1
|
Xu X, Li J, Setrerrahmane S, Zhang J, Shi S, Hu Y, Lin D, Xu H. A multifunctional antibody fusion protein 57103 targeting CD24, IL-4R, and α vβ 3 for treating cancer and regulating the tumor microenvironment. Biomed Pharmacother 2024; 175:116714. [PMID: 38761419 DOI: 10.1016/j.biopha.2024.116714] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2024] [Revised: 04/25/2024] [Accepted: 05/06/2024] [Indexed: 05/20/2024] Open
Abstract
Cancer is one of the top 10 fatal diseases worldwide, among which advanced metastatic carcinoma has the highest mortality rate. Sunitinib and immune checkpoint blockers are commonly used to treat metastatic renal carcinoma with limited efficacy. Therefore, there is an urgent need to develop novel targeted therapies for metastatic renal cancer. In this study, we designed an antibody fusion protein, 57103, that simultaneously targeted the cluster of differentiation 24 (CD24), interleukin 4 receptor (IL-4R), and integrin receptors αvβ3 and α5β1. In vitro assays showed that 57103 significantly suppressed the proliferation, migration, invasion, colony formation, and adhesion abilities of renal cancer cells, resulting in a comprehensive and significant antitumor effect. Furthermore, 57103 inhibited angiogenesis, promoted THP1-derived M0-type macrophage phagocytosis, and enhanced the antibody-dependent cellular cytotoxicity of peripheral blood mononuclear and NK92MI-CD16a cells. In vivo experiments revealed significant inhibition of tumor growth in ACHN cell xenograft nude mice and an MC38-hCD24 tumor-bearing mouse model. Immunohistochemical analysis showed that 57103 decreased the proliferation and induced the apoptosis of renal cancer cells, while inhibiting angiogenesis. The MC38-hPDL1 and MC38-hCD24-hPDL1 tumor-bearing mouse models further offer the possibility of combining 57103 with the PDL1 antagonist atezolizumab. In conclusion, 57103 is a potential candidate drug for the treatment of metastatic renal carcinoma or PDL1-overexpressing cancer.
Collapse
Affiliation(s)
- Xiaowei Xu
- State Key Laboratory of Natural Medicines, Ministry of Education, the Engineering Research Center of Synthetic Polypeptide Drug Discovery and Evaluation of Jiangsu Province, Department of Marine Pharmacy, China Pharmaceutical University, Nanjing 211198, China
| | - Jian Li
- Research and Development Center of Biopharmaceuticals, Tasly Academy, Tasly Pharmaceutical Co., Ltd., Tianjin, China
| | | | - Juan Zhang
- Antibody Engineering Laboratory, School of Life Science & Technology, China Pharmaceutical University, Nanjing 210009, China
| | - Suoqin Shi
- Jiangsu Rongtai Biotechnology Co., LTD, Nanjing 210033, China
| | - Yahui Hu
- Jiangsu Rongtai Biotechnology Co., LTD, Nanjing 210033, China
| | - Dong Lin
- Jiangsu Rongtai Biotechnology Co., LTD, Nanjing 210033, China
| | - Hanmei Xu
- State Key Laboratory of Natural Medicines, Ministry of Education, the Engineering Research Center of Synthetic Polypeptide Drug Discovery and Evaluation of Jiangsu Province, Department of Marine Pharmacy, China Pharmaceutical University, Nanjing 211198, China; The Engineering Research Center of Synthetic Peptide Drug Discovery and Evaluation of Jiangsu Province, China Pharmaceutical University, Nanjing 210009, China.
| |
Collapse
|
2
|
Zhao K, Wu C, Li X, Niu M, Wu D, Cui X, Zhao H. From mechanism to therapy: the journey of CD24 in cancer. Front Immunol 2024; 15:1401528. [PMID: 38881902 PMCID: PMC11176514 DOI: 10.3389/fimmu.2024.1401528] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2024] [Accepted: 04/25/2024] [Indexed: 06/18/2024] Open
Abstract
CD24 is a glycosylphosphatidylinositol-anchored protein that is expressed in a wide range of tissues and cell types. It is involved in a variety of physiological and pathological processes, including cell adhesion, migration, differentiation, and apoptosis. Additionally, CD24 has been studied extensively in the context of cancer, where it has been found to play a role in tumor growth, invasion, and metastasis. In recent years, there has been growing interest in CD24 as a potential therapeutic target for cancer treatment. This review summarizes the current knowledge of CD24, including its structure, function, and its role in cancer. Finally, we provide insights into potential clinical application of CD24 and discuss possible approaches for the development of targeted cancer therapies.
Collapse
Affiliation(s)
- Kai Zhao
- Department of Neurosurgery, The Affiliated Hospital of Qingdao University, Qingdao, China
| | - Caifeng Wu
- Department of Hand and Foot, The Affiliated Hospital of Qingdao University, Qingdao, China
| | - Xiangjun Li
- Department of Breast Surgery, The Affiliated Hospital of Qingdao University, Qingdao, China
| | - Mengchao Niu
- Department of Operation Room, The Affiliated Hospital of Qingdao University, Qingdao, China
| | - Dan Wu
- Department of Neurosurgery, The Affiliated Hospital of Qingdao University, Qingdao, China
| | - Xiaofeng Cui
- Department of Neurosurgery, The Affiliated Hospital of Qingdao University, Qingdao, China
| | - Hai Zhao
- Department of Neurosurgery, The Affiliated Hospital of Qingdao University, Qingdao, China
| |
Collapse
|
3
|
Kina Kilicaslan U, Aru B, Aydin Aksu S, Vardar Aker F, Yanikkaya Demirel G, Gurleyik MG. Relationship between immune checkpoint proteins and neoadjuvant chemotherapy response in breast cancer. Surg Oncol 2024; 52:102037. [PMID: 38290327 DOI: 10.1016/j.suronc.2024.102037] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2023] [Revised: 01/02/2024] [Accepted: 01/19/2024] [Indexed: 02/01/2024]
Abstract
INTRODUCTION Following major developments in cancer immunotherapy, treatments targeting immune checkpoint proteins (ICP) gained interest in breast cancer, though studies mostly focus on patients with metastatic disease as well as patients nonresponsive to the conventional treatments. Herein, we aimed to investigate the levels of ICP in tumor stroma and tumor infiltrating lymphocytes, and tumor tissue prior to neoadjuvant chemotherapy administration to evaluate the relationship between ICP levels, clinicopathological parameters, and NAC response. MATERIALS AND METHODS This study was conducted with 51 patients where PD-1, PD-L1, CTLA-4, TIM-3, CD24 and CD44 levels were investigated in CD45+ cells while CD326, CD24, CD44 and PD-L1 protein expression levels were investigated in CD45- population. In addition, CD44 and CD24 levels were evaluated in the tumor stroma. TIL levels were investigated according to the TILS Working Group. Treatment responses after NAC were evaluated according to the MD Anderson RCB score. RESULTS Our results revealed positive correlation between CTLA-4 and CD44 expression in cases with high TIL levels as well as TIL levels and CTLA-4 expression in cases with partial response. Similarly, positive correlation was detected between TIM3 and PD-L1 levels in cases with good response. In addition, a negative correlation between TILs after NAC and PD-1/PD-L1 expression in lymphocytes in cases with partial complete response. CONCLUSIONS Our study provides preliminary data about the correlation between ICP and clinicopathological status and NAC response in breast cancer, in addition to underlining the requirement for further research to determine their potential as therapeutic targets.
Collapse
Affiliation(s)
- Umut Kina Kilicaslan
- Department of General Surgery, Istanbul Haydarpasa Numune Training and Research Hospital, University of Health Sciences Turkey, İstanbul, Turkey
| | - Basak Aru
- Department of Immunology, Faculty of Medicine, Yeditepe University, Istanbul, Turkey
| | - Sibel Aydin Aksu
- Department of Radiology, Istanbul Haydarpasa Numune Training and Research Hospital, University of Health Sciences Turkey, İstanbul, Turkey
| | - Fugen Vardar Aker
- Department of Pathology, Istanbul Haydarpasa Numune Training and Research Hospital, University of Health Sciences Turkey, İstanbul, Turkey
| | | | - Meryem Gunay Gurleyik
- Department of General Surgery, Istanbul Haydarpasa Numune Training and Research Hospital, University of Health Sciences Turkey, İstanbul, Turkey.
| |
Collapse
|
4
|
Yang Y, Wu H, Yang Y, Kang Y, He R, Zhou B, Guo H, Zhang J, Li J, Ge C, Wang T. Dual blockade of CD47 and CD24 signaling using a novel bispecific antibody fusion protein enhances macrophage immunotherapy. Mol Ther Oncolytics 2023; 31:100747. [PMID: 38046893 PMCID: PMC10689933 DOI: 10.1016/j.omto.2023.100747] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2023] [Accepted: 11/03/2023] [Indexed: 12/05/2023] Open
Abstract
CD47 and its receptor signal regulatory protein α (SIRPα) act as a dominant antiphagocytic, "don't eat me" signal. Recent studies reveal CD24 as a novel target for cancer immunotherapy by macrophages in ovarian cancer and breast cancer. However, whether simultaneous blockade of CD47 and CD24 by a bispecific antibody may result in a potential synergy is still unclear. In the present study, we for the first time designed and developed a bispecific antibody fusion protein, PPAB001 for cotargeting CD47 and CD24. Data demonstrate that simultaneous blockade of CD47/SIRPα and CD24/Siglec-10 signaling by PPAB001 potently promoted macrophage phagocytosis of tumor cells. Compared to single CD47 or CD24 targeting agents, PPAB001 was more effective in inhibiting tumor growth in both mouse 4T-1 syngeneic and human SK-OV-3 xenogeneic tumor models. Mechanistically, we found that PPAB001 therapy markedly increased the proportion of tumor-infiltrating macrophages and upregulated interleukin-6 and tumor necrosis factor-α levels that were representative macrophage inflammatory cytokines. Notably, an increased ratio of M1/M2 in tumor-infiltrating macrophages in the mice treated with PPAB001 suggested that the dual blockade may promote the transition of macrophages from M2 to M1. Taken together, our data supported the development of PPAB001 as a novel immunotherapeutic in the treatment of CD47 and CD24 double-positive cancers.
Collapse
Affiliation(s)
- Yun Yang
- International Joint Research Laboratory for Recombinant Pharmaceutical Protein Expression System of Henan, School of Basic Medical Sciences, Xinxiang Medical University, Xinxiang 453000, China
- State Key Laboratory of Macromolecular Drugs and Large-Scale Manufacturing, Shanghai 200120, China
| | - He Wu
- International Joint Research Laboratory for Recombinant Pharmaceutical Protein Expression System of Henan, School of Basic Medical Sciences, Xinxiang Medical University, Xinxiang 453000, China
| | - Yan Yang
- International Joint Research Laboratory for Recombinant Pharmaceutical Protein Expression System of Henan, School of Basic Medical Sciences, Xinxiang Medical University, Xinxiang 453000, China
| | - Yan Kang
- International Joint Research Laboratory for Recombinant Pharmaceutical Protein Expression System of Henan, School of Basic Medical Sciences, Xinxiang Medical University, Xinxiang 453000, China
| | - Runjia He
- International Joint Research Laboratory for Recombinant Pharmaceutical Protein Expression System of Henan, School of Basic Medical Sciences, Xinxiang Medical University, Xinxiang 453000, China
| | - Bei Zhou
- International Joint Research Laboratory for Recombinant Pharmaceutical Protein Expression System of Henan, School of Basic Medical Sciences, Xinxiang Medical University, Xinxiang 453000, China
| | - Huaizu Guo
- State Key Laboratory of Macromolecular Drugs and Large-Scale Manufacturing, Shanghai 200120, China
- NMPA Key Laboratory for Quality Control of Therapeutic Monoclonal Antibodies, Shanghai 200120, China
| | - Jing Zhang
- International Joint Research Laboratory for Recombinant Pharmaceutical Protein Expression System of Henan, School of Basic Medical Sciences, Xinxiang Medical University, Xinxiang 453000, China
| | - Jianqin Li
- International Joint Research Laboratory for Recombinant Pharmaceutical Protein Expression System of Henan, School of Basic Medical Sciences, Xinxiang Medical University, Xinxiang 453000, China
| | - Chunpo Ge
- International Joint Research Laboratory for Recombinant Pharmaceutical Protein Expression System of Henan, School of Basic Medical Sciences, Xinxiang Medical University, Xinxiang 453000, China
| | - Tianyun Wang
- International Joint Research Laboratory for Recombinant Pharmaceutical Protein Expression System of Henan, School of Basic Medical Sciences, Xinxiang Medical University, Xinxiang 453000, China
| |
Collapse
|
5
|
Yang Y, Zhu G, Yang L, Yang Y. Targeting CD24 as a novel immunotherapy for solid cancers. Cell Commun Signal 2023; 21:312. [PMID: 37919766 PMCID: PMC10623753 DOI: 10.1186/s12964-023-01315-w] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2023] [Accepted: 09/13/2023] [Indexed: 11/04/2023] Open
Abstract
Cluster of differentiation 24 (CD24), a mucin-like highly glycosylated molecule has been extensively studied as a cancer stem cell marker in a variety of solid cancers. The functional role of CD24 is either fulfilled by combining with ligands or participating in signal transduction, which mediate the initiation and progression of neoplasms. Recently, CD24 was also described as an innate immune checkpoint with apparent significance in several types of solid cancers. Herein, we review the current understanding of the molecular fundamentals of CD24, the role of CD24 in tumorigenesis and cancer progression, the possibility as a promising therapeutic target and summarized different therapeutic agents or strategies targeting CD24 in solid cancers. Video Abstract.
Collapse
Affiliation(s)
- Yan Yang
- Xinxiang Engineering Technology Research Center of Tumor-Targeted Drug Development, School of Basic Medical Sciences, Xinxiang Medical University, Xinxiang, 453000, Henan, China
| | - Guangming Zhu
- Clinical Laboratory, The First People's Hospital of Taian, Taian 271000, Shandong, China
| | - Li Yang
- Department of Obstetrics and Gynecology, The Third Affiliated Hospital of Zhengzhou University, Zhengzhou Key Laboratory of Endometrial Disease Prevention and Treatment Zhengzhou China, Zhengzhou, 450052, Henan, China
| | - Yun Yang
- Xinxiang Engineering Technology Research Center of Tumor-Targeted Drug Development, School of Basic Medical Sciences, Xinxiang Medical University, Xinxiang, 453000, Henan, China.
| |
Collapse
|
6
|
Moon SY, Han M, Ryu G, Shin SA, Lee JH, Lee CS. Emerging Immune Checkpoint Molecules on Cancer Cells: CD24 and CD200. Int J Mol Sci 2023; 24:15072. [PMID: 37894750 PMCID: PMC10606340 DOI: 10.3390/ijms242015072] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2023] [Revised: 10/04/2023] [Accepted: 10/10/2023] [Indexed: 10/29/2023] Open
Abstract
Cancer immunotherapy strategies are based on the utilization of immune checkpoint inhibitors to instigate an antitumor immune response. The efficacy of immune checkpoint blockade, directed at adaptive immune checkpoints, has been demonstrated in select cancer types. However, only a limited subset of patients has exhibited definitive outcomes characterized by a sustained response after discontinuation of therapy. Recent investigations have highlighted the significance of immune checkpoint molecules that are overexpressed in cancer cells and inhibit myeloid lineage immune cells within a tumor microenvironment. These checkpoints are identified as potential targets for anticancer immune responses. Notably, the immune checkpoint molecules CD24 and CD200 have garnered attention owing to their involvement in tumor immune evasion. CD24 and CD200 are overexpressed across diverse cancer types and serve as signaling checkpoints by engaging their respective receptors, Siglec-10 and CD200 receptor, which are expressed on tumor-associated myeloid cells. In this review, we summarized and discussed the latest advancements and insights into CD24 and CD200 as emergent immune checkpoint moieties, further delving into their therapeutic potentials for cancer treatment.
Collapse
Affiliation(s)
- Sun Young Moon
- College of Pharmacy and Research Institute of Pharmaceutical Sciences, Gyeongsang National University, Jinju 52828, Republic of Korea; (S.Y.M.); (M.H.); (G.R.); (S.-A.S.)
| | - Minjoo Han
- College of Pharmacy and Research Institute of Pharmaceutical Sciences, Gyeongsang National University, Jinju 52828, Republic of Korea; (S.Y.M.); (M.H.); (G.R.); (S.-A.S.)
| | - Gyoungah Ryu
- College of Pharmacy and Research Institute of Pharmaceutical Sciences, Gyeongsang National University, Jinju 52828, Republic of Korea; (S.Y.M.); (M.H.); (G.R.); (S.-A.S.)
| | - Seong-Ah Shin
- College of Pharmacy and Research Institute of Pharmaceutical Sciences, Gyeongsang National University, Jinju 52828, Republic of Korea; (S.Y.M.); (M.H.); (G.R.); (S.-A.S.)
| | - Jun Hyuck Lee
- Research Unit of Cryogenic Novel Material, Korea Polar Research Institute, Incheon 21990, Republic of Korea;
- Department of Polar Sciences, University of Science and Technology, Incheon 21990, Republic of Korea
| | - Chang Sup Lee
- College of Pharmacy and Research Institute of Pharmaceutical Sciences, Gyeongsang National University, Jinju 52828, Republic of Korea; (S.Y.M.); (M.H.); (G.R.); (S.-A.S.)
| |
Collapse
|
7
|
Panagiotou E, Syrigos NK, Charpidou A, Kotteas E, Vathiotis IA. CD24: A Novel Target for Cancer Immunotherapy. J Pers Med 2022; 12:jpm12081235. [PMID: 36013184 PMCID: PMC9409925 DOI: 10.3390/jpm12081235] [Citation(s) in RCA: 47] [Impact Index Per Article: 15.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2022] [Revised: 07/25/2022] [Accepted: 07/26/2022] [Indexed: 12/31/2022] Open
Abstract
Cluster of differentiation 24 (CD24) is a small, highly glycosylated cell adhesion protein that is normally expressed by immune as well as epithelial, neural, and muscle cells. Tumor CD24 expression has been linked with alterations in several oncogenic signaling pathways. In addition, the CD24/Siglec-10 interaction has been implicated in tumor immune evasion, inhibiting macrophage-mediated phagocytosis as well as natural killer (NK) cell cytotoxicity. CD24 blockade has shown promising results in preclinical studies. Although there are limited data on efficacy, monoclonal antibodies against CD24 have demonstrated clinical safety and tolerability in two clinical trials. Other treatment modalities evaluated in the preclinical setting include antibody–drug conjugates and chimeric antigen receptor (CAR) T cell therapy. In this review, we summarize current evidence and future perspectives on CD24 as a potential target for cancer immunotherapy.
Collapse
|
8
|
Saha T, Lukong KE. Breast Cancer Stem-Like Cells in Drug Resistance: A Review of Mechanisms and Novel Therapeutic Strategies to Overcome Drug Resistance. Front Oncol 2022; 12:856974. [PMID: 35392236 PMCID: PMC8979779 DOI: 10.3389/fonc.2022.856974] [Citation(s) in RCA: 66] [Impact Index Per Article: 22.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2022] [Accepted: 02/21/2022] [Indexed: 12/12/2022] Open
Abstract
Breast cancer is the most frequent type of malignancy in women worldwide, and drug resistance to the available systemic therapies remains a major challenge. At the molecular level, breast cancer is heterogeneous, where the cancer-initiating stem-like cells (bCSCs) comprise a small yet distinct population of cells within the tumor microenvironment (TME) that can differentiate into cells of multiple lineages, displaying varying degrees of cellular differentiation, enhanced metastatic potential, invasiveness, and resistance to radio- and chemotherapy. Based on the expression of estrogen and progesterone hormone receptors, expression of human epidermal growth factor receptor 2 (HER2), and/or BRCA mutations, the breast cancer molecular subtypes are identified as TNBC, HER2 enriched, luminal A, and luminal B. Management of breast cancer primarily involves resection of the tumor, followed by radiotherapy, and systemic therapies including endocrine therapies for hormone-responsive breast cancers; HER2-targeted therapy for HER2-enriched breast cancers; chemotherapy and poly (ADP-ribose) polymerase inhibitors for TNBC, and the recent development of immunotherapy. However, the complex crosstalk between the malignant cells and stromal cells in the breast TME, rewiring of the many different signaling networks, and bCSC-mediated processes, all contribute to overall drug resistance in breast cancer. However, strategically targeting bCSCs to reverse chemoresistance and increase drug sensitivity is an underexplored stream in breast cancer research. The recent identification of dysregulated miRNAs/ncRNAs/mRNAs signatures in bCSCs and their crosstalk with many cellular signaling pathways has uncovered promising molecular leads to be used as potential therapeutic targets in drug-resistant situations. Moreover, therapies that can induce alternate forms of regulated cell death including ferroptosis, pyroptosis, and immunotherapy; drugs targeting bCSC metabolism; and nanoparticle therapy are the upcoming approaches to target the bCSCs overcome drug resistance. Thus, individualizing treatment strategies will eliminate the minimal residual disease, resulting in better pathological and complete response in drug-resistant scenarios. This review summarizes basic understanding of breast cancer subtypes, concept of bCSCs, molecular basis of drug resistance, dysregulated miRNAs/ncRNAs patterns in bCSCs, and future perspective of developing anticancer therapeutics to address breast cancer drug resistance.
Collapse
Affiliation(s)
- Taniya Saha
- Department of Biochemistry, Microbiology and Immunology, University of Saskatchewan, Saskatoon, SK, Canada
| | - Kiven Erique Lukong
- Department of Biochemistry, Microbiology and Immunology, University of Saskatchewan, Saskatoon, SK, Canada
| |
Collapse
|
9
|
Ghuwalewala S, Ghatak D, Das S, Roy S, Das P, Butti R, Gorain M, Nath S, Kundu GC, Roychoudhury S. MiRNA-146a/AKT/β-Catenin Activation Regulates Cancer Stem Cell Phenotype in Oral Squamous Cell Carcinoma by Targeting CD24. Front Oncol 2021; 11:651692. [PMID: 34712602 PMCID: PMC8546321 DOI: 10.3389/fonc.2021.651692] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2021] [Accepted: 09/16/2021] [Indexed: 01/06/2023] Open
Abstract
CD44highCD24low population has been previously reported as cancer stem cells (CSCs) in Oral Squamous Cell Carcinoma (OSCC). Increasing evidence suggests potential involvement of microRNA (miRNA) network in modulation of CSC properties. MiRNAs have thus emerged as crucial players in tumor development and maintenance. However, their role in maintenance of OSCC stem cells remains unclear. Here we report an elevated expression of miR-146a in the CD44highCD24low population within OSCC cells and primary HNSCC tumors. Moreover, over-expression of miR-146a results in enhanced stemness phenotype by augmenting the CD44highCD24low population. We demonstrate that miR-146a stabilizes β-catenin with concomitant loss of E-cadherin and CD24. Interestingly, CD24 is identified as a novel functional target of miR-146a and ectopic expression of CD24 abrogates miR-146a driven potential CSC phenotype. Mechanistic analysis reveals that higher CD24 levels inhibit AKT phosphorylation leading to β-catenin degradation. Using stably expressing miR-146a/CD24 OSCC cell lines, we also validate that the miR-146a/CD24/AKT loop significantly alters tumorigenic ability in vivo. Furthermore, we confirmed that β-catenin trans-activates miR-146a, thereby forming a positive feedback loop contributing to stem cell maintenance. Collectively, our study demonstrates that miR-146a regulates CSCs in OSCC through CD24-AKT-β-catenin axis.
Collapse
Affiliation(s)
- Sangeeta Ghuwalewala
- Cancer Biology and Inflammatory Disorder Division, Council of Scientific and Industrial Research (CSIR)-Indian Institute of Chemical Biology, Kolkata, India
| | - Dishari Ghatak
- Cancer Biology and Inflammatory Disorder Division, Council of Scientific and Industrial Research (CSIR)-Indian Institute of Chemical Biology, Kolkata, India
| | - Sumit Das
- Laboratory of Tumor Biology, Angiogenesis and Nanomedicine Research, National Centre for Cell Science (NCCS), Pune, India
| | - Stuti Roy
- Division of Research, Saroj Gupta Cancer Centre and Research Institute, Kolkata, India
| | - Pijush Das
- Cancer Biology and Inflammatory Disorder Division, Council of Scientific and Industrial Research (CSIR)-Indian Institute of Chemical Biology, Kolkata, India
| | - Ramesh Butti
- Laboratory of Tumor Biology, Angiogenesis and Nanomedicine Research, National Centre for Cell Science (NCCS), Pune, India
| | - Mahadeo Gorain
- Laboratory of Tumor Biology, Angiogenesis and Nanomedicine Research, National Centre for Cell Science (NCCS), Pune, India
| | - Somsubhra Nath
- Division of Research, Saroj Gupta Cancer Centre and Research Institute, Kolkata, India
| | - Gopal C Kundu
- Laboratory of Tumor Biology, Angiogenesis and Nanomedicine Research, National Centre for Cell Science (NCCS), Pune, India
| | - Susanta Roychoudhury
- Cancer Biology and Inflammatory Disorder Division, Council of Scientific and Industrial Research (CSIR)-Indian Institute of Chemical Biology, Kolkata, India.,Division of Research, Saroj Gupta Cancer Centre and Research Institute, Kolkata, India
| |
Collapse
|
10
|
Ni YH, Zhao X, Wang W. CD24, A Review of its Role in Tumor Diagnosis, Progression and Therapy. Curr Gene Ther 2021; 20:109-126. [PMID: 32576128 DOI: 10.2174/1566523220666200623170738] [Citation(s) in RCA: 26] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2020] [Revised: 05/28/2020] [Accepted: 06/02/2020] [Indexed: 02/08/2023]
Abstract
CD24, is a mucin-like GPI-anchored molecules. By immunohistochemistry, it is widely detected in many solid tumors, such as breast cancers, genital system cancers, digestive system cancers, neural system cancers and so on. The functional roles of CD24 are either fulfilled by combination with ligands or participate in signal transduction, which mediate the initiation and progression of neoplasms. However, the character of CD24 remains to be intriguing because there are still opposite voices about the impact of CD24 on tumors. In preclinical studies, CD24 target therapies, including monoclonal antibodies, target silencing by RNA interference and immunotherapy, have shown us brighten futures on the anti-tumor application. Nevertheless, evidences based on clinical studies are urgently needed. Here, with expectancy to spark new ideas, we summarize the relevant studies about CD24 from a tumor perspective.
Collapse
Affiliation(s)
- Yang-Hong Ni
- State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, Sichuan University, and Collaborative Innovation Center for Biotherapy Chengdu 610041, Sichuan, China
| | - Xia Zhao
- Department of Gynecology and Obstetrics, Development and Related Disease of Women and Children Key Laboratory of Sichuan Province, Key Laboratory of Birth Defects and Related Diseases of Women and Children, Ministry of Education, West China Second Hospital, Sichuan University, Chengdu, 610041, China
| | - Wei Wang
- State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, Sichuan University, and Collaborative Innovation Center for Biotherapy Chengdu 610041, Sichuan, China
| |
Collapse
|
11
|
Zheng Q, Zhang M, Zhou F, Zhang L, Meng X. The Breast Cancer Stem Cells Traits and Drug Resistance. Front Pharmacol 2021; 11:599965. [PMID: 33584277 PMCID: PMC7876385 DOI: 10.3389/fphar.2020.599965] [Citation(s) in RCA: 62] [Impact Index Per Article: 15.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2020] [Accepted: 11/17/2020] [Indexed: 12/13/2022] Open
Abstract
Drug resistance is a major challenge in breast cancer (BC) treatment at present. Accumulating studies indicate that breast cancer stem cells (BCSCs) are responsible for the BC drugs resistance, causing relapse and metastasis in BC patients. Thus, BCSCs elimination could reverse drug resistance and improve drug efficacy to benefit BC patients. Consequently, mastering the knowledge on the proliferation, resistance mechanisms, and separation of BCSCs in BC therapy is extremely helpful for BCSCs-targeted therapeutic strategies. Herein, we summarize the principal BCSCs surface markers and signaling pathways, and list the BCSCs-related drug resistance mechanisms in chemotherapy (CT), endocrine therapy (ET), and targeted therapy (TT), and display therapeutic strategies for targeting BCSCs to reverse drug resistance in BC. Even more importantly, more attention should be paid to studies on BCSC-targeted strategies to overcome the drug resistant dilemma of clinical therapies in the future.
Collapse
Affiliation(s)
- Qinghui Zheng
- Department of Breast Surgery, Zhejiang Provincial People's Hospital, Hangzhou, China
| | - Mengdi Zhang
- MOE Laboratory of Biosystems Homeostasis and Protection and Innovation Center for Cell Signaling Network, Life Sciences Institute, Zhejiang University, Hangzhou, China
| | - Fangfang Zhou
- Institutes of Biology and Medical Science, Soochow University, Suzhou, China
| | - Long Zhang
- MOE Laboratory of Biosystems Homeostasis and Protection and Innovation Center for Cell Signaling Network, Life Sciences Institute, Zhejiang University, Hangzhou, China
| | - Xuli Meng
- Department of Breast Surgery, Zhejiang Provincial People's Hospital, Hangzhou, China
| |
Collapse
|
12
|
Altevogt P, Sammar M, Hüser L, Kristiansen G. Novel insights into the function of CD24: A driving force in cancer. Int J Cancer 2020; 148:546-559. [PMID: 32790899 DOI: 10.1002/ijc.33249] [Citation(s) in RCA: 122] [Impact Index Per Article: 24.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2020] [Revised: 07/23/2020] [Accepted: 07/28/2020] [Indexed: 12/12/2022]
Abstract
CD24 is a highly glycosylated protein with a small protein core that is linked to the plasma membrane via a glycosyl-phosphatidylinositol anchor. CD24 is primarily expressed by immune cells but is often overexpressed in human tumors. In cancer, CD24 is a regulator of cell migration, invasion and proliferation. Its expression is associated with poor prognosis and it is used as cancer stemness marker. Recently, CD24 on tumor cells was identified as a phagocytic inhibitor ("do not eat me" signal) having a suppressive role in tumor immunity via binding to Siglec-10 on macrophages. This finding is reminiscent of the demonstration that soluble CD24-Fc can dampen the immune system in autoimmune disease. In the present review, we summarize recent progress on the role of the CD24-Siglec-10 binding axis at the interface between tumor cells and the immune system, and the role of CD24 genetic polymorphisms in cancer. We describe the specific function of cytoplasmic CD24 and discuss the presence of CD24 on tumor-released extracellular vesicles. Finally, we evaluate the potential of CD24-based immunotherapy.
Collapse
Affiliation(s)
- Peter Altevogt
- Skin Cancer Unit, German Cancer Research Center (DKFZ), Heidelberg, Germany.,Department of Dermatology, Venereology and Allergology, University Medical Center Mannheim, Ruprecht-Karl University of Heidelberg, Mannheim, Germany
| | - Marei Sammar
- ORT Braude College for Engineering, Karmiel, Israel
| | - Laura Hüser
- Skin Cancer Unit, German Cancer Research Center (DKFZ), Heidelberg, Germany.,Department of Dermatology, Venereology and Allergology, University Medical Center Mannheim, Ruprecht-Karl University of Heidelberg, Mannheim, Germany
| | | |
Collapse
|
13
|
Reduced DAXX Expression Is Associated with Reduced CD24 Expression in Colorectal Cancer. Cells 2019; 8:cells8101242. [PMID: 31614769 PMCID: PMC6830082 DOI: 10.3390/cells8101242] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2019] [Revised: 08/23/2019] [Accepted: 10/11/2019] [Indexed: 12/14/2022] Open
Abstract
The presence of an activating mutation of the Wnt/β-catenin signaling pathway is found in ~90% of colorectal cancer (CRC) cases. Death domain-associated protein (DAXX), a nuclear protein, interacts with β-catenin in CRC cells. We investigated DAXX expression in 106 matched sample pairs of CRC and adjacent normal tissue by Western blotting. This study evaluated DAXX expression and its clinical implications in CRC. The results revealed that DAXX expression was significantly lower in the patients with the positive serum carcinoembryonic antigen (CEA) screening results compared to the patients with negative CEA screening levels (p < 0.001). It has been reported that CD24 is a Wnt target in CRC cells. Here, we further revealed that DAXX expression was significantly correlated with CD24 expression (rho = 0.360, p < 0.001) in 106 patients. Consistent with this, in the CEA-positive subgroup, of which the carcinomas expressed DAXX at low levels, they were significantly correlated with CD24 expression (rho = 0.461, p < 0.005). Therefore, reduced DAXX expression is associated with reduced CD24 expression in CRC. Notably, in the Hct116 cells, DAXX knockdown using short-hairpin RNA against DAXX (shDAXX) not only caused significant cell proliferation, but also promoted metastasis. The DAXX-knockdown cells also demonstrated significantly decreased CD24 expression, however the intracellular localization of CD24 did not change. Thus, DAXX might be considered as a potential regulator of CD24 or β-catenin expression, which might be correlated with proliferative and metastatic potential of CRC.
Collapse
|
14
|
Huang S, Yuan N, Wang G, Wu F, Feng L, Luo M, Li M, Luo A, Zhao X, Zhang L. Cellular communication promotes mammosphere growth and collective invasion through microtubule‑like structures and angiogenesis. Oncol Rep 2018; 40:3297-3312. [PMID: 30542711 PMCID: PMC6196647 DOI: 10.3892/or.2018.6778] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2018] [Accepted: 09/27/2018] [Indexed: 11/22/2022] Open
Abstract
Networks of nanotubes and microtubules are highly valued in cellular communication, and collective cancer movement has been revealed to be associated with cell information exchange. In the present study, cellular communication was demonstrated to participate in mammosphere growth, differentiation and collective invasion. By promoting differentiation, networks of cells and microtubule-like structures were verified. Analyses of cell cycle progression, stemness markers and gene expression indicated that mammospheres had collective characteristics of stemness and differentiation. Invasion assays revealed that networks of microtubule-like structures promoted collective invasion. Conversely, using anti-angiogenic intervention, the growth of stem-like mammospheres and cellular communication links were effectively inhibited. In vivo experiments revealed that cellular communication promoted tumor growth and metastasis through the formation of nodular fusion, cluttered microtubule-like structures and cancer stem cells, as well as vascular niches. In conclusion, the present results demonstrated that a network of cells and structures were largely present in mammosphere cellular communication in vitro and in vivo. Therefore, blocking cellular communication may prove beneficial in halting the progression of mammary tumors.
Collapse
Affiliation(s)
- Shangke Huang
- Department of Medical Oncology, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, Shaanxi 710061, P.R. China
| | - Na Yuan
- Department of Ultrasound, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, Shaanxi 710061, P.R. China
| | - Guanying Wang
- Department of Medical Oncology, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, Shaanxi 710061, P.R. China
| | - Fang Wu
- Department of Neonatology, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, Shaanxi 710061, P.R. China
| | - Lu Feng
- Department of Medical Oncology, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, Shaanxi 710061, P.R. China
| | - Minna Luo
- Department of Hematology, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, Shaanxi 710061, P.R. China
| | - Miao Li
- Department of Medical Oncology, The Fifth People's Hospital of Qinghai Province, Xining, Qinghai 810007, P.R. China
| | - Anqi Luo
- Department of Medical Oncology, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, Shaanxi 710061, P.R. China
| | - Xinhan Zhao
- Department of Medical Oncology, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, Shaanxi 710061, P.R. China
| | - Lingxiao Zhang
- Department of Medical Oncology, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, Shaanxi 710061, P.R. China
| |
Collapse
|
15
|
Voutsadakis IA. HER2 in stemness and epithelial-mesenchymal plasticity of breast cancer. Clin Transl Oncol 2018; 21:539-555. [PMID: 30306401 DOI: 10.1007/s12094-018-1961-x] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2018] [Accepted: 10/03/2018] [Indexed: 02/06/2023]
Abstract
Breast cancer had been the first non-hematologic malignancy where sub-types based on molecular characterization had entered clinical practice. HER2 over-expression, due to either gene amplification or protein up-regulation, defines one of these sub-types and is clinically exploited by addition of HER2-targeted treatments to the regimens of treatment. Nevertheless, in many occasions HER2-positive cancers are resistant or become refractory to these therapies. Several mechanisms, such as activation of alternative pathways or loss of expression of the receptor in cancer cells, have been proposed as the cause of these therapeutic failures. Cancer stem cells (CSCs, alternatively called tumor-initiating cells) comprise a small percentage of the tumor cells, but are capable of reconstituting and propagating tumors due to their superior intrinsic capacity for regeneration, survival and resistance to therapies. CSCs possess circuits enabling epigenetic plasticity which endow them with the ability to alternate between epithelial and mesenchymal states. This paper will discuss the expression and regulation of HER2 in CSCs of the different sub-types of breast cancer and relationships of the receptor with both the circuits of stemness and epithelial-mesenchymal plasticity. Therapeutic repercussions of the relationship of HER2-initiated signaling with stemness networks will also be proposed.
Collapse
Affiliation(s)
- I A Voutsadakis
- Algoma District Cancer Program, Sault Area Hospital, 750 Great Northern Road, Sault Ste. Marie, ON, P6B 0A8, Canada. .,Section of Internal Medicine, Division of Clinical Sciences, Northern Ontario School of Medicine, Sudbury, ON, Canada.
| |
Collapse
|
16
|
Reshadmanesh A, Rahbarizadeh F, Ahmadvand D, Jafari Iri Sofla F. Evaluation of cellular and transcriptional targeting of breast cancer stem cells via anti-HER2 nanobody conjugated PAMAM dendrimers. ARTIFICIAL CELLS NANOMEDICINE AND BIOTECHNOLOGY 2018; 46:S105-S115. [PMID: 30246563 DOI: 10.1080/21691401.2018.1489269] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Abstract
According to the cancer stem cell (CSC) theory, a small subset of cells with stem cell-like characteristics is responsible for tumor initiation, progression, and recurrence. CD44+/CD24- phenotype is assumed to be one of the main characteristics of the breast CSCs. We developed an MDA-MB-231 cell line overexpressing cell surface HER2 antigen for the evaluation of targeting efficiency of anti-HER2 nanobody (Nb)-conjugated polyamidoamine (PAMAM) polyplexes. Apoptosis-inducing tBid gene under control of CXCR1 promoter was delivered by this nanoparticle. Cellular uptake study showed higher uptake of Nb-targeted PAMAM carriers compared to non-targeted nanoparticles after 6 h of incubation. Gene expression analysis showed a significant rise in the expression of tBid in both MDA-MB-231/HER2+ and MDA-MB-231 compared to the two other cell lines. The same effect was observed after transfection with Nb-conjugated polyplexes within MDA-MB-231/HER2+ cell line compared to non-conjugated PAMAM polyplexes. We confirmed the killing efficiency of the gene construct in both MDA-MB-231/HER2+ and MDA-MB-231 cell lines by caspase 3 activity assay. These findings suggest that imposing pre-entry and post-entry restrictions on tBid killer gene might be a promising approach to specifically target the breast CSCs.
Collapse
Affiliation(s)
- Azadeh Reshadmanesh
- a Department of Medical Biotechnology, Faculty of Medical Sciences , Tarbiat Modares University , Tehran , Iran
| | - Fatemeh Rahbarizadeh
- a Department of Medical Biotechnology, Faculty of Medical Sciences , Tarbiat Modares University , Tehran , Iran
| | - Davoud Ahmadvand
- b Department of Biochemistry, School of Allied Medical Sciences , Iran University of Medical Sciences , Tehran , Iran
| | - Farnoush Jafari Iri Sofla
- a Department of Medical Biotechnology, Faculty of Medical Sciences , Tarbiat Modares University , Tehran , Iran
| |
Collapse
|
17
|
Hosonaga M, Arima Y, Sampetrean O, Komura D, Koya I, Sasaki T, Sato E, Okano H, Kudoh J, Ishikawa S, Saya H, Ishikawa T. HER2 Heterogeneity Is Associated with Poor Survival in HER2-Positive Breast Cancer. Int J Mol Sci 2018; 19:ijms19082158. [PMID: 30042341 PMCID: PMC6121890 DOI: 10.3390/ijms19082158] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2018] [Revised: 07/13/2018] [Accepted: 07/20/2018] [Indexed: 12/29/2022] Open
Abstract
Intratumoral human epidermal growth factor receptor 2 (HER2) heterogeneity has been reported in 16⁻36% of HER2-positive breast cancer and its clinical impact is under discussion. We examined the biological effects of HER2-heterogeneity on mouse models and analyzed metastatic brains by RNA sequence analysis. A metastatic mouse model was developed using 231-Luc (triple negative cells) and 2 HER2-positive cell lines, namely, HER2-60 and HER2-90 which showed heterogeneous and monotonous HER2 expressions, respectively. Metastatic lesions developed in 3 weeks in all the mice injected with HER2-60 cells, and in 69% of the mice injected with HER2-90 and 87.5% of the mice injected with 231-Luc. The median survival days of mice injected with 231-Luc, HER2-60, and HER2-90 cells were 29 (n = 24), 24 (n = 22) and 30 (n = 13) days, respectively. RNA sequence analysis showed that CASP-1 and its related genes were significantly downregulated in metastatic brain tumors with HER2-60 cells. The low expression of caspase-1 could be a new prognostic biomarker for early relapse in HER2-positive breast cancer.
Collapse
Affiliation(s)
- Mari Hosonaga
- Department of Breast Surgery and Oncology, Tokyo Medical University, 6-7-1 Nishishinjuku, Shinjuku-ku, Tokyo 160-0023, Japan.
| | - Yoshimi Arima
- Division of Gene Regulation, Institute for Advanced Medical Research, Keio University School of Medicine, 35 Shinanomachi, Shinjuku-ku, Tokyo 160-8582, Japan.
| | - Oltea Sampetrean
- Division of Gene Regulation, Institute for Advanced Medical Research, Keio University School of Medicine, 35 Shinanomachi, Shinjuku-ku, Tokyo 160-8582, Japan.
| | - Daisuke Komura
- Department of Genomic Pathology, Medical Research Institute, Tokyo Medical and Dental University, 1-5-45 Yushima, Bunkyo-ku, Tokyo 113-8510, Japan.
| | - Ikuko Koya
- Department of Physiology, Keio University School of Medicine, 35 Shinanomachi, Shinjuku-ku, Tokyo 160-8582, Japan.
| | - Takashi Sasaki
- Center for Supercentenarian Medical Research, Keio University School of Medicine, 35 Shinanomachi, Shinjuku-ku, Tokyo 160-8582, Japan.
| | - Eiichi Sato
- Department of Pathology (Medical Research Center), Institute of Medical Science, Tokyo Medical University, 6-7-1 Nishishinjuku, Shinjuku-ku, Tokyo 160-0023, Japan.
| | - Hideyuki Okano
- Department of Physiology, Keio University School of Medicine, 35 Shinanomachi, Shinjuku-ku, Tokyo 160-8582, Japan.
| | - Jun Kudoh
- Laboratory of Gene Medicine, Keio University School of Medicine, 35 Shinanomachi, Shinjuku-ku, Tokyo 160-8582, Japan.
| | - Shumpei Ishikawa
- Department of Genomic Pathology, Medical Research Institute, Tokyo Medical and Dental University, 1-5-45 Yushima, Bunkyo-ku, Tokyo 113-8510, Japan.
| | - Hideyuki Saya
- Division of Gene Regulation, Institute for Advanced Medical Research, Keio University School of Medicine, 35 Shinanomachi, Shinjuku-ku, Tokyo 160-8582, Japan.
| | - Takashi Ishikawa
- Department of Breast Surgery and Oncology, Tokyo Medical University, 6-7-1 Nishishinjuku, Shinjuku-ku, Tokyo 160-0023, Japan.
| |
Collapse
|
18
|
RNA Sequencing Analysis Reveals Interactions between Breast Cancer or Melanoma Cells and the Tissue Microenvironment during Brain Metastasis. BIOMED RESEARCH INTERNATIONAL 2017; 2017:8032910. [PMID: 28210624 PMCID: PMC5292181 DOI: 10.1155/2017/8032910] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/28/2016] [Revised: 11/18/2016] [Accepted: 12/07/2016] [Indexed: 12/13/2022]
Abstract
Metastasis is the main cause of treatment failure and death in cancer patients. Metastasis of tumor cells to the brain occurs frequently in individuals with breast cancer, non–small cell lung cancer, or melanoma. Despite recent advances in our understanding of the causes and in the treatment of primary tumors, the biological and molecular mechanisms underlying the metastasis of cancer cells to the brain have remained unclear. Metastasizing cancer cells interact with their microenvironment in the brain to establish metastases. We have now developed mouse models of brain metastasis based on intracardiac injection of human breast cancer or melanoma cell lines, and we have performed RNA sequencing analysis to identify genes in mouse brain tissue and the human cancer cells whose expression is associated specifically with metastasis. We found that the expressions of the mouse genes Tph2, Sspo, Ptprq, and Pole as well as those of the human genes CXCR4, PLLP, TNFSF4, VCAM1, SLC8A2, and SLC7A11 were upregulated in brain tissue harboring metastases. Further characterization of such genes that contribute to the establishment of brain metastases may provide a basis for the development of new therapeutic strategies and consequent improvement in the prognosis of cancer patients.
Collapse
|
19
|
Chen Q, Weng Z, Lu Y, Jia Y, Ding L, Bai F, Ge M, Lin Q, Wu K. An Experimental Analysis of the Molecular Effects of Trastuzumab (Herceptin) and Fulvestrant (Falsodex), as Single Agents or in Combination, on Human HR+/HER2+ Breast Cancer Cell Lines and Mouse Tumor Xenografts. PLoS One 2017; 12:e0168960. [PMID: 28045951 PMCID: PMC5207527 DOI: 10.1371/journal.pone.0168960] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2016] [Accepted: 12/08/2016] [Indexed: 11/28/2022] Open
Abstract
PURPOSE To investigate the effects of trastuzumab (herceptin) and fulvestrant (falsodex) either in combination or alone, on downstream cell signaling pathways in lab-cultured human HR+/HER2+ breast cancer cell lines ZR-75-1 and BT-474, as well as on protein expression levels in mouse xenograft tissue. METHODS Cells were cultivated in the presence of trastuzumab or fulvestrant or both. Molecular events that resulted in an inhibition of cell proliferation and cell cycle progression or in an increased rate of apoptosis were studied. The distribution and abundance of the proteins p-Akt and p-Erk expressed in these cells in response to single agents or combinatorial treatment were also investigated. In addition, the effects of trastuzumab and fulvestrant, either as single agents or in combination on tumor growth as well as on expression of the protein p-MED1 expressed in in vivo mouse xenograft models was also examined. RESULTS Cell proliferation was increasingly inhibited by trastuzumab or fulvestrant or both, with a CI<1 and DRI>1 in both human cell lines. The rate of apoptosis increased only in the BT-474 cell line and not in the ZR-75-1 cell line upon treatment with fulvestrant and not trastuzumab as a single agent (P<0.05). Interestingly, fulvestrant, in combination with trastuzumab, did not significantly alter the rate of apoptosis (in comparison with fulvestrant alone), in the BT-474 cell line (P>0.05). Cell accumulation in the G1 phase of cell cycle was investigated in all treatment groups (P<0.05), and the combination of trastuzumab and fulvestrant reversed the effects of fulvestrant alone on p-Akt and p-Erk protein expression levels. Using ZR-75-1 or BT-474 to generate in vivo tumor xenografts in BALB/c athymic mouse models, we showed that a combination of both drugs resulted in a stronger inhibition of tumor growth (P<0.05) and a greater decrease in the levels of activated MED1 (p-MED1) expressed in tumor issues compared with the use of either drug as a single agent. CONCLUSIONS We demonstrate that the administration of trastuzumab and fulvestrant in combination results in positive synergistic effects on both, ZR-75-1 and BT-474 cell lines. This combinatorial approach is likely to reduce physiological side effects of both drugs, thus providing a theoretical basis for the use of such combination treatment in order to resolve HR+/HER2+ triple positive breast cancer that has previously been shown to be resistant to endocrine treatment alone.
Collapse
Affiliation(s)
- Qing Chen
- Department of General Surgery, XinHua Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Ziyi Weng
- Department of General Surgery, Shanghai International Medical Center, Shanghai, China
| | - Yunshu Lu
- Department of General Surgery, XinHua Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Yijun Jia
- Department of General Surgery, XinHua Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Longlong Ding
- Department of General Surgery, XinHua Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Fang Bai
- Department of General Surgery, XinHua Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Meixin Ge
- Department of General Surgery, XinHua Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Qing Lin
- Department of Radiation Oncology, The Shanghai Tenth People's Hospital of Tongji University, Shanghai, China
| | - Kejin Wu
- Department of Breast Surgery, Obstetrics and Gynecology Hospital of Fudan University, Shanghai, China
| |
Collapse
|
20
|
The CD24 surface antigen in neural development and disease. Neurobiol Dis 2016; 99:133-144. [PMID: 27993646 DOI: 10.1016/j.nbd.2016.12.011] [Citation(s) in RCA: 37] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2016] [Revised: 12/12/2016] [Accepted: 12/15/2016] [Indexed: 12/11/2022] Open
Abstract
A cell's surface molecular signature enables its reciprocal interactions with the associated microenvironments in development, tissue homeostasis and pathological processes. The CD24 surface antigen (heat-stable antigen, nectadrin; small cell lung cancer antigen cluster-4) represents a prime example of a neural surface molecule that has long been known, but whose diverse molecular functions in intercellular communication we have only begun to unravel. Here, we briefly summarize the molecular fundamentals of CD24 structure and provide a comprehensive review of CD24 expression and functional studies in mammalian neural developmental systems and disease models (rodent, human). Striving for an integrated view of the intracellular signaling processes involved, we discuss the most pertinent routes of CD24-mediated signaling pathways and functional networks in neurobiology (neural migration, neurite extension, neurogenesis) and pathology (tumorigenesis, multiple sclerosis).
Collapse
|
21
|
Shi H, Zhang W, Zhi Q, Jiang M. Lapatinib resistance in HER2+ cancers: latest findings and new concepts on molecular mechanisms. Tumour Biol 2016; 37:15411–15431. [PMID: 27726101 DOI: 10.1007/s13277-016-5467-2] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2016] [Accepted: 09/23/2016] [Indexed: 12/12/2022] Open
Abstract
In the era of new and mostly effective molecular targeted therapies, human epidermal growth factor receptor 2 positive (HER2+) cancers are still intractable diseases. Lapatinib, a dual epidermal growth factor receptor (EGFR) and HER2 tyrosine kinase inhibitor, has greatly improved breast cancer prognosis in recent years after the initial introduction of trastuzumab (Herceptin). However, clinical evidence indicates the existence of both primary unresponsiveness and secondary lapatinib resistance, which leads to the failure of this agent in HER2+ cancer patients. It remains a major clinical challenge to target the oncogenic pathways with drugs having low resistance. Multiple pathways are involved in the occurrence of lapatinib resistance, including the pathways of receptor tyrosine kinase, non-receptor tyrosine kinase, autophagy, apoptosis, microRNA, cancer stem cell, tumor metabolism, cell cycle, and heat shock protein. Moreover, understanding the relationship among these mechanisms may contribute to future tumor combination therapies. Therefore, it is of urgent necessity to elucidate the precise mechanisms of lapatinib resistance and improve the therapeutic use of this agent in clinic. The present review, in the hope of providing further scientific support for molecular targeted therapies in HER2+ cancers, discusses about the latest findings and new concepts on molecular mechanisms underlying lapatinib resistance.
Collapse
Affiliation(s)
- Huiping Shi
- Department of Hematology, The First Affiliated Hospital of Soochow University, Suzhou, Jiangsu Province, 215006, China
| | - Weili Zhang
- Department of Gastroenterology, Xiangcheng People's Hospital, Suzhou, Jiangsu Province, 215131, China
| | - Qiaoming Zhi
- Department of General Surgery, The First Affiliated Hospital of Soochow University, Suzhou, Jiangsu Province, 215006, China.
| | - Min Jiang
- Department of Oncology, The First Affiliated Hospital of Soochow University, Suzhou, Jiangsu Province, 215006, China.
| |
Collapse
|
22
|
Deng W, Gu L, Li X, Zheng J, Zhang Y, Duan B, Cui J, Dong J, Du J. CD24 associates with EGFR and supports EGF/EGFR signaling via RhoA in gastric cancer cells. J Transl Med 2016; 14:32. [PMID: 26830684 PMCID: PMC5439121 DOI: 10.1186/s12967-016-0787-y] [Citation(s) in RCA: 45] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2015] [Accepted: 01/18/2016] [Indexed: 02/06/2023] Open
Abstract
Background CD24, a mucin-like membrane glycoprotein, plays a critical role in carcinogenesis, but its role in human gastric cancer and the underlying mechanism remains undefined. Methods The contents of CD24 and epidermal growth factor receptor (EGFR) in gastric cancer cells (SGC-7901 and BGC-823) and non-malignant gastric epithelial cells (GES-1) were evaluated by Western blotting assay. Cellular EGFR staining was examined by immunofluorescence assay. Cell migration rate was measured by wound healing assay. The effects of depletion/overexperssion of CD24 on EGFR expression and activation of EGF/EGFR singaling pathways were evaluated by immunofluorescence, qPCR, Western blotting and flow cytometry techniques. RhoA activity was assessed by pulldown assay. CD24 and EGFR expression patterns in human gastric tumor samples were also investigated by immunohistochemistry staining. Results CD24 was overexpressed in human gastric cancer cells. Ectopic expression of CD24 in gastric epithelial cells augmented the expression of EGFR, while knockdown of CD24 in gastric cancer cells decreased the level of EGFR and cell migration velocity. To further explore the mechanisms, we investigated the effect of CD24 expression on EGF/EGFR signaling. We noticed that this effect of CD24 on EGFR expression was dependent on promoting EGFR internalization and degradation. Lower ERK and Akt phosphorylations in response to EGF stimulation were observed in CD24-depleted cells. In addition, we noticed that the effect of CD24 on EGFR stability was mediated by RhoA activity in SGC-7901 gastric cancer cells. Analysis of gastric cancer specimens revealed a positive correlation between CD24 and EGFR levels and an association between CD24 expression and worse prognosis. Conclusion Thus, these findings suggest for the first time that CD24 regulates EGFR signaling by inhibiting EGFR internalization and degradation in a RhoA-dependent manner in gastric cancer cells. Electronic supplementary material The online version of this article (doi:10.1186/s12967-016-0787-y) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Wenjie Deng
- Cancer Center, Nanjing Medical University, 140 Hanzhong Road, Nanjing, 210029, Jiangsu, China. .,Department of Physiology, Nanjing Medical University, Nanjing, 210029, Jiangsu, China.
| | - Luo Gu
- Cancer Center, Nanjing Medical University, 140 Hanzhong Road, Nanjing, 210029, Jiangsu, China. .,Department of Physiology, Nanjing Medical University, Nanjing, 210029, Jiangsu, China. .,Department of Biochemistry and Molecular Biology, Nanjing Medical University, Nanjing, 210029, Jiangsu, China.
| | - Xiaojie Li
- Department of Physiology, Nanjing Medical University, Nanjing, 210029, Jiangsu, China.
| | - Jianchao Zheng
- Department of Physiology, Nanjing Medical University, Nanjing, 210029, Jiangsu, China.
| | - Yujie Zhang
- Cancer Center, Nanjing Medical University, 140 Hanzhong Road, Nanjing, 210029, Jiangsu, China. .,Department of Physiology, Nanjing Medical University, Nanjing, 210029, Jiangsu, China. .,Department of Biochemistry and Molecular Biology, Nanjing Medical University, Nanjing, 210029, Jiangsu, China.
| | - Biao Duan
- Department of Physiology, Nanjing Medical University, Nanjing, 210029, Jiangsu, China.
| | - Jie Cui
- Department of Biochemistry and Molecular Biology, Nanjing Medical University, Nanjing, 210029, Jiangsu, China.
| | - Jing Dong
- Department of Biochemistry and Molecular Biology, Nanjing Medical University, Nanjing, 210029, Jiangsu, China. .,Epidemiology and Biostatistics and Ministry of Education (MOE) Key Laboratory for Modern Toxicology, Nanjing Medical University, Nanjing, 210029, Jiangsu, China.
| | - Jun Du
- Cancer Center, Nanjing Medical University, 140 Hanzhong Road, Nanjing, 210029, Jiangsu, China. .,Department of Physiology, Nanjing Medical University, Nanjing, 210029, Jiangsu, China.
| |
Collapse
|
23
|
Wang WJ, Lei YY, Mei JH, Wang CL. Recent progress in HER2 associated breast cancer. Asian Pac J Cancer Prev 2016; 16:2591-600. [PMID: 25854334 DOI: 10.7314/apjcp.2015.16.7.2591] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022] Open
Abstract
Breast cancer is the most common cancer worldwide among women and the second most common cancer. Approximately 15-23% of breast cancers over-express human epidermal growth factor receptor2 (HER2), a 185-kDa transmembrane tyrosine kinase, which is mainly found at the cell surface of tumor cells. HER2-positive breast cancer, featuring amplification of HER2/neu and negative expression of ER and PR, has the three following characteristics: rapid tumor growth, lower survival rate, and better response to adjuvant therapies. Clinically, it is notable for its role in a pathogenesis that is associated with increased disease recurrence and acts as a worse prognosis. At the same time, it represents a good target for anti-cancer immunotherapy despite the prevalence of drug resistance. New treatments are a major topic of research, and a brighter future can be expected. This review discusses the role of HER2 in breast cancer, therapeutic modalities available and prognostic factors.
Collapse
Affiliation(s)
- Wei-Jia Wang
- Department of Pathology, the First Affiliated Hospital of Nanchang University, Nanchang, China E-mail : ;
| | | | | | | |
Collapse
|
24
|
Unger FT, Lange N, Krüger J, Compton C, Moore H, Agrawal L, Juhl H, David KA. Nanoproteomic analysis of ischemia-dependent changes in signaling protein phosphorylation in colorectal normal and cancer tissue. J Transl Med 2016; 14:6. [PMID: 26742633 PMCID: PMC4705760 DOI: 10.1186/s12967-015-0752-1] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2015] [Accepted: 12/02/2015] [Indexed: 01/11/2023] Open
Abstract
BACKGROUND Clinical diagnostic research relies upon the collection of tissue samples, and for those samples to be representative of the in vivo situation. Tissue collection procedures, including post-operative ischemia, can impact the molecular profile of the tissue at the genetic and proteomic level. Understanding the influence of factors such as ischemia on tissue samples is imperative in order to develop both markers of tissue quality and ultimately accurate diagnostic tests. METHODS Using NanoPro1000 technology, a rapid and highly sensitive immunoassay platform, the phosphorylation status of clinically relevant cancer-related biomarkers in response to ischemia was quantified in tissue samples from 20 patients with primary colorectal cancer. Tumor tissue and adjacent normal tissue samples were collected and subjected to cold ischemia prior to nanoproteomic analysis of AKT, ERK1/2, MEK1/2, and c-MET. Ischemia-induced relative changes in overall phosphorylation and phosphorylation of individual isoforms were calculated and statistical significance determined. Any differences in baseline levels of phosphorylation between tumor tissue and normal tissue were also analyzed. RESULTS Changes in overall phosphorylation of the selected proteins in response to ischemia revealed minor variations in both normal and tumor tissue; however, significant changes were identified in the phosphorylation of individual isoforms. In normal tissue post-operative ischemia, phosphorylation was increased in two AKT isoforms, two ERK1/2 isoforms, and one MEK1/2 isoform and decreased in one MEK1/2 isoform and one c-MET isoform. Following ischemia in tumor tissue, one AKT isoform showed decreased phosphorylation and there was an overall increase in unphosphorylated ERK1/2, whereas an increase in the phosphorylation of two MEK1/2 isoforms was observed. There were no changes in c-MET phosphorylation in tumor tissue. CONCLUSION This study provides insight into the influence of post-operative ischemia on tissue sample biology, which may inform the future development of markers of tissue quality and assist in the development of diagnostic tests.
Collapse
Affiliation(s)
| | - Nicole Lange
- Indivumed GmbH, Falkenried 88, 20251, Hamburg, Germany.
| | - Jana Krüger
- Indivumed GmbH, Falkenried 88, 20251, Hamburg, Germany.
| | | | - Helen Moore
- Biorepositories and Biospecimen Research Branch,National Cancer Institute, National Institutes of Health, Bethesda, MD, USA.
| | - Lokesh Agrawal
- Biorepositories and Biospecimen Research Branch,National Cancer Institute, National Institutes of Health, Bethesda, MD, USA.
| | - Hartmut Juhl
- Indivumed GmbH, Falkenried 88, 20251, Hamburg, Germany.
| | | |
Collapse
|
25
|
Stec M, Szatanek R, Baj-Krzyworzeka M, Baran J, Zembala M, Barbasz J, Waligórska A, Dobrucki JW, Mytar B, Szczepanik A, Siedlar M, Drabik G, Urbanowicz B, Zembala M. Interactions of tumour-derived micro(nano)vesicles with human gastric cancer cells. J Transl Med 2015; 13:376. [PMID: 26626416 PMCID: PMC4666152 DOI: 10.1186/s12967-015-0737-0] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2015] [Accepted: 11/20/2015] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND Tumour cells release membrane micro(nano)fragments called tumour-derived microvesicles (TMV) that are believed to play an important role in cancer progression. TMV suppress/modify antitumour response of the host, but there is also some evidence for their direct interaction with cancer cells. In cancer patients TMV are present in body fluid and tumour microenvironment. The present study aimed at characterization of whole types/subpopulations, but not only exosomes, of TMV from newly established gastric cancer cell line (called GC1415) and to define their interactions with autologous cells. METHODS TMV were isolated from cell cultures supernatants by centrifugation at 50,000×g and their phenotype was determined by flow cytometry. The size of TMV was analysed by dynamic light scattering and nanoparticle tracking analysis, while morphology by transmission electron microscopy and atomic force microscopy. Interactions of TMV with cancer cells were visualized using fluorescence-activated cell sorter, confocal and atomic force microscopy, biological effects by xenografts in NOD SCID mice. RESULTS Isolated TMV showed expression of CD44H, CD44v6 (hyaluronian receptors), CCR6 (chemokine receptor) and HER-2/neu molecules, exhibited different shapes and sizes (range 60-900 nm, highest frequency of particles with size range of 80-120 nm). TMV attached to autologous cancer cells within 2 h and then were internalized by them at 24 h. CD44H, CD44v6 and CCR6 molecules may play a role in attachment of TMV to cancer cells, while HER-2 associated with CD24 be involved in promoting cancer cells growth. Pre-exposure of cancer cells to TMV resulted in enhancement of tumour growth and cancer cell-induced angiogenesis in NOD SCID mice model. CONCLUSIONS TMV interact directly with cancer cells serving as macro-messengers and molecular cargo transfer between gastric cancer cells resulting in enhancement of tumour growth. TMV should be considered in future as target of anticancer therapy.
Collapse
Affiliation(s)
- Małgorzata Stec
- Department of Clinical Immunology and Transplantology, Jagiellonian University Medical College, Wielicka 265 Str., 30-663, Kraków, Poland.
| | - Rafał Szatanek
- Department of Clinical Immunology and Transplantology, Jagiellonian University Medical College, Wielicka 265 Str., 30-663, Kraków, Poland.
| | - Monika Baj-Krzyworzeka
- Department of Clinical Immunology and Transplantology, Jagiellonian University Medical College, Wielicka 265 Str., 30-663, Kraków, Poland.
| | - Jarosław Baran
- Department of Clinical Immunology and Transplantology, Jagiellonian University Medical College, Wielicka 265 Str., 30-663, Kraków, Poland.
| | - Maria Zembala
- Institute of Catalysis and Surface Chemistry, Polish Academy of Sciences, Kraków, Poland.
| | - Jakub Barbasz
- Institute of Catalysis and Surface Chemistry, Polish Academy of Sciences, Kraków, Poland.
| | - Agnieszka Waligórska
- Division of Cell Biophysics, Faculty of Biochemistry, Biophysics and Biotechnology, Jagiellonian University, Kraków, Poland.
| | - Jurek W Dobrucki
- Division of Cell Biophysics, Faculty of Biochemistry, Biophysics and Biotechnology, Jagiellonian University, Kraków, Poland.
| | - Bożenna Mytar
- Department of Clinical Immunology and Transplantology, Jagiellonian University Medical College, Wielicka 265 Str., 30-663, Kraków, Poland.
| | - Antoni Szczepanik
- First Department of General and Gastrointestinal Surgery, Jagiellonian University Medical College, Kraków, Poland.
| | - Maciej Siedlar
- Department of Clinical Immunology and Transplantology, Jagiellonian University Medical College, Wielicka 265 Str., 30-663, Kraków, Poland.
| | - Grażyna Drabik
- Department of Clinical Immunology and Transplantology, Jagiellonian University Medical College, Wielicka 265 Str., 30-663, Kraków, Poland.
| | - Barbara Urbanowicz
- Electron Microscopy Laboratory, University Children's Hospital of Cracow, Kraków, Poland.
| | - Marek Zembala
- Department of Clinical Immunology and Transplantology, Jagiellonian University Medical College, Wielicka 265 Str., 30-663, Kraków, Poland.
| |
Collapse
|
26
|
Baicalein inhibits hepatocellular carcinoma cells through suppressing the expression of CD24. Int Immunopharmacol 2015; 29:416-422. [DOI: 10.1016/j.intimp.2015.10.021] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2015] [Revised: 10/11/2015] [Accepted: 10/19/2015] [Indexed: 02/07/2023]
|
27
|
Kwon MJ, Han J, Seo JH, Song K, Jeong HM, Choi JS, Kim YJ, Lee SH, Choi YL, Shin YK. CD24 Overexpression Is Associated with Poor Prognosis in Luminal A and Triple-Negative Breast Cancer. PLoS One 2015; 10:e0139112. [PMID: 26444008 PMCID: PMC4596701 DOI: 10.1371/journal.pone.0139112] [Citation(s) in RCA: 63] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2015] [Accepted: 09/09/2015] [Indexed: 11/19/2022] Open
Abstract
CD24 is associated with unfavourable prognoses in various cancers, but the prevalence of CD24 expression and its influence on clinical outcome in subtypes of breast cancers remain unclear. CD24 expression was analyzed by immunohistochemistry in 747 breast cancer tissues, and DNA methylation and histone modification status in the promoter region of CD24 were assessed using bisulfite sequencing and chromatin immunoprecipitation assay. 213 (28.5%) samples exhibited high CD24 expression in the membrane and/or cytoplasm of breast cancer cells, and CD24 overexpression was significantly correlated with the presence of lymph node metastasis and more advanced pathological stage. Patients with CD24-high tumours had significantly shorter patient survival than those with CD24-low tumours. Importantly, multivariate analysis that included tumour size, lymph node metastasis and chemotherapy demonstrated that high CD24 expression is independently associated with poorer survival in luminal A and triple-negative breast cancer (TNBC) subtypes. Furthermore, CD24 gene expression was associated with histone acetylation independent of DNA methylation, suggesting its epigenetic regulation in breast cancer. Our results suggest that CD24 overexpression is an independent unfavourable prognostic factor in breast cancer, especially for luminal A and TNBC subtypes, and CD24 may be a promising therapeutic target for specific subtypes of breast cancer.
Collapse
Affiliation(s)
- Mi Jeong Kwon
- College of Pharmacy, Kyungpook National University, Daegu, Korea
- Research Institute of Pharmaceutical Sciences, College of Pharmacy, Kyungpook National University, Daegu, Korea
| | | | - Ji Hyun Seo
- Laboratory of Molecular Pathology and Cancer Genomics, Department of Pharmacy, College of Pharmacy, Seoul National University, Seoul, Korea
| | | | - Hae Min Jeong
- Laboratory of Molecular Pathology and Cancer Genomics, Department of Pharmacy, College of Pharmacy, Seoul National University, Seoul, Korea
| | - Jong-Sun Choi
- The Center for Anti-cancer Companion Diagnostics, School of Biological Science, Institutes of Entrepreneurial BioConvergence, Seoul National University, Seoul, Korea
| | - Yu Jin Kim
- Laboratory of Cancer Genomics and Molecular Pathology, Samsung Biomedical Research Institute, Samsung Medical Center, Sungkyunkwan University School of Medicine, Seoul, Korea
| | - Seon-Heui Lee
- Department of Nursing Science, College of Nursing, Gachon University, Incheon, Korea
| | - Yoon-La Choi
- Laboratory of Cancer Genomics and Molecular Pathology, Samsung Biomedical Research Institute, Samsung Medical Center, Sungkyunkwan University School of Medicine, Seoul, Korea
- Department of Pathology and Translational Genomics, Samsung Medical Center, Sungkyunkwan University School of Medicine, Seoul, Korea
- Department of Health Sciences and Technology, SAIHST, Sungkyunkwan University, Seoul, Korea
- * E-mail: (YLC); (YKS)
| | - Young Kee Shin
- Laboratory of Molecular Pathology and Cancer Genomics, Department of Pharmacy, College of Pharmacy, Seoul National University, Seoul, Korea
- The Center for Anti-cancer Companion Diagnostics, School of Biological Science, Institutes of Entrepreneurial BioConvergence, Seoul National University, Seoul, Korea
- * E-mail: (YLC); (YKS)
| |
Collapse
|
28
|
Segovia-Mendoza M, González-González ME, Barrera D, Díaz L, García-Becerra R. Efficacy and mechanism of action of the tyrosine kinase inhibitors gefitinib, lapatinib and neratinib in the treatment of HER2-positive breast cancer: preclinical and clinical evidence. Am J Cancer Res 2015; 5:2531-2561. [PMID: 26609467 PMCID: PMC4633889] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2015] [Accepted: 07/13/2015] [Indexed: 06/05/2023] Open
Abstract
An increasing number of tumors, including breast cancer, overexpress proteins of the epidermal growth factor receptor (EGFR) family. The interaction between family members activates signaling pathways that promote tumor progression and resistance to treatment. Human epidermal growth factor receptor type II (HER2) positive breast cancer represents a clinical challenge for current therapy. It has motivated the development of novel and more effective therapeutic EGFR family target drugs, such as tyrosine kinase inhibitors (TKIs). This review focuses on the effects of three TKIs mostly studied in HER2- positive breast cancer, lapatinib, gefitinib and neratinib. Herein, we discuss the mechanism of action, therapeutic advantages and clinical applications of these TKIs. To date, TKIs seem to be promising therapeutic agents for the treatment of HER2-overexpressing breast tumors, either as monotherapy or combined with other pharmacological agents.
Collapse
Affiliation(s)
- Mariana Segovia-Mendoza
- Departamento de Biología de la Reproducción, Instituto Nacional de Ciencias Médicas y Nutrición Salvador ZubiránAvenida Vasco de Quiroga No. 15, Col. Belisario Domínguez Sección XVI, Tlalpan 14080, México, D. F., México
- Posgrado en Ciencias Biológicas, Universidad Nacional Autónoma de México, Circuito Interior, Cuidad UniversitariaAv. Universidad 3000, Coyoacán 04510, México D. F, México
| | - María E González-González
- Departamento de Biología de la Reproducción, Instituto Nacional de Ciencias Médicas y Nutrición Salvador ZubiránAvenida Vasco de Quiroga No. 15, Col. Belisario Domínguez Sección XVI, Tlalpan 14080, México, D. F., México
| | - David Barrera
- Departamento de Biología de la Reproducción, Instituto Nacional de Ciencias Médicas y Nutrición Salvador ZubiránAvenida Vasco de Quiroga No. 15, Col. Belisario Domínguez Sección XVI, Tlalpan 14080, México, D. F., México
| | - Lorenza Díaz
- Departamento de Biología de la Reproducción, Instituto Nacional de Ciencias Médicas y Nutrición Salvador ZubiránAvenida Vasco de Quiroga No. 15, Col. Belisario Domínguez Sección XVI, Tlalpan 14080, México, D. F., México
| | - Rocío García-Becerra
- Departamento de Biología de la Reproducción, Instituto Nacional de Ciencias Médicas y Nutrición Salvador ZubiránAvenida Vasco de Quiroga No. 15, Col. Belisario Domínguez Sección XVI, Tlalpan 14080, México, D. F., México
| |
Collapse
|
29
|
Gromov P, Espinoza JA, Gromova I. Molecular and diagnostic features of apocrine breast lesions. Expert Rev Mol Diagn 2015; 15:1011-22. [DOI: 10.1586/14737159.2015.1057125] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
|