapse
Affiliation(s)
| | - Luigi Mandrich
- Research Institute on Terrestrial Ecosystem—IRET-CNR Via Pietro Castellino 111, I-80131 Naples, Italy;
| | - Emilia Caputo
- Institute of Genetics and Biophysics—IGB-CNR, “A. Buzzati-Traverso”, Via Pietro Castellino 111, I-80131 Naples, Italy
| |
Collapse
|
15
|
Park M, Kim J, Kim T, Kim S, Park W, Ha KS, Cho SH, Won MH, Lee JH, Kwon YG, Kim YM. REDD1 is a determinant of low-dose metronomic doxorubicin-elicited endothelial cell dysfunction through downregulation of VEGFR-2/3 expression. Exp Mol Med 2021; 53:1612-1622. [PMID: 34697389 PMCID: PMC8568908 DOI: 10.1038/s12276-021-00690-z] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2021] [Revised: 06/21/2021] [Accepted: 06/29/2021] [Indexed: 01/10/2023] Open
Abstract
Low-dose metronomic chemotherapy (LDMC) inhibits tumor angiogenesis and growth by targeting tumor-associated endothelial cells, but the molecular mechanism has not been fully elucidated. Here, we examined the functional role of regulated in development and DNA damage responses 1 (REDD1), an inhibitor of mammalian target of rapamycin complex 1 (mTORC1), in LDMC-mediated endothelial cell dysfunction. Low-dose doxorubicin (DOX) treatment induced REDD1 expression in cultured vascular and lymphatic endothelial cells and subsequently repressed the mRNA expression of mTORC1-dependent translation of vascular endothelial growth factor receptor (Vegfr)-2/3, resulting in the inhibition of VEGF-mediated angiogenesis and lymphangiogenesis. These regulatory effects of DOX-induced REDD1 expression were additionally confirmed by loss- and gain-of-function studies. Furthermore, LDMC with DOX significantly suppressed tumor angiogenesis, lymphangiogenesis, vascular permeability, growth, and metastasis in B16 melanoma-bearing wild-type but not Redd1-deficient mice. Altogether, our findings indicate that REDD1 is a crucial determinant of LDMC-mediated functional dysregulation of tumor vascular and lymphatic endothelial cells by translational repression of Vegfr-2/3 transcripts, supporting the potential therapeutic properties of REDD1 in highly progressive or metastatic tumors.
Collapse
Affiliation(s)
- Minsik Park
- grid.412010.60000 0001 0707 9039Department of Molecular and Cellular Biochemistry, Kangwon National University School of Medicine, Chuncheon, Gangwon-do 24341 Republic of Korea
| | - Joohwan Kim
- grid.412010.60000 0001 0707 9039Department of Molecular and Cellular Biochemistry, Kangwon National University School of Medicine, Chuncheon, Gangwon-do 24341 Republic of Korea
| | - Taesam Kim
- grid.412010.60000 0001 0707 9039Department of Molecular and Cellular Biochemistry, Kangwon National University School of Medicine, Chuncheon, Gangwon-do 24341 Republic of Korea
| | - Suji Kim
- grid.412010.60000 0001 0707 9039Department of Molecular and Cellular Biochemistry, Kangwon National University School of Medicine, Chuncheon, Gangwon-do 24341 Republic of Korea
| | - Wonjin Park
- grid.412010.60000 0001 0707 9039Department of Molecular and Cellular Biochemistry, Kangwon National University School of Medicine, Chuncheon, Gangwon-do 24341 Republic of Korea
| | - Kwon-Soo Ha
- grid.412010.60000 0001 0707 9039Department of Molecular and Cellular Biochemistry, Kangwon National University School of Medicine, Chuncheon, Gangwon-do 24341 Republic of Korea
| | - Sung Hwan Cho
- grid.412010.60000 0001 0707 9039Kangwon Institute of Inclusive Technology, Kangwon National University, Chuncheon, Gangwon-do 24341 Republic of Korea
| | - Moo-Ho Won
- grid.412010.60000 0001 0707 9039Department of Neurobiology, Kangwon National University School of Medicine, Chuncheon, Gangwon-do 24341 Republic of Korea
| | - Jeong-Hyung Lee
- grid.412010.60000 0001 0707 9039Department of Biochemistry, Kangwon National University, Chuncheon, Gangwon-Do 24341 Republic of Korea
| | - Young-Guen Kwon
- grid.15444.300000 0004 0470 5454Department of Biochemistry, College of Life Science and Biotechnology, Yonsei University, Seoul, 03722 Republic of Korea
| | - Young-Myeong Kim
- grid.412010.60000 0001 0707 9039Department of Molecular and Cellular Biochemistry, Kangwon National University School of Medicine, Chuncheon, Gangwon-do 24341 Republic of Korea ,grid.412010.60000 0001 0707 9039Kangwon Institute of Inclusive Technology, Kangwon National University, Chuncheon, Gangwon-do 24341 Republic of Korea
| |
Collapse
|
16
|
Gaggianesi M, Di Franco S, Pantina VD, Porcelli G, D'Accardo C, Verona F, Veschi V, Colarossi L, Faldetta N, Pistone G, Bongiorno MR, Todaro M, Stassi G. Messing Up the Cancer Stem Cell Chemoresistance Mechanisms Supported by Tumor Microenvironment. Front Oncol 2021; 11:702642. [PMID: 34354950 PMCID: PMC8330815 DOI: 10.3389/fonc.2021.702642] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2021] [Accepted: 07/05/2021] [Indexed: 12/12/2022] Open
Abstract
Despite the recent advances in cancer patient management and in the development of targeted therapies, systemic chemotherapy is currently used as a first-line treatment for many cancer types. After an initial partial response, patients become refractory to standard therapy fostering rapid tumor progression. Compelling evidence highlights that the resistance to chemotherapeutic regimens is a peculiarity of a subpopulation of cancer cells within tumor mass, known as cancer stem cells (CSCs). This cellular compartment is endowed with tumor-initiating and metastasis formation capabilities. CSC chemoresistance is sustained by a plethora of grow factors and cytokines released by neighboring tumor microenvironment (TME), which is mainly composed by adipocytes, cancer-associated fibroblasts (CAFs), immune and endothelial cells. TME strengthens CSC refractoriness to standard and targeted therapies by enhancing survival signaling pathways, DNA repair machinery, expression of drug efflux transporters and anti-apoptotic proteins. In the last years many efforts have been made to understand CSC-TME crosstalk and develop therapeutic strategy halting this interplay. Here, we report the combinatorial approaches, which perturb the interaction network between CSCs and the different component of TME.
Collapse
Affiliation(s)
- Miriam Gaggianesi
- Department of Surgical Oncological and Stomatological Sciences (DICHIRONS), University of Palermo, Palermo, Italy
| | - Simone Di Franco
- Department of Surgical Oncological and Stomatological Sciences (DICHIRONS), University of Palermo, Palermo, Italy
| | - Vincenzo Davide Pantina
- Department of Surgical Oncological and Stomatological Sciences (DICHIRONS), University of Palermo, Palermo, Italy
| | - Gaetana Porcelli
- Department of Health Promotion Sciences, Internal Medicine and Medical Specialties (PROMISE), University of Palermo, Palermo, Italy
| | - Caterina D'Accardo
- Department of Health Promotion Sciences, Internal Medicine and Medical Specialties (PROMISE), University of Palermo, Palermo, Italy
| | - Francesco Verona
- Department of Health Promotion Sciences, Internal Medicine and Medical Specialties (PROMISE), University of Palermo, Palermo, Italy
| | - Veronica Veschi
- Department of Surgical Oncological and Stomatological Sciences (DICHIRONS), University of Palermo, Palermo, Italy
| | | | - Naida Faldetta
- Department of Surgery, Villa Sofia-Cervello Hospital, Palermo, Italy
| | - Giuseppe Pistone
- Department of Health Promotion Sciences, Internal Medicine and Medical Specialties (PROMISE), University of Palermo, Palermo, Italy
| | - Maria Rita Bongiorno
- Department of Health Promotion Sciences, Internal Medicine and Medical Specialties (PROMISE), University of Palermo, Palermo, Italy
| | - Matilde Todaro
- Department of Health Promotion Sciences, Internal Medicine and Medical Specialties (PROMISE), University of Palermo, Palermo, Italy
| | - Giorgio Stassi
- Department of Surgical Oncological and Stomatological Sciences (DICHIRONS), University of Palermo, Palermo, Italy
| |
Collapse
|
17
|
Baudoin NC, Bloomfield M. Karyotype Aberrations in Action: The Evolution of Cancer Genomes and the Tumor Microenvironment. Genes (Basel) 2021; 12:558. [PMID: 33921421 PMCID: PMC8068843 DOI: 10.3390/genes12040558] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2021] [Revised: 03/27/2021] [Accepted: 04/06/2021] [Indexed: 12/12/2022] Open
Abstract
Cancer is a disease of cellular evolution. For this cellular evolution to take place, a population of cells must contain functional heterogeneity and an assessment of this heterogeneity in the form of natural selection. Cancer cells from advanced malignancies are genomically and functionally very different compared to the healthy cells from which they evolved. Genomic alterations include aneuploidy (numerical and structural changes in chromosome content) and polyploidy (e.g., whole genome doubling), which can have considerable effects on cell physiology and phenotype. Likewise, conditions in the tumor microenvironment are spatially heterogeneous and vastly different than in healthy tissues, resulting in a number of environmental niches that play important roles in driving the evolution of tumor cells. While a number of studies have documented abnormal conditions of the tumor microenvironment and the cellular consequences of aneuploidy and polyploidy, a thorough overview of the interplay between karyotypically abnormal cells and the tissue and tumor microenvironments is not available. Here, we examine the evidence for how this interaction may unfold during tumor evolution. We describe a bidirectional interplay in which aneuploid and polyploid cells alter and shape the microenvironment in which they and their progeny reside; in turn, this microenvironment modulates the rate of genesis for new karyotype aberrations and selects for cells that are most fit under a given condition. We conclude by discussing the importance of this interaction for tumor evolution and the possibility of leveraging our understanding of this interplay for cancer therapy.
Collapse
Affiliation(s)
- Nicolaas C. Baudoin
- Department of Genetics, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA
- Department of Biological Sciences and Fralin Life Sciences Institute, Virginia Tech, Blacksburg, VA 24061, USA
| | - Mathew Bloomfield
- Department of Biological Sciences and Fralin Life Sciences Institute, Virginia Tech, Blacksburg, VA 24061, USA
| |
Collapse
|
18
|
Wei Z, Feng M, Wu Z, Shen S, Zhu D. Bcl9 Depletion Modulates Endothelial Cell in Tumor Immune Microenvironment in Colorectal Cancer Tumor. Front Oncol 2021; 10:603702. [PMID: 33552975 PMCID: PMC7856347 DOI: 10.3389/fonc.2020.603702] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2020] [Accepted: 11/18/2020] [Indexed: 11/13/2022] Open
Abstract
Tumor endothelial cells are an important part of the tumor microenvironment, and angiogenesis inhibitory therapy has shown potential in tumor treatment. However, which subtypes of tumor endothelial cells are distributed in tumors, what are the differences between tumor endothelial cells and normal endothelial cells, and what is the mechanism of angiogenesis inhibitory therapy at the histological level, are all need to be resolved urgently. Using single-cell mRNA sequencing, we analyzed 12 CT26 colon cancer samples from mice, and found that knockdown of the downstream factor BCL9 in the Wnt signaling pathway or inhibitor-mediated functional inhibition can modulate tumor endothelial cells at a relatively primitive stage, inhibiting their differentiation into further extracellular matrix construction and angiogenesis functions. Furthermore, we propose a BCL9-endo-Score based on the differential expression of cells related to different states of BCL9 functions. Using published data sets with normal endothelial cells, we found that this score can characterize endothelial cells at different stages of differentiation. Finally, in the The Cancer Genome Atlas (TCGA) pan-cancer database, we found that BCL9-endo-Score can well predict the prognosis of diseases including colon cancer, kidney cancer and breast cancer, and identified the markers of these tumor subtypes, provide a basis for the prognosis prediction of patients with such types of tumor. Our data also contributed knowledge for tumor precision treatment with angiogenesis inhibitory therapy by targeting the Wnt signaling pathway.
Collapse
Affiliation(s)
- Zhuang Wei
- Department of Pharmacology, School of Pharmacy, Fudan University, Shanghai, China.,Key Laboratory of Systems Biology, Innovation Center for Cell Signaling Network, CAS Center for Excellence in Molecular Cell Science, Institute of Biochemistry and Cell Biology, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, Shanghai, China
| | - Mei Feng
- Department of Pharmacology, School of Pharmacy, Fudan University, Shanghai, China
| | - Zhongen Wu
- Department of Pharmacology, School of Pharmacy, Fudan University, Shanghai, China
| | - Shuru Shen
- Department of Pharmacology, School of Pharmacy, Fudan University, Shanghai, China
| | - Di Zhu
- Department of Pharmacology, School of Pharmacy, Fudan University, Shanghai, China.,Department of Pharmacology, Shanghai Pudong Hospital, Fudan University Pudong Medical Center, Shanghai, China.,Key Laboratory of Smart Drug Delivery, Ministry of Education, & State Key Laboratory of Molecular Engineering of Polymers, School of Pharmacy, Fudan University, Shanghai, China.,Shanghai Engineering Research Center of ImmunoTherapeutics, Fudan University, Shanghai, China.,Yangtze Delta Drug Advanced Research Institute, Nantong, China
| |
Collapse
|
19
|
Targeting IL-3Rα on tumor-derived endothelial cells blunts metastatic spread of triple-negative breast cancer via extracellular vesicle reprogramming. Oncogenesis 2020; 9:90. [PMID: 33040091 PMCID: PMC7548009 DOI: 10.1038/s41389-020-00274-y] [Citation(s) in RCA: 28] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2020] [Revised: 09/10/2020] [Accepted: 09/24/2020] [Indexed: 02/06/2023] Open
Abstract
The lack of approved targeted therapies highlights the need for new treatments for triple-negative breast cancer (TNBC) patients. Interleukin-3 (IL-3) acts as an autocrine factor for tumor-endothelial cells (TEC), and exerts pro-angiogenic paracrine action via extracellular vesicles (EVs). IL-3Rα blockade on TEC changes TEC-EV (anti-IL-3R-EV) microRNA (miR) content and promotes the regression of established vessels. As TEC is the doorway for "drug" entry into tumors, we aimed to assess whether IL-3R blockade on TEC impacts tumor progression via its unique EV cargo. First, the expression of IL-3Rα was evaluated in 27 human TNBC samples. It was noticed that, besides TEC and inflammatory cells, tumor cells from 55.5% of the human TNBC samples expressed IL-3Rα. Using human TNBC cell lines for in vitro studies, we found that, unlike native TEC-EVs (nEVs), anti-IL-3R-EVs increase apoptosis and reduced cell viability and migration. In vivo, anti-IL-3R-EV treatment induced vessel regression in established tumors formed of MDA-MB-231 cells, decreased Vimentin, β-catenin, and TWIST1 expression, almost abolished liver and lung metastases from primary tumors, and reduced lung metastasis generated via the intravenous injection of MDA-MB-231 cells. nEVs depleted of miR-24-3p (antago-miR-24-3p-EVs) were effective as anti-IL-3R-EVs in downregulating TWIST1 and reducing metastatic lesions in vivo. Consistent with network analyses of miR-24-3p gene targeting, anti-IL-3R-EVs and antago-miR-24-3p-EVs upregulate SPRY2 in MDA-MB-231 cells. Finally, SPRY2 silencing prevented anti-IL-3R-EV and antago-miR-24-3p-EV-mediated apoptotic cues.Overall, these data provide the first evidence that IL-3Rα is highly expressed in TNBC cells, TEC, and inflammatory cells, and that IL-3Rα blockade on TEC impacts tumor progression.
Collapse
|
20
|
Three-Dimensional Culture System of Cancer Cells Combined with Biomaterials for Drug Screening. Cancers (Basel) 2020; 12:cancers12102754. [PMID: 32987868 PMCID: PMC7601447 DOI: 10.3390/cancers12102754] [Citation(s) in RCA: 104] [Impact Index Per Article: 26.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2020] [Revised: 09/17/2020] [Accepted: 09/22/2020] [Indexed: 02/07/2023] Open
Abstract
Simple Summary For the research and development of drug discovery, it is of prime importance to construct the three-dimensional (3D) tissue models in vitro. To this end, the enhancement design of cell function and activity by making use of biomaterials is essential. In this review, 3D culture systems of cancer cells combined with several biomaterials for anticancer drug screening are introduced. Abstract Anticancer drug screening is one of the most important research and development processes to develop new drugs for cancer treatment. However, there is a problem resulting in gaps between the in vitro drug screening and preclinical or clinical study. This is mainly because the condition of cancer cell culture is quite different from that in vivo. As a trial to mimic the in vivo cancer environment, there has been some research on a three-dimensional (3D) culture system by making use of biomaterials. The 3D culture technologies enable us to give cancer cells an in vitro environment close to the in vivo condition. Cancer cells modified to replicate the in vivo cancer environment will promote the biological research or drug discovery of cancers. This review introduces the in vitro research of 3D cell culture systems with biomaterials in addition to a brief summary of the cancer environment.
Collapse
|
21
|
Design strategy of optical probes for tumor hypoxia imaging. SCIENCE CHINA-LIFE SCIENCES 2020; 63:1786-1797. [PMID: 32146696 DOI: 10.1007/s11427-019-1569-4] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/23/2019] [Accepted: 10/14/2019] [Indexed: 12/19/2022]
Abstract
Clinical manifestations of tumors indicate that malignant phenotypes developing in the hypoxic microenvironment lead to resistance to cancer treatment, rendering chemotherapy, radiotherapy, and photodynamic therapy less sensitive and effective in patients with tumor. Visualizing the oxygen level in the tumor environment has garnered much attention due to its implications in precision tumor therapy. Following the rapid development of biomaterials in nanotechnology, various nanomaterials have been designed to visualize the oxygen levels in tumors. Here, we review recent research on detecting oxygen levels in solid tumors for tumor hypoxia imaging. To monitor the hypoxic level of tumors, two main strategies were investigated: directly detecting oxygen levels in tumors and monitoring the hypoxia-assisted reduced microenvironment. We believe that hypoxia as a tumor-specific microenvironment can be a breakthrough in the clinical treatment of tumors.
Collapse
|
22
|
Haibe Y, Kreidieh M, El Hajj H, Khalifeh I, Mukherji D, Temraz S, Shamseddine A. Resistance Mechanisms to Anti-angiogenic Therapies in Cancer. Front Oncol 2020; 10:221. [PMID: 32175278 PMCID: PMC7056882 DOI: 10.3389/fonc.2020.00221] [Citation(s) in RCA: 213] [Impact Index Per Article: 53.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2019] [Accepted: 02/10/2020] [Indexed: 12/12/2022] Open
Abstract
Tumor growth and metastasis rely on tumor vascular network for the adequate supply of oxygen and nutrients. Tumor angiogenesis relies on a highly complex program of growth factor signaling, endothelial cell (EC) proliferation, extracellular matrix (ECM) remodeling, and stromal cell interactions. Numerous pro-angiogenic drivers have been identified, the most important of which is the vascular endothelial growth factor (VEGF). The importance of pro-angiogenic inducers in tumor growth, invasion and extravasation make them an excellent therapeutic target in several types of cancers. Hence, the number of anti-angiogenic agents developed for cancer treatment has risen over the past decade, with at least eighty drugs being investigated in preclinical studies and phase I-III clinical trials. To date, the most common approaches to the inhibition of the VEGF axis include the blockade of VEGF receptors (VEGFRs) or ligands by neutralizing antibodies, as well as the inhibition of receptor tyrosine kinase (RTK) enzymes. Despite promising preclinical results, anti-angiogenic monotherapies led only to mild clinical benefits. The minimal benefits could be secondary to primary or acquired resistance, through the activation of alternative mechanisms that sustain tumor vascularization and growth. Mechanisms of resistance are categorized into VEGF-dependent alterations, non-VEGF pathways and stromal cell interactions. Thus, complementary approaches such as the combination of these inhibitors with agents targeting alternative mechanisms of blood vessel formation are urgently needed. This review provides an updated overview on the pathophysiology of angiogenesis during tumor growth. It also sheds light on the different pro-angiogenic and anti-angiogenic agents that have been developed to date. Finally, it highlights the preclinical evidence for mechanisms of angiogenic resistance and suggests novel therapeutic approaches that might be exploited with the ultimate aim of overcoming resistance and improving clinical outcomes for patients with cancer.
Collapse
Affiliation(s)
- Yolla Haibe
- Division of Hematology/Oncology, Department of Internal Medicine, American University of Beirut-Medical Center, Beirut, Lebanon
| | - Malek Kreidieh
- Division of Hematology/Oncology, Department of Internal Medicine, American University of Beirut-Medical Center, Beirut, Lebanon
| | - Hiba El Hajj
- Division of Hematology/Oncology, Department of Internal Medicine, American University of Beirut-Medical Center, Beirut, Lebanon
- Department of Experimental Pathology, Immunology and Microbiology, American University of Beirut-Medical Center, Beirut, Lebanon
| | - Ibrahim Khalifeh
- Department of Pathology and Laboratory Medicine, American University of Beirut Medical Center, Beirut, Lebanon
| | - Deborah Mukherji
- Division of Hematology/Oncology, Department of Internal Medicine, American University of Beirut-Medical Center, Beirut, Lebanon
| | - Sally Temraz
- Division of Hematology/Oncology, Department of Internal Medicine, American University of Beirut-Medical Center, Beirut, Lebanon
| | - Ali Shamseddine
- Division of Hematology/Oncology, Department of Internal Medicine, American University of Beirut-Medical Center, Beirut, Lebanon
| |
Collapse
|
23
|
Pezzella F. Mechanisms of resistance to anti-angiogenic treatments. CANCER DRUG RESISTANCE (ALHAMBRA, CALIF.) 2019; 2:595-607. [PMID: 35582580 PMCID: PMC8992538 DOI: 10.20517/cdr.2019.39] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/05/2019] [Revised: 06/25/2019] [Accepted: 07/02/2019] [Indexed: 05/31/2023]
Abstract
Hailed as the cancer treatment to end all the resistance to treatment, anti-angiogenic therapy turned out to be not quite what was promised. The hope that this therapeutic approach would not have suffered by the phenomenon of resistance was based on the fact that was targeting normal vessels rather than tumour cells prone to mutation and subject to drug induced selection. However, reality turned out to be more complex and since 1997, several mechanisms of resistance have been described to the point that the study of resistance to these drugs is now a very large field. Far from being exhaustive, this paper presents the main mechanisms discovered trough some examples.
Collapse
Affiliation(s)
- Francesco Pezzella
- Nuffield Division of Clinical Laboratory Science, Radcliffe Department of Medicine, University of Oxford, John Radcliffe Hospital, Oxford, OX3 9DU, UK
| |
Collapse
|
24
|
Akatsu Y, Takahashi N, Yoshimatsu Y, Kimuro S, Muramatsu T, Katsura A, Maishi N, Suzuki HI, Inazawa J, Hida K, Miyazono K, Watabe T. Fibroblast growth factor signals regulate transforming growth factor-β-induced endothelial-to-myofibroblast transition of tumor endothelial cells via Elk1. Mol Oncol 2019; 13:1706-1724. [PMID: 31094056 PMCID: PMC6670013 DOI: 10.1002/1878-0261.12504] [Citation(s) in RCA: 36] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/01/2019] [Revised: 03/31/2019] [Accepted: 05/14/2019] [Indexed: 02/04/2023] Open
Abstract
The tumor microenvironment contains various components, including cancer cells, tumor vessels, and cancer-associated fibroblasts, the latter of which are comprised of tumor-promoting myofibroblasts and tumor-suppressing fibroblasts. Multiple lines of evidence indicate that transforming growth factor-β (TGF-β) induces the formation of myofibroblasts and other types of mesenchymal (non-myofibroblastic) cells from endothelial cells. Recent reports show that fibroblast growth factor 2 (FGF2) modulates TGF-β-induced mesenchymal transition of endothelial cells, but the molecular mechanisms behind the signals that control transcriptional networks during the formation of different groups of fibroblasts remain largely unclear. Here, we studied the roles of FGF2 during the regulation of TGF-β-induced mesenchymal transition of tumor endothelial cells (TECs). We demonstrated that auto/paracrine FGF signals in TECs inhibit TGF-β-induced endothelial-to-myofibroblast transition (End-MyoT), leading to suppressed formation of contractile myofibroblast cells, but on the other hand can also collaborate with TGF-β in promoting the formation of active fibroblastic cells which have migratory and proliferative properties. FGF2 modulated TGF-β-induced formation of myofibroblastic and non-myofibroblastic cells from TECs via transcriptional regulation of various mesenchymal markers and growth factors. Furthermore, we observed that TECs treated with TGF-β were more competent in promoting in vivo tumor growth than TECs treated with TGF-β and FGF2. Mechanistically, we showed that Elk1 mediated FGF2-induced inhibition of End-MyoT via inhibition of TGF-β-induced transcriptional activation of α-smooth muscle actin promoter by myocardin-related transcription factor-A. Our data suggest that TGF-β and FGF2 oppose and cooperate with each other during the formation of myofibroblastic and non-myofibroblastic cells from TECs, which in turn determines the characteristics of mesenchymal cells in the tumor microenvironment.
Collapse
Affiliation(s)
- Yuichi Akatsu
- Department of Molecular Pathology, Graduate School of Medicine, The University of Tokyo, Japan.,Biomedicine Group, Pharmaceutical Research Laboratories, Pharmaceutical Group, Nippon Kayaku Co., Ltd., Tokyo, Japan
| | - Naoya Takahashi
- Department of Biochemistry, Graduate School of Medical and Dental Sciences, Tokyo Medical and Dental University (TMDU), Japan
| | - Yasuhiro Yoshimatsu
- Department of Biochemistry, Graduate School of Medical and Dental Sciences, Tokyo Medical and Dental University (TMDU), Japan
| | - Shiori Kimuro
- Department of Biochemistry, Graduate School of Medical and Dental Sciences, Tokyo Medical and Dental University (TMDU), Japan
| | - Tomoki Muramatsu
- Department of Molecular Cytogenetics, Medical Research Institute, Tokyo Medical and Dental University (TMDU), Japan
| | - Akihiro Katsura
- Department of Molecular Pathology, Graduate School of Medicine, The University of Tokyo, Japan
| | - Nako Maishi
- Department of Vascular Biology and Molecular Pathology, Graduate School of Dental Medicine, Hokkaido University, Sapporo, Japan
| | - Hiroshi I Suzuki
- Department of Molecular Pathology, Graduate School of Medicine, The University of Tokyo, Japan.,David H. Koch Institute for Integrative Cancer Research, Massachusetts Institute of Technology, Cambridge, MA, USA
| | - Johji Inazawa
- Department of Molecular Cytogenetics, Medical Research Institute, Tokyo Medical and Dental University (TMDU), Japan
| | - Kyoko Hida
- Department of Vascular Biology and Molecular Pathology, Graduate School of Dental Medicine, Hokkaido University, Sapporo, Japan
| | - Kohei Miyazono
- Department of Molecular Pathology, Graduate School of Medicine, The University of Tokyo, Japan
| | - Tetsuro Watabe
- Department of Biochemistry, Graduate School of Medical and Dental Sciences, Tokyo Medical and Dental University (TMDU), Japan
| |
Collapse
|
25
|
Improved Antitumor Efficacy of Combined Vaccine Based on the Induced HUVECs and DC-CT26 Against Colorectal Carcinoma. Cells 2019; 8:cells8050494. [PMID: 31121964 PMCID: PMC6562839 DOI: 10.3390/cells8050494] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2019] [Revised: 05/20/2019] [Accepted: 05/21/2019] [Indexed: 12/24/2022] Open
Abstract
Angiogenesis is essential for the development, growth, and metastasis of solid tumors. Vaccination with viable human umbilical vein endothelial cells (HUVECs) has been used for antitumor angiogenesis. However, the limited immune response induced by HUVECs hinders their clinical application. In the present study, we found that HUVECs induced by a tumor microenvironment using the supernatant of murine CT26 colorectal cancer cells exerted a better antiangiogenic effect than HUVECs themselves. The inhibitory effect on tumor growth in the induced HUVEC group was significantly better than that of the HUVEC group, and the induced HUVEC group showed a strong inhibition in CD31-positive microvessel density in the tumor tissues. Moreover, the level of anti-induced HUVEC membrane protein antibody in mouse serum was profoundly higher in the induced HUVEC group than in the HUVEC group. Based on this, the antitumor effect of a vaccine with a combination of induced HUVECs and dendritic cell-loading CT26 antigen (DC-CT26) was evaluated. Notably, the microvessel density of tumor specimens was significantly lower in the combined vaccine group than in the control groups. Furthermore, the spleen index, the killing effect of cytotoxic T lymphocytes (CTLs), and the concentration of interferon-γ in the serum were enhanced in the combined vaccine group. Based on these results, the combined vaccine targeting both tumor angiogenesis and tumor cells may be an attractive and effective cancer immunotherapy strategy.
Collapse
|
26
|
Eiro N, Gonzalez LO, Fraile M, Cid S, Schneider J, Vizoso FJ. Breast Cancer Tumor Stroma: Cellular Components, Phenotypic Heterogeneity, Intercellular Communication, Prognostic Implications and Therapeutic Opportunities. Cancers (Basel) 2019; 11:cancers11050664. [PMID: 31086100 PMCID: PMC6562436 DOI: 10.3390/cancers11050664] [Citation(s) in RCA: 50] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2019] [Revised: 05/07/2019] [Accepted: 05/08/2019] [Indexed: 12/17/2022] Open
Abstract
Although the mechanisms underlying the genesis and progression of breast cancer are better understood than ever, it is still the most frequent malignant tumor in women and one of the leading causes of cancer death. Therefore, we need to establish new approaches that lead us to better understand the prognosis of this heterogeneous systemic disease and to propose new therapeutic strategies. Cancer is not only a malignant transformation of the epithelial cells merely based on their autonomous or acquired proliferative capacity. Today, data support the concept of cancer as an ecosystem based on a cellular sociology, with diverse components and complex interactions between them. Among the different cell types that make up the stroma, which have a relevant role in the dynamics of tumor/stromal cell interactions, the main ones are cancer associated fibroblasts, endothelial cells, immune cells and mesenchymal stromal cells. Several factors expressed by the stroma of breast carcinomas are associated with the development of metastasis, such as matrix metalloproteases, their tissular inhibitors or some of their regulators like integrins, cytokines or toll-like receptors. Based on the expression of these factors, two types of breast cancer stroma can be proposed with significantly different influence on the prognosis of patients. In addition, there is evidence about the existence of bi-directional signals between cancer cells and tumor stroma cells with prognostic implications, suggesting new therapeutic strategies in breast cancer.
Collapse
Affiliation(s)
- Noemi Eiro
- Research Unit, Fundación Hospital de Jove, Avda. Eduardo Castro, 161, 33290 Gijón, Spain.
| | - Luis O Gonzalez
- Department of Anatomical Pathology, Fundación Hospital de Jove, Avda. Eduardo Castro, 161, 33290 Gijón, Spain.
| | - María Fraile
- Research Unit, Fundación Hospital de Jove, Avda. Eduardo Castro, 161, 33290 Gijón, Spain.
| | - Sandra Cid
- Research Unit, Fundación Hospital de Jove, Avda. Eduardo Castro, 161, 33290 Gijón, Spain.
| | - Jose Schneider
- Department of Obstetrics and Gynecology, Universidad Rey Juan Carlos, Avda. de Atenas s/n, 28922, Alcorcón, Madrid, Spain.
| | - Francisco J Vizoso
- Research Unit, Fundación Hospital de Jove, Avda. Eduardo Castro, 161, 33290 Gijón, Spain.
- Department of Surgery, Fundación Hospital de Jove, Avda. Eduardo Castro, 161, 33290 Gijón, Spain.
| |
Collapse
|
27
|
Simsek C, Esin E, Yalcin S. Metronomic Chemotherapy: A Systematic Review of the Literature and Clinical Experience. JOURNAL OF ONCOLOGY 2019; 2019:5483791. [PMID: 31015835 PMCID: PMC6446118 DOI: 10.1155/2019/5483791] [Citation(s) in RCA: 78] [Impact Index Per Article: 15.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/27/2018] [Revised: 12/24/2018] [Accepted: 02/05/2019] [Indexed: 02/07/2023]
Abstract
Metronomic chemotherapy, continuous and dose-dense administration of chemotherapeutic drugs with lowered doses, is being evaluated for substituting, augmenting, or appending conventional maximum tolerated dose regimens, with preclinical and clinical studies for the past few decades. To date, the principle mechanisms of its action include impeding tumoral angiogenesis and modulation of hosts' immune system, affecting directly tumor cells, their progenitors, and neighboring stromal cells. Its better toxicity profile, lower cost, and easier use are main advantages over conventional therapies. The evidence of metronomic chemotherapy for personalized medicine is growing, starting with unfit elderly patients and also for palliative treatment. The literature reviewed in this article mainly demonstrates that metronomic chemotherapy is advantageous for selected patients and for certain types of malignancies, which make it a promising therapeutic approach for filling in the gaps. More clinical studies are needed to establish a solidified role for metronomic chemotherapy with other treatment models in modern cancer management.
Collapse
Affiliation(s)
- Cem Simsek
- Department of Internal Medicine, Hacettepe University, Ankara, Turkey
| | - Ece Esin
- Department of Medical Oncology, A.Y. Ankara Training Hospital, Ankara, Turkey
| | - Suayib Yalcin
- Department of Medical Oncology, Hacettepe University, Ankara, Turkey
| |
Collapse
|
28
|
Gonzalez-Avila G, Sommer B, Mendoza-Posada DA, Ramos C, Garcia-Hernandez AA, Falfan-Valencia R. Matrix metalloproteinases participation in the metastatic process and their diagnostic and therapeutic applications in cancer. Crit Rev Oncol Hematol 2019; 137:57-83. [PMID: 31014516 DOI: 10.1016/j.critrevonc.2019.02.010] [Citation(s) in RCA: 205] [Impact Index Per Article: 41.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2018] [Revised: 02/11/2019] [Accepted: 02/24/2019] [Indexed: 12/13/2022] Open
Abstract
Matrix metalloproteinases (MMPs) participate from the initial phases of cancer onset to the settlement of a metastatic niche in a second organ. Their role in cancer progression is related to their involvement in the extracellular matrix (ECM) degradation and in the regulation and processing of adhesion and cytoskeletal proteins, growth factors, chemokines and cytokines. MMPs participation in cancer progression makes them an attractive target for cancer therapy. MMPs have also been used for theranostic purposes in the detection of primary tumor and metastatic tissue in which a particular MMP is overexpressed, to follow up on therapy responses, and in the activation of cancer cytotoxic pro-drugs as part of nano-delivery-systems that increase drug concentration in a specific tumor target. Herein, we review MMPs molecular characteristics, their synthesis regulation and enzymatic activity, their participation in the metastatic process, and how their functions have been used to improve cancer treatment.
Collapse
Affiliation(s)
- Georgina Gonzalez-Avila
- Laboratorio Oncología Biomédica, Instituto Nacional de Enfermedades Respiratorias "Ismael Cosío Villegas", Mexico City, Mexico.
| | - Bettina Sommer
- Departamento de Investigación en Hiperreactividad Bronquial, Instituto Nacional de Enfermedades Respiratorias "Ismael Cosío Villegas", Mexico City, Mexico
| | | | - Carlos Ramos
- Laboratorio de Biología Celular, Departamento de Fibrosis Pulmonar, Instituto Nacional de Enfermedades Respiratorias "Ismael Cosío Villegas", Mexico City, Mexico
| | - A Armando Garcia-Hernandez
- Laboratorio Oncología Biomédica, Instituto Nacional de Enfermedades Respiratorias "Ismael Cosío Villegas", Mexico City, Mexico
| | - Ramces Falfan-Valencia
- Laboratorio de HLA, Departamento de Inmunogenética y Alergia, Instituto Nacional de Enfermedades Respiratorias "Ismael Cosío Villegas", Mexico City, Mexico
| |
Collapse
|
29
|
Kim JY, Kim YM. Tumor endothelial cells as a potential target of metronomic chemotherapy. Arch Pharm Res 2019; 42:1-13. [PMID: 30604201 DOI: 10.1007/s12272-018-01102-z] [Citation(s) in RCA: 29] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2018] [Accepted: 12/17/2018] [Indexed: 12/20/2022]
Abstract
Drug resistance and toxic side effects are major therapeutic hurdles affecting cancer patients receiving conventional chemotherapy based on the maximum tolerated dose. Metronomic chemotherapy (MCT), a new therapeutic approach developed to avoid these problems generally, consists of the continuous administration of low-dose cytotoxic agents without extended intervals. This therapy targets the tumor microenvironment, rather than exerting a direct effect on tumor cells. As a result, the MCT regimen functionally impairs tumor endothelial cells and circulating endothelial progenitor cells, leading to tumor dormancy via anti-angiogenesis. Over the past 10 years, several studies have highlighted the impact of MCT on the tumor microenvironment and angiogenesis and demonstrated its potential as a switch from the pro-angiogenic to the anti-angiogenic state. However, the mechanisms of action are still obscure. Here, we systematically review the evidence regarding the anti-angiogenic potential of MCT as a crucial determinant of tumor dormancy and cancer treatment.
Collapse
Affiliation(s)
- Ji Yoon Kim
- Department of Anesthesiology and Pain Medicine, Hanyang University Hospital, Seoul, 04763, South Korea
| | - Young-Myeong Kim
- Department of Molecular and Cellular Biochemistry School of Medicine, Kangwon National University School of Medicine, Chuncheon, Gangwon-do, 24341, South Korea.
| |
Collapse
|
30
|
Taguchi K, Onoe T, Yoshida T, Yamashita Y, Taniyama K, Ohdan H. Isolation of tumor endothelial cells from murine cancer. J Immunol Methods 2018; 464:105-113. [PMID: 30395818 DOI: 10.1016/j.jim.2018.11.005] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2018] [Revised: 10/31/2018] [Accepted: 11/01/2018] [Indexed: 10/27/2022]
Abstract
Tumor endothelial cells (TECs), which constitute the lining of the tumor blood vessels, have various characteristics as tumor constituent cells. In this study, we describe a novel method for the isolation of highly pure, fresh TECs, which form a small population within the tumor. Tumors were first dissected from tumor-bearing mice and digested to a single cell suspension with Collagenase Type II; the single cells were then separated by density gradient centrifugation. TECs were enriched by CD31-positive selection using magnetic activated cell sorting and subsequently purified by fluorescence activated cell sorting. The high purity of the obtained cells was verified by flow cytometry. Upon cell culture, the isolated cells showed a polygonal shape and a cobblestone appearance, which are features of the endothelial cells. Furthermore, a functional assay revealed that the TECs suppressed the proliferation of CD8+ T cells in vitro. We believe that the isolation method described in this study will enable the further elucidation of the characteristics of TECs.
Collapse
Affiliation(s)
- Kazuhiro Taguchi
- National Hospital Organization, Kure Medical Center/Chugoku Cancer Center, Institute for Clinical Research, 3-1, Aoyamacho, Kure City, Hiroshima 737-0023, Japan; Department of Gastroenterological and Transplant Surgery, Institute of Biomedical and Health Sciences, Hiroshima University, 1-2-3 Kasumi Minami-ku, Hiroshima 734-8551, Japan
| | - Takashi Onoe
- National Hospital Organization, Kure Medical Center/Chugoku Cancer Center, Institute for Clinical Research, 3-1, Aoyamacho, Kure City, Hiroshima 737-0023, Japan; Department of Gastroenterological and Transplant Surgery, Institute of Biomedical and Health Sciences, Hiroshima University, 1-2-3 Kasumi Minami-ku, Hiroshima 734-8551, Japan.
| | - Tomoaki Yoshida
- National Hospital Organization, Kure Medical Center/Chugoku Cancer Center, Institute for Clinical Research, 3-1, Aoyamacho, Kure City, Hiroshima 737-0023, Japan.
| | - Yoshinori Yamashita
- National Hospital Organization, Kure Medical Center/Chugoku Cancer Center, Institute for Clinical Research, 3-1, Aoyamacho, Kure City, Hiroshima 737-0023, Japan.
| | - Kiyomi Taniyama
- National Hospital Organization, Kure Medical Center/Chugoku Cancer Center, Institute for Clinical Research, 3-1, Aoyamacho, Kure City, Hiroshima 737-0023, Japan.
| | - Hideki Ohdan
- Department of Gastroenterological and Transplant Surgery, Institute of Biomedical and Health Sciences, Hiroshima University, 1-2-3 Kasumi Minami-ku, Hiroshima 734-8551, Japan.
| |
Collapse
|
31
|
Chen J, Zhou Z, Yao Y, Dai J, Zhou D, Wang L, Zhang Q. Dipalmitoylphosphatidic acid inhibits breast cancer growth by suppressing angiogenesis via inhibition of the CUX1/FGF1/HGF signalling pathway. J Cell Mol Med 2018; 22:4760-4770. [PMID: 30010249 PMCID: PMC6156235 DOI: 10.1111/jcmm.13727] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2018] [Accepted: 05/19/2018] [Indexed: 12/22/2022] Open
Abstract
Tumour growth depends on a continual supply of the nutrients and oxygen, which are offered by tumour angiogenesis. Our previous study showed that dipalmitoylphosphatidic acid (DPPA), a bioactive phospholipid, inhibits the growth of triple-negative breast cancer cells. However, its direct effect on angiogenesis remains unknown. Our work showed that DPPA significantly suppressed vascular growth in the chick embryo chorioallantoic membrane (CAM) and yolk sac membrane (YSM) models. Meanwhile, tumour angiogenesis and tumour growth were inhibited by DPPA in the tumour tissues of an experimental breast cancer model, a subcutaneous xenograft mouse model and a genetically engineered spontaneous breast cancer mouse model (MMTV-PyMT). Furthermore, DPPA directly inhibited the proliferation, migration and tube formation of vascular endothelial cells. The anti-angiogenic effect of DPPA was regulated by the inhibition of Cut-like homeobox1 (CUX1), which transcriptionally inhibited fibroblast growth factor 1 (FGF1), leading to the downregulation of hepatocyte growth factor (HGF). This work first demonstrates that DPPA directly inhibits angiogenesis in cancer development. Our previous work along with this study suggest that DPPA functions as an anti-tumour therapeutic drug that inhibits angiogenesis.
Collapse
MESH Headings
- Animals
- Antineoplastic Agents/pharmacology
- Cell Line, Tumor
- Cell Movement/drug effects
- Cell Proliferation/drug effects
- Chick Embryo
- Chorioallantoic Membrane/blood supply
- Chorioallantoic Membrane/drug effects
- Female
- Fibroblast Growth Factor 1/genetics
- Fibroblast Growth Factor 1/metabolism
- Gene Expression Regulation, Neoplastic
- Hepatocyte Growth Factor/genetics
- Hepatocyte Growth Factor/metabolism
- Homeodomain Proteins/genetics
- Homeodomain Proteins/metabolism
- Human Umbilical Vein Endothelial Cells/cytology
- Human Umbilical Vein Endothelial Cells/drug effects
- Human Umbilical Vein Endothelial Cells/metabolism
- Humans
- Mammary Neoplasms, Experimental/drug therapy
- Mammary Neoplasms, Experimental/genetics
- Mammary Neoplasms, Experimental/metabolism
- Mammary Neoplasms, Experimental/pathology
- Mice
- Mice, Nude
- Neovascularization, Pathologic/genetics
- Neovascularization, Pathologic/metabolism
- Neovascularization, Pathologic/pathology
- Neovascularization, Pathologic/prevention & control
- Nuclear Proteins/genetics
- Nuclear Proteins/metabolism
- Phosphatidic Acids/pharmacology
- Repressor Proteins/genetics
- Repressor Proteins/metabolism
- Signal Transduction/drug effects
- Transcription Factors
- Triple Negative Breast Neoplasms/drug therapy
- Triple Negative Breast Neoplasms/genetics
- Triple Negative Breast Neoplasms/metabolism
- Triple Negative Breast Neoplasms/pathology
- Tumor Burden/drug effects
- Xenograft Model Antitumor Assays
Collapse
Affiliation(s)
- Jian Chen
- Vascular Biology Research InstituteSchool of Basic CourseGuangdong Pharmaceutical UniversityGuangzhouChina
| | - Zijun Zhou
- Vascular Biology Research InstituteSchool of Basic CourseGuangdong Pharmaceutical UniversityGuangzhouChina
| | - Yuying Yao
- Vascular Biology Research InstituteSchool of Basic CourseGuangdong Pharmaceutical UniversityGuangzhouChina
| | - Jianwei Dai
- GMU‐GIBH Joint School of Life SciencesGuangzhou Medical UniversityGuangzhouChina
- The State Key Lab of Respiratory DiseaseGuangzhou Institute of Respiratory DiseaseThe First Affiliated HospitalGuangzhou Medical UniversityGuangzhouChina
| | - Dalei Zhou
- Vascular Biology Research InstituteSchool of Basic CourseGuangdong Pharmaceutical UniversityGuangzhouChina
| | - Lijing Wang
- Vascular Biology Research InstituteSchool of Basic CourseGuangdong Pharmaceutical UniversityGuangzhouChina
| | - Qian‐Qian Zhang
- Vascular Biology Research InstituteSchool of Basic CourseGuangdong Pharmaceutical UniversityGuangzhouChina
| |
Collapse
|
32
|
Piwowarczyk K, Kwiecień E, Sośniak J, Zimoląg E, Guzik E, Sroka J, Madeja Z, Czyż J. Fenofibrate Interferes with the Diapedesis of Lung Adenocarcinoma Cells through the Interference with Cx43/EGF-Dependent Intercellular Signaling. Cancers (Basel) 2018; 10:cancers10100363. [PMID: 30274176 PMCID: PMC6210471 DOI: 10.3390/cancers10100363] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2018] [Revised: 09/26/2018] [Accepted: 09/27/2018] [Indexed: 01/10/2023] Open
Abstract
Extravasation of circulating cancer cells is regulated by the intercellular/intracellular signaling pathways that locally impair the endothelial barrier function. Co-cultures of human umbilical vein endothelial cells (HUVECs) with lung adenocarcinoma A549 cells enabled us to identify these pathways and to quantify the effect of fenofibrate (FF) on their activity. A549 cells induced the disruption and local activation of endothelial continuum. These events were accompanied by epidermal growth factor (EGF) up-regulation in endothelial cells. Impaired A549 diapedesis and HUVEC activation were seen upon the chemical inhibition of connexin(Cx)43 functions, EGF/ERK1/2-dependent signaling, and RhoA/Rac1 activity. A total of 25 μM FF exerted corresponding effects on Cx43-mediated gap junctional coupling, EGF production, and ERK1/2 activation in HUVEC/A549 co-cultures. It also directly augmented endothelial barrier function via the interference with focal adhesion kinase (FAK)/RhoA/Rac1-regulated endothelial cell adhesion/contractility/motility and prompted the selective transmigration of epithelioid A549 cells. N-acetyl-L-cysteine abrogated FF effects on HUVEC activation, suggesting the involvement of PPARα-independent mechanism(s) in its action. Our data identify a novel Cx43/EGF/ERK1/2/FAK/RhoA/Rac1-dependent signaling axis, which determines the efficiency of lung cancer cell diapedesis. FF interferes with its activity and reduces the susceptibility of endothelial cells to A549 stimuli. These findings provide the rationale for the implementation of FF in the therapy of malignant lung cancers.
Collapse
Affiliation(s)
- Katarzyna Piwowarczyk
- Department of Cell Biology, Faculty of Biochemistry, Biophysics and Biotechnology, Jagiellonian University, Gronostajowa 7, 30-387 Kraków, Poland.
| | - Edyta Kwiecień
- Department of Cell Biology, Faculty of Biochemistry, Biophysics and Biotechnology, Jagiellonian University, Gronostajowa 7, 30-387 Kraków, Poland.
| | - Justyna Sośniak
- Department of Cell Biology, Faculty of Biochemistry, Biophysics and Biotechnology, Jagiellonian University, Gronostajowa 7, 30-387 Kraków, Poland.
| | - Eliza Zimoląg
- Department of Cell Biology, Faculty of Biochemistry, Biophysics and Biotechnology, Jagiellonian University, Gronostajowa 7, 30-387 Kraków, Poland.
| | - Emiliana Guzik
- Department of Cell Biology, Faculty of Biochemistry, Biophysics and Biotechnology, Jagiellonian University, Gronostajowa 7, 30-387 Kraków, Poland.
| | - Jolanta Sroka
- Department of Cell Biology, Faculty of Biochemistry, Biophysics and Biotechnology, Jagiellonian University, Gronostajowa 7, 30-387 Kraków, Poland.
| | - Zbigniew Madeja
- Department of Cell Biology, Faculty of Biochemistry, Biophysics and Biotechnology, Jagiellonian University, Gronostajowa 7, 30-387 Kraków, Poland.
| | - Jarosław Czyż
- Department of Cell Biology, Faculty of Biochemistry, Biophysics and Biotechnology, Jagiellonian University, Gronostajowa 7, 30-387 Kraków, Poland.
| |
Collapse
|
33
|
Klymenko Y, Nephew KP. Epigenetic Crosstalk between the Tumor Microenvironment and Ovarian Cancer Cells: A Therapeutic Road Less Traveled. Cancers (Basel) 2018; 10:E295. [PMID: 30200265 PMCID: PMC6162502 DOI: 10.3390/cancers10090295] [Citation(s) in RCA: 37] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2018] [Revised: 08/27/2018] [Accepted: 08/28/2018] [Indexed: 12/11/2022] Open
Abstract
Metastatic dissemination of epithelial ovarian cancer (EOC) predominantly occurs through direct cell shedding from the primary tumor into the intra-abdominal cavity that is filled with malignant ascitic effusions. Facilitated by the fluid flow, cells distribute throughout the cavity, broadly seed and invade through peritoneal lining, and resume secondary tumor growth in abdominal and pelvic organs. At all steps of this unique metastatic process, cancer cells exist within a multidimensional tumor microenvironment consisting of intraperitoneally residing cancer-reprogramed fibroblasts, adipose, immune, mesenchymal stem, mesothelial, and vascular cells that exert miscellaneous bioactive molecules into malignant ascites and contribute to EOC progression and metastasis via distinct molecular mechanisms and epigenetic dysregulation. This review outlines basic epigenetic mechanisms, including DNA methylation, histone modifications, chromatin remodeling, and non-coding RNA regulators, and summarizes current knowledge on reciprocal interactions between each participant of the EOC cellular milieu and tumor cells in the context of aberrant epigenetic crosstalk. Promising research directions and potential therapeutic strategies that may encompass epigenetic tailoring as a component of complex EOC treatment are discussed.
Collapse
Affiliation(s)
- Yuliya Klymenko
- Cell, Molecular and Cancer Biology Program, Medical Sciences, Indiana University School of Medicine, Bloomington, IN 47405, USA.
- Department of Chemistry and Biochemistry, Harper Cancer Research Institute, University of Notre Dame, South Bend, IN 46617, USA.
| | - Kenneth P Nephew
- Cell, Molecular and Cancer Biology Program, Medical Sciences, Indiana University School of Medicine, Bloomington, IN 47405, USA.
- Department of Cellular and Integrative Physiology and Obstetrics and Gynecology, Indiana University School of Medicine, Indianapolis, IN 46202, USA.
- Indiana University Simon Cancer Center, Indianapolis, IN 46202, USA.
| |
Collapse
|
34
|
Tanaka HY, Kano MR. Stromal barriers to nanomedicine penetration in the pancreatic tumor microenvironment. Cancer Sci 2018; 109:2085-2092. [PMID: 29737600 PMCID: PMC6029832 DOI: 10.1111/cas.13630] [Citation(s) in RCA: 59] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2018] [Accepted: 04/25/2018] [Indexed: 01/04/2023] Open
Abstract
Pancreatic cancer is known for its dismal prognosis despite efforts to improve therapeutic outcome. Recently, cancer nanomedicine, application of nanotechnology to cancer diagnosis and treatment, has gained interest for treatment of pancreatic cancer. The enhanced permeability and retention (EPR) effect that promotes selective accumulation of nanometer‐sized molecules within tumors is the theoretical rationale of treatment. However, it is clear that EPR may be insufficient in pancreatic cancer as a result of stromal barriers within the tumor microenvironment (TME). These limit intratumoral accumulation of macromolecules. The TME and stromal barriers inside it consist of various stromal cell types which interact both with each other and with tumor cells. We are only beginning to understand the complexities of the stromal barriers within the TME and its functional consequences for nanomedicine. Understanding the complex crosstalk between barrier stromal cells is challenging because of the difficulty of modeling pancreatic cancer TME. Here we provide an overview of stromal barriers within the TME. We also describe the preclinical models, both in vivo and in vitro, developed to study them. We furthermore discuss the critical gaps in our understanding, and how we might formulate a better strategy for using nanomedicine against pancreatic cancer.
Collapse
Affiliation(s)
- Hiroyoshi Y Tanaka
- Department of Pharmaceutical Biomedicine, Okayama University Graduate School of Medicine, Dentistry, and Pharmaceutical Sciences, Okayama, Japan
| | - Mitsunobu R Kano
- Department of Pharmaceutical Biomedicine, Okayama University Graduate School of Medicine, Dentistry, and Pharmaceutical Sciences, Okayama, Japan.,Department of Pharmaceutical Biomedicine, Okayama University Graduate School of Interdisciplinary Science and Engineering in Health Systems, Okayama, Japan
| |
Collapse
|
35
|
Redundant angiogenic signaling and tumor drug resistance. Drug Resist Updat 2018; 36:47-76. [DOI: 10.1016/j.drup.2018.01.002] [Citation(s) in RCA: 77] [Impact Index Per Article: 12.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2017] [Revised: 12/22/2017] [Accepted: 01/11/2018] [Indexed: 02/07/2023]
|
36
|
Eelen G, de Zeeuw P, Treps L, Harjes U, Wong BW, Carmeliet P. Endothelial Cell Metabolism. Physiol Rev 2018; 98:3-58. [PMID: 29167330 PMCID: PMC5866357 DOI: 10.1152/physrev.00001.2017] [Citation(s) in RCA: 330] [Impact Index Per Article: 55.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2017] [Revised: 06/19/2017] [Accepted: 06/22/2017] [Indexed: 02/06/2023] Open
Abstract
Endothelial cells (ECs) are more than inert blood vessel lining material. Instead, they are active players in the formation of new blood vessels (angiogenesis) both in health and (life-threatening) diseases. Recently, a new concept arose by which EC metabolism drives angiogenesis in parallel to well-established angiogenic growth factors (e.g., vascular endothelial growth factor). 6-Phosphofructo-2-kinase/fructose-2,6-bisphosphatase-3-driven glycolysis generates energy to sustain competitive behavior of the ECs at the tip of a growing vessel sprout, whereas carnitine palmitoyltransferase 1a-controlled fatty acid oxidation regulates nucleotide synthesis and proliferation of ECs in the stalk of the sprout. To maintain vascular homeostasis, ECs rely on an intricate metabolic wiring characterized by intracellular compartmentalization, use metabolites for epigenetic regulation of EC subtype differentiation, crosstalk through metabolite release with other cell types, and exhibit EC subtype-specific metabolic traits. Importantly, maladaptation of EC metabolism contributes to vascular disorders, through EC dysfunction or excess angiogenesis, and presents new opportunities for anti-angiogenic strategies. Here we provide a comprehensive overview of established as well as newly uncovered aspects of EC metabolism.
Collapse
Affiliation(s)
- Guy Eelen
- Laboratory of Angiogenesis and Vascular Metabolism, Department of Oncology, KU Leuven, Leuven, Belgium; and Laboratory of Angiogenesis and Vascular Metabolism, Center for Cancer Biology, VIB, Leuven, Belgium
| | - Pauline de Zeeuw
- Laboratory of Angiogenesis and Vascular Metabolism, Department of Oncology, KU Leuven, Leuven, Belgium; and Laboratory of Angiogenesis and Vascular Metabolism, Center for Cancer Biology, VIB, Leuven, Belgium
| | - Lucas Treps
- Laboratory of Angiogenesis and Vascular Metabolism, Department of Oncology, KU Leuven, Leuven, Belgium; and Laboratory of Angiogenesis and Vascular Metabolism, Center for Cancer Biology, VIB, Leuven, Belgium
| | - Ulrike Harjes
- Laboratory of Angiogenesis and Vascular Metabolism, Department of Oncology, KU Leuven, Leuven, Belgium; and Laboratory of Angiogenesis and Vascular Metabolism, Center for Cancer Biology, VIB, Leuven, Belgium
| | - Brian W Wong
- Laboratory of Angiogenesis and Vascular Metabolism, Department of Oncology, KU Leuven, Leuven, Belgium; and Laboratory of Angiogenesis and Vascular Metabolism, Center for Cancer Biology, VIB, Leuven, Belgium
| | - Peter Carmeliet
- Laboratory of Angiogenesis and Vascular Metabolism, Department of Oncology, KU Leuven, Leuven, Belgium; and Laboratory of Angiogenesis and Vascular Metabolism, Center for Cancer Biology, VIB, Leuven, Belgium
| |
Collapse
|
37
|
Zarrin B, Zarifi F, Vaseghi G, Javanmard SH. Acquired tumor resistance to antiangiogenic therapy: Mechanisms at a glance. JOURNAL OF RESEARCH IN MEDICAL SCIENCES 2017; 22:117. [PMID: 29184575 PMCID: PMC5680657 DOI: 10.4103/jrms.jrms_182_17] [Citation(s) in RCA: 37] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/08/2017] [Revised: 07/03/2017] [Accepted: 08/07/2017] [Indexed: 12/18/2022]
Abstract
Angiogenesis is critical for oxygen and nutrient delivery to proliferating tumor cells. Therefore, as angiogenesis is required and vital for the tumor growth and metastasis. Antiangiogenic therapy is considered to be beneficial for tumor growth prevention due to starvation of tumor of oxygen and nutrients, but in some cases, the benefits are not permanent. Tyrosine kinase inhibitors and many other agents often target angiogenesis through inhibition of the vascular endothelial growth factor (VEGF) pathway. Although preclinical studies showed satisfactory outcomes in tumor growth inhibition, antiangiogenic therapy in the clinical setting may not be effective. The resistance observed in several tumor types through alternative angiogenic “escape” pathways contributes to restoration of tumor growth and may induce progression, enhancement of invasion, and metastasis. Therefore, activation of major compensatory angiogenic pathways, sustaining tumor angiogenesis during VEGF blockade contributing to the recurrence of tumor growth overcome antiangiogenic strategies. In this review, we summarize the novel mechanisms involved in evasive resistance to antiangiogenic therapies and represent different cancer types which have the ability to adapt to VEGF inhibition achieving resistance to antiangiogenic therapy through these adaptive mechanisms.
Collapse
Affiliation(s)
- Bahare Zarrin
- Department of Physiology, Applied Physiology Research Center, Isfahan University of Medical Sciences, Isfahan, Iran
| | - Farzane Zarifi
- Department of Pharmacology, Isfahan Pharmaceutical Sciences Research Center, School of Pharmacy and Pharmaceutical Sciences, Isfahan University of Medical Sciences, Isfahan, Iran
| | - Golnaz Vaseghi
- Isfahan Cardiovascular Research Center, Cardiovascular Research Institute, Isfahan University of Medical Sciences, Isfahan, Iran
| | | |
Collapse
|
38
|
Dai Y, Xu C, Sun X, Chen X. Nanoparticle design strategies for enhanced anticancer therapy by exploiting the tumour microenvironment. Chem Soc Rev 2017; 46:3830-3852. [PMID: 28516983 PMCID: PMC5521825 DOI: 10.1039/c6cs00592f] [Citation(s) in RCA: 616] [Impact Index Per Article: 88.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Nanovehicles can efficiently carry and deliver anticancer agents to tumour sites. Compared with normal tissue, the tumour microenvironment has some unique properties, such as vascular abnormalities, hypoxia and acidic pH. There are many types of cells, including tumour cells, macrophages, immune and fibroblast cells, fed by defective blood vessels in the solid tumour. Exploiting the tumour microenvironment can benefit the design of nanoparticles for enhanced therapeutic effectiveness. In this review article, we summarized the recent progress in various nanoformulations for cancer therapy, with a special emphasis on tumour microenvironment stimuli-responsive ones. Numerous tumour microenvironment modulation strategies with promising cancer therapeutic efficacy have also been highlighted. Future challenges and opportunities of design consideration are also discussed in detail. We believe that these tumour microenvironment modulation strategies offer a good chance for the practical translation of nanoparticle formulas into clinic.
Collapse
Affiliation(s)
- Yunlu Dai
- Centre for Molecular Imaging and Translational Medicine, State Key Laboratory of Molecular Vaccinology and Molecular Diagnostics, School of Public Health, Xiamen University, Xiang'an South Road, Xiamen 361102, China. and Laboratory of Molecular Imaging and Nanomedicine, National Institute of Biomedical Imaging and Bioengineering, National Institutes of Health, Bethesda, Maryland 20892, USA.
| | - Can Xu
- Laboratory of Molecular Imaging and Nanomedicine, National Institute of Biomedical Imaging and Bioengineering, National Institutes of Health, Bethesda, Maryland 20892, USA.
| | - Xiaolian Sun
- Centre for Molecular Imaging and Translational Medicine, State Key Laboratory of Molecular Vaccinology and Molecular Diagnostics, School of Public Health, Xiamen University, Xiang'an South Road, Xiamen 361102, China.
| | - Xiaoyuan Chen
- Laboratory of Molecular Imaging and Nanomedicine, National Institute of Biomedical Imaging and Bioengineering, National Institutes of Health, Bethesda, Maryland 20892, USA.
| |
Collapse
|
39
|
Zeng Y, Ye X, Liao D, Huang S, Mao H, Zhao D, Zeng H. Orphan Nuclear Receptor TR3/Nur77 is a Specific Therapeutic Target for Hepatic Cancers. ACTA ACUST UNITED AC 2017; 6. [PMID: 28798939 DOI: 10.4172/2324-9110.1000184] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
OBJECTIVE Although great success has been achieved in cancer treatment, current cancer therapies, including anti-tumorigenesis and anti-angiogenesis, still face the problems of insufficient efficacy, resistance and intrinsic refractoriness, in addition to their toxic side effects. There is a demand to identify additional targets that can be blocked to turn off the downstream effects of most, if not all, pathways. Our previous studies suggest that orphan nuclear receptor TR3 (human) / Nur77 (mouse) is such a target. However, the correlation of TR3 expression and clinical tumor progression has not been studied. METHODS The expression of TR3 was analysed in human primary hepatic cancer specimens from patients that have complete medical records with Immunohistochemical staining. The statistical analysis was used to assess the significance of TR3 expression in tumor tissues, paratumor tissues and normal tissues, and to investigate the correlation of TR3 expression and clincopathologic characteristics. RESULTS TR3 is highly expressed in human hepatic cancer tissues, but not in normal liver tissues. The positive expression yields of TR3 are 67.67% (14/21), 19.05% (4/21) and 0% (0/10) in cancer tissues, para cancer tissues, and normal liver tissue, respectively, which are statistic significant (χ2=17.07, p<0.005). The expression of TR3 is significantly higher in cancer tissues than in para cancer tissues χ2=9.722, p<0.005) and in normal tissues (p<0.0005). The levels of TR3 expression in human hepatic cancer tissues correlates well with tumors that are at low/middle degree of tumor differentiation and have portal vein thrombosis, metastasis and recurrence, but not with age, gender, tumor number and Alpha-fetal protein (AFP) volume. CONCLUSION The results indicate that TR3 is a specific therapeutic target for hepatic cancers.
Collapse
Affiliation(s)
- Yingling Zeng
- Departments of Preventative Medicine, The Second Affiliated Hospital of Guangzhou Medical University, Guangzhou, Guangdong, P. R. China
| | - Xiaoguang Ye
- Departments of Infectious Diseases, The Second Affiliated Hospital of Guangzhou Medical University, Guangzhou, Guangdong, P. R. China
| | - Degui Liao
- Departments of Pathology, The Second Affiliated Hospital of Guangzhou Medical University, Guangzhou, Guangdong, P. R. China
| | - Shizhang Huang
- Departments of Pathology, The Second Affiliated Hospital of Guangzhou Medical University, Guangzhou, Guangdong, P. R. China
| | - Huinan Mao
- Departments of Preventative Medicine, The Second Affiliated Hospital of Guangzhou Medical University, Guangzhou, Guangdong, P. R. China
| | - Dezheng Zhao
- Center for Vascular Biology Research, Beth Israel Deaconess Medical Center and Harvard Medical School, Boston, Massachusetts, USA.,Divisions of Gastroenterology, Beth Israel Deaconess Medical Center and Harvard Medical School, Boston, Massachusetts, USA
| | - Huiyan Zeng
- Center for Vascular Biology Research, Beth Israel Deaconess Medical Center and Harvard Medical School, Boston, Massachusetts, USA.,Department of Medicine, Hematology and Oncology, Beth Israel Deaconess Medical Center and Harvard Medical School, Boston, Massachusetts, USA
| |
Collapse
|
40
|
Bierhansl L, Conradi LC, Treps L, Dewerchin M, Carmeliet P. Central Role of Metabolism in Endothelial Cell Function and Vascular Disease. Physiology (Bethesda) 2017; 32:126-140. [PMID: 28202623 PMCID: PMC5337830 DOI: 10.1152/physiol.00031.2016] [Citation(s) in RCA: 57] [Impact Index Per Article: 8.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023] Open
Abstract
The importance of endothelial cell (EC) metabolism and its regulatory role in the angiogenic behavior of ECs during vessel formation and in the function of different EC subtypes determined by different vascular beds has been recognized only in the last few years. Even more importantly, apart from a role of nitric oxide and reactive oxygen species in EC dysfunction, deregulations of EC metabolism in disease only recently received increasing attention. Although comprehensive metabolic characterization of ECs still needs further investigation, the concept of targeting EC metabolism to treat vascular disease is emerging. In this overview, we summarize EC-specific metabolic pathways, describe the current knowledge on their deregulation in vascular diseases, and give an outlook on how vascular endothelial metabolism can serve as a target to normalize deregulated endothelium.
Collapse
Affiliation(s)
- Laura Bierhansl
- Laboratory of Angiogenesis and Vascular Metabolism, Department of Oncology, University of Leuven, Leuven, Belgium; and
- Laboratory of Angiogenesis and Vascular Metabolism, Vesalius Research Center, University of Leuven, Leuven, Belgium
| | - Lena-Christin Conradi
- Laboratory of Angiogenesis and Vascular Metabolism, Department of Oncology, University of Leuven, Leuven, Belgium; and
- Laboratory of Angiogenesis and Vascular Metabolism, Vesalius Research Center, University of Leuven, Leuven, Belgium
| | - Lucas Treps
- Laboratory of Angiogenesis and Vascular Metabolism, Department of Oncology, University of Leuven, Leuven, Belgium; and
- Laboratory of Angiogenesis and Vascular Metabolism, Vesalius Research Center, University of Leuven, Leuven, Belgium
| | - Mieke Dewerchin
- Laboratory of Angiogenesis and Vascular Metabolism, Department of Oncology, University of Leuven, Leuven, Belgium; and
- Laboratory of Angiogenesis and Vascular Metabolism, Vesalius Research Center, University of Leuven, Leuven, Belgium
| | - Peter Carmeliet
- Laboratory of Angiogenesis and Vascular Metabolism, Department of Oncology, University of Leuven, Leuven, Belgium; and
- Laboratory of Angiogenesis and Vascular Metabolism, Vesalius Research Center, University of Leuven, Leuven, Belgium
| |
Collapse
|
41
|
Chauvet N, Romanò N, Lafont C, Guillou A, Galibert E, Bonnefont X, Le Tissier P, Fedele M, Fusco A, Mollard P, Coutry N. Complementary actions of dopamine D2 receptor agonist and anti-vegf therapy on tumoral vessel normalization in a transgenic mouse model. Int J Cancer 2017; 140:2150-2161. [PMID: 28152577 DOI: 10.1002/ijc.30628] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2016] [Revised: 01/11/2017] [Accepted: 01/25/2017] [Indexed: 12/21/2022]
Abstract
Angiogenesis contributes in multiple ways to disease progression in tumors and reduces treatment efficiency. Molecular therapies targeting Vegf signaling combined with chemotherapy or other drugs exhibit promising results to improve efficacy of treatment. Dopamine has been recently proposed to be a novel safe anti-angiogenic drug that stabilizes abnormal blood vessels and increases therapeutic efficacy. Here, we aimed to identify a treatment to normalize tumoral vessels and restore normal blood perfusion in tumor tissue with a Vegf receptor inhibitor and/or a ligand of dopamine G protein-coupled receptor D2 (D2R). Dopamine, via its action on D2R, is an endogenous effector of the pituitary gland, and we took advantage of this system to address this question. We have used a previously described Hmga2/T mouse model developing haemorrhagic prolactin-secreting adenomas. In mutant mice, blood vessels are profoundly altered in tumors, and an aberrant arterial vascularization develops leading to the loss of dopamine supply. D2R agonist treatment blocks tumor growth, induces regression of the aberrant blood supply and normalizes blood vessels. A chronic treatment is able to restore the altered balance between pro- and anti-angiogenic factors. Remarkably, an acute treatment induces an upregulation of the stabilizing factor Angiopoietin 1. An anti-Vegf therapy is also effective to restrain tumor growth and improves vascular remodeling. Importantly, only the combination treatment suppresses intratumoral hemorrhage and restores blood vessel perfusion, suggesting that it might represent an attractive therapy targeting tumor vasculature. Similar strategies targeting other ligands of GPCRs involved in angiogenesis may identify novel therapeutic opportunities for cancer.
Collapse
Affiliation(s)
- Norbert Chauvet
- CNRS, UMR-5203, Institut de Génomique Fonctionnelle, Département de Physiologie, Montpellier, F-34094, France.,INSERM, U1191, Montpellier, F-34094, France.,Université de Montpellier, UMR-5203, Montpellier, F-34094, France
| | - Nicola Romanò
- CNRS, UMR-5203, Institut de Génomique Fonctionnelle, Département de Physiologie, Montpellier, F-34094, France.,INSERM, U1191, Montpellier, F-34094, France.,Université de Montpellier, UMR-5203, Montpellier, F-34094, France
| | - Chrystel Lafont
- CNRS, UMR-5203, Institut de Génomique Fonctionnelle, Département de Physiologie, Montpellier, F-34094, France.,INSERM, U1191, Montpellier, F-34094, France.,Université de Montpellier, UMR-5203, Montpellier, F-34094, France
| | - Anne Guillou
- CNRS, UMR-5203, Institut de Génomique Fonctionnelle, Département de Physiologie, Montpellier, F-34094, France.,INSERM, U1191, Montpellier, F-34094, France.,Université de Montpellier, UMR-5203, Montpellier, F-34094, France
| | - Evelyne Galibert
- CNRS, UMR-5203, Institut de Génomique Fonctionnelle, Département de Physiologie, Montpellier, F-34094, France.,INSERM, U1191, Montpellier, F-34094, France.,Université de Montpellier, UMR-5203, Montpellier, F-34094, France
| | - Xavier Bonnefont
- CNRS, UMR-5203, Institut de Génomique Fonctionnelle, Département de Physiologie, Montpellier, F-34094, France.,INSERM, U1191, Montpellier, F-34094, France.,Université de Montpellier, UMR-5203, Montpellier, F-34094, France
| | - Paul Le Tissier
- Centre for Integrative Physiology, University of Edinburgh, Edinburgh, EH8 9XD, United Kingdom
| | - Monica Fedele
- Istituto di Endocrinologia ed Oncologia Sperimentale del CNR e/o Dipartimento di Medicina Molecolare e Biotecnologie Mediche, Università degli Studi di Napoli "Federico II", Naples, 80131, Italy
| | - Alfredo Fusco
- Istituto di Endocrinologia ed Oncologia Sperimentale del CNR e/o Dipartimento di Medicina Molecolare e Biotecnologie Mediche, Università degli Studi di Napoli "Federico II", Naples, 80131, Italy
| | - Patrice Mollard
- CNRS, UMR-5203, Institut de Génomique Fonctionnelle, Département de Physiologie, Montpellier, F-34094, France.,INSERM, U1191, Montpellier, F-34094, France.,Université de Montpellier, UMR-5203, Montpellier, F-34094, France
| | - Nathalie Coutry
- CNRS, UMR-5203, Institut de Génomique Fonctionnelle, Département de Physiologie, Montpellier, F-34094, France.,INSERM, U1191, Montpellier, F-34094, France.,Université de Montpellier, UMR-5203, Montpellier, F-34094, France
| |
Collapse
|
42
|
Metronomic chemotherapy and immunotherapy in cancer treatment. Cancer Lett 2017; 400:282-292. [PMID: 28189534 DOI: 10.1016/j.canlet.2017.01.040] [Citation(s) in RCA: 106] [Impact Index Per Article: 15.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2016] [Revised: 01/26/2017] [Accepted: 01/26/2017] [Indexed: 12/14/2022]
Abstract
Systemic chemotherapy given at maximum tolerated doses (MTD) has been the mainstay of cancer treatment for more than half a century. In some chemosensitive diseases such as hematologic malignancies and solid tumors, MTD has led to complete remission and even cure. The combination of maintenance therapy and standard MTD also can generate good disease control; however, resistance to chemotherapy and disease metastasis still remain major obstacles to successful cancer treatment in the majority of advanced tumors. Metronomic chemotherapy, defined as frequent administration of chemotherapeutic agents at a non-toxic dose without extended rest periods, was originally designed to overcome drug resistance by shifting the therapeutic target from tumor cells to tumor endothelial cells. Metronomic chemotherapy also exerts anti-tumor effects on the immune system (immunomodulation) and tumor cells. The goal of immunotherapy is to enhance host anti-tumor immunities. Adding immunomodulators such as metronomic chemotherapy to immunotherapy can improve the clinical outcomes in a synergistic manner. Here, we review the anti-tumor mechanisms of metronomic chemotherapy and the preliminary research addressing the combination of immunotherapy and metronomic chemotherapy for cancer treatment in animal models and in clinical setting.
Collapse
|
43
|
Sakurai Y, Kajimoto K, Harashima H. Anti-angiogenic nanotherapy via active targeting systems to tumors and adipose tissue vasculature. Biomater Sci 2017; 3:1253-65. [PMID: 26261854 DOI: 10.1039/c5bm00113g] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023]
Abstract
Sophisticated drug delivery systems (DDS) are required for delivering drugs, especially macromolecules such as nucleic acids or proteins, to their sites of action. Therefore it is a prerequisite that future DDS are designed to selectively target a tissue. In this review, we focus on systems that actively target the vasculature in tumors or adipose tissues. For targeting tumor vasculatur, a new strategy referred to as dual-targeting is proposed that uses a combination of a receptor specific ligand and a cell penetrating peptide, which can induce the synergistic enhancement of tissue selectivity under in vivo conditions. A novel pH-sensitive cationic lipid was designed to enhance the endosomal release of encapsulated compounds such as siRNA as well as to improve the stability in blood circulation after intravenous administration. A cyclic RGD peptide is used as an active targeting ligand. For targeting adipose vasculature, prohibitin, which is expressed on the surface of adipose endothelial cells, was targeted with KGGRAKD peptides on the surface of PEGylated nanoparticles. Prohibitin targeted nanoparticles (PTNP) encapsulating Cytochrome c (CytC) can selectively target adipose vasculature by optimizing the lengths of the PEG linkers and can deliver CytC to adipose endothelial cells. PTNP can successfully induce anti-obese effects as well as apoptosis by delivering CytC to the cytosol in endothelial cells. Unexpectedly, the EPR (enhanced permeability and retention) effect, which is usually observed in tumor tissue, was also observed in the adipose vasculature, especially in obese mice, where PEGylated nanoparticles can pass through the endothelial barriers in adipose tissue. We believe that these achievements in active targeting will allow a greatly expanded use of DDS for nanomedicines.
Collapse
Affiliation(s)
- Yu Sakurai
- Faculty of Pharmaceutical Sciences, Hokkaido University, Japan.
| | | | | |
Collapse
|
44
|
Li CH, Chen FH, Schellingerhout D, Lin YS, Hong JH, Liu HL. Flow versus permeability weighting in estimating the forward volumetric transfer constant (K trans) obtained by DCE-MRI with contrast agents of differing molecular sizes. Magn Reson Imaging 2016; 36:105-111. [PMID: 27989901 DOI: 10.1016/j.mri.2016.10.027] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2016] [Accepted: 10/26/2016] [Indexed: 01/02/2023]
Abstract
PURPOSE To quantify the differential plasma flow- (Fp-) and permeability surface area product per unit mass of tissue- (PS-) weighting in forward volumetric transfer constant (Ktrans) estimates by using a low molecular (Gd-DTPA) versus high molecular (Gadomer) weight contrast agent in dynamic contrast enhanced (DCE) MRI. MATERIALS AND METHODS DCE MRI was performed using a 7T animal scanner in 14 C57BL/6J mice syngeneic for TRAMP tumors, by administering Gd-DTPA (0.9kD) in eight mice and Gadomer (35kD) in the remainder. The acquisition time was 10min with a sampling rate of one image every 2s. Pharmacokinetic modeling was performed to obtain Ktrans by using Extended Tofts model (ETM). In addition, the adiabatic approximation to the tissue homogeneity (AATH) model was employed to obtain the relative contributions of Fp and PS. RESULTS The Ktrans values derived from DCE-MRI with Gd-DTPA showed significant correlations with both PS (r2=0.64, p=0.009) and Fp (r2=0.57, p=0.016), whereas those with Gadomer were found only significantly correlated with PS (r2=0.96, p=0.0003) but not with Fp (r2=0.34, p=0.111). A voxel-based analysis showed that Ktrans approximated PS (<30% difference) in 78.3% of perfused tumor volume for Gadomer, but only 37.3% for Gd-DTPA. CONCLUSIONS The differential contributions of Fp and PS in estimating Ktrans values vary with the molecular weight of the contrast agent used. The macromolecular contrast agent resulted in Ktrans values that were much less dependent on flow. These findings support the use of macromolecular contrast agents for estimating tumor vessel permeability with DCE-MRI.
Collapse
Affiliation(s)
- Cheng-He Li
- Department of Medical Imaging and Radiological Sciences, College of Medicine, Chang Gung University, Taoyuan, Taiwan
| | - Fang-Hsin Chen
- Department of Medical Imaging and Radiological Sciences, College of Medicine, Chang Gung University, Taoyuan, Taiwan; Radiation Biology Research Center, Institute for Radiological Research, Chang Gung University, Chang Gung Memorial Hospital, Taoyuan, Taiwan; Department of Radiation Oncology, Chang Gung Memorial Hospital at Linko, Taoyuan, Taiwan
| | - Dawid Schellingerhout
- Departments of Diagnostic Radiology and Cancer Systems Imaging, The University of Texas M.D. Anderson Cancer Center, Houston, TX, USA
| | - Yu-Shi Lin
- Department of Medical Imaging and Radiological Sciences, College of Medicine, Chang Gung University, Taoyuan, Taiwan
| | - Ji-Hong Hong
- Department of Medical Imaging and Radiological Sciences, College of Medicine, Chang Gung University, Taoyuan, Taiwan; Radiation Biology Research Center, Institute for Radiological Research, Chang Gung University, Chang Gung Memorial Hospital, Taoyuan, Taiwan; Department of Radiation Oncology, Chang Gung Memorial Hospital at Linko, Taoyuan, Taiwan
| | - Ho-Ling Liu
- Department of Imaging Physics, The University of Texas M.D. Anderson Cancer Center, Houston, TX, USA.
| |
Collapse
|
45
|
Sun Z, Worden M, Wroczynskyj Y, Manna PK, Thliveris JA, van Lierop J, Hegmann T, Miller DW. Differential internalization of brick shaped iron oxide nanoparticles by endothelial cells. J Mater Chem B 2016; 4:5913-5920. [PMID: 32263764 DOI: 10.1039/c6tb01480a] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/25/2023]
Abstract
Nanoparticles targeting endothelial cells to treat diseases such as cancer, oxidative stress, and inflammation have traditionally relied on ligand-receptor based delivery. The present studies examined the influence of nanoparticle shape in regulating preferential uptake of nanoparticles in endothelial cells. Spherical and brick shaped iron oxide nanoparticles (IONPs) were synthesized with identical negatively charged surface coating. The nanobricks showed a significantly greater uptake profile in endothelial cells compared to nanospheres. Application of an external magnetic field significantly enhanced the uptake of nanobricks but not nanospheres. Transmission electron microscopy revealed differential internalization of nanobricks in endothelial cells compared to epithelial cells. Given the reduced uptake of nanobricks in endothelial cells treated with caveolin inhibitors, the increased expression of caveolin-1 in endothelial cells compared to epithelial cells, and the ability of IONP nanobricks to interfere with caveolae-mediated endocytosis process, a caveolae-mediated pathway is proposed as the mechanism for differential internalization of nanobricks in endothelial cells.
Collapse
Affiliation(s)
- Zhizhi Sun
- Department of Pharmacology and Therapeutics, University of Manitoba, 710 William Avenue, Winnipeg, Manitoba R3E 0T6, Canada.
| | | | | | | | | | | | | | | |
Collapse
|
46
|
Treps L, Conradi LC, Harjes U, Carmeliet P. Manipulating Angiogenesis by Targeting Endothelial Metabolism: Hitting the Engine Rather than the Drivers—A New Perspective? Pharmacol Rev 2016; 68:872-87. [DOI: 10.1124/pr.116.012492] [Citation(s) in RCA: 40] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
|
47
|
Cid S, Eiro N, González LO, Beridze N, Vazquez J, Vizoso FJ. Expression and Clinical Significance of Metalloproteases and Their Inhibitors by Endothelial Cells From Invasive Breast Carcinomas. Clin Breast Cancer 2016; 16:e83-91. [PMID: 27266802 DOI: 10.1016/j.clbc.2016.05.007] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2015] [Revised: 02/17/2016] [Accepted: 05/09/2016] [Indexed: 12/24/2022]
Abstract
BACKGROUND Given that tumor blood vessels are important in tumor progression and metastasis, tumor endothelial cells (ECs) are the main targets of antiangiogenic therapy. The aim of the present work was to evaluate the phenotype of matrix metalloproteinases (MMPs) and their tissue inhibitors (TIMPs) from ECs at the tumor center and its relationship to MMP/TIMP global expression and its relationship to the occurrence of distant metastasis. PATIENTS AND METHODS An immunohistochemical study was performed using tissue arrays and specific antibodies against MMPs (MMP-2, -7, -9, -11, -13, and -14) and TIMPs (TIMP-1, -2, and -3) at the tumor center in 104 patients with primary ductal invasive breast tumors. RESULTS MMP-11 expression by ECs was related to shorter relapse-free survival, whereas TIMP-3 expression was related to low occurrence of distant metastasis. In addition, MMP-11 and TIMP-2 expression by ECs was associated with shorter overall survival, whereas TIMP-3 expression by ECs was associated with longer overall survival. Our findings indicate significant relationships between the expression of MMPs/TIMPs by ECs and the global expression of these factors at the tumor scene. CONCLUSION High MMP/TIMP expression by ECs from breast carcinomas, which may be consequence of the cross-talk between tumor cells and their surrounding microenvironment.
Collapse
Affiliation(s)
- Sandra Cid
- Unidad de Investigación, Fundación Hospital de Jove, Gijón, Asturias, Spain
| | - Noemi Eiro
- Unidad de Investigación, Fundación Hospital de Jove, Gijón, Asturias, Spain
| | - Luis O González
- Unidad de Investigación, Fundación Hospital de Jove, Gijón, Asturias, Spain; Servicio de Anatomía Patológica, Fundación Hospital de Jove, Gijón, Asturias, Spain
| | - Nana Beridze
- Unidad de Investigación, Fundación Hospital de Jove, Gijón, Asturias, Spain
| | - Julio Vazquez
- Servicio de Ginecología, Hospital Álvarez-Buylla, Mieres, Asturias, Spain
| | - Francisco J Vizoso
- Unidad de Investigación, Fundación Hospital de Jove, Gijón, Asturias, Spain; Servicio de Cirugía General, Fundación Hospital de Jove, Gijón, Asturias, Spain.
| |
Collapse
|
48
|
Afonso J, Santos LL, Morais A, Amaro T, Longatto-Filho A, Baltazar F. Metabolic coupling in urothelial bladder cancer compartments and its correlation to tumor aggressiveness. Cell Cycle 2015; 15:368-80. [PMID: 26636903 DOI: 10.1080/15384101.2015.1121329] [Citation(s) in RCA: 29] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/22/2022] Open
Abstract
Monocarboxylate transporters (MCTs) are vital for intracellular pH homeostasis by extruding lactate from highly glycolytic cells. These molecules are key players of the metabolic reprogramming of cancer cells, and evidence indicates a potential contribution in urothelial bladder cancer (UBC) aggressiveness and chemoresistance. However, the specific role of MCTs in the metabolic compartmentalization within bladder tumors, namely their preponderance on the tumor stroma, remains to be elucidated. Thus, we evaluated the immunoexpression of MCTs in the different compartments of UBC tissue samples (n = 111), assessing the correlations among them and with the clinical and prognostic parameters. A significant decrease in positivity for MCT1 and MCT4 occurred from normoxic toward hypoxic regions. Significant associations were found between the expression of MCT4 in hypoxic tumor cells and in the tumor stroma. MCT1 staining in normoxic tumor areas, and MCT4 staining in hypoxic regions, in the tumor stroma and in the blood vessels were significantly associated with UBC aggressiveness. MCT4 concomitant positivity in hypoxic tumor cells and in the tumor stroma, as well as positivity in each of these regions concomitant with MCT1 positivity in normoxic tumor cells, was significantly associated with an unfavourable clinicopathological profile, and predicted lower overall survival rates among patients receiving platinum-based chemotherapy. Our results point to the existence of a multi-compartment metabolic model in UBC, providing evidence of a metabolic coupling between catabolic stromal and cancer cells' compartments, and the anabolic cancer cells. It is urgent to further explore the involvement of this metabolic coupling in UBC progression and chemoresistance.
Collapse
Affiliation(s)
- Julieta Afonso
- a Life and Health Sciences Research Institute (ICVS), School of Health Sciences, University of Minho , Braga , Portugal.,b ICVS/3B's - PT Government Associate Laboratory , Braga/Guimarães , Portugal
| | - Lúcio L Santos
- c Department of Surgical Oncology , Portuguese Institute of Oncology (IPO) , Porto , Portugal.,d Faculty of Health Sciences, University Fernando Pessoa (UFP) , Porto , Portugal
| | - António Morais
- e Department of Urology , Portuguese Institute of Oncology (IPO) , Porto , Portugal
| | - Teresina Amaro
- f Experimental Pathology and Therapeutics Research Center, Portuguese Institute of Oncology (IPO) , Porto , Portugal
| | - Adhemar Longatto-Filho
- a Life and Health Sciences Research Institute (ICVS), School of Health Sciences, University of Minho , Braga , Portugal.,b ICVS/3B's - PT Government Associate Laboratory , Braga/Guimarães , Portugal.,g Laboratory of Medical Investigation (LIM 14), Faculty of Medicine, São Paulo State University , São Paulo , Brazil.,h Molecular Oncology Research Center, Barretos Cancer Hospital , São Paulo , Brazil
| | - Fátima Baltazar
- a Life and Health Sciences Research Institute (ICVS), School of Health Sciences, University of Minho , Braga , Portugal.,b ICVS/3B's - PT Government Associate Laboratory , Braga/Guimarães , Portugal
| |
Collapse
|
49
|
van Beijnum JR, Nowak-Sliwinska P, Huijbers EJM, Thijssen VL, Griffioen AW. The great escape; the hallmarks of resistance to antiangiogenic therapy. Pharmacol Rev 2015; 67:441-61. [PMID: 25769965 DOI: 10.1124/pr.114.010215] [Citation(s) in RCA: 156] [Impact Index Per Article: 17.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022] Open
Abstract
The concept of antiangiogenic therapy in cancer treatment has led to the approval of different agents, most of them targeting the well known vascular endothelial growth factor pathway. Despite promising results in preclinical studies, the efficacy of antiangiogenic therapy in the clinical setting remains limited. Recently, awareness has emerged on resistance to antiangiogenic therapies. It has become apparent that the intricate complex interplay between tumors and stromal cells, including endothelial cells and associated mural cells, allows for escape mechanisms to arise that counteract the effects of these targeted therapeutics. Here, we review and discuss known and novel mechanisms that contribute to resistance against antiangiogenic therapy and provide an outlook to possible improvements in therapeutic approaches.
Collapse
Affiliation(s)
- Judy R van Beijnum
- Angiogenesis Laboratory, Department of Medical Oncology, VU University Medical Center, Amsterdam, The Netherlands (J.R.v.B., E.J.M.H., V.L.T., A.W.G.); and Institute of Chemical Sciences and Engineering, Swiss Federal Institute of Technology, Lausanne, Switzerland (P.N.-S.)
| | - Patrycja Nowak-Sliwinska
- Angiogenesis Laboratory, Department of Medical Oncology, VU University Medical Center, Amsterdam, The Netherlands (J.R.v.B., E.J.M.H., V.L.T., A.W.G.); and Institute of Chemical Sciences and Engineering, Swiss Federal Institute of Technology, Lausanne, Switzerland (P.N.-S.)
| | - Elisabeth J M Huijbers
- Angiogenesis Laboratory, Department of Medical Oncology, VU University Medical Center, Amsterdam, The Netherlands (J.R.v.B., E.J.M.H., V.L.T., A.W.G.); and Institute of Chemical Sciences and Engineering, Swiss Federal Institute of Technology, Lausanne, Switzerland (P.N.-S.)
| | - Victor L Thijssen
- Angiogenesis Laboratory, Department of Medical Oncology, VU University Medical Center, Amsterdam, The Netherlands (J.R.v.B., E.J.M.H., V.L.T., A.W.G.); and Institute of Chemical Sciences and Engineering, Swiss Federal Institute of Technology, Lausanne, Switzerland (P.N.-S.)
| | - Arjan W Griffioen
- Angiogenesis Laboratory, Department of Medical Oncology, VU University Medical Center, Amsterdam, The Netherlands (J.R.v.B., E.J.M.H., V.L.T., A.W.G.); and Institute of Chemical Sciences and Engineering, Swiss Federal Institute of Technology, Lausanne, Switzerland (P.N.-S.)
| |
Collapse
|
50
|
Blazejczyk A, Papiernik D, Porshneva K, Sadowska J, Wietrzyk J. Endothelium and cancer metastasis: Perspectives for antimetastatic therapy. Pharmacol Rep 2015; 67:711-8. [DOI: 10.1016/j.pharep.2015.05.014] [Citation(s) in RCA: 42] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2015] [Revised: 04/27/2015] [Accepted: 05/18/2015] [Indexed: 01/08/2023]
|