1
|
Ji H, Qiao O, Zhang Y, Wang W, Han X, Zhang X, Liu C, Gao W. Dual targeting of wild-type p53 and gut microbiota by Magnolol represses key metabolic process and kills CRC cells. Phytother Res 2024; 38:4982-4998. [PMID: 37326338 DOI: 10.1002/ptr.7924] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2022] [Revised: 04/06/2023] [Accepted: 05/31/2023] [Indexed: 06/17/2023]
Abstract
Cancer cells consume considerable glucose quantities and majorly employ glycolysis for ATP generation. This metabolic signature (the Warburg effect) allows cancer cells to channel glucose to biosynthesis to support and maintain their dramatic growth along with proliferation. Currently, our understanding of the metabolic and mechanistic implications of the Warburg effect along with its relationship with biosynthesis remains unclear. Herein, we illustrate that the tumor repressor p53 mediate Magnolol (MAG) triggers colon cancer cell apoptosis. And MAG regulates the glycolytic and oxidative phosphorylation steps through transcriptional modulation of its downstream genes TP53-induced glycolysis modulator and biosynthesis of cytochrome c oxidase, attenuating cell proliferation and tumor growth in vivo and in vitro. Meanwhile, we show that MAG cooperates with its own intestinal microflora characteristic metabolites to repress tumors, especially remarkably declined kynurenine (Kyn)/tryptophan (Trp) ratio. Besides, strong relationships of MAG influenced genes, microbiota, as well as metabolites, were explored. Therefore, we established that p53-microbiota-metabolites function as a mechanism, which enable therapy approaches against metabolism-implicated colorectal cancer, in particular MAG as a prospective candidate for treating colorectal cancer.
Collapse
Affiliation(s)
- Haixia Ji
- School of Chemistry and Chemical Engineering, North University of China, Taiyuan, China
- School of Chemistry and Chemical Engineering, Tianjin University, Tianjin, China
| | - Ou Qiao
- School of Chemistry and Chemical Engineering, Tianjin University, Tianjin, China
| | - Yi Zhang
- School of Chemistry and Chemical Engineering, Tianjin University, Tianjin, China
| | - Wenzhe Wang
- School of Chemistry and Chemical Engineering, Tianjin University, Tianjin, China
| | - Xiaoyin Han
- School of Chemistry and Chemical Engineering, Tianjin University, Tianjin, China
| | - Xinyu Zhang
- School of Chemistry and Chemical Engineering, Tianjin University, Tianjin, China
| | - Changxiao Liu
- School of Chemistry and Chemical Engineering, Tianjin University, Tianjin, China
| | - Wenyuan Gao
- School of Chemistry and Chemical Engineering, Tianjin University, Tianjin, China
| |
Collapse
|
2
|
Bizzoca ME, Caponio VCA, Lo Muzio L, Claudio PP, Cortese A. Methods for Overcoming Chemoresistance in Head and Neck Squamous Cell Carcinoma: Keeping the Focus on Cancer Stem Cells, a Systematic Review. Cancers (Basel) 2024; 16:3004. [PMID: 39272862 PMCID: PMC11394389 DOI: 10.3390/cancers16173004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2024] [Revised: 08/15/2024] [Accepted: 08/27/2024] [Indexed: 09/15/2024] Open
Abstract
According to the "cancer stem cell" (CSCs) theory, tumors are a diverse and expanding group of malignant cells that originate from a small number of CSCs. Despite treatment, these cells can still become active and proliferate, which can result in distant metastasis and local recurrences. A new paradigm in cancer treatment involves targeting both CSCs and the cancer cells in a tumor. This review aims to examine the literature on methods published to overcome chemoresistance due to the presence of CSCs in head and neck cancers. The review was registered with PROSPERO (ID# CRD42024512809). After Pub Med, Scopus, and WoS database searches, 31 relevant articles on oral squamous cell carcinoma (OSCC) were selected. Compounds that increased chemosensitivity by targeting CSCs in head and neck squamous cell carcinoma (HNSCC) were divided into (1) natural products, (2) adjuvant molecules to traditional chemotherapy, and (3) CSCs targeting patient-specific fresh biopsies for functional precision medicine.
Collapse
Affiliation(s)
- Maria Eleonora Bizzoca
- Department of Clinical and Experimental Medicine, University of Foggia, 71122 Foggia, Italy
| | | | - Lorenzo Lo Muzio
- Department of Clinical and Experimental Medicine, University of Foggia, 71122 Foggia, Italy
| | - Pier Paolo Claudio
- Department of Pharmacology and Toxicology, Cancer Center & Research Institute, University of Mississippi Medical Center, Jackson, MS 39216, USA
| | - Antonio Cortese
- Unit of Maxillofacial Surgery, Department of Medicine, Surgery, and Dentistry, University of Salerno, 84084 Salerno, Italy
| |
Collapse
|
3
|
Xu Y, Bai L, Yang X, Huang J, Wang J, Wu X, Shi J. Recent advances in anti-inflammation via AMPK activation. Heliyon 2024; 10:e33670. [PMID: 39040381 PMCID: PMC11261115 DOI: 10.1016/j.heliyon.2024.e33670] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2023] [Revised: 06/22/2024] [Accepted: 06/25/2024] [Indexed: 07/24/2024] Open
Abstract
Inflammation is a complex physiological phenomenon, which is the body's defensive response, but abnormal inflammation can have adverse effects, and many diseases are related to the inflammatory response. AMPK, as a key sensor of cellular energy status, plays a crucial role in regulating cellular energy homeostasis and glycolipid metabolism. In recent years, the anti-inflammation effect of AMPK and related signalling cascade has begun to enter everyone's field of vision - not least the impact on metabolic diseases. A great number of studies have shown that anti-inflammatory drugs work through AMPK and related pathways. Herein, this article summarises recent advances in compounds that show anti-inflammatory effects by activating AMPK and attempts to comment on them.
Collapse
Affiliation(s)
- Yihua Xu
- School of Basic Medical Science, Chengdu University of Traditional Chinese Medicine, Chengdu, Sichuan, China
| | - Lan Bai
- Department of Pharmacy, Personalized Drug Therapy Key Laboratory of Sichuan Province, Sichuan Academy of Medical Sciences & Sichuan Provincial People's Hospital, School of Medicine, University of Electronic Science and Technology of China, Chengdu, Sichuan, China
- The State Key Laboratory of Southwestern Chinese Medicine Resources, Department of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, Sichuan, China
| | - Xinwei Yang
- School of Sports Medicine and Health, Chengdu Sport University, Chengdu, Sichuan, China
| | - Jianli Huang
- Guizhou University of Traditional Chinese Medicine, Guiyang, Guizhou, China
| | - Jie Wang
- Guizhou University of Traditional Chinese Medicine, Guiyang, Guizhou, China
| | - Xianbo Wu
- School of Sports Medicine and Health, Chengdu Sport University, Chengdu, Sichuan, China
| | - Jianyou Shi
- Department of Pharmacy, Personalized Drug Therapy Key Laboratory of Sichuan Province, Sichuan Academy of Medical Sciences & Sichuan Provincial People's Hospital, School of Medicine, University of Electronic Science and Technology of China, Chengdu, Sichuan, China
- The State Key Laboratory of Southwestern Chinese Medicine Resources, Department of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, Sichuan, China
| |
Collapse
|
4
|
Li Z, Mo RL, Gong JF, Han L, Wang WF, Huang DK, Xu JG, Sun YJ, Chen S, Han GC, Sun DQ. Dihydrotanshinone I inhibits gallbladder cancer growth by targeting the Keap1-Nrf2 signaling pathway and Nrf2 phosphorylation. PHYTOMEDICINE : INTERNATIONAL JOURNAL OF PHYTOTHERAPY AND PHYTOPHARMACOLOGY 2024; 129:155661. [PMID: 38677269 DOI: 10.1016/j.phymed.2024.155661] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/23/2023] [Revised: 03/19/2024] [Accepted: 04/19/2024] [Indexed: 04/29/2024]
Abstract
BACKGROUND Gallbladder cancer (GBC) poses a significant risk to human health. Its development is influenced by numerous factors, particularly the homeostasis of reactive oxygen species (ROS) within cells. This homeostasis is crucial for tumor cell survival, and abnormal regulation of ROS is associated with the occurrence and progression of many cancers. Dihydrotanshinone I (DHT I), a biologically effective ingredient isolated from Salvia miltiorrhiza, has exhibited cytotoxic properties against various tumor cells by inducing apoptosis. However, the precise molecular mechanisms by which dht I exerts its cytotoxic effects remain unclear. PURPOSE To explore the anti-tumor impact of dht I on GBC and elucidate the potential molecular mechanisms. METHODS The proliferation of GBC cells, NOZ and SGC-996, was assessed using various assays, including CCK-8 assay, colony formation assay and EdU staining. We also examined cell apoptosis, cell cycle progression, ROS levels, and alterations in mitochondrial membrane potential to delve into the intricate molecular mechanism. Quantitative PCR (qPCR), immunofluorescence staining, and Western blotting were performed to evaluate target gene expression at both the mRNA and protein levels. The correlation between nuclear factor erythroid 2-related factor 2 (Nrf2) and kelch-like ECH-associated protein 1 (Keap1) were examined using co-immunoprecipitation. Finally, the in vivo effect of dht I was investigated using a xenograft model of gallbladder cancer in mice. RESULTS Our research findings indicated that dht I exerted cytotoxic effects on GBC cells, including inhibiting proliferation, disrupting mitochondrial membrane potential, inducing oxidative stress and apoptosis. Our in vivo studies substantiated the inhibition of dht I on tumor growth in xenograft nude mice. Mechanistically, dht I primarily targeted Nrf2 by promoting Keap1 mediated Nrf2 degradation and inhibiting protein kinase C (PKC) induced Nrf2 phosphorylation. This leads to the suppression of Nrf2 nuclear translocation and reduction of its target gene expression. Moreover, Nrf2 overexpression effectively counteracted the anti-tumor effects of dht I, while Nrf2 knockdown significantly enhanced the inhibitory effect of dht I on GBC. Meanwhile, PKC inhibitors and nuclear import inhibitors increased the sensitivity of GBC cells to dht I treatment. Conversely, Nrf2 activators, proteasome inhibitors, antioxidants and PKC activators all antagonized dht I induced apoptosis and ROS generation in NOZ and SGC-996 cells. CONCLUSION Our findings indicated that dht I inhibited the growth of GBC cells by regulating the Keap1-Nrf2 signaling pathway and Nrf2 phosphorylation. These insights provide a strong rationale for further investigation of dht I as a potential therapeutic agent for GBC treatment.
Collapse
Affiliation(s)
- Zhuang Li
- Department of General Surgery, The Chinese People's Armed Police Forces Anhui Provincial Corps Hospital, Hefei 230041, China; Research Technology Center, Anhui University of Chinese Medicine, Hefei 230038, China
| | - Rong-Liang Mo
- School of Basic Medical Sciences, Anhui Medical University, Hefei 230032, China
| | - Jun-Feng Gong
- Department of General Surgery, The Chinese People's Armed Police Forces Anhui Provincial Corps Hospital, Hefei 230041, China
| | - Lin Han
- Department of General Surgery, The Chinese People's Armed Police Forces Anhui Provincial Corps Hospital, Hefei 230041, China
| | - Wen-Fei Wang
- Department of General Surgery, The Chinese People's Armed Police Forces Anhui Provincial Corps Hospital, Hefei 230041, China
| | - Da-Ke Huang
- School of Basic Medical Sciences, Anhui Medical University, Hefei 230032, China
| | - Jie-Gou Xu
- School of Basic Medical Sciences, Anhui Medical University, Hefei 230032, China
| | - Yan-Jun Sun
- Department of General Surgery, The Chinese People's Armed Police Forces Anhui Provincial Corps Hospital, Hefei 230041, China
| | - Shuo Chen
- Research Technology Center, Anhui University of Chinese Medicine, Hefei 230038, China
| | - Gen-Cheng Han
- School of Basic Medical Sciences, Anhui Medical University, Hefei 230032, China.
| | - Deng-Qun Sun
- Department of General Surgery, The Chinese People's Armed Police Forces Anhui Provincial Corps Hospital, Hefei 230041, China.
| |
Collapse
|
5
|
da Silva Zanzarini I, Henrique Kita D, Scheiffer G, Karoline Dos Santos K, de Paula Dutra J, Augusto Pastore M, Gomes de Moraes Rego F, Picheth G, Ambudkar SV, Pulvirenti L, Cardullo N, Rotuno Moure V, Muccilli V, Tringali C, Valdameri G. Magnolol derivatives as specific and noncytotoxic inhibitors of breast cancer resistance protein (BCRP/ABCG2). Bioorg Chem 2024; 146:107283. [PMID: 38513324 PMCID: PMC11069345 DOI: 10.1016/j.bioorg.2024.107283] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2023] [Revised: 02/20/2024] [Accepted: 03/10/2024] [Indexed: 03/23/2024]
Abstract
The breast cancer resistance protein (BCRP/ABCG2) transporter mediates the efflux of numerous antineoplastic drugs, playing a central role in multidrug resistance related to cancer. The absence of successful clinical trials using specific ABCG2 inhibitors reveals the urge to identify new compounds to attend this critical demand. In this work, a series of 13 magnolol derivatives was tested as ABCG2 inhibitors. Only two compounds, derivatives 10 and 11, showed partial and complete ABCG2 inhibitory effect, respectively. This inhibition was selective toward ABCG2, since none of the 13 compounds inhibited neither P-glycoprotein nor MRP1. Both inhibitors (10 and 11) were not transported by ABCG2 and demonstrated a low cytotoxic profile even at high concentrations (up to 100 µM). 11 emerged as the most promising compound of the series, considering the ratio between cytotoxicity (IG50) and ABCG2 inhibition potency (IC50), showing a therapeutic ratio (TR) higher than observed for 10 (10.5 versus 1.6, respectively). This derivative showed a substrate-independent and a mixed type of inhibition. The effect of compound 11 on the ABCG2 ATPase activity and thermostability revealed allosteric protein changes. This compound did not affect the expression levels of ABCG2 and increased the binding of the conformational-sensitive antibody 5D3. A docking study showed that 11 did not share the same binding site with ABCG2 substrate mitoxantrone. Finally, 11 could revert the chemoresistance to SN-38 mediated by ABCG2.
Collapse
Affiliation(s)
- Isadora da Silva Zanzarini
- Graduate Program in Pharmaceutical Sciences, Laboratory of Cancer Drug Resistance, Federal University of Parana, Curitiba, Brazil
| | - Diogo Henrique Kita
- Graduate Program in Pharmaceutical Sciences, Laboratory of Cancer Drug Resistance, Federal University of Parana, Curitiba, Brazil; Laboratory of Cell Biology, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, MD, USA
| | - Gustavo Scheiffer
- Graduate Program in Pharmaceutical Sciences, Laboratory of Cancer Drug Resistance, Federal University of Parana, Curitiba, Brazil
| | - Kelly Karoline Dos Santos
- Graduate Program in Pharmaceutical Sciences, Laboratory of Cancer Drug Resistance, Federal University of Parana, Curitiba, Brazil
| | - Julia de Paula Dutra
- Graduate Program in Pharmaceutical Sciences, Laboratory of Cancer Drug Resistance, Federal University of Parana, Curitiba, Brazil
| | - Matteo Augusto Pastore
- Graduate Program in Pharmaceutical Sciences, Laboratory of Cancer Drug Resistance, Federal University of Parana, Curitiba, Brazil
| | | | - Geraldo Picheth
- Department of Clinical Analysis, Federal University of Parana, Curitiba, Brazil
| | - Suresh V Ambudkar
- Laboratory of Cell Biology, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, MD, USA
| | - Luana Pulvirenti
- Istituto di Chimica Biomolecolare del Consiglio Nazionale delle Ricerche (ICB-CNR), Catania, Italy
| | - Nunzio Cardullo
- Department of Chemical Sciences, University of Catania, Catania, Italy
| | - Vivian Rotuno Moure
- Graduate Program in Pharmaceutical Sciences, Laboratory of Cancer Drug Resistance, Federal University of Parana, Curitiba, Brazil
| | - Vera Muccilli
- Department of Chemical Sciences, University of Catania, Catania, Italy.
| | - Corrado Tringali
- Department of Chemical Sciences, University of Catania, Catania, Italy
| | - Glaucio Valdameri
- Graduate Program in Pharmaceutical Sciences, Laboratory of Cancer Drug Resistance, Federal University of Parana, Curitiba, Brazil.
| |
Collapse
|
6
|
Tellería F, Mansilla S, Méndez D, Sepúlveda M, Araya-Maturana R, Castro L, Trostchansky A, Fuentes E. The Use of Triphenyl Phosphonium Cation Enhances the Mitochondrial Antiplatelet Effect of the Compound Magnolol. Pharmaceuticals (Basel) 2023; 16:210. [PMID: 37259359 PMCID: PMC9958981 DOI: 10.3390/ph16020210] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2022] [Revised: 01/20/2023] [Accepted: 01/27/2023] [Indexed: 08/31/2023] Open
Abstract
Although platelets are anucleated cells, they have fully functional mitochondria, and currently, it is known that several processes that occur in the platelet require the action of mitochondria. There are plenty of mitochondrial-targeted compounds described in the literature related to cancer, however, only a small number of studies have approached their interaction with platelet mitochondria and/or their effects on platelet activity. Recent studies have shown that magnolia extract and mitochondria-targeted magnolol can inhibit mitochondrial respiration and cell proliferation in melanoma and oral cancer cells, respectively, and they can also induce ROS and mitophagy. In this study, the effect of triphenylphosphonium cation, linked by alkyl chains of different lengths, to the organic compound magnolol on human-washed platelets was evaluated. We demonstrated that the addition of triphenylphosphonium by a four-carbon linker to magnolol (MGN4) considerably enhanced the Magnolol antiplatelet effect by a 3-fold decrease in the IC50. Additionally, platelets exposed to MGN4 5 µM showed several differences from the control including increased basal respiration, collagen-induced respiration, ATP-independent respiration, and reduced ATP-dependent respiration and non-mitochondrial respiration.
Collapse
Affiliation(s)
- Francisca Tellería
- MIBI: Interdisciplinary Group on Mitochondrial Targeting and Bioenergetics, Department of Clinical Biochemistry and Immunohematology, Thrombosis Research Center, Medical Technology School, Faculty of Health Sciences, Universidad de Talca, Talca 3480094, Chile
| | - Santiago Mansilla
- Departamento de Métodos Cuantitativos and Centro de Investigaciones Biomédicas (CEINBIO), Facultad de Medicina, Universidad de la República, Montevideo 11800, Uruguay
| | - Diego Méndez
- MIBI: Interdisciplinary Group on Mitochondrial Targeting and Bioenergetics, Department of Clinical Biochemistry and Immunohematology, Thrombosis Research Center, Medical Technology School, Faculty of Health Sciences, Universidad de Talca, Talca 3480094, Chile
| | - Magdalena Sepúlveda
- MIBI: Interdisciplinary Group on Mitochondrial Targeting and Bioenergetics, Department of Clinical Biochemistry and Immunohematology, Thrombosis Research Center, Medical Technology School, Faculty of Health Sciences, Universidad de Talca, Talca 3480094, Chile
| | - Ramiro Araya-Maturana
- MIBI: Interdisciplinary Group on Mitochondrial Targeting and Bioenergetics, Instituto de Química de Recursos Naturales, Universidad de Talca, Talca 3460000, Chile
| | - Laura Castro
- Departamento de Bioquímica and Centro de Investigaciones Biomédicas (CEINBIO), Facultad de Medicina, Universidad de la República, Montevideo 11800, Uruguay
| | - Andrés Trostchansky
- Departamento de Bioquímica and Centro de Investigaciones Biomédicas (CEINBIO), Facultad de Medicina, Universidad de la República, Montevideo 11800, Uruguay
| | - Eduardo Fuentes
- MIBI: Interdisciplinary Group on Mitochondrial Targeting and Bioenergetics, Department of Clinical Biochemistry and Immunohematology, Thrombosis Research Center, Medical Technology School, Faculty of Health Sciences, Universidad de Talca, Talca 3480094, Chile
| |
Collapse
|
7
|
Fatima M, Sheikh A, Abourehab MAS, Kesharwani P. Advancements in Polymeric Nanocarriers to Mediate Targeted Therapy against Triple-Negative Breast Cancer. Pharmaceutics 2022; 14:2432. [PMID: 36365249 PMCID: PMC9695386 DOI: 10.3390/pharmaceutics14112432] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2022] [Revised: 11/06/2022] [Accepted: 11/08/2022] [Indexed: 11/12/2022] Open
Abstract
Triple-negative breast cancer (TNBC) is a destructive disease with a poor prognosis, low survival rate and high rate of metastasis. It comprises 15% of total breast cancers and is marked by deficiency of three important receptor expressions, i.e., progesterone, estrogen, and human epidermal growth factor receptors. This absence of receptors is the foremost cause of current TNBC therapy failure, resulting in poor therapeutic response in patients. Polymeric nanoparticles are gaining much popularity for transporting chemotherapeutics, genes, and small-interfering RNAs. Due to their exclusive properties such as great stability, easy surface modification, stimuli-responsive and controlled drug release, ability to condense more than one therapeutic moiety inside, tumor-specific delivery of payload, enhanced permeation and retention effect, present them as ideal nanocarriers for increasing efficacy, bioavailability and reducing the toxicity of therapeutic agents. They can even be used as theragnostic agents for the diagnosis of TNBC along with its treatment. In this review, we discuss the limitations of already existing TNBC therapies and highlight the novel approach to designing and the functionalization of polymeric nanocarriers for the effective treatment of TNBC.
Collapse
Affiliation(s)
- Mahak Fatima
- Department of Pharmaceutics, School of Pharmaceutical Education and Research, Jamia Hamdard, New Delhi 110062, India
| | - Afsana Sheikh
- Department of Pharmaceutics, School of Pharmaceutical Education and Research, Jamia Hamdard, New Delhi 110062, India
| | - Mohammed A. S. Abourehab
- Department of Pharmaceutics, College of Pharmacy, Umm Al-Qura University, Makkah 21955, Saudi Arabia
| | - Prashant Kesharwani
- Department of Pharmaceutics, School of Pharmaceutical Education and Research, Jamia Hamdard, New Delhi 110062, India
- Center for Transdisciplinary Research, Department of Pharmacology, Saveetha Dental College, Saveetha Institute of Medical and Technical Science, Chennai 602105, India
| |
Collapse
|
8
|
Wang X, Liu Q, Fu Y, Ding RB, Qi X, Zhou X, Sun Z, Bao J. Magnolol as a Potential Anticancer Agent: A Proposed Mechanistic Insight. Molecules 2022; 27:molecules27196441. [PMID: 36234977 PMCID: PMC9570903 DOI: 10.3390/molecules27196441] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2022] [Revised: 09/27/2022] [Accepted: 09/27/2022] [Indexed: 11/16/2022] Open
Abstract
Cancer is a serious disease with high mortality and morbidity worldwide. Natural products have served as a major source for developing new anticancer drugs during recent decades. Magnolol, a representative natural phenolic lignan isolated from Magnolia officinali, has attracted considerable attention for its anticancer properties in recent years. Accumulating preclinical studies have demonstrated the tremendous therapeutic potential of magnolol via a wide range of pharmacological mechanisms against cancer. In this review, we summarized the latest advances in preclinical studies investigating anticancer properties of magnolol and described the important signaling pathways explaining its underlying mechanisms. Magnolol was capable of inhibiting cancer growth and metastasis against various cancer types. Magnolol exerted anticancer effects through inhibiting proliferation, inducing cell cycle arrest, provoking apoptosis, restraining migration and invasion, and suppressing angiogenesis. Multiple signaling pathways were also involved in the pharmacological actions of magnolol against cancer, such as PI3K/Akt/mTOR signaling, MAPK signaling and NF-κB signaling. Based on this existing evidence summarized in the review, we have conclusively confirmed magnolol had a multi-target anticancer effect against heterogeneous cancer disease. It is promising to develop magnolol as a drug candidate for cancer therapy in the future.
Collapse
Affiliation(s)
- Xiaofeng Wang
- Department of Otolaryngology-Head and Neck Surgery, The First Affiliated Hospital of Hainan Medical University, Haikou 570102, China
| | - Qingqing Liu
- Key Laboratory of Tropical Biological Resources of Ministry of Education, School of Pharmaceutical Sciences, Collaborative Innovation Center of One Health, Hainan University, Haikou 570228, China
| | - Yuanfeng Fu
- Key Laboratory of Tropical Biological Resources of Ministry of Education, School of Pharmaceutical Sciences, Collaborative Innovation Center of One Health, Hainan University, Haikou 570228, China
| | - Ren-Bo Ding
- Key Laboratory of Tropical Biological Resources of Ministry of Education, School of Pharmaceutical Sciences, Collaborative Innovation Center of One Health, Hainan University, Haikou 570228, China
- State Key Laboratory of Quality Research in Chinese Medicine, Institute of Chinese Medical Sciences, University of Macau, Macao 999078, China
| | - Xingzhu Qi
- Key Laboratory of Tropical Biological Resources of Ministry of Education, School of Pharmaceutical Sciences, Collaborative Innovation Center of One Health, Hainan University, Haikou 570228, China
| | - Xuejun Zhou
- Department of Otolaryngology-Head and Neck Surgery, The First Affiliated Hospital of Hainan Medical University, Haikou 570102, China
| | - Zhihua Sun
- State International Joint Research Center for Animal Health Breeding, Key Laboratory of Control and Prevention of Animal Disease of Xinjiang Production & Construction Corps, College of Animal Science and Technology, Shihezi University, Shihezi 832003, China
- Correspondence: (Z.S.); (J.B.)
| | - Jiaolin Bao
- Key Laboratory of Tropical Biological Resources of Ministry of Education, School of Pharmaceutical Sciences, Collaborative Innovation Center of One Health, Hainan University, Haikou 570228, China
- State Key Laboratory of Quality Research in Chinese Medicine, Institute of Chinese Medical Sciences, University of Macau, Macao 999078, China
- Correspondence: (Z.S.); (J.B.)
| |
Collapse
|
9
|
Role of Plant-Derived Active Constituents in Cancer Treatment and Their Mechanisms of Action. Cells 2022; 11:cells11081326. [PMID: 35456005 PMCID: PMC9031068 DOI: 10.3390/cells11081326] [Citation(s) in RCA: 16] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2022] [Revised: 03/31/2022] [Accepted: 04/11/2022] [Indexed: 02/07/2023] Open
Abstract
Despite significant technological advancements in conventional therapies, cancer remains one of the main causes of death worldwide. Although substantial progress has been made in the control and treatment of cancer, several limitations still exist, and there is scope for further advancements. Several adverse effects are associated with modern chemotherapy that hinder cancer treatment and lead to other critical disorders. Since ancient times, plant-based medicines have been employed in clinical practice and have yielded good results with few side effects. The modern research system and advanced screening techniques for plants’ bioactive constituents have enabled phytochemical discovery for the prevention and treatment of challenging diseases such as cancer. Phytochemicals such as vincristine, vinblastine, paclitaxel, curcumin, colchicine, and lycopene have shown promising anticancer effects. Discovery of more plant-derived bioactive compounds should be encouraged via the exploitation of advanced and innovative research techniques, to prevent and treat advanced-stage cancers without causing significant adverse effects. This review highlights numerous plant-derived bioactive molecules that have shown potential as anticancer agents and their probable mechanisms of action and provides an overview of in vitro, in vivo and clinical trial studies on anticancer phytochemicals.
Collapse
|
10
|
Ghafoor B, Najabat Ali M. Synthesis and in vitro evaluation of natural drug loaded polymeric films for cardiovascular applications. J BIOACT COMPAT POL 2022. [DOI: 10.1177/08839115221085735] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Drug eluting stents (DES) can efficiently reduce the atherosclerosis and restenosis issues of coronary artery as compared to bare metal stents due to the presence of pharmaceutically active agent on their surface. Nevertheless, the arising safety concerns of DES such as delayed healing and late in stent restenosis and thrombus, has stirred the research efforts to improve the outcomes of the DES. In this connection, attention is being shifted from the use of synthetic drug to natural drug for DES. In the present work, natural compound loaded polymeric films were synthesized and their antioxidant and anticoagulation capabilities were assessed through in vitro testing. The potential of the drug loaded polymeric films to curb the production of free radicals was evaluated by carrying out antioxidant activity using 2,2-diphenyl-1-picrylhydrazyl (DPPH) assay. The in vitro platelet adhesion was investigated through static platelet adhesion test while effect of synthesized films on intrinsic coagulation pathway was investigated through activated partially thromboplastin time (APTT). Moreover, to further evaluate the blood compatibility of the developed drug loaded films, in vitro hemolytic and anti-thrombolytic assays were carried out. The obtained results indicated that, incorporating herbal compounds such as ginger, magnolol and curcumin, in polymeric matrix (PVA) has significantly improved the blood compatibility of the polymeric films. Hence, it can be concluded that the synthesized drug loaded polymeric films have the potential capability to be used as a potential coating material for coating biomedical implants with good anticoagulation and antioxidant property to cater the cardiovascular issues such as atherosclerosis, restenosis and thrombus formation.
Collapse
Affiliation(s)
- Bakhtawar Ghafoor
- Biomedical Engineering & Sciences Department, School of Mechanical and Manufacturing Engineering, National University of Sciences and Technology (NUST), Islamabad, Pakistan
| | - Murtaza Najabat Ali
- Biomedical Engineering & Sciences Department, School of Mechanical and Manufacturing Engineering, National University of Sciences and Technology (NUST), Islamabad, Pakistan
| |
Collapse
|
11
|
Yu C, Zhang Y, Wang N, Wei W, Cao K, Zhang Q, Ma P, Xie D, Wu P, Liu B, Liu J, Xiang W, Hu X, Liu X, Xie J, Tang J, Long Z, Wang L, Zeng H, Liu J. Treatment of bladder cancer by geoinspired synthetic chrysotile nanocarrier-delivered circPRMT5 siRNA. Biomater Res 2022; 26:6. [PMID: 35123588 PMCID: PMC8818206 DOI: 10.1186/s40824-022-00251-z] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2021] [Accepted: 01/19/2022] [Indexed: 12/21/2022] Open
Abstract
Background Circular RNAs (circRNAs) have important functions in many fields of cancer biology. In particular, we previously reported that the oncogenic circRNA, circPRMT5, has a major role in bladder cancer progression. Therapy based on circRNAs have good prospects as anticancer strategies. While anti-circRNAs are emerging as therapeutics, the specific in vivo delivery of anti-circRNAs into cancer cells has not been reported and remains challenging. Methods Synthesized chrysotile nanotubes (SCNTs) with a relatively uniform length (~ 200 nm) have been designed to deliver an siRNA against the oncogenic circPRMT5 (si-circPRMT5) inhibit circPRMT5. In addition, the antitumor effects and safety evaluation of SCNTs/si-circPRMT5 was assessed with a series of in vitro and in vivo assays. Results The results showed that SCNTs/si-circPRMT5 nanomaterials prolong si-circPRMT5’s half-life in circulation, enhance its specific uptake by tumor cells, and maximize the silencing efficiency of circPRMT5. In vitro, SCNTs encapsulating si-circPRMT5 could inhibit bladder cancer cell growth and progression. In vivo, SCNTs/si-circPRMT5 inhibited growth and metastasis in three bladder tumor models (a subcutaneous model, a tail vein injection lung metastatic model, and an in situ model) without obvious toxicities. Mechanistic study showed that SCNTs/si-circPRMT5 regulated the miR-30c/SNAIL1/E-cadherin axis, inhibiting bladder cancer growth and progression. Conclusion The results highlight the potential therapeutic utility of SCNTs/si-circPRMT5 to deliver si-circPRMT5 to treat bladder cancer. Supplementary Information The online version contains supplementary material available at 10.1186/s40824-022-00251-z.
Collapse
Affiliation(s)
- Chunping Yu
- Department of Urology, The Third Xiangya Hospital of Central South University, No.138, Tongzipo Road, Changsha, 410013, Hunan, China.,Department of Urology, Sun Yat-sen University Cancer Center, No. 651, Dongfeng Road East, Guangzhou, 510060, Guangdong, China.,State Key Laboratory of Oncology in Southern China, Collaborative Innovation Center for Cancer Medicine, No. 651, Dongfeng Road East, Guangzhou, 510060, Guangdong, China
| | - Yi Zhang
- School of Minerals Processing and Bioengineering, Central South University, No. 932, Lushan South, Changsha, 410083, Hunan, China
| | - Ning Wang
- Department of Urology, Sun Yat-sen University Cancer Center, No. 651, Dongfeng Road East, Guangzhou, 510060, Guangdong, China.,State Key Laboratory of Oncology in Southern China, Collaborative Innovation Center for Cancer Medicine, No. 651, Dongfeng Road East, Guangzhou, 510060, Guangdong, China
| | - Wensu Wei
- Department of Urology, Sun Yat-sen University Cancer Center, No. 651, Dongfeng Road East, Guangzhou, 510060, Guangdong, China.,State Key Laboratory of Oncology in Southern China, Collaborative Innovation Center for Cancer Medicine, No. 651, Dongfeng Road East, Guangzhou, 510060, Guangdong, China
| | - Ke Cao
- Department of Onology, The Third Xiangya Hospital of Central South University, No.138, Tongzipo Road, Changsha, 410013, Hunan, China
| | - Qun Zhang
- Department of Radiotherapy, The First Affiliated Hospital of Sun Yat-sen University, 58 Zhongshan 2nd Road, Guangzhou, 510080, Guangdong, China
| | - Peiying Ma
- School of Minerals Processing and Bioengineering, Central South University, No. 932, Lushan South, Changsha, 410083, Hunan, China
| | - Dan Xie
- State Key Laboratory of Oncology in Southern China, Collaborative Innovation Center for Cancer Medicine, No. 651, Dongfeng Road East, Guangzhou, 510060, Guangdong, China
| | - Pei Wu
- Department of Operation Center, The Second Xiangya Hospital of Central South University, People's Middle Road, Changsha, 410008, Hunan, China
| | - Biao Liu
- Department of Urology, The Third Xiangya Hospital of Central South University, No.138, Tongzipo Road, Changsha, 410013, Hunan, China
| | - Jiahao Liu
- Department of Urology, The Third Xiangya Hospital of Central South University, No.138, Tongzipo Road, Changsha, 410013, Hunan, China
| | - Wei Xiang
- Department of Urology, The Third Xiangya Hospital of Central South University, No.138, Tongzipo Road, Changsha, 410013, Hunan, China
| | - Xing Hu
- Department of Urology, The Third Xiangya Hospital of Central South University, No.138, Tongzipo Road, Changsha, 410013, Hunan, China
| | - Xuewen Liu
- Department of Onology, The Third Xiangya Hospital of Central South University, No.138, Tongzipo Road, Changsha, 410013, Hunan, China
| | - Jianfei Xie
- Department of Nursing, The Third Xiangya Hospital of Central South University, No.138, Tongzipo Road, Changsha, 410013, Hunan, China
| | - Jin Tang
- Department of Urology, The Third Xiangya Hospital of Central South University, No.138, Tongzipo Road, Changsha, 410013, Hunan, China
| | - Zhi Long
- Department of Urology, The Third Xiangya Hospital of Central South University, No.138, Tongzipo Road, Changsha, 410013, Hunan, China
| | - Long Wang
- Department of Urology, The Third Xiangya Hospital of Central South University, No.138, Tongzipo Road, Changsha, 410013, Hunan, China
| | - Hongliang Zeng
- Research Institute of Chinese Medicine, Hunan Academy of Chinese Medicine, No.58, Lushan Road, Changsha, 410000, Hunan, China
| | - Jianye Liu
- Department of Urology, The Third Xiangya Hospital of Central South University, No.138, Tongzipo Road, Changsha, 410013, Hunan, China.
| |
Collapse
|
12
|
Wang Y, Sun C, Huang L, Liu M, Li L, Wang X, Wang L, Sun S, Xu H, Ma G, Zhang L, Zheng J, Liu H. Magnolol-loaded Cholesteryl Biguanide Conjugate Hydrochloride Nanoparticles for Triple-negative Breast Cancer Therapy. Int J Pharm 2022; 615:121509. [PMID: 35085734 DOI: 10.1016/j.ijpharm.2022.121509] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2021] [Revised: 01/15/2022] [Accepted: 01/21/2022] [Indexed: 12/25/2022]
Abstract
The potential of combination therapy using nanoparticle delivery systems in improving triple-negative breast cancer treatment efficacy remains to be explored. Here, we report a novel nanoparticle system using a cholesterol biguanide conjugate hydrochloride (CBH) as both a drug and carrier to load magnolol (MAG). Poly(ethylene glycol)-poly(lactic-co-glycolic acid) (mPEG-PLGA) and aminoethyl anisamide-poly(ethylene glycol)-poly(lactic-co-glycolic acid) (AEAA-PEG-PLGA) were added to form nanoparticles. Nanoparticles accumulated most in tumor tissues when the weight ratio of AEAA-PEG-PLGA to mPEG-PLGA was 4:1. MAG and CBH exerted a synergistic inhibitory effect on 4T1 cells. An in vitro study showed that nanoparticles displayed the highest tumor cell uptake rate, highest apoptosis rate, and strongest inhibitory effect on tumor cell migration and monoclonal formation. CBH might promote nanoparticle uptake by cells and lysosomal escape. After intravenous administration to mice with 4T1 breast tumors in situ, the nanoparticles inhibited tumor growth without obvious toxicity. Western blot results showed that nanoparticles altered the levels of p53, p-AKT, and p-AMPK in the tumor tissue. Moreover, cell apoptosis was found in the same area of H&E-stained and TUNEL-stained tumors treated with the nanoparticles. Collectively, this nanoparticle system provides a novel combination drug delivery strategy for treating triple-negative breast cancer.
Collapse
Affiliation(s)
- Yanzhi Wang
- State Key Laboratory of Esophageal Cancer Prevention & Treatment, Key Laboratory of Advanced Drug Preparation Technologies, Henan Key Laboratory of Drug Quality Control & Evaluation, School of Pharmaceutical Sciences, Zhengzhou University, Ministry of Education of China, Zhengzhou 450001, China.
| | - Cancan Sun
- State Key Laboratory of Esophageal Cancer Prevention & Treatment, Key Laboratory of Advanced Drug Preparation Technologies, Henan Key Laboratory of Drug Quality Control & Evaluation, School of Pharmaceutical Sciences, Zhengzhou University, Ministry of Education of China, Zhengzhou 450001, China; Department of Pharmacy, People's Hospital of Zhengzhou, Zhengzhou 450001, China
| | - Leaf Huang
- Division of Pharmaco-engineering and Molecular Pharmaceutics, Eshelman School of Pharmacy, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
| | - Mengqian Liu
- State Key Laboratory of Esophageal Cancer Prevention & Treatment, Key Laboratory of Advanced Drug Preparation Technologies, Henan Key Laboratory of Drug Quality Control & Evaluation, School of Pharmaceutical Sciences, Zhengzhou University, Ministry of Education of China, Zhengzhou 450001, China
| | - Lu Li
- State Key Laboratory of Esophageal Cancer Prevention & Treatment, Key Laboratory of Advanced Drug Preparation Technologies, Henan Key Laboratory of Drug Quality Control & Evaluation, School of Pharmaceutical Sciences, Zhengzhou University, Ministry of Education of China, Zhengzhou 450001, China
| | - Xiping Wang
- State Key Laboratory of Esophageal Cancer Prevention & Treatment, Key Laboratory of Advanced Drug Preparation Technologies, Henan Key Laboratory of Drug Quality Control & Evaluation, School of Pharmaceutical Sciences, Zhengzhou University, Ministry of Education of China, Zhengzhou 450001, China
| | - Linchao Wang
- State Key Laboratory of Esophageal Cancer Prevention & Treatment, Key Laboratory of Advanced Drug Preparation Technologies, Henan Key Laboratory of Drug Quality Control & Evaluation, School of Pharmaceutical Sciences, Zhengzhou University, Ministry of Education of China, Zhengzhou 450001, China
| | - Shanshan Sun
- State Key Laboratory of Esophageal Cancer Prevention & Treatment, Key Laboratory of Advanced Drug Preparation Technologies, Henan Key Laboratory of Drug Quality Control & Evaluation, School of Pharmaceutical Sciences, Zhengzhou University, Ministry of Education of China, Zhengzhou 450001, China
| | - Haiwei Xu
- State Key Laboratory of Esophageal Cancer Prevention & Treatment, Key Laboratory of Advanced Drug Preparation Technologies, Henan Key Laboratory of Drug Quality Control & Evaluation, School of Pharmaceutical Sciences, Zhengzhou University, Ministry of Education of China, Zhengzhou 450001, China
| | - Gege Ma
- State Key Laboratory of Esophageal Cancer Prevention & Treatment, Key Laboratory of Advanced Drug Preparation Technologies, Henan Key Laboratory of Drug Quality Control & Evaluation, School of Pharmaceutical Sciences, Zhengzhou University, Ministry of Education of China, Zhengzhou 450001, China
| | - Lei Zhang
- State Key Laboratory of Esophageal Cancer Prevention & Treatment, Key Laboratory of Advanced Drug Preparation Technologies, Henan Key Laboratory of Drug Quality Control & Evaluation, School of Pharmaceutical Sciences, Zhengzhou University, Ministry of Education of China, Zhengzhou 450001, China
| | - Jiaxin Zheng
- State Key Laboratory of Esophageal Cancer Prevention & Treatment, Key Laboratory of Advanced Drug Preparation Technologies, Henan Key Laboratory of Drug Quality Control & Evaluation, School of Pharmaceutical Sciences, Zhengzhou University, Ministry of Education of China, Zhengzhou 450001, China.
| | - Hongmin Liu
- State Key Laboratory of Esophageal Cancer Prevention & Treatment, Key Laboratory of Advanced Drug Preparation Technologies, Henan Key Laboratory of Drug Quality Control & Evaluation, School of Pharmaceutical Sciences, Zhengzhou University, Ministry of Education of China, Zhengzhou 450001, China.
| |
Collapse
|
13
|
Niu L, Hou Y, Jiang M, Bai G. The rich pharmacological activities of Magnolia officinalis and secondary effects based on significant intestinal contributions. JOURNAL OF ETHNOPHARMACOLOGY 2021; 281:114524. [PMID: 34400262 DOI: 10.1016/j.jep.2021.114524] [Citation(s) in RCA: 27] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/11/2021] [Revised: 08/01/2021] [Accepted: 08/13/2021] [Indexed: 06/13/2023]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE Magnolia officinalis Cortex (M. officinalis) is a traditional herbal drug widely used in Asian countries. Depending on its multiple biological activities, M. officinalis is used to regulate gastrointestinal (GI) motility, relieve cough and asthma, prevent cardiovascular and cerebrovascular diseases, and treat depression and anxiety. AIM OF THE REVIEW We aimed to review the abundant form of pharmacodynamics activity and potential mechanisms of action of M. officinalis and the characteristics of the internal processes of the main components. The potential mechanisms of local and distance actions of M. officinalis based on GI tract was provided, and it was used to reveal the interconnections between traditional use, phytochemistry, and pharmacology. MATERIALS AND METHODS Published literatures about M. officinalis and its main components were collected from several scientific databases, including PubMed, Elsevier, ScienceDirect, Google Scholar and Web of Science etc. RESULTS: M. officinalis was shown multiple effects including effects on digestive system, respiratory system, central system, which is consistent with traditional applications, as well as some other activities such as cardiovascular system, anticancer, anti-inflammatory and antioxidant effects and so on. The mechanisms of these activities are abundant. Its chief ingredients such as magnolol and honokiol can be metabolized into active metabolites in vivo, which can increase water solubility and bioavailability and exert pharmacological activity in the whole body. In the GI tract, M. officinalis and its main ingredient can regulate GI hormones and substance metabolism, protect the intestinal barrier and affect the gut microbiota (GM). These actions are effective to improve local discomfort and some distal symptoms such as depression, asthma, or metabolic disorders. CONCLUSIONS Although M. officinalis has rich pharmacological effects, the GI tract makes great contributions to it. The GI tract is not only an important place for absorption and metabolism but also a key site to help M. officinalis exert local and distal efficacy. Pharmacodynamical studies on the efficacies of distal tissues based on the contributions of the GI tract hold great potential for understanding the benefits of M. officinalis and providing new ideas for the treatment of important diseases.
Collapse
Affiliation(s)
- Lin Niu
- Tianjin University of Traditional Chinese Medicine, Tianjin, 300193, People's Republic of China
| | - Yuanyuan Hou
- State Key Laboratory of Medicinal Chemical Biology, College of Pharmacy and Tianjin Key Laboratory of Molecular Drug Research, Nankai University, Haihe Education Park, 38 Tongyan Road, Tianjin, 300353, People's Republic of China
| | - Min Jiang
- State Key Laboratory of Medicinal Chemical Biology, College of Pharmacy and Tianjin Key Laboratory of Molecular Drug Research, Nankai University, Haihe Education Park, 38 Tongyan Road, Tianjin, 300353, People's Republic of China
| | - Gang Bai
- State Key Laboratory of Medicinal Chemical Biology, College of Pharmacy and Tianjin Key Laboratory of Molecular Drug Research, Nankai University, Haihe Education Park, 38 Tongyan Road, Tianjin, 300353, People's Republic of China.
| |
Collapse
|
14
|
Mottaghi S, Abbaszadeh H. Natural Lignans Honokiol and Magnolol as Potential Anticarcinogenic and Anticancer Agents. A Comprehensive Mechanistic Review. Nutr Cancer 2021; 74:761-778. [PMID: 34047218 DOI: 10.1080/01635581.2021.1931364] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
Plant lignans constitute an important group of polyphenols, which have been demonstrated to significantly induce cancer cell death and suppress cancer cell proliferation with minimal toxicity against non-transformed cells. Numerous epidemiological studies have shown that the intake of lignans is associated with lower risk of several cancers. These natural compounds have the potential to inhibit carcinogenesis, tumor growth, and metastasis by targeting various signaling molecules and pathways. Growing evidence indicates that honokiol and magnolol as natural lignans possess potent anticancer activities against various types of human cancer. The aim of present review is to provide the reader with the newest findings in understanding the cellular and molecular mechanisms mediating anticancer effects of honokiol and magnolol. This review comprehensively elucidates the effects of honokiol and magnolol on the molecular targets and signal transduction pathways implicated in cancer cell proliferation and metastasis. The findings of current review indicate that honokiol and magnolol can be considered as promising carcinopreventive and anticancer agents.
Collapse
Affiliation(s)
- Sayeh Mottaghi
- Department of Pediatrics, School of Medicine, Ahvaz Jundishapur University of Medical Sciences, Ahvaz, Iran
| | - Hassan Abbaszadeh
- Department of Pharmacology, School of Pharmacy, Ahvaz Jundishapur University of Medical Sciences, Ahvaz, Iran
| |
Collapse
|
15
|
Zhu D, Gu X, Lin Z, Yu D, Wang J. High expression of PSMC2 promotes gallbladder cancer through regulation of GNG4 and predicts poor prognosis. Oncogenesis 2021; 10:43. [PMID: 34016944 PMCID: PMC8138011 DOI: 10.1038/s41389-021-00330-1] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2020] [Revised: 03/11/2021] [Accepted: 04/20/2021] [Indexed: 12/29/2022] Open
Abstract
Gallbladder cancer (GBC) is a common malignant tumor of the biliary tract, which accounts for 80-95% of biliary tumors worldwide, and is the leading cause of biliary malignant tumor-related death. This study identified PSMC2 as a potential regulator in the development of GBC. We showed that PSMC2 expression in GBC tissues is significantly higher than that in normal tissues, while high PSMC2 expression was correlated with more advanced tumor grade and poorer prognosis. The knockdown of PSMC2 in GBC cells induced significant inhibition of cell proliferation, colony formation and cell motility, while the promotion of cell apoptosis. The construction and observation of the mice xenograft model also confirmed the inhibitory effects of PSMC2 knockdown on GBC development. Moreover, our mechanistic study recognized GNG4 as a potential downstream target of PSMC2, knockdown of which could aggravate the tumor suppression induced by PSMC2 knockdown in vitro and in vivo. In conclusion, for the first time, PSMC2 was revealed as a tumor promotor in the development of GBC, which could regulate cell phenotypes of GBC cells through the interaction with GNG4, and maybe a promising therapeutic target in GBC treatment.
Collapse
Affiliation(s)
- Dawei Zhu
- Department of Gynaecology and Obstetrics, Daping Hospital, Army Medical University, Chongqing, China
| | - Xing Gu
- Department of Gynaecology and Obstetrics, Daping Hospital, Army Medical University, Chongqing, China
| | - Zhengyu Lin
- Cancer Center, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Dandan Yu
- Cancer Center, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Jing Wang
- Cancer Center, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China.
| |
Collapse
|
16
|
Lin Y, Li Y, Zeng Y, Tian B, Qu X, Yuan Q, Song Y. Pharmacology, Toxicity, Bioavailability, and Formulation of Magnolol: An Update. Front Pharmacol 2021; 12:632767. [PMID: 33815113 PMCID: PMC8010308 DOI: 10.3389/fphar.2021.632767] [Citation(s) in RCA: 30] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2020] [Accepted: 02/15/2021] [Indexed: 12/16/2022] Open
Abstract
Magnolol (MG) is one of the primary active components of Magnoliae officinalis cortex, which has been widely used in traditional Chinese and Japanese herbal medicine and possesses a wide range of pharmacological activities. In recent years, attention has been drawn to this component due to its potential as an anti-inflammatory and antitumor drug. To summarize the new biological and pharmacological data on MG, we screened the literature from January 2011 to October 2020. In this review, we provide an actualization of already known anti-inflammatory, cardiovascular protection, antiangiogenesis, antidiabetes, hypoglycemic, antioxidation, neuroprotection, gastrointestinal protection, and antibacterial activities of MG. Besides, results from studies on antitumor activity are presented. We also summarized the molecular mechanisms, toxicity, bioavailability, and formulations of MG. Therefore, we provide a valid cognition of MG.
Collapse
Affiliation(s)
- Yiping Lin
- School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Yuke Li
- School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Yuanlian Zeng
- School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Bin Tian
- School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Xiaolan Qu
- School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Qianghua Yuan
- Affiliated Hospital of Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Ying Song
- Affiliated Hospital of Chengdu University of Traditional Chinese Medicine, Chengdu, China
| |
Collapse
|
17
|
Cai C, Wu Q, Hong H, He L, Liu Z, Gu Y, Zhang S, Wang Q, Fan X, Fang J. In silico identification of natural products from Traditional Chinese Medicine for cancer immunotherapy. Sci Rep 2021; 11:3332. [PMID: 33558586 PMCID: PMC7870934 DOI: 10.1038/s41598-021-82857-2] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2020] [Accepted: 01/20/2021] [Indexed: 12/11/2022] Open
Abstract
Advances in immunotherapy have revolutionized treatments in many types of cancer. Traditional Chinese Medicine (TCM), which has a long history of clinical adjuvant application against cancer, is emerging as an important medical resource for developing innovative cancer treatments, including immunotherapy. In this study, we developed a quantitative and systems pharmacology-based framework to identify TCM-derived natural products for cancer immunotherapy. Specifically, we integrated 381 cancer immune response-related genes and a compound-target interaction network connecting 3273 proteins and 766 natural products from 66 cancer-related herbs based on literature-mining. Via systems pharmacology-based prediction, we uncovered 182 TCM-derived natural products having potential anti-tumor immune responses effect. Importantly, 32 of the 49 most promising natural products (success rate = 65.31%) are validated by multiple evidence, including published experimental data from clinical studies, in vitro and in vivo assays. We further identified the mechanism-of-action of TCM in cancer immunotherapy using network-based functional enrichment analysis. We showcased that three typical natural products (baicalin, wogonin, and oroxylin A) in Huangqin (Scutellaria baicalensis Georgi) potentially overcome resistance of known oncology agents by regulating tumor immunosuppressive microenvironments. In summary, this study offers a novel and effective systems pharmacology infrastructure for potential cancer immunotherapeutic development by exploiting the medical wealth of natural products in TCM.
Collapse
Affiliation(s)
- Chuipu Cai
- Department of Computer Science, Key Laboratory of Intelligent Manufacturing Technology of Ministry of Education, Shantou University, Shantou, 515000, China.,Science and Technology Innovation Center, Guangzhou University of Chinese Medicine, Guangzhou, 510000, China
| | - Qihui Wu
- Clinical Research Center, Hainan Provincial Hospital of Traditional Chinese Medicine, Haikou, 570100, China
| | - Honghai Hong
- Department of Clinical Laboratory, The Third Affiliated Hospital of Guangzhou Medical University, Guangzhou, China
| | - Liying He
- Science and Technology Innovation Center, Guangzhou University of Chinese Medicine, Guangzhou, 510000, China
| | - Zhihong Liu
- Guangdong Institute of Microbiology, Guangdong Academy of Sciences, Guangzhou, 510000, China
| | - Yong Gu
- Clinical Research Center, Hainan Provincial Hospital of Traditional Chinese Medicine, Haikou, 570100, China
| | - Shijie Zhang
- Science and Technology Innovation Center, Guangzhou University of Chinese Medicine, Guangzhou, 510000, China
| | - Qi Wang
- Science and Technology Innovation Center, Guangzhou University of Chinese Medicine, Guangzhou, 510000, China
| | - Xiude Fan
- Lerner Research Institute, Cleveland Clinic, Cleveland, OH, 44195, USA.
| | - Jiansong Fang
- Science and Technology Innovation Center, Guangzhou University of Chinese Medicine, Guangzhou, 510000, China.
| |
Collapse
|
18
|
Magnolol inhibits cancer stemness and IL-6/Stat3 signaling in oral carcinomas. J Formos Med Assoc 2021; 121:51-57. [DOI: 10.1016/j.jfma.2021.01.009] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2020] [Revised: 01/05/2021] [Accepted: 01/11/2021] [Indexed: 12/24/2022] Open
|
19
|
Chen S, Shen J, Zhao J, Wang J, Shan T, Li J, Xu M, Chen X, Liu Y, Cao G. Magnolol Suppresses Pancreatic Cancer Development In Vivo and In Vitro via Negatively Regulating TGF-β/Smad Signaling. Front Oncol 2020; 10:597672. [PMID: 33344246 PMCID: PMC7738609 DOI: 10.3389/fonc.2020.597672] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2020] [Accepted: 10/21/2020] [Indexed: 12/11/2022] Open
Abstract
Magnolol, a hydroxylated biphenyl extracted from Magnolia officinalis, has recently drawn attention due to its anticancer potential. The present study was aimed to explore the effects of Magnolol on restraining the proliferation, migration and invasion of pancreatic cancer in vivo and in vitro. Magnolol showed significant anti-growth effect in an orthotopic xenograft nude mouse model, and immunohistochemical staining of the xenografts revealed that Magnolol suppressed vimentin expression and facilitated E-cadherin expression. The cytoactive detection using CCK-8 assay showed Magnolol inhibited PANC-1 and AsPC-1 concentration-dependently. Scratch healing assay and the Transwell invasion assay proved the inhibiting effects of Magnolol on cellular migration and invasion at a non-cytotoxic concentration. Western blot and rt-PCR showed that Magnolol suppressed epithelial-mesenchymal-transition by increasing the expression level of E-cadherin and decreasing those of N-cadherin and vimentin. Magnolol suppressed the TGF-β/Smad pathway by negatively regulating phosphorylation of Smad2/3. Moreover, TGF-β1 impaired the antitumor effects of Magnolol in vivo. These results demonstrated that Magnolol can inhibit proliferation, migration and invasion in vivo and in vitro by suppressing the TGF-β signal pathway and EMT. Magnolol could be a hopeful therapeutic drug for pancreatic malignancy.
Collapse
Affiliation(s)
- Shuo Chen
- Department of General Surgery, The Second Affiliated Hospital of Xi'an Jiaotong University, Xi'an Jiaotong University, Xi'an, China
| | - Jiaqi Shen
- School of Life Science, Xiamen University, Xiamen, China
| | - Jing Zhao
- School of Science, Xi'an Jiaotong University, Xi'an, China
| | - Jiazhong Wang
- Department of General Surgery, The Second Affiliated Hospital of Xi'an Jiaotong University, Xi'an Jiaotong University, Xi'an, China
| | - Tao Shan
- Department of General Surgery, The Second Affiliated Hospital of Xi'an Jiaotong University, Xi'an Jiaotong University, Xi'an, China
| | - Junhui Li
- Department of General Surgery, The Second Affiliated Hospital of Xi'an Jiaotong University, Xi'an Jiaotong University, Xi'an, China
| | - Meng Xu
- Department of General Surgery, The Second Affiliated Hospital of Xi'an Jiaotong University, Xi'an Jiaotong University, Xi'an, China
| | - Xi Chen
- Department of General Surgery, The Second Affiliated Hospital of Xi'an Jiaotong University, Xi'an Jiaotong University, Xi'an, China
| | - Yang Liu
- Department of General Surgery, The Second Affiliated Hospital of Xi'an Jiaotong University, Xi'an Jiaotong University, Xi'an, China
| | - Gang Cao
- Department of General Surgery, The Second Affiliated Hospital of Xi'an Jiaotong University, Xi'an Jiaotong University, Xi'an, China
| |
Collapse
|
20
|
Song X, Hu Y, Li Y, Shao R, Liu F, Liu Y. Overview of current targeted therapy in gallbladder cancer. Signal Transduct Target Ther 2020; 5:230. [PMID: 33028805 PMCID: PMC7542154 DOI: 10.1038/s41392-020-00324-2] [Citation(s) in RCA: 85] [Impact Index Per Article: 21.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2020] [Revised: 08/08/2020] [Accepted: 09/10/2020] [Indexed: 02/08/2023] Open
Abstract
Gallbladder cancer (GBC) is rare, but is the most malignant type of biliary tract tumor. Unfortunately, only a small population of cancer patients is acceptable for the surgical resection, the current effective regimen; thus, the high mortality rate has been static for decades. To substantially circumvent the stagnant scenario, a number of therapeutic approaches owing to the creation of advanced technologic measures (e.g., next-generation sequencing, transcriptomics, proteomics) have been intensively innovated, which include targeted therapy, immunotherapy, and nanoparticle-based delivery systems. In the current review, we primarily focus on the targeted therapy capable of specifically inhibiting individual key molecules that govern aberrant signaling cascades in GBC. Global clinical trials of targeted therapy in GBC are updated and may offer great value for novel pathologic and therapeutic insights of this deadly disease, ultimately improving the efficacy of treatment.
Collapse
Affiliation(s)
- Xiaoling Song
- Department of General Surgery and Laboratory of General Surgery, Xinhua Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, 1665 Kongjiang Road, 200092, Shanghai, China
- Shanghai Key Laboratory of Biliary Tract Disease Research, 1665 Kongjiang Road, 200092, Shanghai, China
- State Key Laboratory of Oncogenes and Related Genes, Shanghai Cancer Institute, School of Medicine, Shanghai Jiao Tong University, 200127, Shanghai, China
| | - Yunping Hu
- Department of General Surgery and Laboratory of General Surgery, Xinhua Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, 1665 Kongjiang Road, 200092, Shanghai, China
- Shanghai Key Laboratory of Biliary Tract Disease Research, 1665 Kongjiang Road, 200092, Shanghai, China
- State Key Laboratory of Oncogenes and Related Genes, Shanghai Cancer Institute, School of Medicine, Shanghai Jiao Tong University, 200127, Shanghai, China
| | - Yongsheng Li
- Shanghai Key Laboratory of Biliary Tract Disease Research, 1665 Kongjiang Road, 200092, Shanghai, China
- State Key Laboratory of Oncogenes and Related Genes, Shanghai Cancer Institute, School of Medicine, Shanghai Jiao Tong University, 200127, Shanghai, China
- Department of Biliary-Pancreatic Surgery, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, 200127, Shanghai, China
| | - Rong Shao
- Shanghai Key Laboratory of Biliary Tract Disease Research, 1665 Kongjiang Road, 200092, Shanghai, China.
- State Key Laboratory of Oncogenes and Related Genes, Shanghai Cancer Institute, School of Medicine, Shanghai Jiao Tong University, 200127, Shanghai, China.
- Department of Pharmacology, Shanghai Jiao Tong University School of Medicine, 200025, Shanghai, China.
| | - Fatao Liu
- Department of General Surgery and Laboratory of General Surgery, Xinhua Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, 1665 Kongjiang Road, 200092, Shanghai, China.
- Shanghai Key Laboratory of Biliary Tract Disease Research, 1665 Kongjiang Road, 200092, Shanghai, China.
- State Key Laboratory of Oncogenes and Related Genes, Shanghai Cancer Institute, School of Medicine, Shanghai Jiao Tong University, 200127, Shanghai, China.
| | - Yingbin Liu
- Shanghai Key Laboratory of Biliary Tract Disease Research, 1665 Kongjiang Road, 200092, Shanghai, China.
- State Key Laboratory of Oncogenes and Related Genes, Shanghai Cancer Institute, School of Medicine, Shanghai Jiao Tong University, 200127, Shanghai, China.
- Department of Biliary-Pancreatic Surgery, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, 200127, Shanghai, China.
| |
Collapse
|
21
|
Zheng Y, Zhang J, Zhang R, Luo Z, Wang C, Shi S. Gold nano particles synthesized from Magnolia officinalis and anticancer activity in A549 lung cancer cells. ARTIFICIAL CELLS NANOMEDICINE AND BIOTECHNOLOGY 2019; 47:3101-3109. [PMID: 31343369 DOI: 10.1080/21691401.2019.1645152] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Nanotechnology is creating a bang in each and every field of life science. Scientists are mounting their interest of research towards gold nanoparticles as they are capable with bigger and advanced properties.Traditionally nanoparticles have been manufactured by various chemical and physical methods but have negative impact on the environment and are also highly toxic. Synthesis of nanoparticles by using plant extracts is substituting the conventional methods and it is eco-friendly too. In the current study, we prepared gold nanoparticles (AuNPs) from Magnolia officinalis, which is identified as an eco-friendly and less toxic method. Incorporation of AuNPs was renowned by UV-absorbance and it shows peak values. Nanoparticle sizes are recognized by dynamic light scattering scrutiny and it shows a value of 128 nm. Besides, high resolution transmission electron microscopy (HR-TEM), energy dispersive X-ray analysis (EDX) and atomic force microscopy (AFM) incorrigibly define the shape of the AuNPs which are present in the complex materials. Fourier-transform infrared spectroscopy (FTIR) findings display that the active molecules are positioned in the plane of the AuNPs. Similarly, anticancer efficacy of AuNPs have been assessed in A549 cells. our study show that AuNPs effectively provoke cytotoxicity, and apoptosis by inflecting apoptotic gene expressions in A549 cells.
Collapse
Affiliation(s)
- Yuanyuan Zheng
- a Department of Pulmonary and Critical Care Medicine, The First Affiliated Hospital of Kunming Medical University , Kunming , Yunnan , P. R. China
| | - Jianwu Zhang
- b School of Pharmacy, North Sichuan Medical College , Nanchong , Sichuan , P. R. China
| | - Rui Zhang
- c Department of Thoracic Surgery, The Seventh People's Hospital of Chengdu , Chengdu , Sichuan , P. R. China
| | - Zhuang Luo
- a Department of Pulmonary and Critical Care Medicine, The First Affiliated Hospital of Kunming Medical University , Kunming , Yunnan , P. R. China
| | - Chu Wang
- a Department of Pulmonary and Critical Care Medicine, The First Affiliated Hospital of Kunming Medical University , Kunming , Yunnan , P. R. China
| | - Shaoqing Shi
- a Department of Pulmonary and Critical Care Medicine, The First Affiliated Hospital of Kunming Medical University , Kunming , Yunnan , P. R. China
| |
Collapse
|
22
|
Genome-wide CRISPR screen identifies ELP5 as a determinant of gemcitabine sensitivity in gallbladder cancer. Nat Commun 2019; 10:5492. [PMID: 31792210 PMCID: PMC6889377 DOI: 10.1038/s41467-019-13420-x] [Citation(s) in RCA: 57] [Impact Index Per Article: 11.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2019] [Accepted: 11/04/2019] [Indexed: 02/05/2023] Open
Abstract
Gemcitabine is the first-line treatment for locally advanced and metastatic gallbladder cancer (GBC), but poor gemcitabine response is universal. Here, we utilize a genome-wide CRISPR screen to identify that loss of ELP5 reduces the gemcitabine-induced apoptosis in GBC cells in a P53-dependent manner through the Elongator complex and other uridine 34 (U34) tRNA-modifying enzymes. Mechanistically, loss of ELP5 impairs the integrity and stability of the Elongator complex to abrogate wobble U34 tRNA modification, and directly impedes the wobble U34 modification-dependent translation of hnRNPQ mRNA, a validated P53 internal ribosomal entry site (IRES) trans-acting factor. Downregulated hnRNPQ is unable to drive P53 IRES-dependent translation, but rescuing a U34 modification-independent hnRNPQ mutant could restore P53 translation and gemcitabine sensitivity in ELP5-depleted GBC cells. GBC patients with lower ELP5, hnRNPQ, or P53 expression have poor survival outcomes after gemcitabine chemotherapy. These results indicate that the Elongator/hnRNPQ/P53 axis controls gemcitabine sensitivity in GBC cells. Gemcitabine is used to treat gallbaldder cancer but patient responses are variable. Here, the authors use a genome-wide CRISPR screen and identify the translational elongator protein ELP5 as a protein that is important for mediating gemcitabine-induced apoptosis.
Collapse
|
23
|
Kim H, Lee YK, Han KH, Jeon H, Jeong IH, Kim SY, Lee JB, Lee PCW. BRC-mediated RNAi targeting of USE1 inhibits tumor growth in vitro and in vivo. Biomaterials 2019; 230:119630. [PMID: 31791842 DOI: 10.1016/j.biomaterials.2019.119630] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2019] [Accepted: 11/12/2019] [Indexed: 01/18/2023]
Abstract
USE1 has been demonstrated to play crucial roles in the development and progression of human lung cancer. However, the antitumor efficacy of RNA interference (RNAi) targeting of USE1 has not yet been evaluated as a possible clinical application. We here synthesized USE1 targeting bubbled RNA-based cargo (BRC) composed of densely packed multimeric pre-siRNAs with specific Dicer cleavage sites to enable efficient siRNA release upon entry to target cells. The physical entanglement and continuous networking of RNAs via hybridization during enzymatic replication serve as a driving force for the self-assembly of BRCs. These molecules effectively suppressed the transcription of their target genes, leading to tumor growth suppression in vitro and in vivo. Moreover, their repeated intravenous administration efficiently inhibited the growth of A549 tumor xenografts. Based on these findings of a reduced cancer cell viability following a USE1 knockdown, we further explored cell cycle arrest and apoptosis pathways. The observed tumor cell growth suppression was found to be controlled by cell cycle arrest and apoptosis signals induced by the USE1 reduction. These results suggest that USE1 BRCs may have future clinical applications as an RNAi-based cancer therapy.
Collapse
Affiliation(s)
- Hyejin Kim
- Department of Chemical Engineering, University of Seoul, 163 Seoulsiripdaero, Dongdaemun-gu, Seoul, South Korea
| | - Yeon Kyung Lee
- Department of Biomedical Sciences University of Ulsan College of Medicine, Asan Medical Center, Seoul, South Korea
| | - Kyung Ho Han
- Department of Biomedical Sciences University of Ulsan College of Medicine, Asan Medical Center, Seoul, South Korea
| | - Hyunsu Jeon
- Department of Chemical Engineering, University of Seoul, 163 Seoulsiripdaero, Dongdaemun-gu, Seoul, South Korea
| | - In-Ho Jeong
- Department of Biomedical Sciences University of Ulsan College of Medicine, Asan Medical Center, Seoul, South Korea
| | - Sang-Yeob Kim
- Department of Convergence Medicine, University of Ulsan College of Medicine, Asan Institute for Life Sciences, Asan Medical Center, Seoul, South Korea
| | - Jong Bum Lee
- Department of Chemical Engineering, University of Seoul, 163 Seoulsiripdaero, Dongdaemun-gu, Seoul, South Korea.
| | - Peter C W Lee
- Department of Biomedical Sciences University of Ulsan College of Medicine, Asan Medical Center, Seoul, South Korea.
| |
Collapse
|
24
|
An overview of microtubule targeting agents for cancer therapy. Arh Hig Rada Toksikol 2019; 70:160-172. [DOI: 10.2478/aiht-2019-70-3258] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/01/2019] [Accepted: 09/01/2019] [Indexed: 12/27/2022] Open
Abstract
Abstract
The entire world is looking for effective cancer therapies whose benefits would outweigh their toxicity. One way to reduce resistance to chemotherapy and its adverse effects is the so called targeted therapy, which targets specific molecules (“molecular targets”) that play a critical role in cancer growth, progression, and metastasis. One such specific target are microtubules. In this review we address the current knowledge about microtubule-targeting agents or drugs (MTAs/MTDs) used in cancer therapy from their synthesis to toxicities. Synthetic and natural MTAs exhibit antitumor activity, and preclinical and clinical studies have shown that their anticancer effectiveness is higher than that of traditional drug therapies. Furthermore, MTAs involve a lower risk of adverse effects such as neurotoxicity and haemotoxicity. Several new generation MTAs are currently being evaluated for clinical use. This review brings updated information on the benefits of MTAs, therapeutic approaches, advantages, and challenges in their research.
Collapse
|
25
|
Cheng YC, Tsao MJ, Chiu CY, Kan PC, Chen Y. Magnolol Inhibits Human Glioblastoma Cell Migration by Regulating N-Cadherin. J Neuropathol Exp Neurol 2019; 77:426-436. [PMID: 29788114 DOI: 10.1093/jnen/nly021] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
Glioblastoma is a primary malignant brain tumor with a poor prognosis. An effective treatment for glioblastoma is needed. Magnolol is a natural compound from Magnolia officinalis suggested to have antiproliferative activity. The aim of this research was to investigate the anticancer effects of magnolol in glioma, with an emphasis on migration and the underlying mechanism. Magnolol decreased the expression of focal adhesion-related proteins and inhibited LN229 and U87MG glioma cell migration. The levels of phosphorylated myosin light chain (p-MLC), phosphorylated myosin light chain kinase and myosin phosphatase target subunit 1 were reduced in response to magnolol treatment. In addition, immunostaining and membrane fractionation showed that the distribution of N-cadherin at the glioma cell membrane was decreased by magnolol. In an orthotropic xenograft animal model, magnolol treatment not only inhibited tumor progression but also reduced p-MLC and N-cadherin protein expression. In conclusion, magnolol reduces cell migration, potentially through regulating focal adhesions and N-cadherin in glioma cells. Magnolol is a potential candidate for glioma treatment.
Collapse
Affiliation(s)
- Yu-Chen Cheng
- Department of Biology and Anatomy, National Defense Medical Center, Taipei City, Taiwan
| | - Min-Jen Tsao
- Department of General Surgery, Zuoying Branch of Kaohsiung Armed Forces General Hospital, Taiwan
| | - Chen-Yang Chiu
- Department of Biology and Anatomy, National Defense Medical Center, Taipei City, Taiwan
| | - Po-Chieh Kan
- Department of Biology and Anatomy, National Defense Medical Center, Taipei City, Taiwan
| | - Ying Chen
- Department of Biology and Anatomy, National Defense Medical Center, Taipei City, Taiwan
| |
Collapse
|
26
|
Zhou S, Wen H, Li H. Magnolol induces apoptosis in osteosarcoma cells via G0/G1 phase arrest and p53-mediated mitochondrial pathway. J Cell Biochem 2019; 120:17067-17079. [PMID: 31155771 DOI: 10.1002/jcb.28968] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2018] [Revised: 03/11/2019] [Accepted: 03/22/2019] [Indexed: 12/30/2022]
Abstract
Osteosarcoma is a highly invasive primary malignancy of bone. Magnolol is biologically active, which shows antitumor effects in a variety of cancer cell lines. However, it has not been elucidated magnolol's effects on human osteosarcoma cells (HOC). This study aimed to determine antitumor activity of magnolol and illustrate the molecular mechanism in HOC. Magnolol showed significant inhibition effect of growth on MG-63 and 143B cells and induced apoptosis and cell cycle arrest at G0/G1. In osteosarcoma cells, magnolol upregulated expressions of proapoptosis proteins and suppressed expressions of antiapoptosis proteins. Additionally, under the pretreatment of pifithrin-a (PFT-a, a p53 inhibitor), the magnolol-induced apoptosis was significantly reversed. The results above indicated that magnolol induces apoptosis in osteosarcoma cells may via G0/G1 phase arrest and p53-mediated mitochondrial pathway.
Collapse
Affiliation(s)
- Siqi Zhou
- Department of Orthopedics, Renmin Hospital of Wuhan University, Wuhan, China
| | - Haiyan Wen
- Department of Pharmacy, Renmin Hospital of Wuhan University, Wuhan, China
| | - Haohuan Li
- Department of Orthopedics, Renmin Hospital of Wuhan University, Wuhan, China
| |
Collapse
|
27
|
Insights on the Multifunctional Activities of Magnolol. BIOMED RESEARCH INTERNATIONAL 2019; 2019:1847130. [PMID: 31240205 PMCID: PMC6556366 DOI: 10.1155/2019/1847130] [Citation(s) in RCA: 31] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/21/2019] [Revised: 05/03/2019] [Accepted: 05/15/2019] [Indexed: 12/31/2022]
Abstract
Over years, various biological constituents are isolated from Traditional Chinese Medicine and confirmed to show multifunctional activities. Magnolol, a hydroxylated biphenyl natural compound isolated from Magnolia officinalis, has been extensively documented and shows a range of biological activities. Many signaling pathways include, but are not limited to, NF-κB/MAPK, Nrf2/HO-1, and PI3K/Akt pathways, which are implicated in the biological functions mediated by magnolol. Thus, magnolol is considered as a promising therapeutic agent for clinic research. However, the low water solubility, the low bioavailability, and the rapid metabolism of magnolol dramatically limit its clinical application. In this review, we will comprehensively discuss the last five-year progress of the biological activities of magnolol, including anti-inflammatory, antimicroorganism, antioxidative, anticancer, neuroprotective, cardiovascular protection, metabolism regulation, and ion-mediating activity.
Collapse
|
28
|
Hu ZC, Luo ZC, Jiang BJ, Fu X, Xuan JW, Li XB, Bian YJ, Ni WF, Xue JX. The Protective Effect of Magnolol in Osteoarthritis: In vitro and in vivo Studies. Front Pharmacol 2019; 10:393. [PMID: 31040782 PMCID: PMC6476971 DOI: 10.3389/fphar.2019.00393] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2019] [Accepted: 03/29/2019] [Indexed: 11/13/2022] Open
Abstract
Osteoarthritis (OA), defined as a long-term progressive joint disease, is characterized by cartilage impairment and erosion. In recent decades, magnolol, as a type of lignin extracted from Magnolia officinalis, has been proved to play a potent anti-inflammatory role in various diseases. The current research sought to examine the latent mechanism of magnolol and its protective role in alleviating the progress of OA in vivo as well as in vitro experimentations. In vitro, the over-production of Nitric oxide (NO), prostaglandin E2 (PGE2), cyclooxygenase-2 (COX-2), inducible nitric oxide synthase (iNOS), tumor necrosis factor alpha (TNF-α), and interleukin-6 (IL-6), induced by interleukin-1 beta (IL-1β), were all inhibited notably by magnolol in a concentration-dependent manner. Moreover, magnolol could also downregulate the expression of metalloproteinase 13 (MMP13) and thrombospondin motifs 5 (ADAMTS5). All these changes ultimately led to the deterioration of the extracellular matrix (ECM) induced by IL-1β. Mechanistically, magnolol suppressed the activation of PI3K/Akt/NF-κB pathway. Furthermore, a powerful binding capacity between magnolol and PI3K was also revealed in our molecular docking research. In addition, magnolol-induced protective effects in OA development were also detected in a mouse model. In summary, this research suggested that magnolol possessed a new therapeutic potential for the development of OA.
Collapse
Affiliation(s)
- Zhi-Chao Hu
- Department of Orthopaedics, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, China.,The Second School of Medicine, Wenzhou Medical University, Wenzhou, China.,Bone Research Institute, The Key Orthopaedic Laboratory of Zhejiang Province, Wenzhou, China
| | - Zu-Cheng Luo
- Department of Orthopaedics, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, China.,The Second School of Medicine, Wenzhou Medical University, Wenzhou, China.,Bone Research Institute, The Key Orthopaedic Laboratory of Zhejiang Province, Wenzhou, China
| | - Bing-Jie Jiang
- Department of Orthopaedics, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, China.,The Second School of Medicine, Wenzhou Medical University, Wenzhou, China.,Bone Research Institute, The Key Orthopaedic Laboratory of Zhejiang Province, Wenzhou, China
| | - Xin Fu
- Department of Orthopaedics, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, China.,The Second School of Medicine, Wenzhou Medical University, Wenzhou, China.,Bone Research Institute, The Key Orthopaedic Laboratory of Zhejiang Province, Wenzhou, China
| | - Jiang-Wei Xuan
- Department of Orthopaedics, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, China.,The Second School of Medicine, Wenzhou Medical University, Wenzhou, China.,Bone Research Institute, The Key Orthopaedic Laboratory of Zhejiang Province, Wenzhou, China
| | - Xiao-Bin Li
- Department of Orthopaedics, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, China.,The Second School of Medicine, Wenzhou Medical University, Wenzhou, China.,Bone Research Institute, The Key Orthopaedic Laboratory of Zhejiang Province, Wenzhou, China
| | - Yu-Jie Bian
- Department of Orthopaedics, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, China.,The Second School of Medicine, Wenzhou Medical University, Wenzhou, China.,Bone Research Institute, The Key Orthopaedic Laboratory of Zhejiang Province, Wenzhou, China
| | - Wen-Fei Ni
- Department of Orthopaedics, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, China.,The Second School of Medicine, Wenzhou Medical University, Wenzhou, China.,Bone Research Institute, The Key Orthopaedic Laboratory of Zhejiang Province, Wenzhou, China
| | - Ji-Xin Xue
- Department of Orthopaedics, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, China.,The Second School of Medicine, Wenzhou Medical University, Wenzhou, China.,Bone Research Institute, The Key Orthopaedic Laboratory of Zhejiang Province, Wenzhou, China
| |
Collapse
|
29
|
Fei WY, Huo Q, Zhao PQ, Qin LJ, Li T. Magnolol prevents ovariectomy‑induced bone loss by suppressing osteoclastogenesis via inhibition of the nuclear factor‑κB and mitogen‑activated protein kinase pathways. Int J Mol Med 2019; 43:1669-1678. [PMID: 30816431 PMCID: PMC6414173 DOI: 10.3892/ijmm.2019.4099] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2018] [Accepted: 02/08/2019] [Indexed: 11/05/2022] Open
Abstract
Magnolol is the active component of the traditional Chinese medicine Magnolia officinalis, and has antioxidant, anti-inflammatory and anticancer activities, as well as an effect on bone metabolism in vitro. In the present study, it is reported that magnolol suppresses osteoclastogenesis in vivo and in vitro. Magnolol prevented ovariectomy-induced bone loss and osteoclastogenesis in vivo, and decreased the serum levels of C-terminal telopeptide of type 1 collagen, interleukin-6, tumor necrosis factor (TNF)-α and tartrate-resistant acid phosphatase 5B. In vitro, magnolol inhibited the osteoclastogenesis induced by the receptor activator for nuclear factor-κB ligand, and impaired the osteoclast function in bone marrow monocytes and RAW264.7 cells in a dose-dependent manner. Furthermore, magnolol suppressed the expression levels of the osteoclastogenesis markers cathepsin K, calcitonin receptor, matrix metalloproteinase 9, TNF receptor-associated factor 6 and tartrate-resistant acid phosphatase by inhibiting the nuclear factor-κB and mitogen-activated protein kinase pathways. Therefore, magnolol is a promising agent for the treatment of osteoporosis and associated disorders.
Collapse
Affiliation(s)
- Wen-Yong Fei
- Department of Orthopedics, Northern Jiangsu People's Hospital, Clinical Medical College, Yangzhou University, Yangzhou, Jiangsu 225001, P.R. China
| | - Qiang Huo
- Center of Translational Medicine, Central Hospital of Zibo, Shandong University, Zibo, Shandong 255036, P.R. China
| | - Pei-Qing Zhao
- Center of Translational Medicine, Central Hospital of Zibo, Shandong University, Zibo, Shandong 255036, P.R. China
| | - Long-Juan Qin
- Orthopedic Basic and Translational Research Center, Jiangyin, Jiangsu 214400, P.R. China
| | - Tao Li
- Center of Translational Medicine, Central Hospital of Zibo, Shandong University, Zibo, Shandong 255036, P.R. China
| |
Collapse
|
30
|
Emran AA, Chinna Chowdary BR, Ahmed F, Hammerlindl H, Huefner A, Haass NK, Schuehly W, Schaider H. Magnolol induces cell death through PI3K/Akt-mediated epigenetic modifications boosting treatment of BRAF- and NRAS-mutant melanoma. Cancer Med 2019; 8:1186-1196. [PMID: 30793515 PMCID: PMC6434221 DOI: 10.1002/cam4.1978] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2018] [Revised: 11/26/2018] [Accepted: 12/23/2018] [Indexed: 01/08/2023] Open
Abstract
Most BRAF‐mutant melanoma patients experience a fulminate relapse after several months of treatment with BRAF/MEK inhibitors. To improve therapeutic efficacy, natural plant‐derived compounds might be considered as potent additives. Here, we show that magnolol, a constituent of Magnolia officinalis, induced G1 arrest, apoptosis and cell death in BRAF‐ and NRAS‐mutant melanoma cells at low concentration, with no effect in BRAF‐ and NRAS wild‐type melanoma cells and human keratinocytes. This was confirmed in a 3D spheroid model. The apoptosis‐inducing effect of magnolol was completely rescued by activating Akt suggesting a mechanism relying primarily on Akt signaling. Magnolol significantly downregulated the PI3K/Akt pathway which led to a global decrease of the active histone mark H3K4me3. Alongside, the repressive histone mark H3K9me3 was increased as a response to DNA damage. Magnolol‐induced alterations of histone modifications are reversible upon activation of the Akt pathway. Magnolol‐induced a synergistic effect in combination with either BRAF/MEK inhibitors dabrafenib/trametinib or docetaxel at a lower concentration than usually applied in melanoma patients. Combination of magnolol with targeted therapy or chemotherapy also led to analogous effects on histone marks, which was rescued by Akt pathway activation. Our study revealed a novel epigenetic mechanism of magnolol‐induced cell death in melanoma. Magnolol might therefore be a clinically useful addition to BRAF/MEK inhibitors with enhanced efficacy delaying or preventing disease recurrence.
Collapse
Affiliation(s)
- Abdullah Al Emran
- Dermatology Research Centre, The University of Queensland Diamantina Institute, Translational Research Institute, Brisbane, Queensland, Australia.,Centenary Institute of Cancer Medicine and Cell Biology, Camperdown, New South Wales, Australia
| | - Brinda Reddy Chinna Chowdary
- Dermatology Research Centre, The University of Queensland Diamantina Institute, Translational Research Institute, Brisbane, Queensland, Australia
| | - Farzana Ahmed
- The University of Queensland, The University of Queensland Diamantina Institute, Translational Research Institute, Brisbane, Queensland, Australia
| | - Heinz Hammerlindl
- Dermatology Research Centre, The University of Queensland Diamantina Institute, Translational Research Institute, Brisbane, Queensland, Australia
| | - Antje Huefner
- Department of Pharmaceutical Chemistry, Institute of Pharmaceutical Sciences, University of Graz, Graz, Styria, Austria
| | - Nikolas K Haass
- Centenary Institute of Cancer Medicine and Cell Biology, Camperdown, New South Wales, Australia.,The University of Queensland, The University of Queensland Diamantina Institute, Translational Research Institute, Brisbane, Queensland, Australia
| | - Wolfgang Schuehly
- Department of Pharmacognosy, Karl-Franzens University, Graz, Styria, Austria
| | - Helmut Schaider
- Dermatology Research Centre, The University of Queensland Diamantina Institute, Translational Research Institute, Brisbane, Queensland, Australia
| |
Collapse
|
31
|
Zhu B, Pan Y, Zheng X, Zhang Q, Wu Y, Luo J, Li Q, Lu E, Xu L, Jin G, Ren B. A clinical, biologic and mechanistic analysis of the role of ZNF692 in cervical cancer. Gynecol Oncol 2018; 152:396-407. [PMID: 30466806 DOI: 10.1016/j.ygyno.2018.11.022] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2018] [Revised: 11/12/2018] [Accepted: 11/13/2018] [Indexed: 02/07/2023]
Abstract
OBJECTIVE Cervical cancer (CC) is the most common malignancy in women. The zinc finger protein 692 (ZNF692) has been identified as a transcription factor and its aberrant expression participates in tumorigenesis of various cancers. However, its biological function and molecular mechanisms in cervical cancer remain unclear. METHODS Microarrays were analysed by immunohistochemistry (IHC) to investigate the expression of ZNF692 in cervical cancer and its relationship with clinicopathologic characteristics. siRNAs and expression plasmids were used to reveal the biological function of ZNF692 in CC and subcutaneous xenograft model to examine the role of ZNF692 in vivo. Chromatin Immunoprecipitation and luciferase reporter assay were performed to ascertain whether ZNF692 binds to the promoter region of p27kip1. RESULTS By analyzing The Cancer Genome Atlas (TCGA) dataset, we confirmed ZNF692 as a potential oncogene in CC. ZNF692 expression was up-regulated in CC tissues compared with that in adjacent normal tissues, and its overexpression was correlated with poor clinicopathologic characteristics. Moreover, ZNF692 promoted the proliferation, migration and invasion of CC cells both in vitro and in vivo. Regarding molecular mechanisms, up-regulation of ZNF692 was found to enhance the G1/S transition via regulating the p27kip1/PThr160-CDK2 signal pathway in CC cells. CONCLUSION ZNF692 promotes CC cells proliferation and invasion through suppressing p27kip1 transcription by directly binding its promoter region, which suggests that ZNF692 may serve as an underlying therapeutic target and prognostic marker in CC.
Collapse
Affiliation(s)
- Biqing Zhu
- Department of Radiation Oncology, Jiangsu Cancer Hospital, Jiangsu Institute of Cancer Research, the Affiliated Cancer Hospital of Nanjing Medical University, China; Jiangsu Key Laboratory of Molecular and Translational Cancer Research, China
| | - Yinpeng Pan
- Department of Thoracic Surgery, Jiangsu Cancer Hospital, Jiangsu Institute of Cancer Research, the Affiliated Cancer Hospital of Nanjing Medical University, China; Jiangsu Key Laboratory of Molecular and Translational Cancer Research, China; Department of Thoracic Surgery, the First People's Hospital of Lianyungang City Affiliated with Lianyungang Clinical College of Nanjing Medical University, Nanjing, Jiangsu, China
| | - Xiufen Zheng
- Jiangsu Key Laboratory of Molecular and Translational Cancer Research, China; Department of Clinical Pharmacy, China Pharmaceutical University, China
| | - Quanli Zhang
- Jiangsu Key Laboratory of Molecular and Translational Cancer Research, China
| | - Yaqin Wu
- Department of Radiation Oncology, Jiangsu Cancer Hospital, Jiangsu Institute of Cancer Research, the Affiliated Cancer Hospital of Nanjing Medical University, China; Jiangsu Key Laboratory of Molecular and Translational Cancer Research, China
| | - Jing Luo
- Department of Cardiothoracic Surgery, Jinling Hospital, Medical School of Nanjing University, China
| | - Qian Li
- Department of Radiation Oncology, Jiangsu Cancer Hospital, Jiangsu Institute of Cancer Research, the Affiliated Cancer Hospital of Nanjing Medical University, China
| | - Emei Lu
- Department of Radiation Oncology, Jiangsu Cancer Hospital, Jiangsu Institute of Cancer Research, the Affiliated Cancer Hospital of Nanjing Medical University, China
| | - Lin Xu
- Department of Thoracic Surgery, Jiangsu Cancer Hospital, Jiangsu Institute of Cancer Research, the Affiliated Cancer Hospital of Nanjing Medical University, China; Jiangsu Key Laboratory of Molecular and Translational Cancer Research, China.
| | - Guangfu Jin
- Department of Epidemiology, School of Public Health, Nanjing Medical University, China; Jiangsu Key Laboratory of Cancer Biomarkers, Prevention and Treatment, Collaborative Innovation Center for Cancer Medicine, Nanjing Medical University, China.
| | - Binhui Ren
- Department of Thoracic Surgery, Jiangsu Cancer Hospital, Jiangsu Institute of Cancer Research, the Affiliated Cancer Hospital of Nanjing Medical University, China; Jiangsu Key Laboratory of Molecular and Translational Cancer Research, China.
| |
Collapse
|
32
|
Ding P, Shen H, Wang J, Ju J. Improved oral bioavailability of magnolol by using a binary mixed micelle system. ARTIFICIAL CELLS NANOMEDICINE AND BIOTECHNOLOGY 2018; 46:668-674. [PMID: 30183380 DOI: 10.1080/21691401.2018.1468339] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/03/2023]
Abstract
The aim of this study was to prepare two novel magnolol (MO)-loaded binary mixed micelles (MO-M) using biocompatible copolymers of Soluplus (SOL) and Solutol® HS15 (HS15), SOL and d-alpha-tocopheryl polyethylene glycol 1000 succinate (TPGS), to improve magnolol's poor solubility and its oral bioavailability. The organic solvent evaporation method was used to obtain two MO-M by optimization; one was prepared by using SOL and HS15 (MO-H), and the other was prepared by using SOL and TPGS (MO-T). The entrapment efficiency (EE%) and drug loading (DL%) of MO-T were 94.61 ± 0.91% and 4.03 ± 0.19%, respectively, and the MO-H has higher EE% and DL% (98.37 ± 1.23%, 4.12 ± 0.16%). TEM results showed that the morphology of MO-M was homogeneous and was spherical in shape. The dilution stability of MO-M did not undergo significant changes. Permeability of MO-M across a Caco-2 cell monolayer was enhanced in Caco-2 cell transport models. The pharmacokinetics study showed that the relative oral bioavailability of MO-T and MO-H increased by 2.39- and 2.98-fold, respectively, compared to that of raw MO. This indicated that MO-H and MO-T could promote absorption of MO in the gastrointestinal tract. Collectively, the mixed micelles demonstrated greater efficacy as a drug delivery system. The development of these novel mixed micelles is valuable for resolving the poor solubility and bioavailability of drugs.
Collapse
Affiliation(s)
- Pinggang Ding
- a Affiliated Hospital of Integrated Traditional Chinese and Western Medicine , Nanjing University of Chinese Medicine , Nanjing , China.,b Jiangsu Province Academy of Traditional Chinese Medicine , Nanjing , China
| | - Hongxue Shen
- a Affiliated Hospital of Integrated Traditional Chinese and Western Medicine , Nanjing University of Chinese Medicine , Nanjing , China.,b Jiangsu Province Academy of Traditional Chinese Medicine , Nanjing , China
| | - Jianan Wang
- c School of Pharmaceutical Sciences , Jining Medical University , Rizhao , China
| | - Jianming Ju
- a Affiliated Hospital of Integrated Traditional Chinese and Western Medicine , Nanjing University of Chinese Medicine , Nanjing , China.,b Jiangsu Province Academy of Traditional Chinese Medicine , Nanjing , China
| |
Collapse
|
33
|
Wang YD, Sun XJ, Yang WJ, Li J, Yin JJ. Magnolol exerts anticancer activity in hepatocellular carcinoma cells through regulating endoplasmic reticulum stress-mediated apoptotic signaling. Onco Targets Ther 2018; 11:5219-5226. [PMID: 30214227 PMCID: PMC6118277 DOI: 10.2147/ott.s168887] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023] Open
Abstract
Introduction Magnolol (Mag), a biologically active compound isolated from the root and stem bark of Magnolia officinalis, has been reported to induce apoptosis in several cancer cell lines in vitro. In the present study, we aimed to determine the anticancer effects of Mag on hepatocellular carcinoma (HCC) cells. Materials and methods The HepG2 cells were treated with varying concentrations of Mag (10, 20, and 30 μM) for 48 hours. The effects of Mag on the proliferation, migration, invasion, apoptosis and cell cycle progression of HepG2 cells were respectively detected by MTT assay, transwell assays, and flow cytometric analysis. A HepG2 cell-based tumor-bearing model was established to evaluate the effect of Mag on HCC tumor growth in vivo. The protein expression levels were determined by Western blot analysis. Results Our results showed that Mag inhibited the proliferation, migration, and invasion of HepG2 cells in vitro in a dose-dependent manner. In addition, Mag reduced the HCC tumor volume and weight in the mouse xenograft model. Subsequent studies showed that Mag induced apoptosis in HepG2 cells, accompanied by a loss in mitochondrial membrane potential, cytochrome c release, and induction of endoplasmic reticulum stress. Furthermore, inhibition of the endoplasmic reticulum stress by CHOP knockdown restored the effects of Mag in HepG2 cells. Conclusion The present study highlighted the possibility of using Mag as a novel therapeutic drug for HCC treatment.
Collapse
Affiliation(s)
- Ya-Dong Wang
- Department of General Surgery, Affiliated Zhongshan Hospital of Dalian University, Dalian 116001, People's Republic of China,
| | - Xue-Jun Sun
- Department of General Surgery, First Affiliated Hospital of Xi'an Jiaotong University, Xi'an 710061, People's Republic of China
| | - Wei-Jun Yang
- Department of General Surgery, The First People's Hospital of Guiyang, Guiyang 550002, People's Republic of China
| | - Jing Li
- Department of General Surgery, Affiliated Zhongshan Hospital of Dalian University, Dalian 116001, People's Republic of China,
| | - Jia-Jun Yin
- Department of General Surgery, Affiliated Zhongshan Hospital of Dalian University, Dalian 116001, People's Republic of China,
| |
Collapse
|
34
|
Fu YJ, Yan YQ, Qin HQ, Wu S, Shi SS, Zheng X, Wang PC, Chen XY, Tang XL, Jiang ZY. Effects of different principles of Traditional Chinese Medicine treatment on TLR7/NF-κB signaling pathway in influenza virus infected mice. Chin Med 2018; 13:42. [PMID: 30151032 PMCID: PMC6102858 DOI: 10.1186/s13020-018-0199-4] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2018] [Accepted: 08/10/2018] [Indexed: 12/17/2022] Open
Abstract
Background Influenza virus is a single-stranded RNA virus that causes influenza in humans and animals. About 600 million people around the world suffer from influenza every year. Upon recognizing viral RNA molecules, TLR7 (Toll-like receptor) initiates corresponding immune responses. Traditional Chinese Medicines (TCMs), including Yinqiao powder, Xinjiaxiangruyin and Guizhi-and-Mahuang decoction, have been extensively applied in clinical treatment of influenza. Although the therapeutic efficacy of TCMs against influenza virus in vivo was reported previously, its underlying mechanisms are not clearly understood. This study aimed to investigate the immunological mechanisms in the treatment of influenza virus infected mice with three Chinese herbal compounds as well as the effect on TLR7/NF-κB signaling pathway during recovery. Methods Wild type and TLR7 KO C57BL/6 mice were infected with influenza virus FM1 and then treated with three TCMs. The physical parameters of mice (body weight and lung index) and the expression levels of components in TLR7/NF-κB signaling pathway were evaluated. Results After viral infection, Guizhi-and-Mahuang decoction and Yinqiao powder showed better anti-viral effect under normal condition. Compared to the viral control group, expression levels of TLR7, MyD88, IRAK4 and NF-κB were significantly reduced in all treatment groups. Furthermore, the three TCM treatment groups showed poor therapeutic efficacy and no difference in viral load compared to the viral control group in TLR7 KO mice. Conclusion Our study indicated that Guizhi-and-Mahuang decoction and Yinqiao powder might play a crucial role of anti-influenza virus by regulating TLR7/NF-κB signal pathway.
Collapse
Affiliation(s)
- Ying-Jie Fu
- 1Department of Microbiology and Immunology, School of Basic Medical Sciences, Jinan University, Guangzhou, 510632 Guangdong China
| | - Yu-Qi Yan
- 1Department of Microbiology and Immunology, School of Basic Medical Sciences, Jinan University, Guangzhou, 510632 Guangdong China
| | - Hong-Qiong Qin
- 1Department of Microbiology and Immunology, School of Basic Medical Sciences, Jinan University, Guangzhou, 510632 Guangdong China
| | - Sha Wu
- 1Department of Microbiology and Immunology, School of Basic Medical Sciences, Jinan University, Guangzhou, 510632 Guangdong China
| | - Shan-Shan Shi
- 1Department of Microbiology and Immunology, School of Basic Medical Sciences, Jinan University, Guangzhou, 510632 Guangdong China
| | - Xiao Zheng
- 1Department of Microbiology and Immunology, School of Basic Medical Sciences, Jinan University, Guangzhou, 510632 Guangdong China
| | - Peng-Cheng Wang
- 1Department of Microbiology and Immunology, School of Basic Medical Sciences, Jinan University, Guangzhou, 510632 Guangdong China
| | - Xiao-Yin Chen
- 2College of Traditional Chinese Medicine, Jinan University, Guangzhou, 510632 Guangdong China
| | - Xiao-Long Tang
- 3Medical College, Anhui University of Science & Technology, Huainan, 232001 Anhui China
| | - Zhen-You Jiang
- 1Department of Microbiology and Immunology, School of Basic Medical Sciences, Jinan University, Guangzhou, 510632 Guangdong China
| |
Collapse
|
35
|
Magnolol: A Neolignan from the Magnolia Family for the Prevention and Treatment of Cancer. Int J Mol Sci 2018; 19:ijms19082362. [PMID: 30103472 PMCID: PMC6121321 DOI: 10.3390/ijms19082362] [Citation(s) in RCA: 111] [Impact Index Per Article: 18.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2018] [Revised: 08/06/2018] [Accepted: 08/08/2018] [Indexed: 12/15/2022] Open
Abstract
The past few decades have witnessed widespread research to challenge carcinogenesis; however, it remains one of the most important health concerns with the worst prognosis and diagnosis. Increasing lines of evidence clearly show that the rate of cancer incidence will increase in future and will create global havoc, designating it as an epidemic. Conventional chemotherapeutics and treatment with synthetic disciplines are often associated with adverse side effects and development of chemoresistance. Thus, discovering novel economic and patient friendly drugs that are safe and efficacious is warranted. Several natural compounds have proved their potential against this dreadful disease so far. Magnolol is a hydroxylated biphenyl isolated from the root and stem bark of Magnolia tree. Magnolol can efficiently prevent or inhibit the growth of various cancers originating from different organs such as brain, breast, cervical, colon, liver, lung, prostate, skin, etc. Considering these perspectives, the current review primarily focuses on the fascinating role of magnolol against various types of cancers, and the source and chemistry of magnolol and the molecular mechanism underlying the targets of magnolol are discussed. This review proposes magnolol as a suitable candidate that can be appropriately designed and established into a potent anti-cancer drug.
Collapse
|
36
|
Shen H, Liu S, Ding P, Wang L, Ju J, Liang G. Enhancement of oral bioavailability of magnolol by encapsulation in mixed micelles containing pluronic F127 and L61. ACTA ACUST UNITED AC 2018; 70:498-506. [PMID: 29433156 DOI: 10.1111/jphp.12887] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2017] [Accepted: 01/03/2018] [Indexed: 12/25/2022]
Abstract
OBJECTIVES We aimed to prepare novel magnolol-loaded mixed micelles (MAG-M) by pluronic F127 and L61 to overcome the challenges of magnolol's poor solubility and then further improve its oral bioavailability. METHODS Magnolol-loaded mixed micelles containing pluronic F127 and L61 were prepared by an organic solvent evaporation method. Physicochemical, transport experiment across Caco-2 cell monolayers and pharmacokinetic studies were performed to characterize MAG-M and to determine the final improvement of the oral bioavailability. KEY FINDINGS The MAG-M solution was transparent and colourless with average size, polydispersity index and zeta potential of 228.0 ± 2.1 nm, 0.298 ± 0.012 and -0.89 ± 0.02 mV. The micelle solution has a higher EE% and DL% of 81.57 ± 1.49% and 27.58 ± 0.53%, respectively. TEM result showed that the morphology of MAG-M was homogeneous and spherical shape. The dilution stability of MAG-M was no significant change in particle size and entrapment efficiency. MAG was demonstrated a sustained-release behaviour after encapsulated in micelles. MAG permeability across a Caco-2 cell monolayer was enhanced, and the pharmacokinetics study of MAG-M showed a 2.83-fold increase in relative oral bioavailability compared with raw MAG. CONCLUSIONS The mixed micelles containing pluronic F127 and L61 as drug delivery system provided a well strategy for resolving the poor solubility and bioavailability problems of MAG.
Collapse
Affiliation(s)
- Hongxue Shen
- Anhui University of Traditional Chinese Medicine, Hefei, China
| | - Sheng Liu
- Affiliated Hospital of Integrated Traditional Chinese and Western Medicine, Nanjing University of Chinese Medicine, Nanjing, China.,Jiangsu Province Academy of Traditional Chinese Medicine, Nanjing, China
| | - Pinggang Ding
- Affiliated Hospital of Integrated Traditional Chinese and Western Medicine, Nanjing University of Chinese Medicine, Nanjing, China.,Jiangsu Province Academy of Traditional Chinese Medicine, Nanjing, China
| | - Lulu Wang
- Anhui University of Traditional Chinese Medicine, Hefei, China
| | - Jianming Ju
- Affiliated Hospital of Integrated Traditional Chinese and Western Medicine, Nanjing University of Chinese Medicine, Nanjing, China.,Jiangsu Province Academy of Traditional Chinese Medicine, Nanjing, China
| | - Guohui Liang
- Luoyang Orthopedic-Traumatological Hospital, Luoyang, China
| |
Collapse
|
37
|
Tian Y, Feng H, Han L, Wu L, Lv H, Shen B, Li Z, Zhang Q, Liu G. Magnolol Alleviates Inflammatory Responses and Lipid Accumulation by AMP-Activated Protein Kinase-Dependent Peroxisome Proliferator-Activated Receptor α Activation. Front Immunol 2018; 9:147. [PMID: 29467759 PMCID: PMC5807980 DOI: 10.3389/fimmu.2018.00147] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2017] [Accepted: 01/17/2018] [Indexed: 01/10/2023] Open
Abstract
Magnolol (MG) is a kind of lignin isolated from Magnolia officinalis, which serves several different biological functions, such as antifungal, anticancer, antioxidant, and hepatoprotective functions. This study aimed to evaluate the protective effect of MG against oleic acid (OA)-induced hepatic steatosis and inflammatory damage in HepG2 cells and in a tyloxapol (Ty)-induced hyperlipidemia mouse model. Our findings indicated that MG can effectively inhibit OA-stimulated tumor necrosis factor α (TNF-α) secretion, reactive oxygen species generation, and triglyceride (TG) accumulation. Further study manifested that MG significantly suppressed OA-activated mitogen-activated protein kinase (MAPK) and nuclear factor-kappa B (NF-κB) signaling pathways and that these inflammatory responses can be negated by pretreatment with inhibitors of extracellular regulated protein kinase and c-Jun N-terminal kinase (U0126 and SP600125, respectively). In addition, MG dramatically upregulated peroxisome proliferator-activated receptor α (PPARα) translocation and reduced sterol regulatory element-binding protein 1c (SREBP-1c) protein synthesis and excretion, both of which are dependent upon the phosphorylation of adenosine monophosphate (AMP)-activated protein kinase (AMPK), acetyl-CoA carboxylase, and AKT kinase (AKT). However, MG suspended the activation of PPARα expression and was thus blocked by pretreatment with LY294002 and compound c (specific inhibitors of AKT and AMPK). Furthermore, MG clearly alleviated serum TG and total cholesterol release; upregulated AKT, AMPK, and PPARα expression; suppressed SREBP-1c generation; and alleviated hepatic steatosis and dyslipidemia in Ty-induced hyperlipidemia mice. Taken together, these results suggest that MG exerts protective effects against steatosis, hyperlipidemia, and the underlying mechanism, which may be closely associated with AKT/AMPK/PPARα activation and MAPK/NF-κB/SREBP-1c inhibition.
Collapse
Affiliation(s)
- Ye Tian
- Key Laboratory of Zoonosis, Ministry of Education, College of Veterinary Medicine, Jilin University, Changchun, China
| | - Haihua Feng
- Key Laboratory of Zoonosis, Ministry of Education, College of Veterinary Medicine, Jilin University, Changchun, China
| | - Lu Han
- Key Laboratory of Zoonosis, Ministry of Education, College of Veterinary Medicine, Jilin University, Changchun, China
| | - Lin Wu
- Key Laboratory of Zoonosis, Ministry of Education, College of Veterinary Medicine, Jilin University, Changchun, China
| | - Hongming Lv
- Key Laboratory of Zoonosis, Ministry of Education, College of Veterinary Medicine, Jilin University, Changchun, China
| | - Bingyu Shen
- Key Laboratory of Zoonosis, Ministry of Education, College of Veterinary Medicine, Jilin University, Changchun, China
| | - Zheng Li
- Key Laboratory of Zoonosis, Ministry of Education, College of Veterinary Medicine, Jilin University, Changchun, China
| | - Qiaoling Zhang
- Key Laboratory of Zoonosis, Ministry of Education, College of Veterinary Medicine, Jilin University, Changchun, China
| | - Guowen Liu
- Key Laboratory of Zoonosis, Ministry of Education, College of Veterinary Medicine, Jilin University, Changchun, China
| |
Collapse
|
38
|
Zhu X, Song X, Xie K, Zhang X, He W, Liu F. Osthole induces apoptosis and suppresses proliferation via the PI3K/Akt pathway in intrahepatic cholangiocarcinoma. Int J Mol Med 2017; 40:1143-1151. [PMID: 28902342 PMCID: PMC5593451 DOI: 10.3892/ijmm.2017.3113] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2017] [Accepted: 07/28/2017] [Indexed: 12/20/2022] Open
Abstract
Osthole is a natural coumarin isolated from Umbelliferae plant monomers. Previous research has indicated that osthole exerts a wide variety of biological effects, acting as anti-seizure, anti-osteoporosis and anti-inflammation. However, the regulatory effect and related molecular mechanism of osthole in intrahepatic cholangiocarcinoma (ICC) remain unknown. In the present study, the authors found that osthole inhibited ICC cell lines in a dose- and time-dependent manner. Osthole also significantly induced mitochondrial-dependent apoptosis by upregulating Bax, cleaved caspase-3, cleaved caspase-9, and cleaved poly ADP-ribose polymerase expression, and by downregulating Bcl-2 expression. Moreover, the levels of p-Akt and PI3K were significantly decreased, while total Akt protein levels were unchanged. Following transfection with wild-type-Akt and constitutively active (CA)-Akt plasmids, the effects of osthole were decreased. Osthole was also able to suppress tumor growth in vivo. Together, these data demonstrated that osthole induces mitochondrial-dependent apoptosis via the PI3K/Akt pathway, suggesting that osthole may represent a novel and effective agent for the treatment of ICC.
Collapse
Affiliation(s)
- Xingyang Zhu
- Department of General Surgery, The First Affiliated Hospital of Medical University of Anhui, Hefei, Anhui 230022, P.R. China
| | - Xiaoling Song
- Department of Cardiothoracic Surgery, Xinhua Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai 200082, P.R. China
| | - Kun Xie
- Department of General Surgery, The First Affiliated Hospital of Medical University of Anhui, Hefei, Anhui 230022, P.R. China
| | - Xue Zhang
- Department of General Surgery, The First Affiliated Hospital of Medical University of Anhui, Hefei, Anhui 230022, P.R. China
| | - Wei He
- Department of General Surgery, The First Affiliated Hospital of Medical University of Anhui, Hefei, Anhui 230022, P.R. China
| | - Fubao Liu
- Department of General Surgery, The First Affiliated Hospital of Medical University of Anhui, Hefei, Anhui 230022, P.R. China
- Correspondence to: Professor Fubao Liu, Department of General Surgery, The First Affiliated Hospital of Medical University of Anhui, 218 Jixi Road, Hefei, Anhui 230022, P.R. China, E-mail:
| |
Collapse
|
39
|
Huang F, Zhang RY, Song L. Beneficial effect of magnolol on lupus nephritis in MRL/lpr mice by attenuating the NLRP3 inflammasome and NF‑κB signaling pathway: A mechanistic analysis. Mol Med Rep 2017; 16:4817-4822. [PMID: 28791390 DOI: 10.3892/mmr.2017.7154] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2016] [Accepted: 04/05/2017] [Indexed: 11/06/2022] Open
Abstract
Lupus nephritis (LN) is a common complication of systemic lupus erythematosus. The present study aimed to elucidate the protective effect of magnolol (MG) on the progression of LN, via inhibition of key signaling pathways. The results of the present study demonstrated that administration of MG caused inhibition of the activation of NACHT, LRR and PYD domains‑containing protein 3 and interleukin‑1β production. Histopathological analysis confirmed that the vehicle‑treated group exhibited characteristic glomerular disease, which was observed to be suppressed following the administration of MG; a marked decrease in glomerular and vascular lesions was observed compared with the vehicle control. This decrease was further demonstrated through analysis of kidney sections. The expression level of cell surface glycoprotein F4/80 was demonstrated to be markedly decreased in the MG‑treated mice compared with the vehicle control group. The MG‑treated mice exhibited a marked decrease in serum and renal tumor necrosis factor‑α expression levels.
Collapse
Affiliation(s)
- Feng Huang
- Department of Urology, Linyi People's Hospital, Linyi, Shandong 276003, P.R. China
| | - Rui-Yun Zhang
- Headquarters of Emergency Room, Linyi People's Hospital, Linyi, Shandong 276003, P.R. China
| | - Lei Song
- Department of Urology, Linyi People's Hospital, Linyi, Shandong 276003, P.R. China
| |
Collapse
|
40
|
Magnolol suppresses the proliferation and invasion of cholangiocarcinoma cells via inhibiting the NF-κB signaling pathway. Biomed Pharmacother 2017; 94:474-480. [PMID: 28779709 DOI: 10.1016/j.biopha.2017.07.085] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2017] [Revised: 07/17/2017] [Accepted: 07/19/2017] [Indexed: 12/15/2022] Open
Abstract
BACKGROUND Magnolol has shown the potential anticancer properties against a variety of cancers. However, the role of magnolol in cholangiocarcinoma (CCA) cells is unknown. In this study, we assessed the effect of magnolol on the CCA cells. METHODS CCA cells were treated with magnolol in the absence or presence of TNFα, the activator for NF-κB. After co-incubation with magnolol, cell proliferation and growth were examined by MTT, colony formation and xenograft tumors; cell cycle was analyzed by flow cytometry; cell migration and invasion were detected by wound healing and transwell assays; the expression of PCNA, Ki67, CyclinD1, MMP-2, MMP-7 and MMP-9 and NF-κB pathway were evaluated by using Western blot. RESULTS Magnolol inhibited the abilities of CCA cell growth, migration and invasion accompanying with a decreased expression of PCNA, Ki67, MMP-2, MMP-7 and MMP-9 (all P<0.05). TREATMENT with magnolol induced cell cycle arrest in G1 phase with a downregulation of cell cycle protein CyclinD1 (all P<0.05). In addition, magnolol suppressed the expression of p-IκBα and p-P65 and the effect of magnolol on CCA cells could be inhibited by TNFα. CONCLUSIONS Magnolol could inhibit the growth, migration and invasion of CCA cells through regulation of NF-κB pathway, and these data indicate that magnolol is a potential candidate for treating of CCA.
Collapse
|
41
|
A methoxyflavanone derivative from the Asian medicinal herb (Perilla frutescens) induces p53-mediated G 2/M cell cycle arrest and apoptosis in A549 human lung adenocarcinoma. Cytotechnology 2017; 70:899-912. [PMID: 28710570 DOI: 10.1007/s10616-017-0116-1] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2017] [Accepted: 06/15/2017] [Indexed: 12/20/2022] Open
Abstract
Perilla frutescens is an Asian dietary herb consumed as an essential seasoning in Japanese cuisine as well as used for a Chinese medicine. Here, we report that a newly found methoxyflavanone derivative from P. frutescens (Perilla-derived methoxyflavanone, PDMF; 8-hydroxy-5,7-dimethoxyflavanone) shows carcinostatic activity on human lung adenocarcinoma, A549. We found that treatment with PDMF significantly inhibited cell proliferation and decreased viability through induction of G2/M cell cycle arrest and apoptosis. The PDMF stimulation induces phosphorylation of tumor suppressor p53 on Ser15, and increases its protein amount in conjunction with up-regulation of downstream cyclin-dependent kinase inhibitor p21Cip1/Waf1 and proapoptotic caspases, caspase-9 and caspase-3. We also found that small interfering RNA knockdown of p53 completely abolished the PDMF-induced G2/M cell cycle arrest, and substantially abrogated its proapoptotic potency. These results suggest that PDMF represents a useful tumor-preventive phytochemical that triggers p53-driven G2/M cell cycle arrest and apoptosis.
Collapse
|
42
|
Song X, Wang Z, Liang H, Zhang W, Ye Y, Li H, Hu Y, Zhang Y, Weng H, Lu J, Wang X, Li M, Liu Y, Gu J. Dioscin Induces Gallbladder Cancer Apoptosis by Inhibiting ROS-Mediated PI3K/AKT Signalling. Int J Biol Sci 2017; 13:782-793. [PMID: 28656003 PMCID: PMC5485633 DOI: 10.7150/ijbs.18732] [Citation(s) in RCA: 61] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2016] [Accepted: 03/25/2017] [Indexed: 12/30/2022] Open
Abstract
Gallbladder cancer (GBC), highly aggressive form of cancer with an extremely poor prognosis, is the most common malignancy of the biliary tract. In this study, we investigated the effects of dioscin (DSN) on human GBC and the potential mechanisms underlying these effects. The results showed that DSN significantly inhibited GBC cell proliferation and migration. Moreover, DSN induced GBC cell apoptosis via mitochondrial dependent apoptotic signalling. Reactive oxygen species (ROS) and glutathione (GSH) levels were measured, and ROS scavengers completely inhibited DSN-induced apoptosis and migration, indicating that ROS play an essential role in GBC progression. Western blot analysis showed that AKT activity was significantly downregulated after DSN treatment, and that inhibition/ectopic expression of AKT enhanced/abolished DSN-induced apoptosis but not migration. Furthermore, we confirmed the relationship between ROS and the PI3K/AKT pathway and found that DSN induced apoptosis by regulating ROS-mediated PI3K/AKT signaling. Taken together, these findings indicate that DSN induces GBC apoptosis through inhibiting ROS-mediated PI3K/AKT signalling.
Collapse
Affiliation(s)
- Xiaoling Song
- Department of General Surgery and Laboratory of General Surgery, Xinhua Hospital affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, People's Republic of China.,Institute of Biliary Tract Disease, Shanghai Jiao Tong University School of Medicine, Shanghai, People's Republic of China
| | - Zheng Wang
- Department of General Surgery and Laboratory of General Surgery, Xinhua Hospital affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, People's Republic of China.,Institute of Biliary Tract Disease, Shanghai Jiao Tong University School of Medicine, Shanghai, People's Republic of China
| | - Haibin Liang
- Department of General Surgery and Laboratory of General Surgery, Xinhua Hospital affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, People's Republic of China.,Institute of Biliary Tract Disease, Shanghai Jiao Tong University School of Medicine, Shanghai, People's Republic of China
| | - Wenjie Zhang
- Department of General Surgery and Laboratory of General Surgery, Xinhua Hospital affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, People's Republic of China
| | - Yuanyuan Ye
- Department of General Surgery and Laboratory of General Surgery, Xinhua Hospital affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, People's Republic of China.,Institute of Biliary Tract Disease, Shanghai Jiao Tong University School of Medicine, Shanghai, People's Republic of China
| | - HuaiFeng Li
- Department of General Surgery and Laboratory of General Surgery, Xinhua Hospital affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, People's Republic of China.,Institute of Biliary Tract Disease, Shanghai Jiao Tong University School of Medicine, Shanghai, People's Republic of China
| | - Yunping Hu
- Department of General Surgery and Laboratory of General Surgery, Xinhua Hospital affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, People's Republic of China.,Institute of Biliary Tract Disease, Shanghai Jiao Tong University School of Medicine, Shanghai, People's Republic of China
| | - Yijian Zhang
- Department of General Surgery and Laboratory of General Surgery, Xinhua Hospital affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, People's Republic of China.,Institute of Biliary Tract Disease, Shanghai Jiao Tong University School of Medicine, Shanghai, People's Republic of China
| | - Hao Weng
- Department of General Surgery and Laboratory of General Surgery, Xinhua Hospital affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, People's Republic of China
| | - Jianhua Lu
- Department of General Surgery and Laboratory of General Surgery, Xinhua Hospital affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, People's Republic of China
| | - Xuefeng Wang
- Department of General Surgery and Laboratory of General Surgery, Xinhua Hospital affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, People's Republic of China
| | - Maolan Li
- Department of General Surgery and Laboratory of General Surgery, Xinhua Hospital affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, People's Republic of China.,Institute of Biliary Tract Disease, Shanghai Jiao Tong University School of Medicine, Shanghai, People's Republic of China
| | - Yingbin Liu
- Department of General Surgery and Laboratory of General Surgery, Xinhua Hospital affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, People's Republic of China.,Institute of Biliary Tract Disease, Shanghai Jiao Tong University School of Medicine, Shanghai, People's Republic of China
| | - Jun Gu
- Department of General Surgery and Laboratory of General Surgery, Xinhua Hospital affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, People's Republic of China
| |
Collapse
|
43
|
Wang TH, Chan CW, Fang JY, Shih YM, Liu YW, Wang TCV, Chen CY. 2-O-Methylmagnolol upregulates the long non-coding RNA, GAS5, and enhances apoptosis in skin cancer cells. Cell Death Dis 2017; 8:e2638. [PMID: 28252643 PMCID: PMC5386561 DOI: 10.1038/cddis.2017.66] [Citation(s) in RCA: 35] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2016] [Revised: 01/21/2017] [Accepted: 01/24/2017] [Indexed: 12/11/2022]
Abstract
Magnolol, a hydroxylated biphenol compound isolated from the bark of Magnolia officinalis, has been shown to exhibit anti-proliferative effect in various cancer cells, including skin cancer cells. Methoxylation of magnolol appears to improve its anti-inflammatory activity, yet the effect of this modification on the agent's antitumor activity remains unknown. In this work, we report that 2-O-methylmagnolol (MM1) displays improved antitumor activity against skin cancer cells compared to magnolol both in vitro and in vivo. The increased antitumor activity of MM1 appears to correlate with its increased ability to induce apoptosis. DNA microarray and network pathway analyses suggest that MM1 affects certain key factors involved in regulating apoptosis and programmed cell death. Interestingly, the level of the long non-coding (lnc) RNA of growth arrest-specific 5 (GAS5) was increased in MM1-treated cells, and inhibition of lncRNA GAS5 inhibited MM1-induced apoptosis. Conversely, overexpression of lncRNA GAS5 inhibited cell proliferation and promoted cell apoptosis in skin cancer cells. The expression of lncRNA GAS5 in the skin cancer tissues was found to be lower than that in the adjacent normal tissues in a majority of patients. Taken together, our findings suggest that MM1 has improved antitumor activity in skin cancer cells, and that this is due, at least in part, to the upregulation of lncRNA GAS5 and the enhancement of apoptosis.
Collapse
Affiliation(s)
- Tong-Hong Wang
- Graduate Institute of Health Industry Technology and Research Center for Industry of Human Ecology, College of Human Ecology, Chang Gung University of Science and Technology, Kwei-Shan, Tao-Yuan 333, Taiwan.,Tissue Bank, Chang Gung Memorial Hospital, Kwei-Shan, Tao-Yuan 333, Taiwan
| | - Chieh-Wen Chan
- Graduate Institute of Health Industry Technology and Research Center for Industry of Human Ecology, College of Human Ecology, Chang Gung University of Science and Technology, Kwei-Shan, Tao-Yuan 333, Taiwan
| | - Jia-You Fang
- Pharmaceutics Laboratory, Graduate Institute of Natural Products, Chang Gung University, Kwei-Shan, Tao-Yuan 333, Taiwan.,Department of Anesthesiology, Chang Gung Memorial Hospital, Kwei-Shan, Tao-Yuan 333, Taiwan
| | - Ya-Min Shih
- Graduate Institute of Health Industry Technology and Research Center for Industry of Human Ecology, College of Human Ecology, Chang Gung University of Science and Technology, Kwei-Shan, Tao-Yuan 333, Taiwan
| | - Yi-Wen Liu
- Graduate Institute of Health Industry Technology and Research Center for Industry of Human Ecology, College of Human Ecology, Chang Gung University of Science and Technology, Kwei-Shan, Tao-Yuan 333, Taiwan
| | - Tzu-Chien V Wang
- Tissue Bank, Chang Gung Memorial Hospital, Kwei-Shan, Tao-Yuan 333, Taiwan.,Department of Molecular and Cellular Biology, College of Medicine, Chang Gung University, Kwei-Shan, Tao-Yuan 333, Taiwan
| | - Chi-Yuan Chen
- Graduate Institute of Health Industry Technology and Research Center for Industry of Human Ecology, College of Human Ecology, Chang Gung University of Science and Technology, Kwei-Shan, Tao-Yuan 333, Taiwan.,Tissue Bank, Chang Gung Memorial Hospital, Kwei-Shan, Tao-Yuan 333, Taiwan
| |
Collapse
|
44
|
Shen ED, Liu B, Yu XS, Xiang ZF, Huang HY. The effects of miR-1207-5p expression in peripheral blood on cisplatin-based chemosensitivity of primary gallbladder carcinoma. Onco Targets Ther 2016; 9:3633-42. [PMID: 27382301 PMCID: PMC4920227 DOI: 10.2147/ott.s101310] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
OBJECTIVE The aim of this study was to investigate the association between miR-1207-5p expression in peripheral blood and the chemosensitivity of primary gallbladder carcinoma (PGBC). METHODS A total of 85 patients with PGBC undergoing preoperative chemotherapy were divided into effective (n=18) and ineffective (n=67) groups. Another 70 healthy individuals were selected as the control group. An miR-1207-5p mimic (mimic group), an inhibitor (inhibitor group), and a negative control (NC group) sequence were transfected into human gallbladder carcinoma GBC-SD cells. Real-time quantitative polymerase chain reaction was used to determine miR-1207-5p expression. After 48 hours of cisplatin treatment, CCK-8 method was used to detect cell proliferation and flow cytometry were performed to examine cell apoptosis. RESULTS miR-1207-5p expression in peripheral blood was significantly associated with tumor node metastasis staging of PGBC (P<0.05). Before chemotherapy, miR-1207-5p expression in patients was higher than in healthy individuals (P<0.05). After chemotherapy, the effective group had lower miR-1207-5p expression than the ineffective group (P<0.05). The rates of positive expression of Ki67 protein in the effective group were significantly lower than those in the ineffective group (P<0.05). Receiver operating characteristic curves showed that the area under curve, sensitivity, and specificity of miR-1207-5p used to diagnose PGBC were 0.898, 77.6%, and 97.1% at a cutoff of 1.470, respectively. After 48 hours of cisplatin treatment, compared with the NC group and nontransfected (non-T) group, the mimic group had decreased rates of cell inhibition and apoptosis, but the inhibitor group had increased rates (all P<0.05). The expression levels of caspase3 protein were increased in the mimic group and decreased in the inhibitor group. Cell survival rates in the mimic group at different time points after cisplatin treatment were significantly higher than the corresponding rates in the NC and non-T groups, whereas the cell survival rates in the inhibitor group were significantly lower than the rates in the NC and non-T groups (all P<0.05). The concentration and action time of cisplatin were negatively associated with the cell survival rate in each group (all P<0.05). CONCLUSION Cisplatin-based chemosensitivity of PGBC increased as expression of miR-1207-5p in peripheral blood declined. Thus, miR-1207-5p appears to be a promising and novel chemosensitizer for the treatment of PGBC.
Collapse
Affiliation(s)
- Er-Dong Shen
- Department of Oncology, The First People's Hospital of Yueyang, Yueyang
| | - Bo Liu
- Department of General Surgery, The Second Xiangya Hospital of Central South University, Changsha
| | - Xin-Shuang Yu
- Department of Radiotherapy, Qianfou Mount Hospital of Shandong Province, Jinan
| | - Zhen-Fei Xiang
- Department of Radiotherapy, Ningbo Medical Treatment Center Lihuili Hospital, Ningbo
| | - Hui-Yun Huang
- Department of Dermatology, The First People's Hospital of Yueyang, Yueyang, People's Republic of China
| |
Collapse
|