1
|
Liu Y, Ouyang Q, Li Q. A novel brown adipocytes-related gene signature predicts and validates prognosis and immune infiltration of clear cell renal cell carcinoma. Am J Cancer Res 2024; 14:4286-4305. [PMID: 39417181 PMCID: PMC11477832 DOI: 10.62347/viqm5219] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2024] [Accepted: 09/05/2024] [Indexed: 10/19/2024] Open
Abstract
BACKGROUND Clear cell renal cell carcinoma (ccRCC) is the most common kidney cancer. The crosstalk between tumor tissue and adjacent adipose tissue has been appreciated recently. This study examines the predictive usefulness of brown adipocyte-related genes (BARGs) in ccRCC. METHODS The transcriptome and clinical data of ccRCC patients were obtained from TCGA-KIRC and USA-ccRCC cohorts (848 tumor samples; 72 normal samples). Lasso-Cox methods were used to construct the risk prognostic signature model. We used Kaplan-Meier survival analysis to evaluate the prognostic significance of the risk model with ROC curves ascertaining prediction accuracy. The differences in immune cell infiltrates and signature risk scores between different risk categories were analyzed. Finally, biological experiments were performed to explore the functions of candidate genes. RESULTS TCGA-KIRC patients were classified into two clusters that differed significantly regarding overall survival (OS) and tumor microenvironment. After screening BARGs candidates, a signature consisting of PPP1R1A, DPYSL3, and PTPRM was created to calculate risk score. Patients were assigned to the high or low-risk group, and the high-risk group had a significantly worse prognosis. Consistent trend was validated in external USA-ccRCC cohort. Meanwhile, the signature risk score affected immune cell infiltrates within the ccRCC microenvironment, positively correlated with the infiltration of CD4+ T cells, CD8+ T cells, CD56dim, CD56bright NK cells, MDSCs, and macrophage cells, while negatively correlated with neutrophil, iDCs, mast cells, and eosinophil. Finally, knockdown of PPP1R1A and DPYSL3 in renal cancer cells showed impairment in tumor proliferation ability of ccRCC in vitro and in vivo. Conversely, knockdown of PTPRM exhibited a promotive effect. CONCLUSION We developed a predictive BARGs-related risk signature for early diagnosis and classifying ccRCC patients, which offers potential targets for individualized treatment of ccRCC.
Collapse
Affiliation(s)
- Yujie Liu
- Department of Clinical Pharmacology, Xiangya Hospital, Central South University87 Xiangya Road, Changsha 410008, Hunan, P. R. China
- Institute of Clinical Pharmacology, Central South University, Hunan Key Laboratory of Pharmacogenetics110 Xiangya Road, Changsha 410078, Hunan, P. R. China
- Engineering Research Center of Applied Technology of Pharmacogenomics, Ministry of Education110 Xiangya Road, Changsha 410078, Hunan, P. R. China
| | - Qianying Ouyang
- Department of Clinical Pharmacology, Xiangya Hospital, Central South University87 Xiangya Road, Changsha 410008, Hunan, P. R. China
- Institute of Clinical Pharmacology, Central South University, Hunan Key Laboratory of Pharmacogenetics110 Xiangya Road, Changsha 410078, Hunan, P. R. China
- Engineering Research Center of Applied Technology of Pharmacogenomics, Ministry of Education110 Xiangya Road, Changsha 410078, Hunan, P. R. China
| | - Qing Li
- Department of Clinical Pharmacology, Xiangya Hospital, Central South University87 Xiangya Road, Changsha 410008, Hunan, P. R. China
- Institute of Clinical Pharmacology, Central South University, Hunan Key Laboratory of Pharmacogenetics110 Xiangya Road, Changsha 410078, Hunan, P. R. China
- Engineering Research Center of Applied Technology of Pharmacogenomics, Ministry of Education110 Xiangya Road, Changsha 410078, Hunan, P. R. China
| |
Collapse
|
2
|
Zheng M, Kumar A, Sharma V, Behl T, Sehgal A, Wal P, Shinde NV, Kawaduji BS, Kapoor A, Anwer MK, Gulati M, Shen B, Singla RK, Bungau SG. Revolutionizing pediatric neuroblastoma treatment: unraveling new molecular targets for precision interventions. Front Cell Dev Biol 2024; 12:1353860. [PMID: 38601081 PMCID: PMC11004261 DOI: 10.3389/fcell.2024.1353860] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2023] [Accepted: 03/13/2024] [Indexed: 04/12/2024] Open
Abstract
Neuroblastoma (NB) is the most frequent solid tumor in pediatric cases, contributing to around 15% of childhood cancer-related deaths. The wide-ranging genetic, morphological, and clinical diversity within NB complicates the success of current treatment methods. Acquiring an in-depth understanding of genetic alterations implicated in the development of NB is essential for creating safer and more efficient therapies for this severe condition. Several molecular signatures are being studied as potential targets for developing new treatments for NB patients. In this article, we have examined the molecular factors and genetic irregularities, including those within insulin gene enhancer binding protein 1 (ISL1), dihydropyrimidinase-like 3 (DPYSL3), receptor tyrosine kinase-like orphan receptor 1 (ROR1) and murine double minute 2-tumor protein 53 (MDM2-P53) that play an essential role in the development of NB. A thorough summary of the molecular targeted treatments currently being studied in pre-clinical and clinical trials has been described. Recent studies of immunotherapeutic agents used in NB are also studied in this article. Moreover, we explore potential future directions to discover new targets and treatments to enhance existing therapies and ultimately improve treatment outcomes and survival rates for NB patients.
Collapse
Affiliation(s)
- Min Zheng
- Joint Laboratory of Artificial Intelligence for Critical Care Medicine, Department of Critical Care Medicine and Institutes for Systems Genetics, Frontiers Science Center for Disease-related Molecular Network, West China Hospital, Sichuan University, Chengdu, China
| | - Ankush Kumar
- Amity School of Pharmaceutical Sciences, Amity University, Mohali, Punjab, India
| | - Vishakha Sharma
- Amity School of Pharmaceutical Sciences, Amity University, Mohali, Punjab, India
| | - Tapan Behl
- Amity School of Pharmaceutical Sciences, Amity University, Mohali, Punjab, India
| | - Aayush Sehgal
- GHG Khalsa College of Pharmacy, Ludhiana, Punjab, India
| | - Pranay Wal
- Pranveer Singh Institute of Technology, Pharmacy, Kanpur, Uttar Pradesh, India
| | | | | | - Anupriya Kapoor
- School of Pharmaceutical Sciences, Chhatrapati Shahu Ji Maharaj University, Kanpur, Uttar Pradesh, India
| | - Md. Khalid Anwer
- Department of Pharmaceutics, College of Pharmacy, Prince Sattam Bin Abdulaziz University, Alkharj, Saudi Arabia
| | - Monica Gulati
- School of Pharmaceutical Sciences, Lovely Professional University, Phagwara, Punjab, India
- Australian Research Consortium in Complementary and Integrative Medicine, Faculty of Health, University of Technology Sydney, Ultimo, NSW, Australia
| | - Bairong Shen
- Joint Laboratory of Artificial Intelligence for Critical Care Medicine, Department of Critical Care Medicine and Institutes for Systems Genetics, Frontiers Science Center for Disease-related Molecular Network, West China Hospital, Sichuan University, Chengdu, China
| | - Rajeev K. Singla
- Joint Laboratory of Artificial Intelligence for Critical Care Medicine, Department of Critical Care Medicine and Institutes for Systems Genetics, Frontiers Science Center for Disease-related Molecular Network, West China Hospital, Sichuan University, Chengdu, China
- School of Pharmaceutical Sciences, Lovely Professional University, Phagwara, Punjab, India
| | - Simona Gabriela Bungau
- Department of Pharmacy, Faculty of Medicine and Pharmacy, University of Oradea, Oradea, Romania
- Doctoral School of Biomedical Sciences, University of Oradea, Oradea, Romania
| |
Collapse
|
3
|
Liang PI, Lai HY, Chan TC, Li WM, Hsing CH, Huang SK, Hsieh KL, Tseng WH, Chen TJ, Li WS, Chen HD, Kuo YH, Li CF. Upregulation of dihydropyrimidinase-like 3 (DPYSL3) protein predicts poor prognosis in urothelial carcinoma. BMC Cancer 2023; 23:599. [PMID: 37380971 DOI: 10.1186/s12885-023-11090-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2022] [Accepted: 06/20/2023] [Indexed: 06/30/2023] Open
Abstract
BACKGROUND Dihydropyrimidinase-like 3 (DPYSL3) is a cytosolic phosphoprotein expressed in the nervous system and is crucial for neurogenesis. A previous study showed that increased DPYSL3 expression promotes tumour aggressiveness in pancreatic ductal adenocarcinoma, gastric cancer, and colon cancer. However, the role of DPYSL3 in affecting the biological behaviour of urothelial carcinoma (UC) is not yet understood. METHODS A UC transcriptomic dataset from the Gene Expression Omnibus and the Urothelial Bladder Cancer (BLCA) dataset from The Cancer Genome Atlas were used for the in silico study. We collected 340 upper urinary tract urothelial carcinoma (UTUC) and 295 urinary bladder urothelial carcinoma (UBUC) samples for the immunohistochemical study. Fresh tumour tissue from 50 patients was used to examine the DPYSL3 mRNA level. In addition, urothelial cell lines with and without DPYSL3 knockdown were used for the functional study. RESULTS The in silico study revealed that DPYSL3 correlated with advanced tumour stage and metastasis development while functioning primarily in the nucleobase-containing compound metabolic process (GO:0006139). DPYSL3 mRNA expression is significantly upregulated in advanced UC. Furthermore, overexpression of the DPYSL3 protein is significantly associated with the aggressive behaviour of UTUC and UBUC. DPYSL3 expression independently predicts disease-specific survival (DSS) and metastatic-free survival (MFS) in patients with UC. In non-muscle-invasive UBUC, DPYSL3 expression predicts local recurrence-free survival. UC cell lines with DPYSL3 knockdown exhibited decreased proliferation, migration, invasion, and human umbilical vein endothelial cells (HUVECs) tube formation but increased apoptosis and G1 arrest. Gene ontology enrichment analysis revealed that the enriched processes related to DPYSL3 overexpression in UC were tissue morphogenesis, cell mesenchyme migration, smooth muscle regulation, metabolic processes, and RNA processing. In vivo study revealed DPYSL3 knockdown in UC tumours significantly suppressed the growth of tumours and decreased MYC and GLUT1 protein expression. CONCLUSIONS DPYSL3 promotes the aggressiveness of UC cells by changing their biological behaviours and is likely associated with cytoskeletal and metabolic process modifications. Furthermore, DPYSL3 protein overexpression in UC was associated with aggressive clinicopathological characteristics and independently predicted poor clinical outcomes. Therefore, DPYSL3 can be used as a novel therapeutic target for UC.
Collapse
Affiliation(s)
- Peir-In Liang
- Department of Pathology, Kaohsiung Medical University Hospital, Kaohsiung Medical University, Kaohsiung, 807378, Taiwan
| | - Hong-Yue Lai
- Department of Medical Research, Chi Mei Medical Center, Tainan, 710402, Taiwan
| | - Ti-Chun Chan
- Department of Medical Research, Chi Mei Medical Center, Tainan, 710402, Taiwan
- National Institute of Cancer Research, National Health Research Institutes, Tainan, 704016, Taiwan
| | - Wei-Ming Li
- Department of Urology, Kaohsiung Medical University Hospital, Kaohsiung Medical University, Kaohsiung, 807378, Taiwan
- Department of Urology, School of Medicine, College of Medicine, Kaohsiung Medical University, Kaohsiung, 807378, Taiwan
- Center for Liquid Biopsy and Cohort Research, Kaohsiung Medical University, Kaohsiung, 807378, Taiwan
- Department of Urology, Ministry of Health and Welfare Pingtung Hospital, Pingtung, 90054, Taiwan
| | - Chung-Hsi Hsing
- Department of Medical Research, Chi Mei Medical Center, Tainan, 710402, Taiwan
- Department of Anesthesiology, Chi Mei Medical Center, Tainan, 710402, Taiwan
| | - Steven K Huang
- Department of Surgery, Division of Urology, Chi Mei Medical Center, Tainan, 710402, Taiwan
- Department of Medical Science Industries, College of Health Sciences, Chang Jung Christian University, Tainan, 711301, Taiwan
| | - Kun-Lin Hsieh
- Department of Surgery, Division of Urology, Chi Mei Medical Center, Tainan, 710402, Taiwan
| | - Wen-Hsin Tseng
- Department of Surgery, Division of Urology, Chi Mei Medical Center, Tainan, 710402, Taiwan
| | - Tzu-Ju Chen
- Department of Clinical Pathology, Chi Mei Medical Center, Tainan, 710402, Taiwan
- Department of Medical Technology, Chung Hwa University of Medical Technology, Tainan, 71703, Taiwan
| | - Wan-Shan Li
- Department of Medical Technology, Chung Hwa University of Medical Technology, Tainan, 71703, Taiwan
- Department of Pathology, Chi Mei Medical Center, Tainan, 710402, Taiwan
| | - Huan-Da Chen
- Department of Pathology, Kaohsiung Medical University Hospital, Kaohsiung Medical University, Kaohsiung, 807378, Taiwan
| | - Yu-Hsuan Kuo
- Department of Internal Medicine, Division of Hematology and Oncology, Chi-Mei Medical Center, Tainan, 710402, Taiwan.
- College of Pharmacy and Science, Chia Nan University, Tainan, 71710, Taiwan.
| | - Chien-Feng Li
- Department of Medical Research, Chi Mei Medical Center, Tainan, 710402, Taiwan.
- National Institute of Cancer Research, National Health Research Institutes, Tainan, 704016, Taiwan.
| |
Collapse
|
4
|
Chicco D, Sanavia T, Jurman G. Signature literature review reveals AHCY, DPYSL3, and NME1 as the most recurrent prognostic genes for neuroblastoma. BioData Min 2023; 16:7. [PMID: 36870971 PMCID: PMC9985261 DOI: 10.1186/s13040-023-00325-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2022] [Accepted: 02/17/2023] [Indexed: 03/06/2023] Open
Abstract
Neuroblastoma is a childhood neurological tumor which affects hundreds of thousands of children worldwide, and information about its prognosis can be pivotal for patients, their families, and clinicians. One of the main goals in the related bioinformatics analyses is to provide stable genetic signatures able to include genes whose expression levels can be effective to predict the prognosis of the patients. In this study, we collected the prognostic signatures for neuroblastoma published in the biomedical literature, and noticed that the most frequent genes present among them were three: AHCY, DPYLS3, and NME1. We therefore investigated the prognostic power of these three genes by performing a survival analysis and a binary classification on multiple gene expression datasets of different groups of patients diagnosed with neuroblastoma. Finally, we discussed the main studies in the literature associating these three genes with neuroblastoma. Our results, in each of these three steps of validation, confirm the prognostic capability of AHCY, DPYLS3, and NME1, and highlight their key role in neuroblastoma prognosis. Our results can have an impact on neuroblastoma genetics research: biologists and medical researchers can pay more attention to the regulation and expression of these three genes in patients having neuroblastoma, and therefore can develop better cures and treatments which can save patients' lives.
Collapse
Affiliation(s)
- Davide Chicco
- Institute of Health Policy Management and Evaluation, University of Toronto, 155 College Street, M5T 3M7 Toronto, Ontario, Canada
| | - Tiziana Sanavia
- Dipartimento di Scienze Mediche, Università di Torino, Via Verdi 8, 10124 Turin, Italy
| | - Giuseppe Jurman
- Data Science for Health Unit, Fondazione Bruno Kessler, Via Sommarive 18, 38123 Povo (Trento), Italy
| |
Collapse
|
5
|
Gremlin-1 Promotes Colorectal Cancer Cell Metastasis by Activating ATF6 and Inhibiting ATF4 Pathways. Cells 2022; 11:cells11142136. [PMID: 35883579 PMCID: PMC9324664 DOI: 10.3390/cells11142136] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2022] [Revised: 06/17/2022] [Accepted: 06/29/2022] [Indexed: 02/04/2023] Open
Abstract
Cancer cell survival, function and fate strongly depend on endoplasmic reticulum (ER) proteostasis. Although previous studies have implicated the ER stress signaling network in all stages of cancer development, its role in cancer metastasis remains to be elucidated. In this study, we investigated the role of Gremlin-1 (GREM1), a secreted protein, in the invasion and metastasis of colorectal cancer (CRC) cells in vitro and in vivo. Firstly, public datasets showed a positive correlation between high expression of GREM1 and a poor prognosis for CRC. Secondly, GREM1 enhanced motility and invasion of CRC cells by epithelial–mesenchymal transition (EMT). Thirdly, GREM1 upregulated expression of activating transcription factor 6 (ATF6) and downregulated that of ATF4, and modulation of the two key players of the unfolded protein response (UPR) was possibly through activation of PI3K/AKT/mTOR and antagonization of BMP2 signaling pathways, respectively. Taken together, our results demonstrate that GREM1 is an invasion-promoting factor via regulation of ATF6 and ATF4 expression in CRC cells, suggesting GREM1 may be a potential pharmacological target for colorectal cancer treatment.
Collapse
|
6
|
Identification of Diagnostic Biomarkers, Immune Infiltration Characteristics, and Potential Compounds in Rheumatoid Arthritis. BIOMED RESEARCH INTERNATIONAL 2022; 2022:1926661. [PMID: 35434133 PMCID: PMC9007666 DOI: 10.1155/2022/1926661] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/13/2021] [Revised: 01/17/2022] [Accepted: 03/22/2022] [Indexed: 12/12/2022]
Abstract
Aims This study is aimed at investigating the pathogenesis of rheumatoid arthritis (RA) by identifying key biomarkers, associated immune infiltration, and small-molecule compounds using bioinformatic analysis. Methods Six datasets were obtained from the Gene Expression Omnibus database, and the batch effect was adjusted. Functional enrichment analysis and Kyoto Encyclopedia of Genes and Genomes (KEGG) were used to analyse differentially expressed genes (DEGs). Furthermore, candidate small-molecule drugs associated with RA were selected from the Connectivity Map (CMap) database. The least absolute shrinkage and selection operator regression, support vector machine recursive feature elimination, and multivariate logistic regression analyses were performed on DEGs to screen for RA diagnostic markers. The receiver operating characteristic curve, concordance index, and GiViTi calibration band were the metrics used to assess the diagnostic markers of RA identified in this analysis. The single-sample gene set enrichment analysis was performed to calculate the scores of infiltrating immune cells and evaluate the activities of immune-related pathways. Finally, the correlation between screening markers and RA diagnosis was determined. Results A total of 227 DEGs were identified. Functional enrichment analysis and KEGG revealed that DEGs were enriched by the immune response. CMap analysis identified 11 small-molecule compounds with therapeutic potential for RA. In gene expression, the activities of 13 immune cells and 12 immune-related pathways significantly differed between patients with RA and healthy controls. DPYSL3 and SPP1 had the potential to diagnose RA. SPP1 expression was positively correlated with DPYSL3 in 11 immune cells and 10 immune-related pathways. Conclusion This study comprehensively analysed DEGs and immune infiltration and screened for potential diagnostic markers and small-molecule compounds of RA.
Collapse
|
7
|
Huang Z, Wang S, Zhang HJ, Zhou YL, Shi JH. SMOX expression predicts the prognosis of non-small cell lung cancer. ANNALS OF TRANSLATIONAL MEDICINE 2021; 9:1048. [PMID: 34422960 PMCID: PMC8339854 DOI: 10.21037/atm-21-998] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/02/2021] [Accepted: 05/21/2021] [Indexed: 12/16/2022]
Abstract
Background The development of non-small cell lung cancer (NSCLC) is very rapid, and the effect of its treatment is often closely related to the diagnosis time of the disease. Therefore, simple and convenient tumor biomarkers are helpful for the timely diagnosis and prevention of NSCLC. Methods Through univariate and multivariate Cox regression analyses, SMOX was determined as an independent prognostic factor of GSE42127, GSE41271, GSE68465, and TCGA datasets. Furthermore, western blot, reverse transcription-polymerase chain reaction (RT-PCR), and immunohistochemical analysis were performed to confirm the predictive efficiency of SMOX expression in NSCLC. Results Patients were divided into high and low expression groups according to the median value of SMOX expression, and Kaplan-Meier curves of multiple datasets indicated that patients with low SMOX expression had a better survival rate. According to the analysis of immune infiltration, the immune microenvironment, and immune checkpoints, SMOX expression of the high and low groups showed differences in immunity in NSCLC. By comparing cancer and adjacent tissues using western blot analysis, RT-PCR and immunohistochemical analysis, we found that SMOX was highly expressed in tumor tissues and had low expression in adjacent tissues. Simultaneously, the Kaplan-Meier curve suggested that among the 155 NSCLC patients, those with low SMOX expression had better survival. Conclusions SMOX can be used as an effective predictive target for NSCLC.
Collapse
Affiliation(s)
- Zhanghao Huang
- Nantong Key Laboratory of Translational Medicine in Cardiothoracic Diseases, and Research Institution of Translational Medicine in Cardiothoracic Diseases, Affiliated Hospital of Nantong University, Nantong, China.,Department of Thoracic Surgery, Affiliated Hospital of Nantong University, Nantong, China.,Medical College of Nantong University, Nantong, China
| | - Shuo Wang
- Nantong Key Laboratory of Translational Medicine in Cardiothoracic Diseases, and Research Institution of Translational Medicine in Cardiothoracic Diseases, Affiliated Hospital of Nantong University, Nantong, China.,Department of Thoracic Surgery, Affiliated Hospital of Nantong University, Nantong, China.,Medical College of Nantong University, Nantong, China
| | - Hai-Jian Zhang
- Research Center of Clinical Medicine, Affiliated Hospital of Nantong University, Nantong, China
| | - You Lang Zhou
- Research Center of Clinical Medicine, Affiliated Hospital of Nantong University, Nantong, China
| | - Jia-Hai Shi
- Nantong Key Laboratory of Translational Medicine in Cardiothoracic Diseases, and Research Institution of Translational Medicine in Cardiothoracic Diseases, Affiliated Hospital of Nantong University, Nantong, China.,Department of Thoracic Surgery, Affiliated Hospital of Nantong University, Nantong, China
| |
Collapse
|
8
|
Chen Y, Quan L, Jia C, Guo Y, Wang X, Zhang Y, Jin Y, Liu A. Proteomics-Based Approach Reveals the Involvement of SERPINB9 in Recurrent and Relapsed Multiple Myeloma. J Proteome Res 2021; 20:2673-2686. [PMID: 33650432 DOI: 10.1021/acs.jproteome.1c00007] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Multiple myeloma (MM) is a common hematological malignancy with poorly understood recurrence and relapse mechanisms. Notably, bortezomib resistance leading to relapse makes MM treatment significantly challenging. To clarify the drug resistance mechanism, we employed a quantitative proteomics approach to identify differentially expressed protein candidates implicated in bortezomib-resistant recurrent and relapsed MM (RRMM). Bone marrow aspirates from five patients newly diagnosed with MM (NDMM) were compared with those from five patients diagnosed with bortezomib-resistant RRMM using tandem mass tag-mass spectrometry (TMT-MS). Subcellular localization and functional classification of the differentially expressed proteins were determined by gene ontology, Kyoto Encyclopedia of Genes and Genomes pathway, and hierarchical clustering analyses. The top candidates identified were validated with parallel reaction monitoring (PRM) analysis using tissue samples from 11 NDMM and 8 RRMM patients, followed by comparison with the NCBI Gene Expression Omnibus (GEO) dataset of 10 MM patients and 10 healthy controls (accession no.: GSE80608). Thirty-four differentially expressed proteins in RRMM, including proteinase inhibitor 9 (SERPINB9), were identified by TMT-MS. Subsequent functional enrichment analyses of the identified protein candidates indicated their involvement in regulating cellular metabolism, apoptosis, programmed cell death, lymphocyte-mediated immunity, and defense response pathways in RRMM. The top protein candidate SERPINB9 was confirmed by PRM analysis and western blotting as well as by comparison with an NCBI GEO dataset. We elucidated the proteome landscape of bortezomib-resistant RRMM and identified SERPINB9 as a promising novel therapeutic target. Our results provide a resource for future studies on the mechanism of RRMM.
Collapse
Affiliation(s)
- Yao Chen
- Hematology Department, Harbin Medical University Cancer Hospital, Harbin, Heilongjiang, P.R. China
| | - Lina Quan
- Hematology Department, Harbin Medical University Cancer Hospital, Harbin, Heilongjiang, P.R. China.,Laboratory of Medical Genetics, Harbin Medical University, Harbin, Heilongjiang, P.R. China
| | - Chuiming Jia
- Hematology Department, Harbin Medical University Cancer Hospital, Harbin, Heilongjiang, P.R. China
| | - Yiwei Guo
- Hematology Department, Harbin Medical University Cancer Hospital, Harbin, Heilongjiang, P.R. China
| | - Xinya Wang
- Hematology Department, Harbin Medical University Cancer Hospital, Harbin, Heilongjiang, P.R. China
| | - Yu Zhang
- Immunology Department, Harbin Medical University, Harbin, Heilongjiang, P.R. China
| | - Yan Jin
- Laboratory of Medical Genetics, Harbin Medical University, Harbin, Heilongjiang, P.R. China
| | - Aichun Liu
- Hematology Department, Harbin Medical University Cancer Hospital, Harbin, Heilongjiang, P.R. China
| |
Collapse
|
9
|
Tsai YM, Wu KL, Chang YY, Hung JY, Chang WA, Chang CY, Jian SF, Tsai PH, Huang YC, Chong IW, Hsu YL. Upregulation of Thr/ Tyr kinase Increases the Cancer Progression by Neurotensin and Dihydropyrimidinase-Like 3 in Lung Cancer. Int J Mol Sci 2020; 21:ijms21051640. [PMID: 32121246 PMCID: PMC7084211 DOI: 10.3390/ijms21051640] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2020] [Revised: 02/22/2020] [Accepted: 02/25/2020] [Indexed: 12/11/2022] Open
Abstract
Lung cancer is one of the leading causes of cancer-related death globally, thus elucidation of its molecular pathology is highly highlighted. Aberrant alterations of the spindle assembly checkpoint (SAC) are implicated in the development of cancer due to abnormal cell division. TTK (Thr/Tyr kinase), a dual serine/threonine kinase, is considered to act as a cancer promoter by controlling SAC. However, the mechanistic details of how TTK-mediated signaling network supports cancer development is still a mystery. Here, we found that TTK was upregulated in the tumor tissue of patients with lung cancer, and enhanced tumor growth and metastasis in vitro and in vivo. Mechanistically, TTK exerted a significant enhancement in cancer growth by neurotensin (NTS) upregulation, and subsequently increased the expression of cyclin A and cdk2, which was resulting in the increase of DNA synthesis. In contrast, TTK increased cell migration and epithelial-to-mesenchymal transition (EMT) by enhancing the expression of dihydropyrimidinase-like 3 (DPYSL3) followed by the increase of snail-regulated EMT, thus reinforce metastatic potential and ultimately tumor metastasis. TTK and DPYSL3 upregulation was positively correlated with a poor clinical outcome in patients with lung cancer. Together, our findings revealed a novel mechanism underlying the oncogenic potential effect of TTK and clarified its downstream factors NTS and DPYSL3 might represent a novel, promising candidate oncogenes with potential therapeutic vulnerabilities in lung cancer.
Collapse
Affiliation(s)
- Ying-Ming Tsai
- Graduate Institute of Medicine, College of Medicine, Kaohsiung Medical University, Kaohsiung 807, Taiwan; (Y.-M.T.); (K.-L.W.); (Y.-Y.C.); (J.-Y.H.); (C.-Y.C.); (S.-F.J.); (P.-H.T.); (Y.-C.H.); (I.-W.C.)
- Division of Pulmonary and Critical Care Medicine, Kaohsiung Medical University Hospital, Kaohsiung 807, Taiwan;
- School of Medicine, College of Medicine, Kaohsiung Medical University, Kaohsiung 807, Taiwan
| | - Kuan-Li Wu
- Graduate Institute of Medicine, College of Medicine, Kaohsiung Medical University, Kaohsiung 807, Taiwan; (Y.-M.T.); (K.-L.W.); (Y.-Y.C.); (J.-Y.H.); (C.-Y.C.); (S.-F.J.); (P.-H.T.); (Y.-C.H.); (I.-W.C.)
- Division of Pulmonary and Critical Care Medicine, Kaohsiung Medical University Hospital, Kaohsiung 807, Taiwan;
- School of Medicine, College of Medicine, Kaohsiung Medical University, Kaohsiung 807, Taiwan
| | - Yung-Yun Chang
- Graduate Institute of Medicine, College of Medicine, Kaohsiung Medical University, Kaohsiung 807, Taiwan; (Y.-M.T.); (K.-L.W.); (Y.-Y.C.); (J.-Y.H.); (C.-Y.C.); (S.-F.J.); (P.-H.T.); (Y.-C.H.); (I.-W.C.)
- Division of Pulmonary and Critical Care Medicine, Kaohsiung Medical University Hospital, Kaohsiung 807, Taiwan;
- Division of General Medicine, Kaohsiung Medical University Hospital, Kaohsiung 807, Taiwan
| | - Jen-Yu Hung
- Graduate Institute of Medicine, College of Medicine, Kaohsiung Medical University, Kaohsiung 807, Taiwan; (Y.-M.T.); (K.-L.W.); (Y.-Y.C.); (J.-Y.H.); (C.-Y.C.); (S.-F.J.); (P.-H.T.); (Y.-C.H.); (I.-W.C.)
- Division of Pulmonary and Critical Care Medicine, Kaohsiung Medical University Hospital, Kaohsiung 807, Taiwan;
- School of Medicine, College of Medicine, Kaohsiung Medical University, Kaohsiung 807, Taiwan
| | - Wei-An Chang
- Division of Pulmonary and Critical Care Medicine, Kaohsiung Medical University Hospital, Kaohsiung 807, Taiwan;
- School of Medicine, College of Medicine, Kaohsiung Medical University, Kaohsiung 807, Taiwan
- Division of General Medicine, Kaohsiung Medical University Hospital, Kaohsiung 807, Taiwan
- Graduate Institute of Clinical Medicine, College of Medicine, Kaohsiung Medical University, Kaohsiung 807, Taiwan
| | - Chao-Yuan Chang
- Graduate Institute of Medicine, College of Medicine, Kaohsiung Medical University, Kaohsiung 807, Taiwan; (Y.-M.T.); (K.-L.W.); (Y.-Y.C.); (J.-Y.H.); (C.-Y.C.); (S.-F.J.); (P.-H.T.); (Y.-C.H.); (I.-W.C.)
- Department of Anatomy, Kaohsiung Medical University, Kaohsiung 807, Taiwan
| | - Shu-Fang Jian
- Graduate Institute of Medicine, College of Medicine, Kaohsiung Medical University, Kaohsiung 807, Taiwan; (Y.-M.T.); (K.-L.W.); (Y.-Y.C.); (J.-Y.H.); (C.-Y.C.); (S.-F.J.); (P.-H.T.); (Y.-C.H.); (I.-W.C.)
| | - Pei-Hsun Tsai
- Graduate Institute of Medicine, College of Medicine, Kaohsiung Medical University, Kaohsiung 807, Taiwan; (Y.-M.T.); (K.-L.W.); (Y.-Y.C.); (J.-Y.H.); (C.-Y.C.); (S.-F.J.); (P.-H.T.); (Y.-C.H.); (I.-W.C.)
| | - Yung-Chi Huang
- Graduate Institute of Medicine, College of Medicine, Kaohsiung Medical University, Kaohsiung 807, Taiwan; (Y.-M.T.); (K.-L.W.); (Y.-Y.C.); (J.-Y.H.); (C.-Y.C.); (S.-F.J.); (P.-H.T.); (Y.-C.H.); (I.-W.C.)
| | - Inn-Wen Chong
- Graduate Institute of Medicine, College of Medicine, Kaohsiung Medical University, Kaohsiung 807, Taiwan; (Y.-M.T.); (K.-L.W.); (Y.-Y.C.); (J.-Y.H.); (C.-Y.C.); (S.-F.J.); (P.-H.T.); (Y.-C.H.); (I.-W.C.)
- Division of Pulmonary and Critical Care Medicine, Kaohsiung Medical University Hospital, Kaohsiung 807, Taiwan;
- School of Medicine, College of Medicine, Kaohsiung Medical University, Kaohsiung 807, Taiwan
| | - Ya-Ling Hsu
- Graduate Institute of Medicine, College of Medicine, Kaohsiung Medical University, Kaohsiung 807, Taiwan; (Y.-M.T.); (K.-L.W.); (Y.-Y.C.); (J.-Y.H.); (C.-Y.C.); (S.-F.J.); (P.-H.T.); (Y.-C.H.); (I.-W.C.)
- Department of Medical Research, Kaohsiung Medical University Hospital, Kaohsiung 807, Taiwan
- Drug Development and Value Creation Research Center, Kaohsiung Medical University, Kaohsiung 807, Taiwan
- Graduate Institute of Medicine, College of Medicine, Kaohsiung Medical University, No. 100, Shih-Chuan 1st Road, Kaohsiung 807, Taiwan
- Correspondence:
| |
Collapse
|
10
|
Liu H, Wang Y, Liu J, Fu W. Proteomics analysis of fetal growth restriction and taurine‑treated fetal growth restriction rat brain tissue by 2D DIGE and MALDI‑TOF/TOF MS analysis. Int J Mol Med 2019; 44:207-217. [PMID: 31115483 PMCID: PMC6559329 DOI: 10.3892/ijmm.2019.4182] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2018] [Accepted: 04/23/2019] [Indexed: 02/05/2023] Open
Abstract
Fetal growth restriction (FGR) is caused by placental insufficiency and can lead to short and long‑term neurodevelopmental delays. Taurine, one of the most abundant amino acids in the brain, is critical for the normal growth and development of the nervous system; however, the mechanistic role of taurine in neural growth and development remains unknown. The present study investigated the role of taurine in FGR. Specifically, we explored the proteomic profiles of fetal rats at 6 h postpartum by two‑dimensional difference gel electrophoresis combined with matrix assisted laser desorption ionization‑time‑of‑flight (TOF)/TOF tandem mass spectrometry; the findings were verified via reverse transcription‑quantitative polymerase chain reaction. A total of 31 differentially expressed protein spots were selected. Among these, 31 were matched, including dihydropyrimidinase‑related protein 2 and , CRK and peroxiredoxin 2. Functional analysis using the Gene Ontology database and Ingenuity Pathway Analysis demonstrated that the differentially expressed proteins were mainly associated with neuronal differentiation, 'metabolic process', 'biological regulation' and developmental processes. The present study identified several proteins that were differentially expressed in rats with FGR in the presence or absence of taurine administration. The results of the present study suggest a potential role for taurine in the treatment and prevention of FGR.
Collapse
Affiliation(s)
- Haifeng Liu
- The Second School of Clinical Medicine, Southern Medical University, Guangzhou, Guangdong 510515
- Department of Neonatology, The First People's Hospital of Chenzhou, Chenzhou, Hunan 423000
- Department of Neonatology and NICU of Bayi Children's Hospital, The Army General Hospital of The Chinese PLA, Beijing 100700
- Department of Neonatology and NICU, Beijing Chaoyang District Maternal and Child Healthcare Hospital, Beijing 100101
| | - Yan Wang
- NICU of Taian City Central Hospital, Taian, Shandong 271000, P.R. China
| | - Jing Liu
- The Second School of Clinical Medicine, Southern Medical University, Guangzhou, Guangdong 510515
- Department of Neonatology and NICU of Bayi Children's Hospital, The Army General Hospital of The Chinese PLA, Beijing 100700
- Department of Neonatology and NICU, Beijing Chaoyang District Maternal and Child Healthcare Hospital, Beijing 100101
- Correspondence to: Dr Jing Liu, The Second School of Clinical Medicine, Southern Medical University, 1023-1063 South Shatai Road, Baiyun, Guangzhou, Guangdong 510515, P.R. China, E-mail:
| | - Wei Fu
- Department of Neonatology and NICU, Beijing Chaoyang District Maternal and Child Healthcare Hospital, Beijing 100101
| |
Collapse
|
11
|
Madak JT, Bankhead A, Cuthbertson CR, Showalter HD, Neamati N. Revisiting the role of dihydroorotate dehydrogenase as a therapeutic target for cancer. Pharmacol Ther 2018; 195:111-131. [PMID: 30347213 DOI: 10.1016/j.pharmthera.2018.10.012] [Citation(s) in RCA: 112] [Impact Index Per Article: 18.7] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023]
Abstract
Identified as a hallmark of cancer, metabolic reprogramming allows cancer cells to rapidly proliferate, resist chemotherapies, invade, metastasize, and survive a nutrient-deprived microenvironment. Rapidly growing cells depend on sufficient concentrations of nucleotides to sustain proliferation. One enzyme essential for the de novo biosynthesis of pyrimidine-based nucleotides is dihydroorotate dehydrogenase (DHODH), a known therapeutic target for multiple diseases. Brequinar, leflunomide, and teriflunomide, all of which are potent DHODH inhibitors, have been clinically evaluated but failed to receive FDA approval for the treatment of cancer. Inhibition of DHODH depletes intracellular pyrimidine nucleotide pools and results in cell cycle arrest in S-phase, sensitization to current chemotherapies, and differentiation in neural crest cells and acute myeloid leukemia (AML). Furthermore, DHODH is a synthetic lethal susceptibility in several oncogenic backgrounds. Therefore, DHODH-targeted therapy has potential value as part of a combination therapy for the treatment of cancer. In this review, we focus on the de novo pyrimidine biosynthesis pathway as a target for cancer therapy, and in particular, DHODH. In the first part, we provide a comprehensive overview of this pathway and its regulation in cancer. We further describe the relevance of DHODH as a target for cancer therapy using bioinformatic analyses. We then explore the preclinical and clinical results of pharmacological strategies to target the de novo pyrimidine biosynthesis pathway, with an emphasis on DHODH. Finally, we discuss potential strategies to harness DHODH as a target for the treatment of cancer.
Collapse
Affiliation(s)
- Joseph T Madak
- Department of Medicinal Chemistry, University of Michigan College of Pharmacy, Rogel Cancer Center, Ann Arbor, MI 48109, USA
| | - Armand Bankhead
- Department of Biostatistics, University of Michigan School of Public Health, Ann Arbor, MI 48109, USA; Department of Computational Medicine and Bioinformatics, University of Michigan Medical School, Ann Arbor, MI 48109, USA
| | - Christine R Cuthbertson
- Department of Medicinal Chemistry, University of Michigan College of Pharmacy, Rogel Cancer Center, Ann Arbor, MI 48109, USA
| | - Hollis D Showalter
- Department of Medicinal Chemistry, University of Michigan College of Pharmacy, Rogel Cancer Center, Ann Arbor, MI 48109, USA.
| | - Nouri Neamati
- Department of Medicinal Chemistry, University of Michigan College of Pharmacy, Rogel Cancer Center, Ann Arbor, MI 48109, USA.
| |
Collapse
|
12
|
Braekeveldt N, von Stedingk K, Fransson S, Martinez-Monleon A, Lindgren D, Axelson H, Levander F, Willforss J, Hansson K, Øra I, Backman T, Börjesson A, Beckman S, Esfandyari J, Berbegall AP, Noguera R, Karlsson J, Koster J, Martinsson T, Gisselsson D, Påhlman S, Bexell D. Patient-Derived Xenograft Models Reveal Intratumor Heterogeneity and Temporal Stability in Neuroblastoma. Cancer Res 2018; 78:5958-5969. [PMID: 30154149 DOI: 10.1158/0008-5472.can-18-0527] [Citation(s) in RCA: 34] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2018] [Revised: 07/06/2018] [Accepted: 08/23/2018] [Indexed: 11/16/2022]
Abstract
Patient-derived xenografts (PDX) and the Avatar, a single PDX mirroring an individual patient, are emerging tools in preclinical cancer research. However, the consequences of intratumor heterogeneity for PDX modeling of biomarkers, target identification, and treatment decisions remain underexplored. In this study, we undertook serial passaging and comprehensive molecular analysis of neuroblastoma orthotopic PDXs, which revealed strong intrinsic genetic, transcriptional, and phenotypic stability for more than 2 years. The PDXs showed preserved neuroblastoma-associated gene signatures that correlated with poor clinical outcome in a large cohort of patients with neuroblastoma. Furthermore, we captured spatial intratumor heterogeneity using ten PDXs from a single high-risk patient tumor. We observed diverse growth rates, transcriptional, proteomic, and phosphoproteomic profiles. PDX-derived transcriptional profiles were associated with diverse clinical characteristics in patients with high-risk neuroblastoma. These data suggest that high-risk neuroblastoma contains elements of both temporal stability and spatial intratumor heterogeneity, the latter of which complicates clinical translation of personalized PDX-Avatar studies into preclinical cancer research.Significance: These findings underpin the complexity of PDX modeling as a means to advance translational applications against neuroblastoma. Cancer Res; 78(20); 5958-69. ©2018 AACR.
Collapse
Affiliation(s)
- Noémie Braekeveldt
- Department of Laboratory Medicine, Division of Translational Cancer Research, Lund University, Lund, Sweden
| | - Kristoffer von Stedingk
- Department of Clinical Sciences, Division of Pediatric Oncology, Lund University, University Hospital, Lund, Sweden. .,Department of Oncogenomics, Amsterdam UMC, University of Amsterdam, the Netherlands
| | - Susanne Fransson
- Department of Pathology and Genetics, University of Gothenburg, Gothenburg, Sweden
| | | | - David Lindgren
- Department of Laboratory Medicine, Division of Translational Cancer Research, Lund University, Lund, Sweden
| | - Håkan Axelson
- Department of Laboratory Medicine, Division of Translational Cancer Research, Lund University, Lund, Sweden
| | | | - Jakob Willforss
- Department of Immunotechnology, Lund University, Lund, Sweden
| | - Karin Hansson
- Department of Immunotechnology, Lund University, Lund, Sweden
| | - Ingrid Øra
- Department of Clinical Sciences, Division of Pediatric Oncology, Lund University, University Hospital, Lund, Sweden
| | - Torbjörn Backman
- Division of Pediatric Surgery, Department of Clinical Sciences, Lund University, University Hospital, Lund, Sweden
| | - Anna Börjesson
- Division of Pediatric Surgery, Department of Clinical Sciences, Lund University, University Hospital, Lund, Sweden
| | - Siv Beckman
- Department of Laboratory Medicine, Division of Translational Cancer Research, Lund University, Lund, Sweden
| | - Javanshir Esfandyari
- Department of Laboratory Medicine, Division of Translational Cancer Research, Lund University, Lund, Sweden
| | - Ana P Berbegall
- Department of Pathology, Medical School, University of Valencia/INCLIVA/CIBERONC, Madrid, Spain
| | - Rosa Noguera
- Department of Pathology, Medical School, University of Valencia/INCLIVA/CIBERONC, Madrid, Spain
| | - Jenny Karlsson
- Division of Clinical Genetics, Department of Laboratory Medicine, Lund University, Lund, Sweden
| | - Jan Koster
- Department of Oncogenomics, Amsterdam UMC, University of Amsterdam, the Netherlands
| | - Tommy Martinsson
- Department of Pathology and Genetics, University of Gothenburg, Gothenburg, Sweden
| | - David Gisselsson
- Division of Clinical Genetics, Department of Laboratory Medicine, Lund University, Lund, Sweden.,Department of Pathology, Laboratory Medicine, Medical Services, University Hospital, Lund, Sweden
| | - Sven Påhlman
- Department of Laboratory Medicine, Division of Translational Cancer Research, Lund University, Lund, Sweden
| | - Daniel Bexell
- Department of Laboratory Medicine, Division of Translational Cancer Research, Lund University, Lund, Sweden. .,Department of Pathology, Laboratory Medicine, Medical Services, University Hospital, Lund, Sweden
| |
Collapse
|
13
|
Yang Y, Jiang Y, Xie D, Liu M, Song N, Zhu J, Fan J, Zhu C. Inhibition of cell-adhesion protein DPYSL3 promotes metastasis of lung cancer. Respir Res 2018; 19:41. [PMID: 29514686 PMCID: PMC5842641 DOI: 10.1186/s12931-018-0740-0] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2017] [Accepted: 02/15/2018] [Indexed: 01/05/2023] Open
Abstract
BACKGROUND Our previous screening study suggested that the cell-adhesions protein Dihydropyrimidinase-like 3 (DPYSL3) was a candidate metastatic lung cancer related molecule. This study aimed to analyze the correlation between DPYSL3 and metastatic lung cancer. METHODS Stable DPYSL3 knockdown Lewis lung carcinoma (LLC) cells were constructed with a retroviral system. Cell migration and invasion assays were performed to determine the role of DPYSL3 in LLC cells' migration and invasion changes. A metastatic lung tumor model in which the stable DPYSL3 knockdown LLC cells were injected through tail vein was used to analyze the role of DPYSL3 in tumor metastasis in vivo. The correlation between DPYSL3 expression and the survival time of lung cancer patients were analyzed in KMPLOT database. RESULTS Knockdown of DPYSL3 promoted the migratory and invasive of LLC cells compared to the control group. Meanwhile, the motility of LLC cells was also increased with the inhibition of DPYSL3. The TGFβ-induced EMT increased when DPYSL3 was inhibited. The expression of EMT markers, TWIST1 and N-cadherin, significantly increased to almost two times with the knockdown of DPYSL3. Furthermore, inhibition of DPYSL3 promoted the progression of metastatic xenograft in C57BL/6 mice. The expression level of DPYSL3 decreased in lung cancer patients with distant metastasis. CONCLUSIONS Knockdown of DPYSL3 promoted the metastatic ability of LLC cells in vitro and in vivo.
Collapse
Affiliation(s)
- Yang Yang
- Department of Thoracic Surgery, Shanghai Pulmonary Hospital affiliated Tongji University, 507 Zhengmin road, Shanghai, 200433 China
| | - Yan Jiang
- Department of Thoracic Surgery, Shanghai Pulmonary Hospital affiliated Tongji University, 507 Zhengmin road, Shanghai, 200433 China
| | - Dong Xie
- Department of Thoracic Surgery, Shanghai Pulmonary Hospital affiliated Tongji University, 507 Zhengmin road, Shanghai, 200433 China
| | - Ming Liu
- Department of Thoracic Surgery, Shanghai Pulmonary Hospital affiliated Tongji University, 507 Zhengmin road, Shanghai, 200433 China
| | - Nan Song
- Department of Thoracic Surgery, Shanghai Pulmonary Hospital affiliated Tongji University, 507 Zhengmin road, Shanghai, 200433 China
| | - Junjie Zhu
- Department of Thoracic Surgery, Shanghai Pulmonary Hospital affiliated Tongji University, 507 Zhengmin road, Shanghai, 200433 China
| | - Jiang Fan
- Department of Thoracic Surgery, Shanghai Pulmonary Hospital affiliated Tongji University, 507 Zhengmin road, Shanghai, 200433 China
| | - Chenfang Zhu
- Department of General Surgery, Shanghai Ninth People’s Hospital, Shanghai JiaoTong University School of Medicine, Discipline Construction Research Center of China Hospital Development Institute, Shanghai Jiao Tong University, 639 Zhizaoju road, Shanghai, 200011 China
| |
Collapse
|
14
|
Abou-Antoun TJ, Nazarian J, Ghanem A, Vukmanovic S, Sandler AD. Molecular and functional analysis of anchorage independent, treatment-evasive neuroblastoma tumorspheres with enhanced malignant properties: A possible explanation for radio-therapy resistance. PLoS One 2018; 13:e0189711. [PMID: 29298329 PMCID: PMC5751995 DOI: 10.1371/journal.pone.0189711] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2017] [Accepted: 11/30/2017] [Indexed: 12/19/2022] Open
Abstract
Despite significant advances in cancer treatment and management, more than 60% of patients with neuroblastoma present with very poor prognosis in the form of metastatic and aggressive disease. Solid tumors including neuroblastoma are thought to be heterogeneous with a sub-population of stem-like cells that are treatment-evasive with highly malignant characteristics. We previously identified a phenomenon of reversible adaptive plasticity (RAP) between anchorage dependent (AD) cells and anchorage independent (AI) tumorspheres in neuroblastoma cell cultures. To expand our molecular characterization of the AI tumorspheres, we sought to define the comprehensive proteomic profile of murine AD and AI neuroblastoma cells. The proteomic profiles of the two phenotypic cell populations were compared to each other to determine the differential protein expression and molecular pathways of interest. We report exclusive or significant up-regulation of tumorigenic pathways expressed by the AI tumorspheres compared to the AD cancer cells. These pathways govern metastatic potential, enhanced malignancy and epithelial to mesenchymal transition. Furthermore, radio-therapy induced significant up-regulation of specific tumorigenic and proliferative proteins, namely survivin, CDC2 and the enzyme Poly [ADP-ribose] polymerase 1. Bio-functional characteristics of the AI tumorspheres were resistant to sutent inhibition of receptor tyrosine kinases (RTKs) as well as to 2.5 Gy radio-therapy as assessed by cell survival, proliferation, apoptosis and migration. Interestingly, PDGF-BB stimulation of the PDGFRβ led to transactivation of EGFR and VEGFR in AI tumorspheres more potently than in AD cells. Sutent inhibition of PDGFRβ abrogated this transactivation in both cell types. In addition, 48 h sutent treatment significantly down-regulated the protein expression of PDGFRβ, MYCN, SOX2 and Survivin in the AI tumorspheres and inhibited tumorsphere self-renewal. Radio-sensitivity in AI tumorspheres was enhanced when sutent treatment was combined with survivin knock-down. We conclude that AI tumorspheres have a differential protein expression compared to AD cancer cells that contribute to their malignant phenotype and radio-resistance. Specific targeting of both cellular phenotypes is needed to improve outcomes in neuroblastoma patients.
Collapse
Affiliation(s)
- Tamara J. Abou-Antoun
- Department of Pharmaceutical Sciences, the School of Pharmacy, Lebanese American University, Byblos, Lebanon
- The Sheikh Zayed Institute for Pediatric Surgical Innovation, Children's National Health System, Washington, D.C., United States of America
- * E-mail:
| | - Javad Nazarian
- Department of Integrative Systems Biology, George Washington University School of Medicine and Health Sciences, Washington, D.C., United States of America
- Center for Genetic Medicine Research, Children’s National Medical Center, Washington, D.C., United States of America
| | - Anthony Ghanem
- The School of Medicine, Lebanese American University, Byblos, Lebanon
| | - Stanislav Vukmanovic
- The Sheikh Zayed Institute for Pediatric Surgical Innovation, Children's National Health System, Washington, D.C., United States of America
| | - Anthony D. Sandler
- The Sheikh Zayed Institute for Pediatric Surgical Innovation, Children's National Health System, Washington, D.C., United States of America
- The Joseph E. Robert Center for Surgical Care, Children's National Health System, Washington, D.C., United States of America
| |
Collapse
|
15
|
Basken J, Stuart SA, Kavran AJ, Lee T, Ebmeier CC, Old WM, Ahn NG. Specificity of Phosphorylation Responses to Mitogen Activated Protein (MAP) Kinase Pathway Inhibitors in Melanoma Cells. Mol Cell Proteomics 2017; 17:550-564. [PMID: 29255136 DOI: 10.1074/mcp.ra117.000335] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2017] [Revised: 11/08/2017] [Indexed: 01/01/2023] Open
Abstract
The BRAF-MKK1/2-ERK1/2 pathway is constitutively activated in response to oncogenic mutations of BRAF in many cancer types, including melanoma. Although small molecules that inhibit oncogenic BRAF and MAP kinase kinase (MKK)1/2 have been successful in clinical settings, resistance invariably develops. High affinity inhibitors of ERK1/2 have been shown in preclinical studies to bypass the resistance of melanoma and colon cancer cells to BRAF and MKK1/2 inhibitors, and are thus promising additions to current treatment protocols. But still unknown is how molecular responses to ERK1/2 inhibitors compare with inhibitors currently in clinical use. Here, we employ quantitative phosphoproteomics to evaluate changes in phosphorylation in response to the ERK inhibitors, SCH772984 and GDC0994, and compare these to the clinically used MKK1/2 inhibitor, trametinib. Combined with previous studies measuring phosphoproteomic responses to the MKK1/2 inhibitor, selumetinib, and the BRAF inhibitor, vemurafenib, the outcomes reveal key insights into pathway organization, phosphorylation specificity and off-target effects of these inhibitors. The results demonstrate linearity in signaling from BRAF to MKK1/2 and from MKK1/2 to ERK1/2. They identify likely targets of direct phosphorylation by ERK1/2, as well as inhibitor off-targets, including an off-target regulation of the p38α mitogen activated protein kinase (MAPK) pathway by the MKK1/2 inhibitor, trametinib, at concentrations used in the literature but higher than in vivo drug concentrations. In addition, several known phosphorylation targets of ERK1/2 are insensitive to MKK or ERK inhibitors, revealing variability in canonical pathway responses between different cell systems. By comparing multiple inhibitors targeted to multiple tiers of protein kinases in the MAPK pathway, we gain insight into regulation and new targets of the oncogenic BRAF driver pathway in cancer cells, and a useful approach for evaluating the specificity of drugs and drug candidates.
Collapse
Affiliation(s)
- Joel Basken
- From the ‡Department of Chemistry and Biochemistry
| | | | - Andrew J Kavran
- From the ‡Department of Chemistry and Biochemistry.,§BioFrontiers Institute
| | - Thomas Lee
- From the ‡Department of Chemistry and Biochemistry
| | - Christopher C Ebmeier
- ¶Department of Molecular, Cellular, Developmental Biology, University of Colorado, Boulder, CO 80303
| | - William M Old
- ¶Department of Molecular, Cellular, Developmental Biology, University of Colorado, Boulder, CO 80303
| | - Natalie G Ahn
- From the ‡Department of Chemistry and Biochemistry, .,§BioFrontiers Institute
| |
Collapse
|
16
|
Turck CW, Webhofer C, Nussbaumer M, Teplytska L, Chen A, Maccarrone G, Filiou MD. Stable isotope metabolic labeling suggests differential turnover of the DPYSL protein family. Proteomics Clin Appl 2016; 10:1269-1272. [PMID: 27763719 DOI: 10.1002/prca.201600078] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2016] [Revised: 10/13/2016] [Accepted: 10/18/2016] [Indexed: 11/10/2022]
Abstract
PURPOSE In this work, we discuss how in vivo 15 N metabolic labeling in combination with MS simultaneously provides information on protein expression and protein turnover. EXPERIMENTAL DESIGN We metabolically labeled mice with the stable nitrogen isotope 15 N using a 15 N-enriched diet and analyzed unlabeled (14 N) versus 15 N-labeled brain tissue with LC-MS/MS. We then compared the 14 N versus 15 N peptide isotopologue clusters of 14 N and 15 N-labeled dihydropyrimidinase-related (DPYSL) proteins. RESULTS We present a workflow assessing protein expression and turnover at different time points of mouse brain development. Our data demonstrate distinct protein turnover patterns of DPYSL3 and DPYSL5 compared to other quantified proteins. We report the presence of two DPYSL3 and DPYSL5 populations with different 15 N incorporation rates, indicating altered protein turnover during development. CONCLUSIONS AND CLINICAL RELEVANCE In vivo 15 N metabolic labeling allows the simultaneous investigation of protein expression and turnover, enabling detailed protein dynamics studies. We report for the first time protein turnover data for the DPYSL2, DPYSL3, and DPYSL5 protein family members. As DPYSL proteins have important functions for nervous system maturation, our data provide useful information on their molecular fate during brain development.
Collapse
Affiliation(s)
- Christoph W Turck
- Department of Translational Research in Psychiatry, Max Planck Institute of Psychiatry, Munich, Germany
| | - Christian Webhofer
- Department of Translational Research in Psychiatry, Max Planck Institute of Psychiatry, Munich, Germany
| | - Markus Nussbaumer
- Department of Stress Neurobiology and Neurogenetics, Max Planck Institute of Psychiatry, Munich, Germany
| | - Larysa Teplytska
- Department of Translational Research in Psychiatry, Max Planck Institute of Psychiatry, Munich, Germany
| | - Alon Chen
- Department of Stress Neurobiology and Neurogenetics, Max Planck Institute of Psychiatry, Munich, Germany
| | - Giuseppina Maccarrone
- Department of Translational Research in Psychiatry, Max Planck Institute of Psychiatry, Munich, Germany
| | - Michaela D Filiou
- Department of Stress Neurobiology and Neurogenetics, Max Planck Institute of Psychiatry, Munich, Germany
| |
Collapse
|
17
|
Inhibition of cathepsin proteases attenuates migration and sensitizes aggressive N-Myc amplified human neuroblastoma cells to doxorubicin. Oncotarget 2016; 6:11175-90. [PMID: 25883214 PMCID: PMC4484448 DOI: 10.18632/oncotarget.3579] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2015] [Accepted: 02/20/2015] [Indexed: 12/23/2022] Open
Abstract
Neuroblastoma arises from the sympathetic nervous system and accounts for 15% of childhood cancer mortality. Amplification of the oncogene N-Myc is reported to occur in more than 20% of patients. While N-Myc amplification status strongly correlates with higher tumour aggression and resistance to treatment, the role of N-Myc in the aggressive progression of the disease is poorly understood. N-Myc being a transcription factor can modulate the secretion of key proteins that may play a pivotal role in tumorigenesis. Characterising the soluble secreted proteins or secretome will aid in understanding their role in the tumour microenvironment, such as promoting cancer cell invasion and resistance to treatment. The aim of this study is to characterise the secretome of human malignant neuroblastoma SK-N-BE2 (N-Myc amplified, more aggressive) and SH-SY5Y (N-Myc non-amplified, less aggressive) cells. Conditioned media from SK-N-BE2 and SH-SY5Y cell lines were subjected to proteomics analysis. We report a catalogue of 894 proteins identified in the secretome isolated from the two neuroblastoma cell lines, SK-N-BE2 and SH-SY5Y. Functional enrichment analysis using FunRich software identified enhanced secretion of proteins implicated in cysteine peptidase activity in the aggressive N-Myc amplified SK-N-BE2 secretome compared to the less tumorigenic SH-SY5Y cells. Protein-protein interaction-based network analysis highlighted the enrichment of cathepsin and epithelial-to-mesenchymal transition sub-networks. For the first time, inhibition of cathepsins by inhibitors sensitized the resistant SK-N-BE2 cells to doxorubicin as well as decreased its migratory potential. The dataset of secretome proteins of N-Myc amplified (more aggressive) and non-amplified (less aggressive) neuroblastoma cells represent the first inventory of neuroblastoma secretome. The study also highlights the prominent role of cathepsins in the N-Myc amplified neuroblastoma pathogenesis. As N-Myc amplification correlates with aggressive neuroblastoma and chemotherapy-based treatment failure, co-treatment with cathepsin inhibitors might be a better avenue for disease management.
Collapse
|
18
|
Tan F, Thiele CJ, Li Z. Collapsin response mediator proteins: Potential diagnostic and prognostic biomarkers in cancers (Review). Oncol Lett 2014; 7:1333-1340. [PMID: 24765134 PMCID: PMC3997700 DOI: 10.3892/ol.2014.1909] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2013] [Accepted: 02/07/2014] [Indexed: 11/13/2022] Open
Abstract
The collapsin response mediator proteins (CRMPs) were originally identified as mediators of semaphorin 3A signaling and neuronal differentiation. The CRMP family consists of five homologous cytosolic proteins, CRMP1-5. Altered expression levels of CRMPs have been observed in several malignant tumors, including lung, breast, colorectal, prostate, pancreatic and neuroendocrine lung cancer. The aim of the current study was to review the recent progress achieved in understanding the association between the different levels of CRMP expression in tumors and their involvement in pathological functions, such as tumor metastasis, disease progression, subtype differentiation and clinical outcome, to address the potential value of CRMPs as biomarkers for the diagnosis and prognosis of cancer patients.
Collapse
Affiliation(s)
- Fei Tan
- Department of Neurology, Shengjing Hospital of China Medical University, Shenyang, Liaoning 110004, P.R. China
| | - Carol J Thiele
- Cell and Molecular Biology Section, Pediatric Oncology Branch, National Cancer Institute, National Institutes of Health, Bethesda, MD 20892, USA
| | - Zhijie Li
- Research Center for Medicine, Shengjing Hospital of China Medical University, Shenyang, Liaoning 110004, P.R. China
| |
Collapse
|
19
|
Tan F, Wahdan-Alaswad R, Yan S, Thiele CJ, Li Z. Dihydropyrimidinase-like protein 3 expression is negatively regulated by MYCN and associated with clinical outcome in neuroblastoma. Cancer Sci 2013; 104:1586-92. [PMID: 24011394 DOI: 10.1111/cas.12278] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2013] [Revised: 08/15/2013] [Accepted: 08/28/2013] [Indexed: 02/01/2023] Open
Abstract
Dihydropyrimidinase-like proteins (DPYSLs) are a family of proteins developmentally regulated during maturation of the nervous system. Recently, members of the DPYSL family have been reported to be involved in cancer with low expression of DPYSL1 correlating with poor clinical outcomes in non-small cell lung cancer and functioning as a metastasis suppressor. Neuroblastoma (NB) is a tumor derived from precursor cells of the sympathetic nervous system and is the most common solid tumor in childhood. So far the biological functions of DPYSLs in NB remain elusive. Studying the potential roles of DPYSLs in NB may give us new insights into NB tumorigenesis. In the present study, using antibodies specific to different members of the DPYSL family, DPYSL1, DPYSL2 and DPYSL3, we investigated regulation of their expression and their subcellular distribution during retinoic acid (RA)-induced differentiation in NB cells. The correlation between DPYSLs and MYCN, a biomarker for poor prognosis of NB, was evaluated. We found that DPYSL3 levels increased during RA-induced cell differentiation. Downregulation of MYCN by small interfering RNA (siRNA) increased DPYSL3 levels, while upregulation of MYCN in non-MYCN NB cells decreased DPYSL3 levels. DPYSL1 and DPYSL2 expression didn't change during RA treatment or under different expression levels of MYCN. Moreover, a high level of DPYSL3 mRNA, but not that of DPYSL1 or DPYSL2 mRNA, was detected in tumors from advanced-stage NB that have a better survival. These data indicated that DPYSL3, not DPYSL1 or DPYSL2, is negatively regulated by MYCN and may be used as a potential biomarker for NB.
Collapse
Affiliation(s)
- Fei Tan
- Department of Neurology, Shengjing Hospital of China Medical University, Shenyang, China; Cell & Molecular Biology Section, Pediatric Oncology Branch, National Cancer Institute, National Institutes of Health, Bethesda, Maryland, USA
| | | | | | | | | |
Collapse
|