1
|
Tang Y, Chen Q, Chen J, Mo Z, Li H, Peng L, Ke Y, Liang B, Li R, Zhu H. Green Tea Polyphenols Cause Apoptosis and Autophagy in HPV-16 Subgene-Immortalized Human Cervical Epithelial Cells via the Activation of the Nrf2 Pathway. Nutr Cancer 2022; 74:3769-3778. [PMID: 35770917 DOI: 10.1080/01635581.2022.2093922] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/17/2022]
Abstract
Infection with human papillomavirus (HPV) is relatively common and certain high-risk HPV strains can induce epithelial dysplasia, increasing the risk of cervical cancer. Green tea polyphenol (GTP) preparations exhibit diverse anti-inflammatory, antioxidative, and antitumor properties In Vitro and In Vivo. Topical GTP application has been recommended as a treatment for genital warts, but the effect of GTP treatment on HPV infection and HPV-associated cancer remains to be established. The present study aimed to explore the mechanism by which GTP affected HPV type 16 (HPV-16)-positive immortalized human cervical epithelial cells. Survival, apoptosis, and autophagocytosis of these cells following GTP treatment was assessed using CCK-8 assay, flow cytometry, and monodansylcadaverine (MDC) staining. These cells were further transfected with an shRNA specific for Nrf2 to generate stable Nrf2-knockdown cells. The levels of Caspase-3, Bcl-2, Bax, P53, Rb, HPV-16 E6, HPV-16 E7, P62, Beclin1 and LC3B were determined via Western blotting. These analyses revealed that GTP treatment induced autophagy and apoptosis in HPV-16-positive cells, while Nrf2 gene knockdown reversed GTP-induced autophagic and apoptotic effects. Together, these results suggested that GTP could alleviate HPV infection and HPV-associated precancerous lesions In Vitro by regulating the Nrf2 pathway, highlighting the therapeutic potential of GTP in treating HPV infection.
Collapse
Affiliation(s)
- Yi Tang
- Guangzhou Medical University, Guangzhou, Guangdong Province, China.,Guangzhou Institute of Dermatology, Guangzhou, Guangdong Province, China.,Institute of Dermatology, Guangzhou Medical University, Guangzhou, Guangdong Province, China
| | - Quan Chen
- Guangzhou Institute of Dermatology, Guangzhou, Guangdong Province, China.,Institute of Dermatology, Guangzhou Medical University, Guangzhou, Guangdong Province, China
| | - Jiaoquan Chen
- Guangzhou Medical University, Guangzhou, Guangdong Province, China.,Guangzhou Institute of Dermatology, Guangzhou, Guangdong Province, China.,Institute of Dermatology, Guangzhou Medical University, Guangzhou, Guangdong Province, China
| | - Ziyin Mo
- Guangzhou Medical University, Guangzhou, Guangdong Province, China.,Guangzhou Institute of Dermatology, Guangzhou, Guangdong Province, China.,Institute of Dermatology, Guangzhou Medical University, Guangzhou, Guangdong Province, China.,Dermatology Department, Guangzhou Red Cross Hospital, Guangzhou, Guangdong Province, China
| | - Huaping Li
- Guangzhou Institute of Dermatology, Guangzhou, Guangdong Province, China.,Institute of Dermatology, Guangzhou Medical University, Guangzhou, Guangdong Province, China
| | - Liqian Peng
- Guangzhou Institute of Dermatology, Guangzhou, Guangdong Province, China.,Institute of Dermatology, Guangzhou Medical University, Guangzhou, Guangdong Province, China
| | - Yanan Ke
- Guangzhou Institute of Dermatology, Guangzhou, Guangdong Province, China.,Institute of Dermatology, Guangzhou Medical University, Guangzhou, Guangdong Province, China
| | - Bihua Liang
- Guangzhou Institute of Dermatology, Guangzhou, Guangdong Province, China.,Institute of Dermatology, Guangzhou Medical University, Guangzhou, Guangdong Province, China
| | - Runxiang Li
- Guangzhou Medical University, Guangzhou, Guangdong Province, China.,Guangzhou Institute of Dermatology, Guangzhou, Guangdong Province, China.,Institute of Dermatology, Guangzhou Medical University, Guangzhou, Guangdong Province, China
| | - Huilan Zhu
- Guangzhou Medical University, Guangzhou, Guangdong Province, China.,Guangzhou Institute of Dermatology, Guangzhou, Guangdong Province, China.,Institute of Dermatology, Guangzhou Medical University, Guangzhou, Guangdong Province, China
| |
Collapse
|
2
|
Leng X, Kan H, Wu Q, Li C, Zheng Y, Peng G. Inhibitory Effect of Salvia miltiorrhiza Extract and Its Active Components on Cervical Intraepithelial Neoplastic Cells. Molecules 2022; 27:1582. [PMID: 35268683 PMCID: PMC8911905 DOI: 10.3390/molecules27051582] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2022] [Revised: 02/23/2022] [Accepted: 02/25/2022] [Indexed: 11/16/2022] Open
Abstract
The effective treatment of cervical intraepithelial neoplasia (CIN) can prevent cervical cancer. Salvia miltiorrhiza is a medicinal and health-promoting plant. To identify a potential treatment for CIN, the effect of S. miltiorrhiza extract and its active components on immortalized cervical epithelial cells was studied in vitro. The H8 cell was used as a CIN model. We found that S. miltiorrhiza extract effectively inhibited H8 cells through the CCK8 method. An HPLC-MS analysis revealed that S. miltiorrhiza extract contained salvianolic acid H, salvianolic acid A, salvianolic acid B, monomethyl lithospermate, 9‴-methyl lithospermate B, and 9‴-methyl lithospermate B/isomer. Salvianolic acid A had the best inhibitory effect on H8 cells with an IC50 value of 5.74 ± 0.63 μM. We also found that the combination of salvianolic acid A and oxysophoridine had a synergistic inhibitory effect on H8 cells at molar ratios of 4:1, 2:1, 1:1, 1:2, and 1:4, with salvianolic acid A/oxysophoridine = 1:2 having the best synergistic effect. Using Hoechst33342, flow cytometry, and Western blotting analysis, we found that the combination of salvianolic acid A and oxysophoridine can induce programmed apoptosis of H8 cells and block the cell cycle in the G2/M phase, which was correlated with decreased cyclinB1 and CDK1 protein levels. In conclusion, S. miltiorrhiza extract can inhibit the growth of H8 cells, and the combination of salvianolic acid A (its active component) and oxysophoridine has a synergistic inhibitory effect on H8 cells and may be a potential treatment for cervical intraepithelial neoplasia.
Collapse
Affiliation(s)
| | | | | | | | | | - Guoping Peng
- College of Pharmacy, Nanjing University of Chinese Medicine, 138 Xianlin Avenue, Qixia District, Nanjing 210023, China; (X.L.); (H.K.); (Q.W.); (C.L.); (Y.Z.)
| |
Collapse
|
3
|
Essien EE, Said Abasse K, Côté A, Mohamed KS, Baig MMFA, Habib M, Naveed M, Yu X, Xie W, Jinfang S, Abbas M. Drinking-water nitrate and cancer risk: A systematic review and meta-analysis. ARCHIVES OF ENVIRONMENTAL & OCCUPATIONAL HEALTH 2020; 77:51-67. [PMID: 33138742 DOI: 10.1080/19338244.2020.1842313] [Citation(s) in RCA: 28] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/27/2023]
Abstract
BACKGROUND Nitrate is an inorganic compound that occurs naturally in all surface and groundwater, although higher concentrations tend to occur only where fertilizers are used on the land. The regulatory limit for nitrate in public drinking water supplies was set to protect against infant methemoglobinemia, but other health effects were not considered. Risk of specific cancers and congenital disabilities may be increased when the nitrate is ingested, and nitrate is reduced to nitrite, which can react with amines and amides by nitrosation to form N-nitroso compounds which are known animal carcinogens. This study aims to evaluate the association between nitrate ingested through drinking water and the risk of developing cancers in humans. METHODS We performed a systematic review following PRISMA and MOOSE guidelines. A literature search was performed using PubMed, EMBASE, the Cochrane Library databases, Web of Science and Google Scholars in the time-frame from their inception to January 2020, for potentially eligible publications. STATA version 12.0 was used to conduct meta-regression and a two-stage meta-analysis. RESULTS A total of 48 articles with 13 different cancer sites were used for analysis. The meta-regression analysis showed stomach cancer had an association with the median dosage of nitrate from drinking water (t = 3.98, p = 0.0001, and adjusted R-squared = 50.61%), other types of cancers didn't show any association. The first stage of meta-analysis showed there was an association only between the risk of brain cancer & glioma (OR = 1.15, 95% CI: 1.06, 1.24) and colon cancer (OR = 1.11, 95% CI: 1.04, 1.17) and nitrate consumption in the analysis comparing the highest ORs versus the lowest. The 2nd stage showed there was an association only between the risk colon cancer (OR = 1.14, 95% CI: 1.04, 1.23) and nitrate consumption in the analysis comparing all combined higher ORs versus the lowest. CONCLUSION This study showed that there is an association between the intake of nitrate from drinking water and a type of cancer in humans. The effective way of controlling nitrate concentrations in drinking water is the prevention of contamination (water pollution). Further research work on this topic is needed.
Collapse
Affiliation(s)
- Eno E Essien
- Key Laboratory of Environmental Medicine Engineering, Ministry of Education, Global Health, School of Public Health, Southeast University, Nanjing, China
| | - Kassim Said Abasse
- Département de Management, Centre de Recherche en Gestion des Services de Sante, Faculté des sciences de l'administration (FSA), Université Laval (UL), Centre Hospitalière Universitaire (CHU) de Québec UL-IUCPQ-UL, Québec, Canada
| | - André Côté
- Département de Management, Centre de Recherche en Gestion des Services de Sante, Faculté des sciences de l'administration (FSA), Université Laval (UL), Centre Hospitalière Universitaire (CHU) de Québec UL-IUCPQ-UL, Québec, Canada
| | - Kassim Said Mohamed
- Département de Management, Centre de Recherche en Gestion des Services de Sante, Faculté des sciences de l'administration (FSA), Université Laval (UL), Centre Hospitalière Universitaire (CHU) de Québec UL-IUCPQ-UL, Québec, Canada
| | - Mirza Muhammad Faran Ashraf Baig
- State Key Laboratory of Analytical Chemistry for Life Sciences, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing, China
| | - Murad Habib
- Ayub Department of Surgery, Ayub Medical College, Abbottabad, Pakistan
| | - Muhammad Naveed
- Key Laboratory of Cardiovascular & Cerebrovascular Medicine, School of Pharmacy, Nanjing Medical University, Nanjing, China
| | - Xiaojin Yu
- Key Laboratory of Environmental Medicine Engineering, Ministry of Education, Global Health, School of Public Health, Southeast University, Nanjing, China
| | - Weihua Xie
- Key Laboratory of Environmental Medicine Engineering, Ministry of Education, Global Health, School of Public Health, Southeast University, Nanjing, China
| | - Sun Jinfang
- Key Laboratory of Environmental Medicine Engineering, Ministry of Education, Global Health, School of Public Health, Southeast University, Nanjing, China
| | - Muhammad Abbas
- State Key Laboratory of Pharmaceutical Biotechnology, Nanjing University, Nanjing, China
| |
Collapse
|
4
|
The HBx and HBc of hepatitis B virus can influence Id1 and Id3 by reducing their transcription and stability. Virus Res 2020; 284:197973. [PMID: 32305567 DOI: 10.1016/j.virusres.2020.197973] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2019] [Revised: 04/08/2020] [Accepted: 04/08/2020] [Indexed: 01/28/2023]
Abstract
Hepatitis B virus (HBV) infection is closely related with the occurrence and development of hepatocellular carcinoma (HCC), in which Hepatitis B virus x protein (HBx) and core protein (HBc) play crucial roles. Additionally, inhibitors of differentiation (Id) proteins exhibited significant correlation with liver cancer development. Here, we identified that HBV dramatically inhibited the expression of Id1 and Id3 in both protein and transcriptional levels for the first time, whereas there was little effect of the virus on Id2. Additionally, two HBV coded protein, HBc and HBx, could reduce the expression of Id1 and Id3 distinctly, whereas the other two viral proteins, HBs and HBp were unable to affect Id1 and Id3 proteins. Both the activity inhibitors and activators further confirmed that HBc inhibited the expression of Id1 and Id3 by BMP/Smad signaling pathway. HBx could interact with both Id1 and Id3 at residues 112-136 of HBx protein, and it could inhibit the two Id proteins by accelerating their degradation. This is the first report about HBc and HBx regulating Id1 and Id3, whereas the detailed mechanism associated with above needed further experiments to clarify.
Collapse
|
5
|
Sun R, Guan H, Liu W, Liang J, Wang F, Li C. Expression of BMP7 in cervical cancer and inhibition of epithelial‑mesenchymal transition by BMP7 knockdown in HeLa cells. Int J Mol Med 2020; 45:1417-1424. [PMID: 32323730 PMCID: PMC7138274 DOI: 10.3892/ijmm.2020.4519] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2019] [Accepted: 02/11/2020] [Indexed: 12/09/2022] Open
Abstract
The aim of the present study was to investigate the expression of bone morphogenetic protein 7 (BMP7) in cervical cancer tissues, the effect of BMP7 on the proliferation, migration and epithelial-mesenchymal transition (EMT) of cervical cancer HeLa cells and the possible mechanism involved. Immunohistochemistry was used to stain the cervical cancer tissues and benign or precancerous lesions. Lentivirus containing BMP7 knockdown was transfected in HeLa cells and western blotting was performed to analyze BMP7 expression. At the same time, the influence of BMP7 knockdown on the expression of phosphorylated (p)-mothers against decapentaplegic homolog 1/5/9 and EMT-related markers [epithelial-cadherin, neural-cadherin, Vimentin, Snail and Slug] was detected. Cell Counting Kit-8 was used to detect cell proliferation. Transwell migration and invasion assays were performed to measure cell invasion and migration. The cell cycle was detected by flow cytometry. Compared with normal cervical epithelial and paracancerous cells, the positive rate of BMP7 expression in cervical cancer tissues was significantly increased. As compared with the control group, the expression of BMP7 was decreased in HeLa cells transfected with lentivirus. The knockdown of BMP7 in cervical cancer HeLa cells inhibited cell proliferation, migration and invasion, resulted in G1 cell cycle arrest and reversed the EMT process. In addition, the expression of p-Smad1/5/9 was significantly decreased in HeLa cells with BMP7 knockdown. BMP7 is expected to be a possible target for the treatment of cervical cancer.
Collapse
Affiliation(s)
- Rui Sun
- Department of Obstetrics and Gynecology, Shandong Provincial Hospital Affiliated to Shandong University, Jinan, Shandong 250021, P.R. China
| | - Hongwei Guan
- Department of Obstetrics and Gynecology, Shandong Provincial Hospital Affiliated to Shandong University, Jinan, Shandong 250021, P.R. China
| | - Wei Liu
- Department of Obstetrics and Gynecology, Shandong Provincial Hospital Affiliated to Shandong University, Jinan, Shandong 250021, P.R. China
| | - Junhui Liang
- Department of Obstetrics and Gynecology, Shandong Provincial Hospital Affiliated to Shandong University, Jinan, Shandong 250021, P.R. China
| | - Fei Wang
- Department of Obstetrics and Gynecology, Shandong Provincial Hospital Affiliated to Shandong University, Jinan, Shandong 250021, P.R. China
| | - Changzhong Li
- Department of Obstetrics and Gynecology, Shandong Provincial Hospital Affiliated to Shandong University, Jinan, Shandong 250021, P.R. China
| |
Collapse
|
6
|
Zhao Z, Bo Z, Gong W, Guo Y. Inhibitor of Differentiation 1 (Id1) in Cancer and Cancer Therapy. Int J Med Sci 2020; 17:995-1005. [PMID: 32410828 PMCID: PMC7211148 DOI: 10.7150/ijms.42805] [Citation(s) in RCA: 53] [Impact Index Per Article: 10.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/06/2019] [Accepted: 03/20/2020] [Indexed: 02/07/2023] Open
Abstract
The inhibitor of DNA binding (Id) proteins are regulators of cell cycle and cell differentiation. Of all Id family proteins, Id1 is mostly linked to tumorigenesis, cellular senescence as well as cell proliferation and survival. Id1 is a stem cell-like gene more than a classical oncogene. Id1 is overexpressed in numerous types of cancers and exerts its promotion effect to these tumors through different pathways. Briefly, Id1 was found significantly correlated with EMT-related proteins, K-Ras signaling, EGFR signaling, BMP signaling, PI3K/Akt signaling, WNT and SHH signaling, c-Myc signaling, STAT3 signaling, RK1/2 MAPK/Egr1 pathway and TGF-β pathway, etc. Id1 has potent effect on facilitating tumorous angiogenesis and metastasis. Moreover, high expression of Id1 plays a facilitating role in the development of drug resistance, including chemoresistance, radiation resistance and resistance to drugs targeting angiogenesis. However, controversial results were also obtained. Overall, Id1 represent a promising target of anti-tumor therapeutics based on its potent promotion effect to cancer. Numerous drugs were found exerting their anti-tumor function through Id1-related signaling pathways, such as fucoidan, berberine, tetramethylpyrazine, crizotinib, cannabidiol and vinblastine.
Collapse
Affiliation(s)
- Zhengxiao Zhao
- Department of Oncology, the First Affiliated Hospital of Zhejiang Chinese Medical University, Hangzhou, Zhejiang 310006, China
| | - Zhiyuan Bo
- The Second Department of Biliary Tract Surgery, Shanghai Eastern Hepatobiliary Surgery Hospital, Shanghai 200438, China
| | - Weiyi Gong
- The Department of Integrative Medicine, Huashan Hospital, Fudan University, 12 Middle Urumqi Road, Shanghai 200040, PR China
| | - Yong Guo
- Department of Oncology, the First Affiliated Hospital of Zhejiang Chinese Medical University, Hangzhou, Zhejiang 310006, China
| |
Collapse
|
7
|
Ke J, Wu R, Chen Y, Abba ML. Inhibitor of DNA binding proteins: implications in human cancer progression and metastasis. Am J Transl Res 2018; 10:3887-3910. [PMID: 30662638 PMCID: PMC6325517] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2018] [Accepted: 11/29/2018] [Indexed: 06/09/2023]
Abstract
Inhibitor of DNA binding (ID) proteins are a class of helix-loop-helix (HLH) transcription regulatory factors that act as dominant-negative antagonists of other basic HLH proteins through the formation of non-functional heterodimers. These proteins have been shown to play critical roles in a wide range of tumor-associated processes, including cell differentiation, cell cycle progression, migration and invasion, epithelial-mesenchymal transition, angiogenesis, stemness, chemoresistance, tumorigenesis, and metastasis. The aberrant expression of ID proteins has not only been detected in many types of human cancers, but is also associated with advanced tumor stages and poor clinical outcome. In this review, we provide an overview of the key biological functions of ID proteins including affiliated signaling pathways. We also describe the regulation of ID proteins in cancer progression and metastasis, and elaborate on expression profiles in cancer and the implications for prognosis. Lastly, we outline strategies for the therapeutic targeting of ID proteins as a promising and effective approach for anticancer therapy.
Collapse
Affiliation(s)
- Jing Ke
- Department of Liver Disease, The Fourth Affiliated Hospital of Anhui Medical UniversityHefei 230022, China
- Center for Biomedicine and Medical Technology Mannheim (CBTM), Medical Faculty Mannheim, University of HeidelbergMannheim 68167, Germany
| | - Ruolin Wu
- Department of Hepatopancreatobiliary Surgery and Organ Transplantation Center, Department of General Surgery, First Affiliated Hospital of Anhui Medical University218 Jixi Avenue, Hefei 230022, Anhui, China
- Center for Biomedicine and Medical Technology Mannheim (CBTM), Medical Faculty Mannheim, University of HeidelbergMannheim 68167, Germany
| | - Yong Chen
- Department of Medical Oncology, Subei People’s HospitalYangzhou, Jiangsu 225000, China
| | - Mohammed L Abba
- Department of Hematology and Oncology, University Hospital Mannheim, Medical Faculty Mannheim, University of HeidelbergMannheim, Germany
| |
Collapse
|