1
|
Luo W, Li Y, Zeng Y, Li Y, Cheng M, Zhang C, Li F, Wu Y, Huang C, Yang X, Kremerskothen J, Zhang J, Zhang C, Tu S, Li Z, Luo Z, Lin Z, Yan X. Tea domain transcription factor TEAD4 mitigates TGF-β signaling and hepatocellular carcinoma progression independently of YAP. J Mol Cell Biol 2023; 15:mjad010. [PMID: 36806855 PMCID: PMC10446140 DOI: 10.1093/jmcb/mjad010] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2022] [Revised: 02/12/2023] [Accepted: 02/17/2023] [Indexed: 02/23/2023] Open
Abstract
Tea domain transcription factor 4 (TEAD4) plays a pivotal role in tissue development and homeostasis by interacting with Yes-associated protein (YAP) in response to Hippo signaling inactivation. TEAD4 and YAP can also cooperate with transforming growth factor-β (TGF-β)-activated Smad proteins to regulate gene transcription. Yet, it remains unclear whether TEAD4 plays a YAP-independent role in TGF-β signaling. Here, we unveil a novel tumor suppressive function of TEAD4 in liver cancer via mitigating TGF-β signaling. Ectopic TEAD4 inhibited TGF-β-induced signal transduction, Smad transcriptional activity, and target gene transcription, consequently suppressing hepatocellular carcinoma cell proliferation and migration in vitro and xenograft tumor growth in mice. Consistently, depletion of endogenous TEAD4 by siRNAs enhanced TGF-β signaling in cancer cells. Mechanistically, TEAD4 associates with receptor-regulated Smads (Smad2/3) and Smad4 in the nucleus, thereby impairing the binding of Smad2/3 to the histone acetyltransferase p300. Intriguingly, these negative effects of TEAD4 on TGF-β/Smad signaling are independent of YAP, as impairing the TEAD4-YAP interaction through point mutagenesis or depletion of YAP and/or its paralog TAZ has little effect. Together, these results unravel a novel function of TEAD4 in fine tuning TGF-β signaling and liver cancer progression in a YAP-independent manner.
Collapse
Affiliation(s)
- Weicheng Luo
- Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Nanchang University Jiangxi Medical College, Nanchang 330031, China
| | - Yi Li
- Department of Rheumatology and Clinical Immunology, Jiangxi Provincial People’s Hospital, The First Affiliated Hospital of Nanchang Medical College, Nanchang 330006, China
| | - Yi Zeng
- Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Nanchang University Jiangxi Medical College, Nanchang 330031, China
| | - Yining Li
- Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Nanchang University Jiangxi Medical College, Nanchang 330031, China
| | - Minzhang Cheng
- Center for Experimental Medicine, The First Affiliated Hospital of Nanchang University, Nanchang 330006, China
| | - Cheng Zhang
- Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Nanchang University Jiangxi Medical College, Nanchang 330031, China
| | - Fei Li
- Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Nanchang University Jiangxi Medical College, Nanchang 330031, China
| | - Yiqing Wu
- Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Nanchang University Jiangxi Medical College, Nanchang 330031, China
| | - Chunhong Huang
- Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Nanchang University Jiangxi Medical College, Nanchang 330031, China
| | - Xiaolong Yang
- Department of Pathology and Molecular Medicine, Queen’s University, Kingston, ON K7L 3N6, Canada
| | - Joachim Kremerskothen
- Department of Nephrology, Hypertension and Rheumatology, University Hospital Münster, Münster 48149, Germany
| | - Jianmin Zhang
- Department of Cancer Genetics & Genomics, Roswell Park Comprehensive Cancer Center, Elm and Carlton Streets, Buffalo, NY 14203, USA
| | - Chunbo Zhang
- School of Pharmacy, Nanchang
University Jiangxi Medical College, Nanchang 330008, China
| | - Shuo Tu
- Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Nanchang University Jiangxi Medical College, Nanchang 330031, China
| | - Zhihua Li
- Key Laboratory of Breast Diseases of Jiangxi Province, Nanchang People’s Hospital, Nanchang 330025, China
| | - Zhijun Luo
- Department of Pathology, School of Basic Medical Sciences, Nanchang University Jiangxi Medical College, Nanchang 330006, China
| | - Zhenghong Lin
- School of Life Sciences, Chongqing University, Chongqing 405200, China
| | - Xiaohua Yan
- Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Nanchang University Jiangxi Medical College, Nanchang 330031, China
- Key Laboratory of Breast Diseases of Jiangxi Province, Nanchang People’s Hospital, Nanchang 330025, China
| |
Collapse
|
2
|
Banaganapalli B, Mallah B, Alghamdi KS, Albaqami WF, Alshaer DS, Alrayes N, Elango R, Shaik NA. Integrative weighted molecular network construction from transcriptomics and genome wide association data to identify shared genetic biomarkers for COPD and lung cancer. PLoS One 2022; 17:e0274629. [PMID: 36194576 PMCID: PMC9531836 DOI: 10.1371/journal.pone.0274629] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2022] [Accepted: 09/01/2022] [Indexed: 11/05/2022] Open
Abstract
Chronic obstructive pulmonary disease (COPD) is a multifactorial progressive airflow obstruction in the lungs, accounting for high morbidity and mortality across the world. This study aims to identify potential COPD blood-based biomarkers by analyzing the dysregulated gene expression patterns in blood and lung tissues with the help of robust computational approaches. The microarray gene expression datasets from blood (136 COPD and 6 controls) and lung tissues (16 COPD and 19 controls) were analyzed to detect shared differentially expressed genes (DEGs). Then these DEGs were used to construct COPD protein network-clusters and functionally enrich them against gene ontology annotation terms. The hub genes in the COPD network clusters were then queried in GWAS catalog and in several cancer expression databases to explore their pathogenic roles in lung cancers. The comparison of blood and lung tissue datasets revealed 63 shared DEGs. Of these DEGs, 12 COPD hub gene-network clusters (SREK1, TMEM67, IRAK2, MECOM, ASB4, C1QTNF2, CDC42BPA, DPF3, DET1, CCDC74B, KHK, and DDX3Y) connected to dysregulations of protein degradation, inflammatory cytokine production, airway remodeling, and immune cell activity were prioritized with the help of protein interactome and functional enrichment analysis. Interestingly, IRAK2 and MECOM hub genes from these COPD network clusters are known for their involvement in different pulmonary diseases. Additional COPD hub genes like SREK1, TMEM67, CDC42BPA, DPF3, and ASB4 were identified as prognostic markers in lung cancer, which is reported in 1% of COPD patients. This study identified 12 gene network- clusters as potential blood based genetic biomarkers for COPD diagnosis and prognosis.
Collapse
Affiliation(s)
- Babajan Banaganapalli
- Department of Genetic Medicine, Faculty of Medicine, King Abdulaziz University, Jeddah, Saudi Arabia
- Princess Al-Jawhara Al-Brahim Center of Excellence in Research of Hereditary Disorders, King Abdulaziz University, Jeddah, Saudi Arabia
- * E-mail: (BB); (NAS)
| | - Bayan Mallah
- Department of Genetic Medicine, Faculty of Medicine, King Abdulaziz University, Jeddah, Saudi Arabia
- Princess Al-Jawhara Al-Brahim Center of Excellence in Research of Hereditary Disorders, King Abdulaziz University, Jeddah, Saudi Arabia
| | - Kawthar Saad Alghamdi
- Department of Biology, Faculty of Science, University of Hafr Al Batin, Hafr Al Batin, Saudi Arabia
| | - Walaa F. Albaqami
- Department of Science, Prince Sultan Military College of Health Sciences, Dhahran, Saudi Arabia
| | - Dalal Sameer Alshaer
- Department of Genetic Medicine, Faculty of Medicine, King Abdulaziz University, Jeddah, Saudi Arabia
| | - Nuha Alrayes
- Princess Al-Jawhara Al-Brahim Center of Excellence in Research of Hereditary Disorders, King Abdulaziz University, Jeddah, Saudi Arabia
- Department of Medical Laboratory Sciences, Faculty of Applied Medical Sciences, King Abdulaziz University, Jeddah, Saudi Arabia
| | - Ramu Elango
- Department of Genetic Medicine, Faculty of Medicine, King Abdulaziz University, Jeddah, Saudi Arabia
- Princess Al-Jawhara Al-Brahim Center of Excellence in Research of Hereditary Disorders, King Abdulaziz University, Jeddah, Saudi Arabia
| | - Noor A. Shaik
- Department of Genetic Medicine, Faculty of Medicine, King Abdulaziz University, Jeddah, Saudi Arabia
- Princess Al-Jawhara Al-Brahim Center of Excellence in Research of Hereditary Disorders, King Abdulaziz University, Jeddah, Saudi Arabia
- * E-mail: (BB); (NAS)
| |
Collapse
|
3
|
The Bright and the Dark Side of TGF-β Signaling in Hepatocellular Carcinoma: Mechanisms, Dysregulation, and Therapeutic Implications. Cancers (Basel) 2022; 14:cancers14040940. [PMID: 35205692 PMCID: PMC8870127 DOI: 10.3390/cancers14040940] [Citation(s) in RCA: 19] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/24/2021] [Revised: 02/02/2022] [Accepted: 02/03/2022] [Indexed: 01/18/2023] Open
Abstract
Simple Summary Transforming growth factor β (TGF-β) signaling is a preeminent regulator of diverse cellular and physiological processes. Frequent dysregulation of TGF-β signaling has been implicated in cancer. In hepatocellular carcinoma (HCC), the most prevalent form of primary liver cancer, the autocrine and paracrine effects of TGF-β have paradoxical implications. While acting as a potent tumor suppressor pathway in the early stages of malignancy, TGF-β diverts to a promoter of tumor progression in the late stages, reflecting its bright and dark natures, respectively. Within this context, targeting TGF-β represents a promising therapeutic option for HCC treatment. We discuss here the molecular properties of TGF-β signaling in HCC, attempting to provide an overview of its effects on tumor cells and the stroma. We also seek to evaluate the dysregulation mechanisms that mediate the functional switch of TGF-β from a tumor suppressor to a pro-tumorigenic signal. Finally, we reconcile its biphasic nature with the therapeutic implications. Abstract Hepatocellular carcinoma (HCC) is associated with genetic and nongenetic aberrations that impact multiple genes and pathways, including the frequently dysregulated transforming growth factor β (TGF-β) signaling pathway. The regulatory cytokine TGF-β and its signaling effectors govern a broad spectrum of spatiotemporally regulated molecular and cellular responses, yet paradoxically have dual and opposing roles in HCC progression. In the early stages of tumorigenesis, TGF-β signaling enforces profound tumor-suppressive effects, primarily by inducing cell cycle arrest, cellular senescence, autophagy, and apoptosis. However, as the tumor advances in malignant progression, TGF-β functionally switches to a pro-tumorigenic signal, eliciting aggressive tumor traits, such as epithelial–mesenchymal transition, tumor microenvironment remodeling, and immune evasion of cancer cells. On this account, the inhibition of TGF-β signaling is recognized as a promising therapeutic strategy for advanced HCC. In this review, we evaluate the functions and mechanisms of TGF-β signaling and relate its complex and pleiotropic biology to HCC pathophysiology, attempting to provide a detailed perspective on the molecular determinants underlying its functional diversion. We also address the therapeutic implications of the dichotomous nature of TGF-β signaling and highlight the rationale for targeting this pathway for HCC treatment, alone or in combination with other agents.
Collapse
|
4
|
Emerging Roles of PRDM Factors in Stem Cells and Neuronal System: Cofactor Dependent Regulation of PRDM3/16 and FOG1/2 (Novel PRDM Factors). Cells 2020; 9:cells9122603. [PMID: 33291744 PMCID: PMC7761934 DOI: 10.3390/cells9122603] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2020] [Revised: 11/13/2020] [Accepted: 11/25/2020] [Indexed: 12/19/2022] Open
Abstract
PRDI-BF1 (positive regulatory domain I-binding factor 1) and RIZ1 (retinoblastoma protein-interacting zinc finger gene 1) (PR) homologous domain containing (PRDM) transcription factors are expressed in neuronal and stem cell systems, and they exert multiple functions in a spatiotemporal manner. Therefore, it is believed that PRDM factors cooperate with a number of protein partners to regulate a critical set of genes required for maintenance of stem cell self-renewal and differentiation through genetic and epigenetic mechanisms. In this review, we summarize recent findings about the expression of PRDM factors and function in stem cell and neuronal systems with a focus on cofactor-dependent regulation of PRDM3/16 and FOG1/2. We put special attention on summarizing the effects of the PRDM proteins interaction with chromatin modulators (NuRD complex and CtBPs) on the stem cell characteristic and neuronal differentiation. Although PRDM factors are known to possess intrinsic enzyme activity, our literature analysis suggests that cofactor-dependent regulation of PRDM3/16 and FOG1/2 is also one of the important mechanisms to orchestrate bidirectional target gene regulation. Therefore, determining stem cell and neuronal-specific cofactors will help better understanding of PRDM3/16 and FOG1/2-controlled stem cell maintenance and neuronal differentiation. Finally, we discuss the clinical aspect of these PRDM factors in different diseases including cancer. Overall, this review will help further sharpen our knowledge of the function of the PRDM3/16 and FOG1/2 with hopes to open new research fields related to these factors in stem cell biology and neuroscience.
Collapse
|
5
|
Zhang K, Zhang M, Luo Z, Wen Z, Yan X. The dichotomous role of TGF-β in controlling liver cancer cell survival and proliferation. J Genet Genomics 2020; 47:497-512. [PMID: 33339765 DOI: 10.1016/j.jgg.2020.09.005] [Citation(s) in RCA: 28] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2020] [Revised: 09/14/2020] [Accepted: 09/29/2020] [Indexed: 12/24/2022]
Abstract
Hepatocellular carcinoma (HCC) is the major form of primary liver cancer and one of the most prevalent and life-threatening malignancies globally. One of the hallmarks in HCC is the sustained cell survival and proliferative signals, which are determined by the balance between oncogenes and tumor suppressors. Transforming growth factor beta (TGF-β) is an effective growth inhibitor of epithelial cells including hepatocytes, through induction of cell cycle arrest, apoptosis, cellular senescence, or autophagy. The antitumorigenic effects of TGF-β are bypassed during liver tumorigenesis via multiple mechanisms. Furthermore, along with malignant progression, TGF-β switches to promote cancer cell survival and proliferation. This dichotomous nature of TGF-β is one of the barriers to therapeutic targeting in liver cancer. Thereafter, understanding the underlying molecular mechanisms is a prerequisite for discovering novel antitumor drugs that may specifically disable the growth-promoting branch of TGF-β signaling or restore its tumor-suppressive arm. This review summarizes how TGF-β inhibits or promotes liver cancer cell survival and proliferation, highlighting the functional switch mechanisms during the process.
Collapse
Affiliation(s)
- Kegui Zhang
- School of Biological Engineering, Huainan Normal University, Huainan, 232001, China
| | - Meiping Zhang
- Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Nanchang University, Nanchang, 330006, China
| | - Zhijun Luo
- School of Basic Medical Sciences, Nanchang University, Nanchang 330006, China
| | - Zhili Wen
- Department of Gastroenterology, The Second Affiliated Hospital of Nanchang University, Nanchang, 330006, China.
| | - Xiaohua Yan
- Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Nanchang University, Nanchang, 330006, China; Institute of Biomedical Sciences, Nanchang University Medical College, Nanchang, 330031, China.
| |
Collapse
|
6
|
Chan LS, Lung HL, Ngan RKC, Lee AWM, Tsao SW, Lo KW, Kahn M, Lung ML, Wieser R, Mak NK. Role of miR-96/EVI1/miR-449a Axis in the Nasopharyngeal Carcinoma Cell Migration and Tumor Sphere Formation. Int J Mol Sci 2020; 21:ijms21155495. [PMID: 32752071 PMCID: PMC7432346 DOI: 10.3390/ijms21155495] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2020] [Revised: 07/16/2020] [Accepted: 07/24/2020] [Indexed: 12/12/2022] Open
Abstract
The Wnt signaling pathway is one of the major signaling pathways used by cancer stem cells (CSC). Ecotropic Viral Integration Site 1 (EVI1) has recently been shown to regulate oncogenic development of tumor cells by interacting with multiple signaling pathways, including the Wnt signaling. In the present study, we found that the Wnt modulator ICG-001 could inhibit the expression of EVI1 in nasopharyngeal carcinoma (NPC) cells. Results from loss-of-function and gain-of-function studies revealed that EVI1 expression positively regulated both NPC cell migration and growth of CSC-enriched tumor spheres. Subsequent studies indicated ICG-001 inhibited EVI1 expression via upregulated expression of miR-96. Results from EVI1 3′UTR luciferase reporter assay confirmed that EVI1 is a direct target of miR-96. Further mechanistic studies revealed that ICG-001, overexpression of miR-96, or knockdown of EVI1 expression could restore the expression of miR-449a. The suppressive effect of miR-449a on the cell migration and tumor sphere formation was confirmed in NPC cells. Taken together, the miR-96/EVI1/miR-449a axis is a novel pathway involved in ICG-001-mediated inhibition of NPC cell migration and growth of the tumor spheres.
Collapse
Affiliation(s)
- Lai-Sheung Chan
- Department of Biology, Hong Kong Baptist University, Kowloon Tong, Hong Kong, China;
| | - Hong-Lok Lung
- Department of Chemistry, Hong Kong Baptist University, Kowloon Tong, Hong Kong, China;
| | - Roger Kai-Cheong Ngan
- Department of Clinical Oncology, University of Hong Kong, Pokfulam, Hong Kong, China; (R.K.-C.N.); ; (A.W.-M.L.); (M.L.L.)
- Center for Nasopharyngeal Carcinoma Research, University of Hong Kong, Pokfulam, Hong Kong, China;
| | - Anne Wing-Mui Lee
- Department of Clinical Oncology, University of Hong Kong, Pokfulam, Hong Kong, China; (R.K.-C.N.); ; (A.W.-M.L.); (M.L.L.)
- Center for Nasopharyngeal Carcinoma Research, University of Hong Kong, Pokfulam, Hong Kong, China;
| | - Sai Wah Tsao
- Center for Nasopharyngeal Carcinoma Research, University of Hong Kong, Pokfulam, Hong Kong, China;
- Department of Anatomy, University of Hong Kong, Pokfulam, Hong Kong, China
| | - Kwok-Wai Lo
- Department of Anatomical and Cellular Pathology and State Key Laboratory in Oncology in South China, The Chinese University of Hong Kong, Central Ave, Hong Kong, China;
| | - Michael Kahn
- Department of Molecular Medicine, Beckman Research Institute at City of Hope, Duarte, CA 91010-3000, USA;
| | - Maria Li Lung
- Department of Clinical Oncology, University of Hong Kong, Pokfulam, Hong Kong, China; (R.K.-C.N.); ; (A.W.-M.L.); (M.L.L.)
- Center for Nasopharyngeal Carcinoma Research, University of Hong Kong, Pokfulam, Hong Kong, China;
| | - Rotraud Wieser
- Division of Oncology, Department of Medicine I, Medical University of Vienna, 1090 Vienna, Austria;
| | - Nai-Ki Mak
- Department of Biology, Hong Kong Baptist University, Kowloon Tong, Hong Kong, China;
- Center for Nasopharyngeal Carcinoma Research, University of Hong Kong, Pokfulam, Hong Kong, China;
- Correspondence: ; Tel.: +852-3411-7059
| |
Collapse
|
7
|
Niu Y, Yang X, Chen Y, Jin X, Li L, Guo Y, Li X, Xie Y, Zhang Y, Wang H. EVI1 induces autophagy to promote drug resistance via regulation of ATG7 expression in leukemia cells. Carcinogenesis 2020; 41:961-971. [PMID: 31593983 DOI: 10.1093/carcin/bgz167] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2019] [Revised: 08/31/2019] [Accepted: 10/04/2019] [Indexed: 12/17/2023] Open
Abstract
Ecotropic viral integration site 1 (EVI1) is an oncogenic transcription factor, which is abnormally expressed in myeloid leukemia and other several solid cancers. It is associated with short survival as well as anticancer drug resistance. Autophagy is a protective mechanism that promotes cancer cell growth and survival under stressed conditions including clinical drug treatment. Here evidences are provided that EVI1 induces autophagy and mediated drug resistance in myeloid leukemia cells. Both knockdown using RNAi and pharmacological inhibition of autophagy significantly increase sensitivity to cytotoxic drug treatment in EVI1high cells. Mechanistic studies revealed that EVI1 regulated autophagy by directly binding to autophagy-related gene autophagy related 7 (ATG7) promoter and transcriptionally upregulating its expression. Notably, ATG7 expression was positively correlated with EVI1 in bone marrow mononuclear cells from myeloid leukemia patients. Acute myeloid leukemia patients with high level of EVI1 are associated with unfavorable overall survival, which was aggravated by simultaneous high expression of ATG7 in these patients. Furthermore, ChIP and firefly luciferase reporter assay identified an EVI1-binding site at 227 upstream promoter region of ATG7 which regulated its transcription. In addition, enforced expression of EVI1 also increased intracellular reactive oxygen species and ATG7 mRNA levels as well as autophagy activity, whereas the increase was attenuated after treatment with reactive oxygen species scavenger, suggesting the involvement of reactive oxygen species in EVI1-induced autophagy. These findings demonstrate that EVI protects myeloid leukemia cell from anticancer drug treatment by inducing autophagy through dual control of ATG7. These results might present a new therapeutic approach for improving treatment outcome in myelogenous leukemia with EVI1high.
Collapse
Affiliation(s)
- Yuna Niu
- Henan Key Laboratory of Immunology and Targeted Drug, School of Laboratory Medicine, Xinxiang, Henan, PR China
- Henan Collaborative Innovation Center of Molecular Diagnosis and Laboratory Medicine, Xinxiang Medical University, Xinxiang, Henan, PR China
| | - Xue Yang
- Henan Key Laboratory of Immunology and Targeted Drug, School of Laboratory Medicine, Xinxiang, Henan, PR China
| | - Yifei Chen
- Henan Key Laboratory of Immunology and Targeted Drug, School of Laboratory Medicine, Xinxiang, Henan, PR China
| | - Xinyue Jin
- Henan Key Laboratory of Immunology and Targeted Drug, School of Laboratory Medicine, Xinxiang, Henan, PR China
| | - Li Li
- Henan Key Laboratory of Immunology and Targeted Drug, School of Laboratory Medicine, Xinxiang, Henan, PR China
| | - Yilin Guo
- Henan Key Laboratory of Immunology and Targeted Drug, School of Laboratory Medicine, Xinxiang, Henan, PR China
| | - Xuelu Li
- Henan Key Laboratory of Immunology and Targeted Drug, School of Laboratory Medicine, Xinxiang, Henan, PR China
| | - Yecheng Xie
- Henan Key Laboratory of Immunology and Targeted Drug, School of Laboratory Medicine, Xinxiang, Henan, PR China
| | - Yun Zhang
- Henan Key Laboratory of Immunology and Targeted Drug, School of Laboratory Medicine, Xinxiang, Henan, PR China
- Henan Collaborative Innovation Center of Molecular Diagnosis and Laboratory Medicine, Xinxiang Medical University, Xinxiang, Henan, PR China
| | - Hui Wang
- Henan Key Laboratory of Immunology and Targeted Drug, School of Laboratory Medicine, Xinxiang, Henan, PR China
- Henan Collaborative Innovation Center of Molecular Diagnosis and Laboratory Medicine, Xinxiang Medical University, Xinxiang, Henan, PR China
| |
Collapse
|
8
|
Li Y, Tu S, Zeng Y, Zhang C, Deng T, Luo W, Lian L, Chen L, Xiong X, Yan X. KLF2 inhibits TGF-β-mediated cancer cell motility in hepatocellular carcinoma. Acta Biochim Biophys Sin (Shanghai) 2020; 52:485-494. [PMID: 32318691 DOI: 10.1093/abbs/gmaa024] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2019] [Revised: 10/17/2019] [Accepted: 12/26/2019] [Indexed: 12/16/2022] Open
Abstract
Feedback regulation plays a pivotal role in determining the intensity and duration of TGF-β signaling and subsequently affecting the pathophysiological roles of TGF-β, including those in liver malignancy. KLF2, a member of the Krüppel-like factor (KLF) family transcription factors, has been implicated in impeding hepatocellular carcinoma (HCC) development. However, the underlying molecular mechanisms are not fully understood. In the present study, we found that TGF-β stimulates the expression of KLF2 gene in several HCC cell lines. KLF2 protein is able to inhibit TGF-β/Smad signaling in HCC cells as assessed by luciferase reporter assay. Further studies indicated that KLF2 inhibits the transcriptional activity of Smad2/3 and Smad4 and ameliorates TGF-β-induced target gene expression, therefore creating a novel negative feedback loop in TGF-β signaling. Functionally, stably expression of KLF2 in HCCLM3 cells attenuated TGF-β-induced cancer cell motility in wound-healing and transwell assays by interfering with TGF-β-mediated upregulation of MMP2. Together, our results revealed that KLF2 protein has a tumor-suppressive function in HCC through a negative feedback loop over TGF-β signaling.
Collapse
Affiliation(s)
- Yining Li
- Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Nanchang University, Nanchang 330006, China
| | - Shuo Tu
- Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Nanchang University, Nanchang 330006, China
| | - Yi Zeng
- Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Nanchang University, Nanchang 330006, China
| | - Cheng Zhang
- Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Nanchang University, Nanchang 330006, China
| | - Tian Deng
- Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Nanchang University, Nanchang 330006, China
| | - Weicheng Luo
- Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Nanchang University, Nanchang 330006, China
| | - Lingyan Lian
- The Second Affiliated Hospital of Nanchang University, Nanchang 330006, China
| | - Ling Chen
- The Health Department of the First Affiliated Hospital of Nanchang University, Nanchang 330006, China
| | - Xiangyang Xiong
- Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Nanchang University, Nanchang 330006, China
| | - Xiaohua Yan
- Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Nanchang University, Nanchang 330006, China
- Institute of Biomedical Sciences, Nanchang University, Nanchang 330006, China
| |
Collapse
|
9
|
Casamassimi A, Rienzo M, Di Zazzo E, Sorrentino A, Fiore D, Proto MC, Moncharmont B, Gazzerro P, Bifulco M, Abbondanza C. Multifaceted Role of PRDM Proteins in Human Cancer. Int J Mol Sci 2020; 21:ijms21072648. [PMID: 32290321 PMCID: PMC7177584 DOI: 10.3390/ijms21072648] [Citation(s) in RCA: 34] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2020] [Revised: 03/29/2020] [Accepted: 04/08/2020] [Indexed: 12/15/2022] Open
Abstract
The PR/SET domain family (PRDM) comprise a family of genes whose protein products share a conserved N-terminal PR [PRDI-BF1 (positive regulatory domain I-binding factor 1) and RIZ1 (retinoblastoma protein-interacting zinc finger gene 1)] homologous domain structurally and functionally similar to the catalytic SET [Su(var)3-9, enhancer-of-zeste and trithorax] domain of histone methyltransferases (HMTs). These genes are involved in epigenetic regulation of gene expression through their intrinsic HMTase activity or via interactions with other chromatin modifying enzymes. In this way they control a broad spectrum of biological processes, including proliferation and differentiation control, cell cycle progression, and maintenance of immune cell homeostasis. In cancer, tumor-specific dysfunctions of PRDM genes alter their expression by genetic and/or epigenetic modifications. A common characteristic of most PRDM genes is to encode for two main molecular variants with or without the PR domain. They are generated by either alternative splicing or alternative use of different promoters and play opposite roles, particularly in cancer where their imbalance can be often observed. In this scenario, PRDM proteins are involved in cancer onset, invasion, and metastasis and their altered expression is related to poor prognosis and clinical outcome. These functions strongly suggest their potential use in cancer management as diagnostic or prognostic tools and as new targets of therapeutic intervention.
Collapse
Affiliation(s)
- Amelia Casamassimi
- Department of Precision Medicine, University of Campania “Luigi Vanvitelli”, Via L. De Crecchio, 80138 Naples, Italy; (E.D.Z.); (A.S.)
- Correspondence: (A.C.); (C.A.); Tel.: +39-081-566-7579 (A.C.); +39-081-566-7568 (C.A.)
| | - Monica Rienzo
- Department of Environmental, Biological, and Pharmaceutical Sciences and Technologies, University of Campania “Luigi Vanvitelli”, 81100 Caserta, Italy;
| | - Erika Di Zazzo
- Department of Precision Medicine, University of Campania “Luigi Vanvitelli”, Via L. De Crecchio, 80138 Naples, Italy; (E.D.Z.); (A.S.)
- Department of Medicine and Health Sciences “V. Tiberio”, University of Molise, 86100 Campobasso, Italy;
| | - Anna Sorrentino
- Department of Precision Medicine, University of Campania “Luigi Vanvitelli”, Via L. De Crecchio, 80138 Naples, Italy; (E.D.Z.); (A.S.)
| | - Donatella Fiore
- Department of Pharmacy, University of Salerno, 84084 Fisciano (SA), Italy; (D.F.); (M.C.P.); (P.G.)
| | - Maria Chiara Proto
- Department of Pharmacy, University of Salerno, 84084 Fisciano (SA), Italy; (D.F.); (M.C.P.); (P.G.)
| | - Bruno Moncharmont
- Department of Medicine and Health Sciences “V. Tiberio”, University of Molise, 86100 Campobasso, Italy;
| | - Patrizia Gazzerro
- Department of Pharmacy, University of Salerno, 84084 Fisciano (SA), Italy; (D.F.); (M.C.P.); (P.G.)
| | - Maurizio Bifulco
- Department of Molecular Medicine and Medical Biotechnologies, University of Naples “Federico II”, 80131 Naples, Italy;
| | - Ciro Abbondanza
- Department of Precision Medicine, University of Campania “Luigi Vanvitelli”, Via L. De Crecchio, 80138 Naples, Italy; (E.D.Z.); (A.S.)
- Correspondence: (A.C.); (C.A.); Tel.: +39-081-566-7579 (A.C.); +39-081-566-7568 (C.A.)
| |
Collapse
|
10
|
Contextual Regulation of TGF-β Signaling in Liver Cancer. Cells 2019; 8:cells8101235. [PMID: 31614569 PMCID: PMC6829617 DOI: 10.3390/cells8101235] [Citation(s) in RCA: 38] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2019] [Revised: 10/09/2019] [Accepted: 10/10/2019] [Indexed: 02/06/2023] Open
Abstract
Primary liver cancer is one of the leading causes for cancer-related death worldwide. Transforming growth factor beta (TGF-β) is a pleiotropic cytokine that signals through membrane receptors and intracellular Smad proteins, which enter the nucleus upon receptor activation and act as transcription factors. TGF-β inhibits liver tumorigenesis in the early stage by inducing cytostasis and apoptosis, but promotes malignant progression in more advanced stages by enhancing cancer cell survival, EMT, migration, invasion and finally metastasis. Understanding the molecular mechanisms underpinning the multi-faceted roles of TGF-β in liver cancer has become a persistent pursuit during the last two decades. Contextual regulation fine-tunes the robustness, duration and plasticity of TGF-β signaling, yielding versatile albeit specific responses. This involves multiple feedback and feed-forward regulatory loops and also the interplay between Smad signaling and non-Smad pathways. This review summarizes the known regulatory mechanisms of TGF-β signaling in liver cancer, and how they channel, skew and even switch the actions of TGF-β during cancer progression.
Collapse
|
11
|
Ivanochko D, Halabelian L, Henderson E, Savitsky P, Jain H, Marcon E, Duan S, Hutchinson A, Seitova A, Barsyte-Lovejoy D, Filippakopoulos P, Greenblatt J, Lima-Fernandes E, Arrowsmith CH. Direct interaction between the PRDM3 and PRDM16 tumor suppressors and the NuRD chromatin remodeling complex. Nucleic Acids Res 2019; 47:1225-1238. [PMID: 30462309 PMCID: PMC6379669 DOI: 10.1093/nar/gky1192] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2018] [Revised: 10/31/2018] [Accepted: 11/15/2018] [Indexed: 01/01/2023] Open
Abstract
Aberrant isoform expression of chromatin-associated proteins can induce epigenetic programs related to disease. The MDS1 and EVI1 complex locus (MECOM) encodes PRDM3, a protein with an N-terminal PR-SET domain, as well as a shorter isoform, EVI1, lacking the N-terminus containing the PR-SET domain (ΔPR). Imbalanced expression of MECOM isoforms is observed in multiple malignancies, implicating EVI1 as an oncogene, while PRDM3 has been suggested to function as a tumor suppressor through an unknown mechanism. To elucidate functional characteristics of these N-terminal residues, we compared the protein interactomes of the full-length and ΔPR isoforms of PRDM3 and its closely related paralog, PRDM16. Unlike the ΔPR isoforms, both full-length isoforms exhibited a significantly enriched association with components of the NuRD chromatin remodeling complex, especially RBBP4. Typically, RBBP4 facilitates chromatin association of the NuRD complex by binding to histone H3 tails. We show that RBBP4 binds to the N-terminal amino acid residues of PRDM3 and PRDM16, with a dissociation constant of 3.0 μM, as measured by isothermal titration calorimetry. Furthermore, high-resolution X-ray crystal structures of PRDM3 and PRDM16 N-terminal peptides in complex with RBBP4 revealed binding to RBBP4 within the conserved histone H3-binding groove. These data support a mechanism of isoform-specific interaction of PRDM3 and PRDM16 with the NuRD chromatin remodeling complex.
Collapse
Affiliation(s)
- Danton Ivanochko
- Department of Medical Biophysics, University of Toronto, Toronto, ON, M5G 1L7, Canada.,Princess Margaret Cancer Centre, University Health Network, Toronto, ON, M5G 2M9, Canada.,Structural Genomics Consortium, University of Toronto, Toronto, ON, M5G 1L7, Canada
| | - Levon Halabelian
- Structural Genomics Consortium, University of Toronto, Toronto, ON, M5G 1L7, Canada
| | - Elizabeth Henderson
- Structural Genomics Consortium, Nuffield Department of Clinical Medicine, University of Oxford, Oxford, OX3 7DQ, United Kingdom
| | - Pavel Savitsky
- Structural Genomics Consortium, Nuffield Department of Clinical Medicine, University of Oxford, Oxford, OX3 7DQ, United Kingdom
| | - Harshika Jain
- Structural Genomics Consortium, University of Toronto, Toronto, ON, M5G 1L7, Canada
| | - Edyta Marcon
- Department of Molecular Genetics, University of Toronto, Toronto, ON, M5S 1A8, Canada.,Donnelly Centre for Cellular and Biomolecular Research, University of Toronto, Toronto, ON, M5S 3E1, Canada
| | - Shili Duan
- Princess Margaret Cancer Centre, University Health Network, Toronto, ON, M5G 2M9, Canada
| | - Ashley Hutchinson
- Structural Genomics Consortium, University of Toronto, Toronto, ON, M5G 1L7, Canada
| | - Alma Seitova
- Structural Genomics Consortium, University of Toronto, Toronto, ON, M5G 1L7, Canada
| | | | - Panagis Filippakopoulos
- Structural Genomics Consortium, Nuffield Department of Clinical Medicine, University of Oxford, Oxford, OX3 7DQ, United Kingdom
| | - Jack Greenblatt
- Department of Molecular Genetics, University of Toronto, Toronto, ON, M5S 1A8, Canada.,Donnelly Centre for Cellular and Biomolecular Research, University of Toronto, Toronto, ON, M5S 3E1, Canada
| | - Evelyne Lima-Fernandes
- Department of Medical Biophysics, University of Toronto, Toronto, ON, M5G 1L7, Canada.,Princess Margaret Cancer Centre, University Health Network, Toronto, ON, M5G 2M9, Canada.,Structural Genomics Consortium, University of Toronto, Toronto, ON, M5G 1L7, Canada
| | - Cheryl H Arrowsmith
- Department of Medical Biophysics, University of Toronto, Toronto, ON, M5G 1L7, Canada.,Princess Margaret Cancer Centre, University Health Network, Toronto, ON, M5G 2M9, Canada.,Structural Genomics Consortium, University of Toronto, Toronto, ON, M5G 1L7, Canada
| |
Collapse
|
12
|
He D, Wu L, Li X, Liu X, Ma P, Juang Y. Ecotropic virus integration-1 and calreticulin as novel prognostic markers in triple-negative breast cancer: A retrospective cohort study. Oncol Lett 2019; 18:1847-1855. [PMID: 31423253 PMCID: PMC6607142 DOI: 10.3892/ol.2019.10472] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2018] [Accepted: 05/09/2019] [Indexed: 12/16/2022] Open
Abstract
Triple-negative breast cancer (TNBC) is an aggressive form of breast cancer, for which no specific targete d therapy is currently available. The present study aimed to examine the associations of ecotropic virus integration site 1 (EVI-1) and calreticulin (CRT) with other clinicopathological variables and the prognosis of patients with TNBC. The present retrospective cohort study reviewed the medical records of patients with TNBC treated in the Affiliated Hospitals of Jinzhou Medical University between January 2010 and June 2015. The protein expression levels of EVI-1 and CRT in tumor samples obtained from the patients were examined by immunohistochemical analysis. Univariate and multivariate regression analyses were used to identify associations between clinical characteristics and disease-free survival (DFS) or overall survival (OS). Kaplan-Meier analysis was performed to observe the survival condition (DFS/OS) according to EVI-1 and CRT expression. A total of 88 TNBC patients were included in the present study. Tumor tissues in 52 (59.1%) patients were EVI-1 positive, and tumor tissues in 64 (72.7%) patients were CRT-positive, and these rates were significantly higher compared with those in the corresponding paracancerous tissues (P<0.05). Multivariate analysis revealed that EVI-1 and CRT expression levels were independent variables associated with OS and DFS, and high expression of both CRT and EVI-1 was significantly associated with decreased OS and DFS compared with the other subgroups (low EVI-1/low CRT expression, low EVI-1/high CRT expression and high EVI-1/low CRT expression) of patients with TNBC. EVI-1 and CRT expression in TNBC was significantly correlated with poor outcome. Evaluation of the EVI-1 and CRT status may provide insight into prognosis prediction for patients with TNBC.
Collapse
Affiliation(s)
- Dongning He
- Molecular Oncology Laboratory of Cancer Research Institute, The First Affiliated Hospital of China Medical University, Shenyang, Liaoning 110001, P.R. China.,Department of Oncology, The First Affiliated Hospital of Jinzhou Medical University, Jinzhou, Liaoning 121001, P.R. China
| | - Lei Wu
- Molecular Oncology Laboratory of Cancer Research Institute, The First Affiliated Hospital of China Medical University, Shenyang, Liaoning 110001, P.R. China
| | - Xiaoxi Li
- Molecular Oncology Laboratory of Cancer Research Institute, The First Affiliated Hospital of China Medical University, Shenyang, Liaoning 110001, P.R. China
| | - Xiaodan Liu
- Molecular Oncology Laboratory of Cancer Research Institute, The First Affiliated Hospital of China Medical University, Shenyang, Liaoning 110001, P.R. China
| | - Ping Ma
- Molecular Oncology Laboratory of Cancer Research Institute, The First Affiliated Hospital of China Medical University, Shenyang, Liaoning 110001, P.R. China
| | - Youhong Juang
- Molecular Oncology Laboratory of Cancer Research Institute, The First Affiliated Hospital of China Medical University, Shenyang, Liaoning 110001, P.R. China
| |
Collapse
|
13
|
Iwai N, Yasui K, Tomie A, Gen Y, Terasaki K, Kitaichi T, Soda T, Yamada N, Dohi O, Seko Y, Umemura A, Nishikawa T, Yamaguchi K, Moriguchi M, Konishi H, Naito Y, Itoh Y. Oncogenic miR-96-5p inhibits apoptosis by targeting the caspase-9 gene in hepatocellular carcinoma. Int J Oncol 2018; 53:237-245. [PMID: 29658604 DOI: 10.3892/ijo.2018.4369] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2017] [Accepted: 02/09/2018] [Indexed: 11/06/2022] Open
Abstract
The aberrant expression or alteration of microRNAs (miRNAs/miRs) contributes to the development and progression of cancer. In the present study, the functions of miR-96-5p in hepatocellular carcinoma (HCC) were investigated. It was identified that miR-96-5p expression was significantly upregulated in primary HCC tumors compared with their non-tumorous counterparts. A copy number gain was frequently observed at chromosomal region 7q32.2 in which the MIR96 locus is located, suggesting that gene amplification may be one of the mechanisms by which miR-96-5p expression is increased in HCC. Transfection of miR-96-5p mimic into HCC cells decreased the expression of CASP9, which encodes caspase-9, the essential initiator caspase in the mitochondrial apoptotic pathway, at the mRNA and protein levels. A putative binding site for miR-96-5p was identified in the CASP9 3'-untranslated region, and the results of a luciferase assay indicated that CASP9 is a potential direct target of miR-96-5p. The miR-96-5p mimic increased resistance to doxorubicin- and ultraviolet-induced apoptosis through the decrease in caspase-9 expression in HCC cells. Transfection of miR-96-5p inhibitor enhanced the cytotoxic effect of doxorubicin by increasing caspase-9 expression in the HCC cells, suggesting a synergistic effect between the miR-96-5p inhibitor and doxorubicin. In conclusion, the results of the present study suggest that miR-96-5p, which is frequently upregulated in HCC, inhibits apoptosis by targeting CASP9. Therefore, miR-96-5p may be a potential therapeutic target for HCC.
Collapse
Affiliation(s)
- Naoto Iwai
- Department of Molecular Gastroenterology and Hepatology, Graduate School of Medical Science, Kyoto Prefectural University of Medicine, Kyoto 602-8566, Japan
| | - Kohichiroh Yasui
- Department of Molecular Gastroenterology and Hepatology, Graduate School of Medical Science, Kyoto Prefectural University of Medicine, Kyoto 602-8566, Japan
| | - Akira Tomie
- Department of Molecular Gastroenterology and Hepatology, Graduate School of Medical Science, Kyoto Prefectural University of Medicine, Kyoto 602-8566, Japan
| | - Yasuyuki Gen
- Department of Molecular Gastroenterology and Hepatology, Graduate School of Medical Science, Kyoto Prefectural University of Medicine, Kyoto 602-8566, Japan
| | - Kei Terasaki
- Department of Molecular Gastroenterology and Hepatology, Graduate School of Medical Science, Kyoto Prefectural University of Medicine, Kyoto 602-8566, Japan
| | - Tomoko Kitaichi
- Department of Molecular Gastroenterology and Hepatology, Graduate School of Medical Science, Kyoto Prefectural University of Medicine, Kyoto 602-8566, Japan
| | - Tomohiro Soda
- Department of Molecular Gastroenterology and Hepatology, Graduate School of Medical Science, Kyoto Prefectural University of Medicine, Kyoto 602-8566, Japan
| | - Nobuhisa Yamada
- Department of Molecular Gastroenterology and Hepatology, Graduate School of Medical Science, Kyoto Prefectural University of Medicine, Kyoto 602-8566, Japan
| | - Osamu Dohi
- Department of Molecular Gastroenterology and Hepatology, Graduate School of Medical Science, Kyoto Prefectural University of Medicine, Kyoto 602-8566, Japan
| | - Yuya Seko
- Department of Molecular Gastroenterology and Hepatology, Graduate School of Medical Science, Kyoto Prefectural University of Medicine, Kyoto 602-8566, Japan
| | - Atsushi Umemura
- Department of Molecular Gastroenterology and Hepatology, Graduate School of Medical Science, Kyoto Prefectural University of Medicine, Kyoto 602-8566, Japan
| | - Taichiro Nishikawa
- Department of Molecular Gastroenterology and Hepatology, Graduate School of Medical Science, Kyoto Prefectural University of Medicine, Kyoto 602-8566, Japan
| | - Kanji Yamaguchi
- Department of Molecular Gastroenterology and Hepatology, Graduate School of Medical Science, Kyoto Prefectural University of Medicine, Kyoto 602-8566, Japan
| | - Michihisa Moriguchi
- Department of Molecular Gastroenterology and Hepatology, Graduate School of Medical Science, Kyoto Prefectural University of Medicine, Kyoto 602-8566, Japan
| | - Hideyuki Konishi
- Department of Molecular Gastroenterology and Hepatology, Graduate School of Medical Science, Kyoto Prefectural University of Medicine, Kyoto 602-8566, Japan
| | - Yuji Naito
- Department of Molecular Gastroenterology and Hepatology, Graduate School of Medical Science, Kyoto Prefectural University of Medicine, Kyoto 602-8566, Japan
| | - Yoshito Itoh
- Department of Molecular Gastroenterology and Hepatology, Graduate School of Medical Science, Kyoto Prefectural University of Medicine, Kyoto 602-8566, Japan
| |
Collapse
|
14
|
MEIS-1 level in unresectable hepatocellular carcinoma can predict the post-treatment outcomes of radiofrequency ablation. Oncotarget 2018; 9:15252-15265. [PMID: 29632641 PMCID: PMC5880601 DOI: 10.18632/oncotarget.24165] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2017] [Accepted: 12/01/2017] [Indexed: 02/06/2023] Open
Abstract
Radiofrequency ablation (RFA) is a local-ablative therapy for unresectable hepatocellular carcinoma (HCC). At present, there is no predictive marker for RFA treatment outcomes. This work aimed to valuate myeloid ecotropic viral integration site 1 (MEIS-1) in predicting post-RFA treatment outcomes of unresectable HCC patients. The time to progression (TTP) and overall survival (OS) of 81 HCC patients who received RFA treatment were measured. The protein level of MEIS-1 in tumor specimens was measured by western blot. The role of MEIS-1 in RFA-treating HCC in vivo growth nude mouse model was examined via PET/CT imaging. Higher level of MEIS-1 in tumor tissue is associated with better RFA treatment outcomes. The median TTP was 9.0 (95% confidence interval [CI]: 6.8–11.3) months in patients with high MEIS-1 expression (n = 43) versus 6.0 (95% CI: 4.6–7.4) months in patients with low MEIS-1 expression (n = 38). Moreover, in rodent HCC model we found overexpression of MEIS-1 enhanced the anti-tumor effect of RFA treatment. We conclude that high level of MEIS-1 expression predicts better RFA treatment outcome in HCC.
Collapse
|
15
|
Yan X, Wu J, Jiang Q, Cheng H, Han JDJ, Chen YG. CXXC5 suppresses hepatocellular carcinoma by promoting TGF-β-induced cell cycle arrest and apoptosis. J Mol Cell Biol 2017; 10:48-59. [DOI: 10.1093/jmcb/mjx042] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2017] [Accepted: 09/18/2017] [Indexed: 12/18/2022] Open
Affiliation(s)
- Xiaohua Yan
- The State Key Laboratory of Membrane Biology, Tsinghua-Peking Center for Life Sciences, School of Life Sciences, Tsinghua University, Beijing, China
- Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Nanchang University, Nanchang, China
| | - Jingyi Wu
- The State Key Laboratory of Membrane Biology, Tsinghua-Peking Center for Life Sciences, School of Life Sciences, Tsinghua University, Beijing, China
| | - Quanlong Jiang
- Chinese Academy of Sciences-Max Planck Partner Institute for Computational Biology, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, Shanghai, China
| | - Hao Cheng
- Chinese Academy of Sciences-Max Planck Partner Institute for Computational Biology, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, Shanghai, China
| | - Jing-Dong J Han
- Chinese Academy of Sciences-Max Planck Partner Institute for Computational Biology, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, Shanghai, China
| | - Ye-Guang Chen
- The State Key Laboratory of Membrane Biology, Tsinghua-Peking Center for Life Sciences, School of Life Sciences, Tsinghua University, Beijing, China
| |
Collapse
|
16
|
Xu X, Liu S, Ji X. Overexpression of ecotropic viral integration site-1 is a prognostic factor of lung squamous cell cancer. Onco Targets Ther 2017; 10:2739-2744. [PMID: 28603423 PMCID: PMC5457177 DOI: 10.2147/ott.s132410] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023] Open
Abstract
AIM To explore the expression and clinical significance of ecotropic viral integration site-1 (EVI1) of lung squamous cell cancer (SCC). METHODS The expression of EVI1 in SCC was detected by immunohistochemistry and the validation cohort was divided into EVI1 high-expression group and low-expression group according to the cutoff of immunohistochemical score. The correlations between EVI1 expression and the clinicopathological factors were analyzed by χ2 test. The relation between EVI1 expression and overall survival rate was evaluated by univariate analysis with Kaplan-Meier method. The independent prognostic factor was identified by multivariate analysis with Cox regression model. RESULTS In this study, the EVI1 high-expression percentage was 32.32% (53/164). EVI1 high expression was significantly associated with a poorer overall 5-year survival rate of SCC (P=0.021). Moreover, EVI1 high expression was identified as an independent prognostic factor of SCC, predicting the unfavorable prognosis (P=0.013). CONCLUSION High expression of EVI1 was significantly associated with a poorer prognosis and it was identified as an independent prognostic factor of SCC.
Collapse
Affiliation(s)
| | - Shengchen Liu
- Department of Emergency, Linyi People's Hospital, Linyi, China
| | - Xia Ji
- Department of Respiratory Medicine
| |
Collapse
|
17
|
Dietary restriction protects against diethylnitrosamine-induced hepatocellular tumorigenesis by restoring the disturbed gene expression profile. Sci Rep 2017; 7:43745. [PMID: 28262799 PMCID: PMC5338348 DOI: 10.1038/srep43745] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2016] [Accepted: 01/30/2017] [Indexed: 02/08/2023] Open
Abstract
Hepatocellular carcinoma (HCC) is one of the most lethal and prevalent malignancies, worse still, there are very limited therapeutic measures with poor clinical outcomes. Dietary restriction (DR) has been known to inhibit spontaneous and induced tumors in several species, but the mechanisms are little known. In the current study, by using a diethylnitrosamine (DEN)-induced HCC mice model, we found that DR significantly reduced the hepatic tumor number and size, delayed tumor development, suppressed proliferation and promoted apoptosis. Further transcriptome sequencing of liver tissues from the DEN and the DEN accompanied with DR (DEN+DR) mice showed that DEN induced profound changes in the gene expression profile, especially in cancer-related pathways while DR treatment reversed most of the disturbed gene expression induced by DEN. Finally, transcription factor enrichment analysis uncovered the transcription factor specificity protein 1 (SP1) probably functioned as the main regulator of gene changes, orchestrating the protective effects of DR on DEN induced HCC. Taken together, by the first comprehensive transcriptome analysis, we elucidate that DR protects aginst DEN-induced HCC by restoring the disturbed gene expression profile, which holds the promise to provide effective molecular targets for cancer therapies.
Collapse
|
18
|
Yuan X, Wang X, Bi K, Jiang G. The role of EVI-1 in normal hematopoiesis and myeloid malignancies (Review). Int J Oncol 2015; 47:2028-36. [PMID: 26496831 DOI: 10.3892/ijo.2015.3207] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2015] [Accepted: 09/30/2015] [Indexed: 11/06/2022] Open
Abstract
Ecotropic virus integration site-1 (EVI-1) gene, locus on chromosome 3 (3q26.2) in the human genome, was first found in the AKXD strain of mice, in a model of retrovirus-induced acute myeloid leukemia (AML) established twenty years ago. Since then, EVI-1 was regarded as one of the most invasive proto-oncogenes in human leukemia. EVI-1 can encode a unique zinc-finger protein of 145 kDa that can bind with DNA, and its overexpression was closely related to human hemopoietic diseases. Furthermore, accumulating research indicates that EVI-1 is involved in the differentiation, apoptosis and proliferation of leukemia cells. The present review focuses on the biochemical properties of EVI-1 which plays a role in myeloid malignancies.
Collapse
Affiliation(s)
- Xiaofen Yuan
- Key Laboratory for Rare and Uncommon Diseases of Shandong Province, Institute of Basic Medicine, Shandong Academy of Medical Sciences, Jinan, Shandong, P.R. China
| | - Xidi Wang
- Laboratory Department, People's Hospital of Zhangqiu City, Zhangqiu, Shandong, P.R. China
| | - Kehong Bi
- Department of Hematology, Qianfoshan Hospital of Shandong, Jinan, Shandong, P.R. China
| | - Guosheng Jiang
- Key Laboratory for Rare and Uncommon Diseases of Shandong Province, Institute of Basic Medicine, Shandong Academy of Medical Sciences, Jinan, Shandong, P.R. China
| |
Collapse
|
19
|
Hermouet S, Bigot-Corbel E, Gardie B. Pathogenesis of Myeloproliferative Neoplasms: Role and Mechanisms of Chronic Inflammation. Mediators Inflamm 2015; 2015:145293. [PMID: 26538820 PMCID: PMC4619950 DOI: 10.1155/2015/145293] [Citation(s) in RCA: 63] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2015] [Accepted: 08/19/2015] [Indexed: 12/18/2022] Open
Abstract
Myeloproliferative neoplasms (MPNs) are a heterogeneous group of clonal diseases characterized by the excessive and chronic production of mature cells from one or several of the myeloid lineages. Recent advances in the biology of MPNs have greatly facilitated their molecular diagnosis since most patients present with mutation(s) in the JAK2, MPL, or CALR genes. Yet the roles played by these mutations in the pathogenesis and main complications of the different subtypes of MPNs are not fully elucidated. Importantly, chronic inflammation has long been associated with MPN disease and some of the symptoms and complications can be linked to inflammation. Moreover, the JAK inhibitor clinical trials showed that the reduction of symptoms linked to inflammation was beneficial to patients even in the absence of significant decrease in the JAK2-V617F mutant load. These observations suggested that part of the inflammation observed in patients with JAK2-mutated MPNs may not be the consequence of JAK2 mutation. The aim of this paper is to review the different aspects of inflammation in MPNs, the molecular mechanisms involved, the role of specific genetic defects, and the evidence that increased production of certain cytokines depends or not on MPN-associated mutations, and to discuss possible nongenetic causes of inflammation.
Collapse
Affiliation(s)
- Sylvie Hermouet
- Inserm UMR 892, CNRS UMR 6299, Centre de Recherche en Cancérologie Nantes-Angers, Institut de Recherche en Santé, Université de Nantes, 44007 Nantes, France
- Laboratoire d'Hématologie, Centre Hospitalier Universitaire de Nantes, 44093 Nantes Cedex, France
| | - Edith Bigot-Corbel
- Inserm UMR 892, CNRS UMR 6299, Centre de Recherche en Cancérologie Nantes-Angers, Institut de Recherche en Santé, Université de Nantes, 44007 Nantes, France
- Laboratoire de Biochimie, Centre Hospitalier Universitaire de Nantes, 44093 Nantes Cedex, France
| | - Betty Gardie
- Inserm UMR 892, CNRS UMR 6299, Centre de Recherche en Cancérologie Nantes-Angers, Institut de Recherche en Santé, Université de Nantes, 44007 Nantes, France
- Ecole Pratique des Hautes Etudes, Laboratoire de Génétique Oncologique, 44007 Nantes, France
| |
Collapse
|