1
|
Moss C, Vacca B, Arnold J, Hubens C, Lynch DM, Pegge J, Green MAR, Hosie CA, Smith TE, Green JBA. A double ovulation protocol for Xenopus laevis produces doubled fertilisation yield and moderately transiently elevated corticosterone levels without loss of egg quality. PLoS One 2024; 19:e0299179. [PMID: 39028705 PMCID: PMC11259257 DOI: 10.1371/journal.pone.0299179] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2024] [Accepted: 06/12/2024] [Indexed: 07/21/2024] Open
Abstract
The African claw-toed frog, Xenopus laevis, is a well-established laboratory model for the biology of vertebrate oogenesis, fertilisation, and development at embryonic, larval, and metamorphic stages. For ovulation, X. laevis females are usually injected with chorionic gonadotropin, whereupon they lay typically hundreds to thousands of eggs in a day. After being rested for a minimum of three months, animals are re-used. The literature suggests that adult females can lay much larger numbers of eggs in a short period. Here, we compared the standard "single ovulation" protocol with a "double ovulation" protocol, in which females were ovulated, then re-ovulated after seven days and then rested for three months before re-use. We quantified egg number, fertilisation rate (development to cleavage stage), and corticosterone secretion rate as a measure of stress response for the two protocol groups over seven 3-month cycles. We found no differences in egg number-per-ovulation or egg quality between the groups and no long-term changes in any measures over the 21-month trial period. Corticosterone secretion was elevated by ovulation, similarly for the single ovulation as for the first ovulation in the double-ovulation protocol, but more highly for the second ovulation (to a level comparable to that seen following shipment) in the latter. However, both groups exhibited the same baseline secretion rates by the time of the subsequent cycle. Double ovulation is thus transiently more stressful/demanding than single ovulation but within the levels routinely experienced by laboratory X. laevis. Noting that "stress hormone" corticosterone/cortisol secretion is linked to physiological processes, such as ovulation, that are not necessarily harmful to the individual, we suggest that the benefits of a doubling in egg yield-per-cycle per animal without loss of egg quality or signs of acute or long-term harm may outweigh the relatively modest and transient corticosterone elevation we observed. The double ovulation protocol therefore represents a potential new standard practice for promoting the "3Rs" (animal use reduction, refinement and replacement) mission for Xenopus research.
Collapse
Affiliation(s)
- Chloe Moss
- Centre for Craniofacial Regeneration and Biology, King’s College London, London, United Kingdom
| | - Barbara Vacca
- Centre for Craniofacial Regeneration and Biology, King’s College London, London, United Kingdom
| | - Jo Arnold
- Department of Biological Sciences, University of Chester, Chester, United Kingdom
| | - Chantal Hubens
- Centre for Craniofacial Regeneration and Biology, King’s College London, London, United Kingdom
| | - Dominic M. Lynch
- Centre for Craniofacial Regeneration and Biology, King’s College London, London, United Kingdom
| | - James Pegge
- Centre for Craniofacial Regeneration and Biology, King’s College London, London, United Kingdom
| | | | - Charlotte A. Hosie
- Department of Biological Sciences, University of Chester, Chester, United Kingdom
| | - Tessa E. Smith
- Department of Biological Sciences, University of Chester, Chester, United Kingdom
| | - Jeremy B. A. Green
- Centre for Craniofacial Regeneration and Biology, King’s College London, London, United Kingdom
| |
Collapse
|
2
|
Ogawa M, Tanaka A, Maekawa M, Namba K, Otani Y, Shia J, Wang JY, Roehrl MH. Protein expression of the amino acid transporter SLC7A5 in tumor tissue is prognostic in early-stage colorectal cancer. PLoS One 2024; 19:e0298362. [PMID: 38722983 PMCID: PMC11081336 DOI: 10.1371/journal.pone.0298362] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2023] [Accepted: 01/24/2024] [Indexed: 05/13/2024] Open
Abstract
Proteins overexpressed in early-stage cancers may serve as early diagnosis and prognosis markers as well as targets for cancer therapies. In this study, we examined the expression of an essential amino acid carrier SLC7A5 (LAT1, CD98, or 4F2 light chain) in cancer tissue from two well-annotated cohorts of 575 cases of early-stage and 106 cases of late-stage colorectal cancer patients. Immunohistochemistry showed SLC7A5 overexpression in 72.0% of early-stage and 56.6% of late-stage cases. SLC7A5 expression was not influenced by patient gender, age, location, or mismatch repair status, although it appeared to be slightly less prevalent in tumors of mucinous differentiation or with lymphovascular invasion. Statistical analyses revealed a positive correlation between SLC7A5 overexpression and both overall survival and disease-free survival in early-stage but not late-stage cancers. Co-expression analyses of the TCGA and CPTAC colorectal cancer cohorts identified a network of gene transcripts positively related to SLC7A5, with its heterodimer partner SLC3A2 having the highest co-expression score. Network analysis uncovered the SLC7A network to be significantly associated with ncRNA such as tRNA processing and the mitotic cell cycle. Since SLC7A5 is also a marker of activated lymphocytes such as NK, T, and B lymphocytes, SLC7A5 overexpression in early colorectal cancers might trigger a strong anti-tumor immune response which could results in better clinical outcome. Overall, our study provides clear evidence of differential SLC7A5 expression and its prognostic value for early-stage colorectal cancer, although the understanding of its functions in colorectal tumorigenesis and cancer immunity is currently rather limited and awaits further characterization.
Collapse
Affiliation(s)
- Makiko Ogawa
- Department of Pathology, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA, United States of America
- Harvard Medical School, Boston, MA, United States of America
| | - Atsushi Tanaka
- Department of Pathology, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA, United States of America
- Harvard Medical School, Boston, MA, United States of America
| | - Masaki Maekawa
- Department of Pathology, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA, United States of America
- Harvard Medical School, Boston, MA, United States of America
| | - Kei Namba
- Department of Pathology, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA, United States of America
- Harvard Medical School, Boston, MA, United States of America
| | - Yusuke Otani
- Department of Pathology, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA, United States of America
- Harvard Medical School, Boston, MA, United States of America
| | - Jinru Shia
- Department of Pathology and Laboratory Medicine, Memorial Sloan Kettering Cancer Center, New York, NY, United States of America
| | | | - Michael H. Roehrl
- Department of Pathology, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA, United States of America
- Harvard Medical School, Boston, MA, United States of America
| |
Collapse
|
3
|
Chen S, Jin C, Ohgaki R, Xu M, Okanishi H, Kanai Y. Structure-activity characteristics of phenylalanine analogs selectively transported by L-type amino acid transporter 1 (LAT1). Sci Rep 2024; 14:4651. [PMID: 38409393 PMCID: PMC10897196 DOI: 10.1038/s41598-024-55252-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2023] [Accepted: 02/21/2024] [Indexed: 02/28/2024] Open
Abstract
L-type amino acid transporter 1 (LAT1) is a transmembrane protein responsible for transporting large neutral amino acids. While numerous LAT1-targeted compound delivery for the brain and tumors have been investigated, their LAT1 selectivity often remains ambiguous despite high LAT1 affinity. This study assessed the LAT1 selectivity of phenylalanine (Phe) analogs, focusing on their structure-activity characteristics. We discovered that 2-iodo-L-phenylalanine (2-I-Phe), with an iodine substituent at position 2 in the benzene ring, markedly improves LAT1 affinity and selectivity compared to parent amino acid Phe, albeit at the cost of reduced transport velocity. L-Phenylglycine (Phg), one carbon shorter than Phe, was found to be a substrate for LAT1 with a lower affinity, exhibiting a low level of selectivity for LAT1 equivalent to Phe. Notably, (R)-2-amino-1,2,3,4-tetrahydro-2-naphthoic acid (bicyclic-Phe), with an α-methylene moiety akin to the α-methyl group in α-methyl-L-phenylalanine (α-methyl-Phe), a known LAT1-selective compound, showed similar LAT1 transport maximal velocity to α-methyl-Phe, but with higher LAT1 affinity and selectivity. In vivo studies revealed tumor-specific accumulation of bicyclic-Phe, underscoring the importance of LAT1-selectivity in targeted delivery. These findings emphasize the potential of bicyclic-Phe as a promising LAT1-selective component, providing a basis for the development of LAT1-targeting compounds based on its structural framework.
Collapse
Affiliation(s)
- Sihui Chen
- Department of Bio-System Pharmacology, Graduate School of Medicine, Osaka University, 2-2, Yamadaoka, Suita, Osaka, 565-0871, Japan
| | - Chunhuan Jin
- Department of Bio-System Pharmacology, Graduate School of Medicine, Osaka University, 2-2, Yamadaoka, Suita, Osaka, 565-0871, Japan
| | - Ryuichi Ohgaki
- Department of Bio-System Pharmacology, Graduate School of Medicine, Osaka University, 2-2, Yamadaoka, Suita, Osaka, 565-0871, Japan
- Integrated Frontier Research for Medical Science Division, Institute for Open and Transdisciplinary Research Initiatives (OTRI), Osaka University, Suita, Osaka, 565-0871, Japan
| | - Minhui Xu
- Department of Bio-System Pharmacology, Graduate School of Medicine, Osaka University, 2-2, Yamadaoka, Suita, Osaka, 565-0871, Japan
| | - Hiroki Okanishi
- Department of Bio-System Pharmacology, Graduate School of Medicine, Osaka University, 2-2, Yamadaoka, Suita, Osaka, 565-0871, Japan
| | - Yoshikatsu Kanai
- Department of Bio-System Pharmacology, Graduate School of Medicine, Osaka University, 2-2, Yamadaoka, Suita, Osaka, 565-0871, Japan.
- Integrated Frontier Research for Medical Science Division, Institute for Open and Transdisciplinary Research Initiatives (OTRI), Osaka University, Suita, Osaka, 565-0871, Japan.
- Premium Research Institute for Human Metaverse Medicine (WPI-PRIMe), Osaka University, Suita, Osaka, 565-0871, Japan.
| |
Collapse
|
4
|
Imran H, Tang Y, Wang S, Yan X, Liu C, Guo L, Wang E, Xu C. Optimized DOX Drug Deliveries via Chitosan-Mediated Nanoparticles and Stimuli Responses in Cancer Chemotherapy: A Review. Molecules 2023; 29:31. [PMID: 38202616 PMCID: PMC10780101 DOI: 10.3390/molecules29010031] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2023] [Revised: 12/15/2023] [Accepted: 12/16/2023] [Indexed: 01/12/2024] Open
Abstract
Chitosan nanoparticles (NPs) serve as useful multidrug delivery carriers in cancer chemotherapy. Chitosan has considerable potential in drug delivery systems (DDSs) for targeting tumor cells. Doxorubicin (DOX) has limited application due to its resistance and lack of specificity. Chitosan NPs have been used for DOX delivery because of their biocompatibility, biodegradability, drug encapsulation efficiency, and target specificity. In this review, various types of chitosan derivatives are discussed in DDSs to enhance the effectiveness of cancer treatments. Modified chitosan-DOX NP drug deliveries with other compounds also increase the penetration and efficiency of DOX against tumor cells. We also highlight the endogenous stimuli (pH, redox, enzyme) and exogenous stimuli (light, magnetic, ultrasound), and their positive effect on DOX drug delivery via chitosan NPs. Our study sheds light on the importance of chitosan NPs for DOX drug delivery in cancer treatment and may inspire the development of more effective approaches for cancer chemotherapy.
Collapse
Affiliation(s)
- HafizMuhammad Imran
- Department of Biochemistry, College of Basic Medical Sciences, Jilin University, Changchun 130021, China; (H.I.); (Y.T.); (S.W.); (X.Y.); (C.L.); (L.G.)
| | - Yixin Tang
- Department of Biochemistry, College of Basic Medical Sciences, Jilin University, Changchun 130021, China; (H.I.); (Y.T.); (S.W.); (X.Y.); (C.L.); (L.G.)
| | - Siyuan Wang
- Department of Biochemistry, College of Basic Medical Sciences, Jilin University, Changchun 130021, China; (H.I.); (Y.T.); (S.W.); (X.Y.); (C.L.); (L.G.)
| | - Xiuzhang Yan
- Department of Biochemistry, College of Basic Medical Sciences, Jilin University, Changchun 130021, China; (H.I.); (Y.T.); (S.W.); (X.Y.); (C.L.); (L.G.)
| | - Chang Liu
- Department of Biochemistry, College of Basic Medical Sciences, Jilin University, Changchun 130021, China; (H.I.); (Y.T.); (S.W.); (X.Y.); (C.L.); (L.G.)
| | - Lei Guo
- Department of Biochemistry, College of Basic Medical Sciences, Jilin University, Changchun 130021, China; (H.I.); (Y.T.); (S.W.); (X.Y.); (C.L.); (L.G.)
| | - Erlei Wang
- College of Food Science and Engineering, Jilin University, Changchun 130062, China
| | - Caina Xu
- Department of Biochemistry, College of Basic Medical Sciences, Jilin University, Changchun 130021, China; (H.I.); (Y.T.); (S.W.); (X.Y.); (C.L.); (L.G.)
| |
Collapse
|
5
|
Perez-Castro L, Garcia R, Venkateswaran N, Barnes S, Conacci-Sorrell M. Tryptophan and its metabolites in normal physiology and cancer etiology. FEBS J 2023; 290:7-27. [PMID: 34687129 PMCID: PMC9883803 DOI: 10.1111/febs.16245] [Citation(s) in RCA: 34] [Impact Index Per Article: 34.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2021] [Revised: 10/10/2021] [Accepted: 10/21/2021] [Indexed: 02/06/2023]
Abstract
Within the growing field of amino acid metabolism, tryptophan (Trp) catabolism is an area of increasing interest. Trp is essential for protein synthesis, and its metabolism gives rise to biologically active catabolites including serotonin and numerous metabolites in the kynurenine (Kyn) pathway. In normal tissues, the production of Trp metabolites is directly regulated by the tissue-specific expression of Trp-metabolizing enzymes. Alterations of these enzymes in cancers can shift the balance and lead to an increased production of specific byproducts that can function as oncometabolites. For example, increased expression of the enzyme indoleamine 2,3-dioxygenase, which converts Trp into Kyn, leads to an increase in Kyn levels in numerous cancers. Kyn functions as an oncometabolite in cancer cells by promoting the activity of the transcription factor aryl hydrocarbon receptor, which regulates progrowth genes. Moreover, Kyn also inhibits T-cell activity and thus allows cancer cells to evade clearance by the immune system. Therefore, targeting the Kyn pathway has become a therapeutic focus as a novel means to abrogate tumor growth and immune resistance. This review summarizes the biological role and regulation of Trp metabolism and its catabolites with an emphasis on tumor cell growth and immune evasion and outlines areas for future research focus.
Collapse
Affiliation(s)
- Lizbeth Perez-Castro
- Department of Cell Biology, University of Texas Southwestern Medical Center, Dallas, TX, USA
| | - Roy Garcia
- Department of Cell Biology, University of Texas Southwestern Medical Center, Dallas, TX, USA
| | - Niranjan Venkateswaran
- Department of Cell Biology, University of Texas Southwestern Medical Center, Dallas, TX, USA
| | - Spencer Barnes
- Lyda Hill Department of Bioinformatics, UT Southwestern Medical Center, Dallas, TX, USA
| | - Maralice Conacci-Sorrell
- Department of Cell Biology, University of Texas Southwestern Medical Center, Dallas, TX, USA
- Hamon Center for Regenerative Science and Medicine, University of Texas Southwestern Medical Center, Dallas, TX, USA
- Harold C. Simmons Comprehensive Cancer Center, University of Texas Southwestern Medical Center, Dallas, TX, USA
| |
Collapse
|
6
|
Awasthi A, Kumar N, Mishra A, Ravi R, Dalal A, Shankar S, Chandra R. Noscapine-Amino Acid Conjugates Suppress the Progression of Cancer Cells. ACS Pharmacol Transl Sci 2022; 5:1292-1304. [PMID: 36524011 PMCID: PMC9745893 DOI: 10.1021/acsptsci.2c00172] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2022] [Indexed: 11/16/2022]
Abstract
Lung cancer is the leading cause of cancer deaths globally; 1 in 16 people are diagnosed with lung cancer in their lifetime. Microtubules, a critical cytoskeletal assembly, have an essential role in cell division. Interference with the microtubule assembly leads to genetic instability during mitosis and cancer cell death. Currently, available antimitotic drugs such as vincas and taxanes are limited due to side effects such as alopecia, myelosuppression, and drug resistance. Noscapine, an opium alkaloid, is a tubulin-binding agent and can alter the microtubule assembly, causing cancer cell death. Amino acids are fundamental building blocks for protein synthesis, making them essential for the biosynthesis of cancer cells. However, the ability of amino acids in drug transportation has yet to be exploited in developing noscapine analogues as a potential drug candidate for cancer. Hence, in the present study, we have explored the ninth position of noscapine by introducing a hydroxymethylene group using the Blanc reaction and further coupled it with a series of amino acids to construct five target conjugates in good yields. The synthesized amino acid conjugate molecules were biologically evaluated against the A549 lung cancer cell line, among which the noscapine-tryptophan conjugate showed IC50 = 32 μM, as compared to noscapine alone (IC50 = 73 μM). Morphological changes in cancer cells, cell cycle arrest in the G1 phase, and ethidium bromide/acridine orange staining indicated promising anticancer properties. Molecular docking confirmed strong binding to tubulin, with a score of -41.47 kJ/mol with all 3D coordinates and significant involvement of molecular forces, including the hydrogen bonds and hydrophobic interactions. Molecular dynamics simulations demonstrated a stable binding of noscapine-tryptophan conjugate for a prolonged time (100 ns) with the involvement of free energy through the reaction coordinates analyses, solving the bioavailability of parent noscapine to the body.
Collapse
Affiliation(s)
- Amardeep Awasthi
- Department of Chemistry, University of Delhi, Delhi-110007, India
| | - Neeraj Kumar
- Department of Neurology, Northwestern University, Feinberg School of Medicine, Chicago, Illinois60611, United States
| | - Abhijeet Mishra
- Department of Biochemistry, Shivaji College, University of Delhi, Delhi-110027, India
| | - Rangnath Ravi
- Department of Chemistry, Shivaji College, University of Delhi, Delhi-110027, India
| | - Anu Dalal
- Department of Chemistry, Indian Institute of Technology, Delhi, Delhi-110016, India
| | - Saurav Shankar
- Department of Chemistry, University of Delhi, Delhi-110007, India
| | - Ramesh Chandra
- Department of Chemistry, University of Delhi, Delhi-110007, India
- Dr. B. R. Ambedkar Centre for Biomedical Research, University of Delhi, Delhi-110007, India
- Institute of Nano Medical Sciences, University of Delhi, Delhi-110007, India
| |
Collapse
|
7
|
Isohashi K, Kanai Y, Aihara T, Hu N, Fukushima K, Baba I, Hirokawa F, Kakino R, Komori T, Nihei K, Hatazawa J, Ono K. Exploration of the threshold SUV for diagnosis of malignancy using 18F-FBPA PET/CT. Eur J Hybrid Imaging 2022; 6:35. [DOI: 10.1186/s41824-022-00156-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2022] [Accepted: 11/09/2022] [Indexed: 12/05/2022] Open
Abstract
Abstract
Background
The goal of the study was to evaluate the diagnostic ability of 18F-FBPA PET/CT for malignant tumors. Findings from 18F-FBPA and 18F-FDG PET/CT were compared with pathological diagnoses in patients with malignant tumors or benign lesions.
Methods
A total of 82 patients (45 males, 37 females; median age, 63 years; age range, 20–89 years) with various types of malignant tumors or benign lesions, such as inflammation and granulomas, were examined by 18F-FDG and 18F-FBPA PET/CT. Tumor uptake of FDG or FBPA was quantified using the maximum standardized uptake value (SUVmax). The final diagnosis was confirmed by cytopathology or histopathological findings of the specimen after biopsy or surgery. A ROC curve was constructed from the SUVmax values of each PET image, and the area under the curve (AUC) and cutoff values were calculated.
Results
The SUVmax for 18F-FDG PET/CT did not differ significantly for malignant tumors and benign lesions (10.9 ± 6.3 vs. 9.1 ± 2.7 P = 0.62), whereas SUVmax for 18F-FBPA PET/CT was significantly higher for malignant tumors (5.1 ± 3.0 vs. 2.9 ± 0.6, P < 0.001). The best SUVmax cutoffs for distinguishing malignant tumors from benign lesions were 11.16 for 18F-FDG PET/CT (sensitivity 0.909, specificity 0.390) and 3.24 for 18F-FBPA PET/CT (sensitivity 0.818, specificity 0.753). ROC analysis showed significantly different AUC values for 18F-FDG and 18F-FBPA PET/CT (0.547 vs. 0.834, p < 0.001).
Conclusion
18F-FBPA PET/CT showed superior diagnostic ability over 18F-FDG PET/CT in differential diagnosis of malignant tumors and benign lesions. The results of this study suggest that 18F-FBPA PET/CT diagnosis may reduce false-positive 18F-FDG PET/CT diagnoses.
Collapse
|
8
|
Noel MS, Kim S, Hartley ML, Wong S, Picozzi V, Staszewski H, Kim DW, Van Tornout JM, Philip PA, Chung V, Ocean AJ, Wang‐Gillam A. A randomized phase II study of SM-88 plus methoxsalen, phenytoin, and sirolimus in patients with metastatic pancreatic cancer treated in the second line and beyond. Cancer Med 2022; 11:4169-4181. [PMID: 35499204 PMCID: PMC9678093 DOI: 10.1002/cam4.4768] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2021] [Revised: 03/11/2022] [Accepted: 04/10/2022] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND This trial explores SM-88 used with methoxsalen, phenytoin, and sirolimus (MPS) in pretreated metastatic pancreatic ductal adenocarcinoma (mPDAC) METHODS: Forty-nine patients were randomized to daily 460 or 920 mg oral SM-88 with MPS (SM-88 Regimen). The primary endpoint was objective response rate (RECIST 1.1). RESULTS Thirty-seven patients completed ≥ one cycle of SM-88 Regimen (response evaluable population). Disease control rate (DCR), overall survival (OS), and progression-free survival (PFS) did not differ significantly between dose levels. Stable disease was achieved in 9/37 patients (DCR, 24.3%); there were no complete or partial responses. Quality-of-life (QOL) was maintained and trended in favor of 920 mg. SM-88 Regimen was well tolerated; a single patient (1/49) had related grade 3 and 4 adverse events, which later resolved. In the intention-to-treat population of 49 patients, the median overall survival (mOS) was 3.4 months (95% CI: 2.7-4.9 months). Those treated in the second line had an mOS of 8.1 months and a median PFS of 3.8 months. Survival was higher for patients with stable versus progressive disease (any line; mOS: 10.6 months vs. 3.9 months; p = 0.01). CONCLUSIONS SM-88 Regimen has a favorable safety profile with encouraging QOL effects, disease control, and survival trends. This regimen should be explored in the second-line treatment of patients with mPDAC. CLINICALTRIALS gov Identifier: NCT03512756.
Collapse
Affiliation(s)
- Marcus S. Noel
- Georgetown Lombardi Comprehensive Cancer CenterWashingtonDistrict of ColumbiaUSA
| | - Semmie Kim
- TYME Technologies Inc.BedminsterNew JerseyUSA
| | - Marion L. Hartley
- The Ruesch Center for the Cure of Gastrointestinal CancersWashingtonDistrict of ColumbiaUSA
| | - Steve Wong
- Sarcoma Oncology Research CenterSanta MonicaCaliforniaUSA
| | | | | | - Dae Won Kim
- The University of Texas MD Anderson Cancer CenterHoustonTexasUSA
| | | | - Philip Agop Philip
- Karmanos Cancer CenterWayne State UniversityMichiganDetroitUSA
- SWOGFarmington HillsMichiganUSA
| | | | - Allyson J. Ocean
- Weill Cornell MedicineNew York‐Presbyterian HospitalNew YorkNew YorkUSA
| | - Andrea Wang‐Gillam
- Washington University School of Medicine in St. LouisSt. LouisMissouriUSA
| |
Collapse
|
9
|
Monitoring of Current Cancer Therapy by Positron Emission Tomography and Possible Role of Radiomics Assessment. Int J Mol Sci 2022; 23:ijms23169394. [PMID: 36012657 PMCID: PMC9409366 DOI: 10.3390/ijms23169394] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2022] [Revised: 07/31/2022] [Accepted: 08/16/2022] [Indexed: 11/17/2022] Open
Abstract
Evaluation of cancer therapy with imaging is crucial as a surrogate marker of effectiveness and survival. The unique response patterns to therapy with immune-checkpoint inhibitors have facilitated the revision of response evaluation criteria using FDG-PET, because the immune response recalls reactive cells such as activated T-cells and macrophages, which show increased glucose metabolism and apparent progression on morphological imaging. Cellular metabolism and function are critical determinants of the viability of active cells in the tumor microenvironment, which would be novel targets of therapies, such as tumor immunity, metabolism, and genetic mutation. Considering tumor heterogeneity and variation in therapy response specific to the mechanisms of therapy, appropriate response evaluation is required. Radiomics approaches, which combine objective image features with a machine learning algorithm as well as pathologic and genetic data, have remarkably progressed over the past decade, and PET radiomics has increased quality and reliability based on the prosperous publications and standardization initiatives. PET and multimodal imaging will play a definitive role in personalized therapeutic strategies by the precise monitoring in future cancer therapy.
Collapse
|
10
|
Yaghoubi Mogadam H, Erfani M, Nikpassand M, Mokhtary M. Evaluation of [ 99mTc][Tc-HYNIC/EDDA]-Tyr as a target for metabolic tumor imaging in B16F10 melanoma tumor. ASIA OCEANIA JOURNAL OF NUCLEAR MEDICINE & BIOLOGY 2022; 10:100-108. [PMID: 35800424 PMCID: PMC9205849 DOI: 10.22038/aojnmb.2021.60334.1420] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/14/2021] [Revised: 11/15/2021] [Accepted: 12/01/2021] [Indexed: 11/04/2022]
Abstract
Objectives Clinical interest in metabolic imaging of cancer has been growing in recent years. The increase in protein metabolism of cancer cells is interesting target for metabolic tumor imaging, for which radiolabeled amino acids can be applied. The aim of this study was to evaluate a newly developed radiolabeled amino acid as an imaging protein metabolism in melanoma tumor. Methods The radiolabeled tyrosine ([99mTc][Tc-HYNIC/EDDA]-Tyr) was prepared and its biological properties was evaluated in B16F10 melanoma tumor. Moreover organs uptake and tumor accumulation were measured in mouse bearing B16F10 melanoma tumor. Results Radiolabeled tyrosine was attached in B16F10 melanoma cells and showed the cell binding capacity of 13.82±0.73%. In animal study, the accumulation of radiolabeled tyrosine was observed in B16F10 melanoma tumor (2.15±0.09 %ID/g) after 30 min post injection, so that the uptake ratio of tumor to muscle was about 5.11. Through scintigraphy process the melanoma tumor clearly visualized in mice at 30 min post injection. Conclusion These data suggest that the novel radiotracer ([99mTc][Tc-HYNIC/EDDA]-Tyr) as an protein metabolism imaging agent, is able to transfer into melanoma cells and show great expectation for the clinical application in the imaging of melanoma tumors.
Collapse
Affiliation(s)
| | - Mostafa Erfani
- Radiation Applications Research School, Nuclear Science and Technology Research Institute, Tehran, Iran ,Corresponding author: Mostafa Erfani. Radiation Applications Research School, Nuclear Science and Technology Research Institute, Tehran, Iran. Tel: 02188221103; Emil:
| | | | - Masoud Mokhtary
- Department of chemistry, Rasht Branch, Islamic Azad University, Rasht, Iran
| |
Collapse
|
11
|
Kanai Y. Amino acid transporter LAT1 (SLC7A5) as a molecular target for cancer diagnosis and therapeutics. Pharmacol Ther 2021; 230:107964. [PMID: 34390745 DOI: 10.1016/j.pharmthera.2021.107964] [Citation(s) in RCA: 84] [Impact Index Per Article: 28.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2018] [Accepted: 07/30/2021] [Indexed: 01/13/2023]
Abstract
Cancer cells require a massive supply of nutrients, including sugars and amino acids-the upregulation of transporters for each nutrient contributes to meet the demand. Distinct from glucose transporters, amino acid transporters include ones whose expression is specific to cancer cells. For example, LAT1 (SLC7A5) displays protein expression mostly limited to the plasma membrane of cancer cells. The exceptions are the placental barrier and the blood-brain barrier, where immunohistochemical and mass spectrometric studies have shown LAT1 expression, although their levels are supposed to be lower than those in cancers. The expression of LAT1 has been reported in cancers from various tissue origins, where high LAT1 expression is related to the poor prognosis of patients. LAT1 is essential for cancer cell growth because the pharmacologic inhibition and knockdown/knockout of LAT1 suppress the proliferation of cancer cells and the growth of xenograft tumors. The inhibition of LAT1 suppresses protein synthesis by downregulating the mTORC1 signaling pathway and mobilizing the general amino acid control (GAAC) pathway in cancer cells. LAT1 is, thus, a candidate molecular target for the diagnosis and therapeutics of cancers. 18F-labeled 3-fluoro-l-α-methyl-tyrosine (FAMT) is used as a LAT1-specific PET probe for cancer detection due to the LAT1 specificity of α-methyl aromatic amino acids. FAMT accumulation is cancer-specific and avoids non-cancer lesions, including inflammation, confirming the cancer-specific expression of LAT1 in humans. Due to the cancer-specific nature, LAT1 can also be used for cancer-specific delivery of anti-tumor agents such as l-para-boronophenylalanine used for boron neutron capture therapy and α-emitting nuclide-labeled LAT1 substrates developed for nuclear medicine treatment. Based on the importance of LAT1 in cancer progression, high-affinity LAT1-specific inhibitors have been developed for anti-tumor drugs. JPH203 (KYT0353) is such a compound designed based on the structure-activity relationship of LAT1 ligands. It is one of the highest-affinity inhibitors with less affecting other transporters. It suppresses tumor growth in vivo without significant toxicity in preclinical studies at doses enough to suppress tumor growth. In the phase-I clinical trial, JPH203 appeared to provide promising activity. Because the mechanisms of action of LAT1 inhibitors are novel, with or without combination with other anti-tumor drugs, they could contribute to the treatment of cancers that do not respond to current therapy. The LAT1-specific PET probe could also be used as companion diagnostics of the LAT1-targeting therapies to select patients to whom therapeutic benefits could be expected. Recently, the cryo-EM structure of LAT1 has been solved, which would facilitate the understanding of the mechanisms of the dynamic interaction of ligands and the binding site, and further designing new compounds with higher activity.
Collapse
Affiliation(s)
- Yoshikatsu Kanai
- Department of Bio-system Pharmacology, Graduate School of Medicine, Osaka University, 2-2 Yamadaoka, Suita, Osaka 565-0871, Japan.
| |
Collapse
|
12
|
Highly Specific L-Type Amino Acid Transporter 1 Inhibition by JPH203 as a Potential Pan-Cancer Treatment. Processes (Basel) 2021. [DOI: 10.3390/pr9071170] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022] Open
Abstract
Accelerated cancer cell growth requires a massive intake of amino acids. Overexpression of L-type (large) amino acid transporter 1 (LAT1) on the cancer cell membrane facilitates such a demand, which is limited in normal organs. Therefore, LAT1 overexpression is ideal as a molecular cancer therapeutic target. JPH203, a LAT1-selective non-transportable blocker, had demonstrated LAT1 inhibition in <10 µM IC50 values and effectively suppressed cancer cell growth in studies involving several types of cancer cell lines and tumor xenograft models. A limited phase I clinical trial was performed on five different solid tumors and showed that JPH203 is well-tolerated and has a promising activity for the treatment of bile duct cancer. This review details the development and prospect of JPH203 as a LAT1-targeting cancer therapy.
Collapse
|
13
|
Wiriyasermkul P, Moriyama S, Kongpracha P, Nagamori S. [Drug Discovery Targeting an Amino Acid Transporter for Diagnosis and Therapy]. YAKUGAKU ZASSHI 2021; 141:501-510. [PMID: 33790117 DOI: 10.1248/yakushi.20-00204-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Nutrients are essential for all living organisms. Because growing cancer cells have strong metabolic demands, nutrient transporters are constitutively increased to facilitate the nutrient uptake. Among these nutrient transporters, L-type amino acid transporter 1 (LAT1), which transports large neutral amino acids including essential amino acids, is critical for cancer growth. Therefore, LAT1 has been considered as an attractive target for diagnosis and therapy of cancers. We have developed several lines of compounds for cancer diagnosis and therapy. To diagnose cancer by using positron emission tomography (PET) probes, we have created amino acid derivatives which are selectively transported by LAT1 and accumulated in cancer cells. In addition to amino acid derivatives as the LAT1 inhibitors, we also have made non-amino acid small compounds as anti-cancer drugs which inhibit LAT1 function and suppress tumor growth. The LAT1 targeting anti-cancer drug showed low toxicity but strong effects on various types of cancer cells in animal models. The novel PET probe is approved for clinical research and the new anti-cancer drug has been under clinical trial. Small compounds targeting the amino acid transporter bring us new tools for cancer diagnosis and therapy.
Collapse
Affiliation(s)
- Pattama Wiriyasermkul
- Laboratory of Bio-Molecular Dynamics, Department of Collaborative Research, Nara Medical University
| | - Satomi Moriyama
- Laboratory of Bio-Molecular Dynamics, Department of Collaborative Research, Nara Medical University
| | - Pornparn Kongpracha
- Laboratory of Bio-Molecular Dynamics, Department of Collaborative Research, Nara Medical University
| | - Shushi Nagamori
- Laboratory of Bio-Molecular Dynamics, Department of Collaborative Research, Nara Medical University
| |
Collapse
|
14
|
Jin Y, Liu B, Younis MH, Huang G, Liu J, Cai W, Wei W. Next-Generation Molecular Imaging of Thyroid Cancer. Cancers (Basel) 2021; 13:3188. [PMID: 34202358 PMCID: PMC8268517 DOI: 10.3390/cancers13133188] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2021] [Revised: 06/20/2021] [Accepted: 06/22/2021] [Indexed: 12/15/2022] Open
Abstract
An essential aspect of thyroid cancer (TC) management is personalized and precision medicine. Functional imaging of TC with radioiodine and [18F]FDG has been frequently used in disease evaluation for several decades now. Recently, advances in molecular imaging have led to the development of novel tracers based on aptamer, peptide, antibody, nanobody, antibody fragment, and nanoparticle platforms. The emerging targets-including HER2, CD54, SHP2, CD33, and more-are promising targets for clinical translation soon. The significance of these tracers may be realized by outlining the way they support the management of TC. The provided examples focus on where preclinical investigations can be translated. Furthermore, advances in the molecular imaging of TC may inspire the development of novel therapeutic or theranostic tracers. In this review, we summarize TC-targeting probes which include transporter-based and immuno-based imaging moieties. We summarize the most recent evidence in this field and outline how these emerging strategies may potentially optimize clinical practice.
Collapse
Affiliation(s)
- Yuchen Jin
- Department of Nuclear Medicine, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, 1630 Dongfang Rd., Shanghai 200127, China; (Y.J.); (G.H.); (J.L.)
- Department of Nuclear Medicine, Shanghai Sixth People’s Hospital Affiliated to Shanghai Jiao Tong University, Shanghai 200233, China
- Human Oncology and Pathogenesis Program, Memorial Sloan-Kettering Cancer Center, New York, NY 10065, USA
| | - Beibei Liu
- Institute of Diagnostic and Interventional Radiology, Shanghai Sixth People’s Hospital Affiliatede to Shanghai Jiao Tong University, Shanghai 200233, China;
| | - Muhsin H. Younis
- Departments of Radiology and Medical Physics, University of Wisconsin–Madison, Madison, WI 53705-2275, USA;
| | - Gang Huang
- Department of Nuclear Medicine, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, 1630 Dongfang Rd., Shanghai 200127, China; (Y.J.); (G.H.); (J.L.)
| | - Jianjun Liu
- Department of Nuclear Medicine, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, 1630 Dongfang Rd., Shanghai 200127, China; (Y.J.); (G.H.); (J.L.)
| | - Weibo Cai
- Departments of Radiology and Medical Physics, University of Wisconsin–Madison, Madison, WI 53705-2275, USA;
- Carbone Cancer Center, University of Wisconsin, Madison, WI 53705, USA
| | - Weijun Wei
- Department of Nuclear Medicine, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, 1630 Dongfang Rd., Shanghai 200127, China; (Y.J.); (G.H.); (J.L.)
| |
Collapse
|
15
|
Kaneda-Nakashima K, Zhang Z, Manabe Y, Shimoyama A, Kabayama K, Watabe T, Kanai Y, Ooe K, Toyoshima A, Shirakami Y, Yoshimura T, Fukuda M, Hatazawa J, Nakano T, Fukase K, Shinohara A. α-Emitting cancer therapy using 211 At-AAMT targeting LAT1. Cancer Sci 2021; 112:1132-1140. [PMID: 33277750 PMCID: PMC7935802 DOI: 10.1111/cas.14761] [Citation(s) in RCA: 28] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2020] [Revised: 11/27/2020] [Accepted: 12/01/2020] [Indexed: 12/28/2022] Open
Abstract
α-Methyl-l-tyrosine (AMT) has a high affinity for the cancer-specific l-type amino acid transporter 1 (LAT1). Therefore, we established an anti-cancer therapy, with 211 At-labeled α-methyl-l-tyrosine (211 At-AAMT) as a carrier of 211 At into tumors. 211 At-AAMT had high affinity for LAT1, inhibited tumor cell growth, and induced DNA double-stranded breaks in vitro. We evaluated the accumulation of 211 At-AAMT in vivo and the role of LAT1. Treatment with 0.4 MBq/mouse 211 At-AAMT inhibited tumor growth in the PANC-1 tumor model and 1 MBq/mouse 211 At-AAMT inhibited metastasis in the lung of the B16F10 metastasis model. Our results suggested that 211 At would be useful for anti-cancer therapy and that LAT1 is suitable as a target for radionuclide therapy.
Collapse
Affiliation(s)
- Kazuko Kaneda-Nakashima
- Division of Science, Institute for Radiation Sciences, Osaka University, Osaka, Japan.,MS-CORE, PRC, Graduate School of Science, Osaka University, Osaka, Japan
| | - ZiJian Zhang
- MS-CORE, PRC, Graduate School of Science, Osaka University, Osaka, Japan.,Laboratory for Natural Product Chemistry, Department of Chemistry, Graduate School of Science, Osaka University, Osaka, Japan
| | - Yoshiyuki Manabe
- Division of Science, Institute for Radiation Sciences, Osaka University, Osaka, Japan.,MS-CORE, PRC, Graduate School of Science, Osaka University, Osaka, Japan.,Laboratory for Natural Product Chemistry, Department of Chemistry, Graduate School of Science, Osaka University, Osaka, Japan
| | - Atsushi Shimoyama
- Division of Science, Institute for Radiation Sciences, Osaka University, Osaka, Japan.,MS-CORE, PRC, Graduate School of Science, Osaka University, Osaka, Japan.,Laboratory for Natural Product Chemistry, Department of Chemistry, Graduate School of Science, Osaka University, Osaka, Japan
| | - Kazuya Kabayama
- Division of Science, Institute for Radiation Sciences, Osaka University, Osaka, Japan.,MS-CORE, PRC, Graduate School of Science, Osaka University, Osaka, Japan.,Laboratory for Natural Product Chemistry, Department of Chemistry, Graduate School of Science, Osaka University, Osaka, Japan
| | - Tadashi Watabe
- Division of Science, Institute for Radiation Sciences, Osaka University, Osaka, Japan.,Department of Nuclear Medicine and Tracer Kinetics, Graduate School of Medicine, Osaka University, Osaka, Japan
| | - Yoshikatsu Kanai
- Division of Science, Institute for Radiation Sciences, Osaka University, Osaka, Japan.,Department of Bio-System Pharmacology, Graduate School of Medicine, Osaka University, Osaka, Japan
| | - Kazuhiro Ooe
- Division of Science, Institute for Radiation Sciences, Osaka University, Osaka, Japan.,Department of Nuclear Medicine and Tracer Kinetics, Graduate School of Medicine, Osaka University, Osaka, Japan
| | - Atsushi Toyoshima
- Division of Science, Institute for Radiation Sciences, Osaka University, Osaka, Japan.,MS-CORE, PRC, Graduate School of Science, Osaka University, Osaka, Japan
| | - Yoshifumi Shirakami
- Division of Science, Institute for Radiation Sciences, Osaka University, Osaka, Japan.,MS-CORE, PRC, Graduate School of Science, Osaka University, Osaka, Japan.,Department of Nuclear Medicine and Tracer Kinetics, Graduate School of Medicine, Osaka University, Osaka, Japan
| | - Takashi Yoshimura
- Division of Science, Institute for Radiation Sciences, Osaka University, Osaka, Japan.,Radioisotope Research Center, Institute for Radiation Sciences, Osaka University, Osaka, Japan
| | - Mitsuhiro Fukuda
- Division of Science, Institute for Radiation Sciences, Osaka University, Osaka, Japan.,Research Center for Nuclear Physics, Osaka University, Osaka, Japan
| | - Jun Hatazawa
- Division of Science, Institute for Radiation Sciences, Osaka University, Osaka, Japan.,Department of Nuclear Medicine and Tracer Kinetics, Graduate School of Medicine, Osaka University, Osaka, Japan
| | - Takashi Nakano
- Division of Science, Institute for Radiation Sciences, Osaka University, Osaka, Japan.,Research Center for Nuclear Physics, Osaka University, Osaka, Japan
| | - Koichi Fukase
- Division of Science, Institute for Radiation Sciences, Osaka University, Osaka, Japan.,MS-CORE, PRC, Graduate School of Science, Osaka University, Osaka, Japan.,Laboratory for Natural Product Chemistry, Department of Chemistry, Graduate School of Science, Osaka University, Osaka, Japan
| | - Atsushi Shinohara
- Division of Science, Institute for Radiation Sciences, Osaka University, Osaka, Japan.,MS-CORE, PRC, Graduate School of Science, Osaka University, Osaka, Japan.,Laboratory for Radiochemistry, Department of Chemistry, Graduate School of Science, Osaka University, Osaka, Japan
| |
Collapse
|
16
|
Kahya U, Köseer AS, Dubrovska A. Amino Acid Transporters on the Guard of Cell Genome and Epigenome. Cancers (Basel) 2021; 13:E125. [PMID: 33401748 PMCID: PMC7796306 DOI: 10.3390/cancers13010125] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2020] [Revised: 12/26/2020] [Accepted: 12/27/2020] [Indexed: 02/06/2023] Open
Abstract
Tumorigenesis is driven by metabolic reprogramming. Oncogenic mutations and epigenetic alterations that cause metabolic rewiring may also upregulate the reactive oxygen species (ROS). Precise regulation of the intracellular ROS levels is critical for tumor cell growth and survival. High ROS production leads to the damage of vital macromolecules, such as DNA, proteins, and lipids, causing genomic instability and further tumor evolution. One of the hallmarks of cancer metabolism is deregulated amino acid uptake. In fast-growing tumors, amino acids are not only the source of energy and building intermediates but also critical regulators of redox homeostasis. Amino acid uptake regulates the intracellular glutathione (GSH) levels, endoplasmic reticulum stress, unfolded protein response signaling, mTOR-mediated antioxidant defense, and epigenetic adaptations of tumor cells to oxidative stress. This review summarizes the role of amino acid transporters as the defender of tumor antioxidant system and genome integrity and discusses them as promising therapeutic targets and tumor imaging tools.
Collapse
Affiliation(s)
- Uğur Kahya
- OncoRay–National Center for Radiation Research in Oncology, Faculty of Medicine and University Hospital Carl Gustav Carus, Technische Universität Dresden, Helmholtz-Zentrum Dresden-Rossendorf, 01309 Dresden, Germany; (U.K.); (A.S.K.)
- Helmholtz-Zentrum Dresden-Rossendorf, Institute of Radiooncology-OncoRay, 01328 Dresden, Germany
| | - Ayşe Sedef Köseer
- OncoRay–National Center for Radiation Research in Oncology, Faculty of Medicine and University Hospital Carl Gustav Carus, Technische Universität Dresden, Helmholtz-Zentrum Dresden-Rossendorf, 01309 Dresden, Germany; (U.K.); (A.S.K.)
- Helmholtz-Zentrum Dresden-Rossendorf, Institute of Radiooncology-OncoRay, 01328 Dresden, Germany
- National Center for Tumor Diseases (NCT), Partner Site Dresden and German Cancer Research Center (DKFZ), 69120 Heidelberg, Germany
- Faculty of Medicine and University Hospital Carl Gustav Carus, Technische Universität Dresden, 01307 Dresden, Germany
| | - Anna Dubrovska
- OncoRay–National Center for Radiation Research in Oncology, Faculty of Medicine and University Hospital Carl Gustav Carus, Technische Universität Dresden, Helmholtz-Zentrum Dresden-Rossendorf, 01309 Dresden, Germany; (U.K.); (A.S.K.)
- Helmholtz-Zentrum Dresden-Rossendorf, Institute of Radiooncology-OncoRay, 01328 Dresden, Germany
- National Center for Tumor Diseases (NCT), Partner Site Dresden and German Cancer Research Center (DKFZ), 69120 Heidelberg, Germany
- Faculty of Medicine and University Hospital Carl Gustav Carus, Technische Universität Dresden, 01307 Dresden, Germany
- German Cancer Consortium (DKTK), Partner Site Dresden and German Cancer Research Center (DKFZ), 69120 Heidelberg, Germany
| |
Collapse
|
17
|
Abstract
A 68-year-old man with sarcoidosis showed high 18F-FDG uptake in the mediastinal and hilar lymph nodes on 18F-FDG PET, suggesting active inflammation. 18F-fluoro-boronophenylalanine (FBPA) PET showed no significant uptake in the mediastinal and hilar lymph nodes, suggesting its cancer specificity as a substrate of l-type amino acid transporter 1. 18F-fluoro-boronophenylalanine PET can be used for precise evaluation in oncology when the differentiation between inflammation and metastasis is inconclusive on 18F-FDG PET.
Collapse
|
18
|
Jin C, Wei L, Ohgaki R, Tominaga H, Xu M, Okuda S, Okanishi H, Kawamoto Y, He X, Nagamori S, Kanai Y. Interaction of Halogenated Tyrosine/Phenylalanine Derivatives with Organic Anion Transporter 1 in the Renal Handling of Tumor Imaging Probes. J Pharmacol Exp Ther 2020; 375:451-462. [DOI: 10.1124/jpet.120.000235] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2020] [Accepted: 09/16/2020] [Indexed: 01/22/2023] Open
|
19
|
Positron Emission Tomography for Response Evaluation in Microenvironment-Targeted Anti-Cancer Therapy. Biomedicines 2020; 8:biomedicines8090371. [PMID: 32972006 PMCID: PMC7556039 DOI: 10.3390/biomedicines8090371] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2020] [Revised: 09/17/2020] [Accepted: 09/18/2020] [Indexed: 12/31/2022] Open
Abstract
Therapeutic response is evaluated using the diameter of tumors and quantitative parameters of 2-[18F] fluoro-2-deoxy-d-glucose positron emission tomography (FDG-PET). Tumor response to molecular-targeted drugs and immune checkpoint inhibitors is different from conventional chemotherapy in terms of temporal metabolic alteration and morphological change after the therapy. Cancer stem cells, immunologically competent cells, and metabolism of cancer are considered targets of novel therapy. Accumulation of FDG reflects the glucose metabolism of cancer cells as well as immune cells in the tumor microenvironment, which differs among patients according to the individual immune function; however, FDG-PET could evaluate the viability of the tumor as a whole. On the other hand, specific imaging and cell tracking of cancer cell or immunological cell subsets does not elucidate tumor response in a complexed interaction in the tumor microenvironment. Considering tumor heterogeneity and individual variation in therapeutic response, a radiomics approach with quantitative features of multimodal images and deep learning algorithm with reference to pathologic and genetic data has the potential to improve response assessment for emerging cancer therapy.
Collapse
|
20
|
Watabe T, Kaneda-Nakashima K, Shirakami Y, Liu Y, Ooe K, Teramoto T, Toyoshima A, Shimosegawa E, Nakano T, Kanai Y, Shinohara A, Hatazawa J. Targeted alpha therapy using astatine ( 211At)-labeled phenylalanine: A preclinical study in glioma bearing mice. Oncotarget 2020; 11:1388-1398. [PMID: 32341757 PMCID: PMC7170498 DOI: 10.18632/oncotarget.27552] [Citation(s) in RCA: 29] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2020] [Accepted: 03/14/2020] [Indexed: 12/13/2022] Open
Abstract
Phenylalanine derivatives, which target tumors especially through L-type amino acid transporter-1 (LAT1), have elicited considerable attention. In this study, we evaluated the treatment effect of phenylalanine labeled with the alpha emitter astatine (211At-PA) in tumor bearing mice. The C6 glioma, U-87MG, and GL261 cell lines were subjected to a cellular 211At-PA uptake analysis that included an evaluation of the uptake inhibition by the system L amino acid transporter inhibitor 2-aminobicyclo-(2,2,1)-heptane-2-carboxylic acid (BCH). BCH significantly inhibited para-211At-PA uptake in C6 glioma (12.2 ± 0.8%), U-87MG (27.6 ± 1.1%), and GL261 (12.6 ± 2.0%) cells compared to baseline, suggesting an uptake contribution by system L amino acid transporters. Subsequently, xenograft and allograft models were prepared by subcutaneously injecting C6 glioma (n = 12) or GL-261 cells (n = 12), respectively. C6 glioma mice received three 211At-PA doses (0.1, 0.5, or 1 MBq, n = 3/dose), while GL261 mice received one high dose (1 MBq, n = 7). 211At-PA exhibited a tumor growth suppression effect in C6 glioma models in a dose-dependent manner as well as in GL-261 models. This phenylalanine derivative labeled with astatine may be applicable as an alpha therapy that specifically targets system L amino acid transporters.
Collapse
Affiliation(s)
- Tadashi Watabe
- Department of Nuclear Medicine and Tracer Kinetics, Graduate School of Medicine, Osaka University, Suita, Japan.,Institute for Radiation Sciences, Osaka University, Suita, Japan
| | - Kazuko Kaneda-Nakashima
- Institute for Radiation Sciences, Osaka University, Suita, Japan.,Core for Medicine and Science Collaborative Research and Education, Project Research Center for Fundamental Sciences, Graduate School of Science, Osaka University, Toyonaka, Japan
| | | | - Yuwei Liu
- Department of Nuclear Medicine and Tracer Kinetics, Graduate School of Medicine, Osaka University, Suita, Japan
| | - Kazuhiro Ooe
- Department of Nuclear Medicine and Tracer Kinetics, Graduate School of Medicine, Osaka University, Suita, Japan.,Institute for Radiation Sciences, Osaka University, Suita, Japan
| | | | | | - Eku Shimosegawa
- Institute for Radiation Sciences, Osaka University, Suita, Japan.,Department of Molecular Imaging in Medicine, Graduate School of Medicine, Osaka University, Suita, Japan
| | - Takashi Nakano
- Institute for Radiation Sciences, Osaka University, Suita, Japan.,Research Center for Nuclear Physics, Osaka University, Ibaraki, Japan
| | - Yoshikatsu Kanai
- Department of Bio-system Pharmacology, Graduate School of Medicine, Osaka University, Suita, Japan
| | - Atsushi Shinohara
- Institute for Radiation Sciences, Osaka University, Suita, Japan.,Department of Chemistry, Graduate School of Science, Osaka University, Toyonaka, Japan
| | - Jun Hatazawa
- Institute for Radiation Sciences, Osaka University, Suita, Japan.,Research Center for Nuclear Physics, Osaka University, Ibaraki, Japan
| |
Collapse
|
21
|
Zhang L, Sui C, Yang W, Luo Q. Amino acid transporters: Emerging roles in drug delivery for tumor-targeting therapy. Asian J Pharm Sci 2020; 15:192-206. [PMID: 32373199 PMCID: PMC7193455 DOI: 10.1016/j.ajps.2019.12.002] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2019] [Revised: 11/22/2019] [Accepted: 12/22/2019] [Indexed: 12/16/2022] Open
Abstract
Amino acid transporters, which play a vital role in transporting amino acids for the biosynthesis of mammalian cells, are highly expressed in types of tumors. Increasing studies have shown the feasibility of amino acid transporters as a component of tumor-targeting therapy. In this review, we focus on tumor-related amino acid transporters and their potential use in tumor-targeting therapy. Firstly, the expression characteristics of amino acid transporters in cancer and their relationship with tumor growth are reviewed. Secondly, the recognition requirements are discussed, focusing on the "acid-base" properties, conformational isomerism and structural analogues. Finally, recent developments in amino acid transporter-targeting drug delivery strategies are highlighted, including prodrugs and nanocarriers, with special attention to the latest findings of molecular mechanisms and targeting efficiency of transporter-mediated endocytosis. We aim to offer related clues that might lead to valuable tumor-targeting strategies by the utilization of amino acid transporters.
Collapse
Affiliation(s)
- Ling Zhang
- Department of Biotherapy, The First Affiliated Hospital of China Medical University, Shenyang 110001, China
| | - Chengguang Sui
- Department of Biotherapy, The First Affiliated Hospital of China Medical University, Shenyang 110001, China
| | - Wenhan Yang
- Department of Pharmacy, The First Affiliated Hospital of China Medical University, Shenyang 110001, China
- Department of Pharmacy, China Medical University, Shenyang 110001, China
| | - Qiuhua Luo
- Department of Pharmacy, The First Affiliated Hospital of China Medical University, Shenyang 110001, China
- Department of Pharmacy, China Medical University, Shenyang 110001, China
| |
Collapse
|
22
|
Cryo-EM structure of the human L-type amino acid transporter 1 in complex with glycoprotein CD98hc. Nat Struct Mol Biol 2019; 26:510-517. [DOI: 10.1038/s41594-019-0237-7] [Citation(s) in RCA: 86] [Impact Index Per Article: 17.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2019] [Accepted: 04/26/2019] [Indexed: 02/07/2023]
|
23
|
A first-in-human study of the novel metabolism-based anti-cancer agent SM-88 in subjects with advanced metastatic cancer. Invest New Drugs 2019; 38:392-401. [PMID: 30929156 PMCID: PMC7066285 DOI: 10.1007/s10637-019-00758-8] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2019] [Accepted: 03/06/2019] [Indexed: 12/31/2022]
Abstract
Purpose SM-88 (D,L-alpha-metyrosine; racemetyrosine) is a novel anti-cancer agent, used with melanin, phenytoin, and sirolimus (SMK Therapy). This pilot first-in-human study characterized the safety, tolerability, and efficacy of SMK Therapy in subjects with advanced metastatic cancer. Methods All subjects (n = 30) received SMK Therapy for an initial 6 week Cycle (5 days on, 2 off per week) and continued if well tolerated. Safety signals, clinical response, overall survival, progression free survival (PFS), and quality of life changes were assessed. Results The most common drug related adverse events were hyperpigmentation and rash. All drug related adverse events were mild to moderate in intensity. Following treatment with SMK Therapy, 4 subjects achieved complete response, 6 partial response, and 17 stable disease according to Response Evaluation Criteria in Solid Tumors (RECIST) 1.1 (total clinical benefit 90%). Responses were observed within 6 weeks, and continued to improve, with 3 complete and 3 partial responders achieving best response after at least 3.2 months. Durable stable disease was observed, lasting a median duration of 11 months (range 1–31 months). Median overall survival for all subjects was 29.8 months, and median PFS was 13 months. Following 6 weeks of treatment, most (83.3%) subjects showed an improvement in Eastern Cooperative Oncology Group (ECOG) score and an improvement in the European Organization for Research and Treatment of Cancer Quality of Life Questionnaire (EORTC QLQ 30) global health status (baseline 61.2 ± 25.0; end of Cycle 1 80.7 ± 14.7; n = 29; p < 0.001). Conclusions The results of this study support continued development of SM-88.
Collapse
|
24
|
Distribution of LAT1-targeting PET tracer was independent of the tumor blood flow in rat xenograft models of C6 glioma and MIA PaCa-2. Ann Nucl Med 2019; 33:394-403. [DOI: 10.1007/s12149-019-01346-9] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2019] [Accepted: 02/22/2019] [Indexed: 10/27/2022]
|
25
|
Singh N, Scalise M, Galluccio M, Wieder M, Seidel T, Langer T, Indiveri C, Ecker GF. Discovery of Potent Inhibitors for the Large Neutral Amino Acid Transporter 1 (LAT1) by Structure-Based Methods. Int J Mol Sci 2018; 20:ijms20010027. [PMID: 30577601 PMCID: PMC6337383 DOI: 10.3390/ijms20010027] [Citation(s) in RCA: 34] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2018] [Revised: 12/11/2018] [Accepted: 12/15/2018] [Indexed: 12/20/2022] Open
Abstract
The large neutral amino acid transporter 1 (LAT1) is a promising anticancer target that is required for the cellular uptake of essential amino acids that serve as building blocks for cancer growth and proliferation. Here, we report a structure-based approach to identify chemically diverse and potent inhibitors of LAT1. First, a homology model of LAT1 that is based on the atomic structures of the prokaryotic homologs was constructed. Molecular docking of nitrogen mustards (NMs) with a wide range of affinity allowed for deriving a common binding mode that could explain the structure−activity relationship pattern in NMs. Subsequently, validated binding hypotheses were subjected to molecular dynamics simulation, which allowed for extracting a set of dynamic pharmacophores. Finally, a library of ~1.1 million molecules was virtually screened against these pharmacophores, followed by docking. Biological testing of the 30 top-ranked hits revealed 13 actives, with the best compound showing an IC50 value in the sub-μM range.
Collapse
Affiliation(s)
- Natesh Singh
- Department of Pharmaceutical Chemistry, University of Vienna, Althanstrasse 14, 1090 Wien, Austria.
| | - Mariafrancesca Scalise
- Department DiBEST, Unit of Biochemistry & Molecular Biotechnology, University of Calabria, Via P. Bucci 4C, 87036 Arcavacata di Rende, Italy.
| | - Michele Galluccio
- Department DiBEST, Unit of Biochemistry & Molecular Biotechnology, University of Calabria, Via P. Bucci 4C, 87036 Arcavacata di Rende, Italy.
| | - Marcus Wieder
- Department of Pharmaceutical Chemistry, University of Vienna, Althanstrasse 14, 1090 Wien, Austria.
| | - Thomas Seidel
- Department of Pharmaceutical Chemistry, University of Vienna, Althanstrasse 14, 1090 Wien, Austria.
| | - Thierry Langer
- Department of Pharmaceutical Chemistry, University of Vienna, Althanstrasse 14, 1090 Wien, Austria.
| | - Cesare Indiveri
- Department DiBEST, Unit of Biochemistry & Molecular Biotechnology, University of Calabria, Via P. Bucci 4C, 87036 Arcavacata di Rende, Italy.
| | - Gerhard F Ecker
- Department of Pharmaceutical Chemistry, University of Vienna, Althanstrasse 14, 1090 Wien, Austria.
| |
Collapse
|
26
|
Kumasaka S, Nakajima T, Arisaka Y, Tokue A, Achmad A, Fukushima Y, Shimizu K, Kaira K, Higuchi T, Tsushima Y. Prognostic value of metabolic tumor volume of pretreatment 18F-FAMT PET/CT in non-small cell lung Cancer. BMC Med Imaging 2018; 18:46. [PMID: 30477476 PMCID: PMC6258278 DOI: 10.1186/s12880-018-0292-2] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2018] [Accepted: 11/15/2018] [Indexed: 12/12/2022] Open
Abstract
Background This study aimed to determine the prognostic value of positron emission tomography (PET) metabolic parameters—namely metabolic tumor volume (MTV), total lesion glycolysis (TLG), and total lesion retention (TLR)—on fluorine-18 (18F) fluorodeoxyglucose (FDG) and L- [3-18F]-α-methyltyrosine (18F-FAMT) PET/CT in patients with non-small-cell lung cancer (NSCLC). Methods The study group comprised 112 NSCLC patients who underwent 18F-FDG and 18F-FAMT PET/CT prior to any therapy. The MTV, TLG, TLR, and maximum standardized uptake value (SUVmax) of the primary tumors were determined. Automatic MTV measurement was performed using PET volume computer assisted reading software. (GE Healthcare). Cox proportional hazards models were built to assess the prognostic value of MTV, TLG (for 18F-FDG), TLR (for 18F-FAMT), SUVmax, T stage, N stage, M stage, clinical stage, age, sex, tumor histological subtype, and treatment method (surgery or other therapy) on overall survival (OS). Results Higher TNM, higher clinical stage, inoperable status, and higher values for all PET parameters (both 18F-FAMT and 18F-FDG PET) were significantly associated (P < 0.05) with shorter OS. Multivariate analysis revealed that a higher MTV of 18F-FAMT (hazard ratio [HR]: 2.88, CI: 1.63–5.09, P < 0.01) and advanced clinical stage (HR: 5.36, CI: 1.88–15.34, P < 0.01) were significant predictors of shorter OS. Conclusions MTV of 18F-FAMT is of prognostic value for OS in NSCLC cases and can help guide decision-making during patient management.
Collapse
Affiliation(s)
- Soma Kumasaka
- Department of Diagnostic Radiology and Nuclear Medicine, Gunma University Graduate School of Medicine, Showa-machi 3-39-22, Maebashi, Gunma, 371-8511, Japan.
| | - Takahito Nakajima
- Department of Diagnostic Radiology and Nuclear Medicine, Gunma University Graduate School of Medicine, Showa-machi 3-39-22, Maebashi, Gunma, 371-8511, Japan
| | - Yukiko Arisaka
- Department of Diagnostic Radiology and Nuclear Medicine, Gunma University Graduate School of Medicine, Showa-machi 3-39-22, Maebashi, Gunma, 371-8511, Japan
| | - Azusa Tokue
- Department of Diagnostic Radiology and Nuclear Medicine, Gunma University Graduate School of Medicine, Showa-machi 3-39-22, Maebashi, Gunma, 371-8511, Japan
| | - Arifudin Achmad
- Department of Diagnostic Radiology and Nuclear Medicine, Gunma University Graduate School of Medicine, Showa-machi 3-39-22, Maebashi, Gunma, 371-8511, Japan.,Department of Nuclear Medicine and Molecular Imaging Faculty of Medicine, Universitas Padjadjaran Jalan Professor Eyckman No.38, Bandung, Jawa Barat, 40161, Indonesia
| | - Yasuhiro Fukushima
- Current affiliation is Division of Clinical Radiology Service, Kyoto University Hospital, 54 Kawaharacho, Shogoin, Sakyo-ku, Kyoto, 606-8507, Japan
| | - Kimihiro Shimizu
- Department of Thoracic and Visceral Organ Surgery, Gunma University Graduate School of Medicine, Showa-machi 3-39-22, Maebashi, Gunma, 371-8511, Japan
| | - Kyoichi Kaira
- Department of Oncology Clinical Development, Gunma University Graduate School of Medicine, Showa-machi 3-39-22, Maebashi, Gunma, 371-8511, Japan
| | - Tetsuya Higuchi
- Department of Diagnostic Radiology and Nuclear Medicine, Gunma University Graduate School of Medicine, Showa-machi 3-39-22, Maebashi, Gunma, 371-8511, Japan
| | - Yoshito Tsushima
- Department of Diagnostic Radiology and Nuclear Medicine, Gunma University Graduate School of Medicine, Showa-machi 3-39-22, Maebashi, Gunma, 371-8511, Japan
| |
Collapse
|
27
|
Kandasamy P, Gyimesi G, Kanai Y, Hediger MA. Amino acid transporters revisited: New views in health and disease. Trends Biochem Sci 2018; 43:752-789. [PMID: 30177408 DOI: 10.1016/j.tibs.2018.05.003] [Citation(s) in RCA: 266] [Impact Index Per Article: 44.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2018] [Revised: 05/23/2018] [Accepted: 05/25/2018] [Indexed: 02/09/2023]
Abstract
Amino acid transporters (AATs) are membrane-bound transport proteins that mediate transfer of amino acids into and out of cells or cellular organelles. AATs have diverse functional roles ranging from neurotransmission to acid-base balance, intracellular energy metabolism, and anabolic and catabolic reactions. In cancer cells and diabetes, dysregulation of AATs leads to metabolic reprogramming, which changes intracellular amino acid levels, contributing to the pathogenesis of cancer, obesity and diabetes. Indeed, the neutral amino acid transporters (NATs) SLC7A5/LAT1 and SLC1A5/ASCT2 are likely involved in several human malignancies. However, a clinical therapy that directly targets AATs has not yet been developed. The purpose of this review is to highlight the structural and functional diversity of AATs, their diverse physiological roles in different tissues and organs, their wide-ranging implications in human diseases and the emerging strategies and tools that will be necessary to target AATs therapeutically.
Collapse
Affiliation(s)
- Palanivel Kandasamy
- Institute of Biochemistry and Molecular Medicine, University of Bern, Bühlstrasse 28, CH-3012 Bern, Switzerland
| | - Gergely Gyimesi
- Institute of Biochemistry and Molecular Medicine, University of Bern, Bühlstrasse 28, CH-3012 Bern, Switzerland
| | - Yoshikatsu Kanai
- Division of Bio-system Pharmacology, Graduate School of Medicine, Osaka University, Osaka, Japan.
| | - Matthias A Hediger
- Institute of Biochemistry and Molecular Medicine, University of Bern, Bühlstrasse 28, CH-3012 Bern, Switzerland.
| |
Collapse
|
28
|
Achmad A, Bhattarai A, Yudistiro R, Heryanto YD, Higuchi T, Tsushima Y. The diagnostic performance of 18F-FAMT PET and 18F-FDG PET for malignancy detection: a meta-analysis. BMC Med Imaging 2017; 17:66. [PMID: 29281996 PMCID: PMC5745915 DOI: 10.1186/s12880-017-0237-1] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2017] [Accepted: 12/13/2017] [Indexed: 02/07/2023] Open
Affiliation(s)
- Arifudin Achmad
- Department of Diagnostic Radiology and Nuclear Medicine, Gunma University Graduate School of Medicine, 3-39-22 Showa-machi, Maebashi, Gunma, 371-8511, Japan. .,Department of Nuclear Medicine and Molecular Imaging, Faculty of Medicine, Padjadjaran University, Jl. Professor Eyckman No.38, Bandung, West Java, 40161, Indonesia.
| | - Anu Bhattarai
- Department of Diagnostic Radiology and Nuclear Medicine, Gunma University Graduate School of Medicine, 3-39-22 Showa-machi, Maebashi, Gunma, 371-8511, Japan
| | - Ryan Yudistiro
- Department of Diagnostic Radiology and Nuclear Medicine, Gunma University Graduate School of Medicine, 3-39-22 Showa-machi, Maebashi, Gunma, 371-8511, Japan.,Department of Nuclear Medicine, Mochtar Riady Comprehensive Cancer Center, Jl. Garnisun Dalam No. 2-3, Semanggi, Jakarta, 12930, Indonesia
| | - Yusri Dwi Heryanto
- Department of Diagnostic Radiology and Nuclear Medicine, Gunma University Graduate School of Medicine, 3-39-22 Showa-machi, Maebashi, Gunma, 371-8511, Japan
| | - Tetsuya Higuchi
- Department of Diagnostic Radiology and Nuclear Medicine, Gunma University Graduate School of Medicine, 3-39-22 Showa-machi, Maebashi, Gunma, 371-8511, Japan
| | - Yoshito Tsushima
- Department of Diagnostic Radiology and Nuclear Medicine, Gunma University Graduate School of Medicine, 3-39-22 Showa-machi, Maebashi, Gunma, 371-8511, Japan
| |
Collapse
|
29
|
Sater AK, Moody SA. Using Xenopus to understand human disease and developmental disorders. Genesis 2017; 55. [PMID: 28095616 DOI: 10.1002/dvg.22997] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2016] [Accepted: 11/14/2016] [Indexed: 02/03/2023]
Abstract
Model animals are crucial to biomedical research. Among the commonly used model animals, the amphibian, Xenopus, has had tremendous impact because of its unique experimental advantages, cost effectiveness, and close evolutionary relationship with mammals as a tetrapod. Over the past 50 years, the use of Xenopus has made possible many fundamental contributions to biomedicine, and it is a cornerstone of research in cell biology, developmental biology, evolutionary biology, immunology, molecular biology, neurobiology, and physiology. The prospects for Xenopus as an experimental system are excellent: Xenopus is uniquely well-suited for many contemporary approaches used to study fundamental biological and disease mechanisms. Moreover, recent advances in high throughput DNA sequencing, genome editing, proteomics, and pharmacological screening are easily applicable in Xenopus, enabling rapid functional genomics and human disease modeling at a systems level.
Collapse
Affiliation(s)
- Amy K Sater
- Department of Biology and Biochemistry, University of Houston, Houston, Texas
| | - Sally A Moody
- Department of Anatomy and Regenerative Biology, George Washington University School of Medicine and Health Sciences, Washington, District of Columbia
| |
Collapse
|
30
|
Kongpracha P, Nagamori S, Wiriyasermkul P, Tanaka Y, Kaneda K, Okuda S, Ohgaki R, Kanai Y. Structure-activity relationship of a novel series of inhibitors for cancer type transporter L-type amino acid transporter 1 (LAT1). J Pharmacol Sci 2017; 133:96-102. [PMID: 28242177 DOI: 10.1016/j.jphs.2017.01.006] [Citation(s) in RCA: 56] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2016] [Revised: 01/24/2017] [Accepted: 01/31/2017] [Indexed: 01/22/2023] Open
Abstract
L-type amino acid transporter 1 (LAT1) is known as a cancer-type amino acid transporter. In cancer cells, LAT1 is responsible for the cellular uptake of many essential amino acids including leucine that activates mechanistic/mammalian target of rapamycin (mTOR), regulating cancer cell growth. In this study, we designed a novel series of LAT1 inhibitors, SKN101-105, based on the structure of triiodothyronine (T3), a known LAT1 blocker. The compounds consist of core structure of 2-amino-3-[3,5-dichloro-4-(naphthalene-1-methoxy)-phenyl]-propanoic acid and different modifications on the naphthalene. Among them, the compounds including SKN103 with a modified phenyl group at C-7 position of naphthalene inhibited LAT1-mediated leucine transport, whereas SKN102 with a phenyl group at C-6 position did not, indicating the importance of the position of substituents on the naphthalene for the interaction with LAT1. SKN103 was suggested to be a non-transportable blocker rather than a substrate of LAT1 and inhibited LAT1 in a competitive manner with the Ki value of 2.1 μM. SKN103 suppressed mTOR activity and the growth of cancer cells. Moreover, SKN103 in combination with cisplatin additively enhanced the growth inhibition in cancer cells. This study provides an additional insight into the structure-activity relationship of LAT1 ligands, which could lead to designing desirable LAT1 inhibitors.
Collapse
Affiliation(s)
- Pornparn Kongpracha
- Department of Bio-system Pharmacology, Graduate School of Medicine, Osaka University, 2-2 Yamadaoka, Suita, Osaka 565-0871, Japan
| | - Shushi Nagamori
- Department of Bio-system Pharmacology, Graduate School of Medicine, Osaka University, 2-2 Yamadaoka, Suita, Osaka 565-0871, Japan
| | - Pattama Wiriyasermkul
- Department of Psychiatry, Columbia University College of Physicians and Surgeons, New York, NY 10032, USA
| | - Yoko Tanaka
- Department of Bio-system Pharmacology, Graduate School of Medicine, Osaka University, 2-2 Yamadaoka, Suita, Osaka 565-0871, Japan
| | - Kazuko Kaneda
- Department of Bio-system Pharmacology, Graduate School of Medicine, Osaka University, 2-2 Yamadaoka, Suita, Osaka 565-0871, Japan
| | - Suguru Okuda
- Department of Bio-system Pharmacology, Graduate School of Medicine, Osaka University, 2-2 Yamadaoka, Suita, Osaka 565-0871, Japan
| | - Ryuichi Ohgaki
- Department of Bio-system Pharmacology, Graduate School of Medicine, Osaka University, 2-2 Yamadaoka, Suita, Osaka 565-0871, Japan
| | - Yoshikatsu Kanai
- Department of Bio-system Pharmacology, Graduate School of Medicine, Osaka University, 2-2 Yamadaoka, Suita, Osaka 565-0871, Japan.
| |
Collapse
|
31
|
Hayashi K, Anzai N. Novel therapeutic approaches targeting L-type amino acid transporters for cancer treatment. World J Gastrointest Oncol 2017; 9:21-29. [PMID: 28144396 PMCID: PMC5241523 DOI: 10.4251/wjgo.v9.i1.21] [Citation(s) in RCA: 48] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/15/2016] [Revised: 10/08/2016] [Accepted: 11/02/2016] [Indexed: 02/05/2023] Open
Abstract
L-type amino acid transporters (LATs) mainly assist the uptake of neutral amino acids into cells. Four LATs (LAT1, LAT2, LAT3 and LAT4) have so far been identified. LAT1 (SLC7A5) has been attracting much attention in the field of cancer research since it is commonly up-regulated in various cancers. Basic research has made it increasingly clear that LAT1 plays a predominant role in malignancy. The functional significance of LAT1 in cancer and the potential therapeutic application of the features of LAT1 to cancer management are described in this review.
Collapse
|
32
|
Waløen K, Kleppe R, Martinez A, Haavik J. Tyrosine and tryptophan hydroxylases as therapeutic targets in human disease. Expert Opin Ther Targets 2016; 21:167-180. [PMID: 27973928 DOI: 10.1080/14728222.2017.1272581] [Citation(s) in RCA: 47] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
INTRODUCTION The ancient and ubiquitous monoamine signalling molecules serotonin, dopamine, norepinephrine, and epinephrine are involved in multiple physiological functions. The aromatic amino acid hydroxylases tyrosine hydroxylase (TH), tryptophan hydroxylase 1 (TPH1), and tryptophan hydroxylase 2 (TPH2) catalyse the rate-limiting steps in the biosynthesis of these monoamines. Genetic variants of TH, TPH1, and TPH2 genes are associated with neuropsychiatric disorders. The interest in these enzymes as therapeutic targets is increasing as new roles of these monoamines have been discovered, not only in brain function and disease, but also in development, cardiovascular function, energy and bone homeostasis, gastrointestinal motility, hemostasis, and liver function. Areas covered: Physiological roles of TH, TPH1, and TPH2. Enzyme structures, catalytic and regulatory mechanisms, animal models, and associated diseases. Interactions with inhibitors, pharmacological chaperones, and regulatory proteins relevant for drug development. Expert opinion: Established inhibitors of these enzymes mainly target their amino acid substrate binding site, while tetrahydrobiopterin analogues, iron chelators, and allosteric ligands are less studied. New insights into monoamine biology and 3D-structural information and new computational/experimental tools have triggered the development of a new generation of more selective inhibitors and pharmacological chaperones. The enzyme complexes with their regulatory 14-3-3 proteins are also emerging as therapeutic targets.
Collapse
Affiliation(s)
- Kai Waløen
- a Department of Biomedicine and K.G. Jebsen Centre for Neuropsychiatric Disorders , University of Bergen , Bergen , Norway
| | - Rune Kleppe
- b Computational Biology Unit, Department of Informatics , University of Bergen , Bergen , Norway
| | - Aurora Martinez
- a Department of Biomedicine and K.G. Jebsen Centre for Neuropsychiatric Disorders , University of Bergen , Bergen , Norway
| | - Jan Haavik
- a Department of Biomedicine and K.G. Jebsen Centre for Neuropsychiatric Disorders , University of Bergen , Bergen , Norway
| |
Collapse
|
33
|
18F-FBPA as a tumor-specific probe of L-type amino acid transporter 1 (LAT1): a comparison study with 18F-FDG and 11C-Methionine PET. Eur J Nucl Med Mol Imaging 2016; 44:321-331. [PMID: 27550420 DOI: 10.1007/s00259-016-3487-1] [Citation(s) in RCA: 35] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2016] [Accepted: 08/05/2016] [Indexed: 10/21/2022]
Abstract
PURPOSE The purpose of this study was to evaluate the usefulness of L-4-borono-2-18F-fluoro-phenylalanine (18F-FBPA) as a tumor-specific probe, in comparison to 18F-FDG and 11C-methionine (Met), focusing on its transport selectivity by L-type amino acid transporter 1 (LAT1), which is highly upregulated in cancers. METHODS Cellular analyses of FBPA were performed to evaluate the transportablity and Km value. PET studies were performed in rat xenograft models of C6 glioma (n = 12) and in rat models of turpentine oil-induced subcutaneous inflammation (n = 9). The kinetic parameters and uptake values on static PET images were compared using the one-tissue compartment model (K1, k2) and maximum standardized uptake value (SUVmax). RESULTS The cellular analyses showed that FBPA had a lower affinity to a normal cell-type transporter LAT2 and induced less efflux through LAT2 among FBPA, Met, and BPA, while the efflux through LAT1 induced by FBPA was similar among the three compounds. The Km value of 18F-FBPA for LAT1 (196.8 ± 11.4 μM) was dramatically lower than that for LAT2 (2813.8 ± 574.5 μM), suggesting the higher selectivity of 18F-FBPA for LAT1. K1 and k2 values were significantly smaller in 18F-FBPA PET (K1 = 0.04 ± 0.01 ml/ccm/min and k2 = 0.07 ± 0.01 /min) as compared to 11C-Met PET (0.22 ± 0.09 and 0.52 ± 0.10, respectively) in inflammatory lesions. Static PET analysis based on the SUVmax showed significantly higher accumulation of 18F-FDG in the tumor and inflammatory lesions (7.2 ± 2.1 and 4.6 ± 0.63, respectively) as compared to both 18F-FBPA (3.2 ± 0.40 and 1.9 ± 0.19) and 11C-Met (3.4 ± 0.43 and 1.6 ± 0.11). No significant difference was observed between 18F-FBPA and 11C-Met in the static PET images. CONCLUSION This study shows the utility of 18F-FBPA as a tumor-specific probe of LAT1 with low accumulation in the inflammatory lesions.
Collapse
|
34
|
Wei L, Tominaga H, Ohgaki R, Wiriyasermkul P, Hagiwara K, Okuda S, Kaira K, Oriuchi N, Nagamori S, Kanai Y. Specific transport of 3-fluoro-l-α-methyl-tyrosine by LAT1 explains its specificity to malignant tumors in imaging. Cancer Sci 2016; 107:347-52. [PMID: 26749017 PMCID: PMC4814262 DOI: 10.1111/cas.12878] [Citation(s) in RCA: 34] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2015] [Revised: 12/27/2015] [Accepted: 01/02/2016] [Indexed: 12/13/2022] Open
Abstract
3‐18F‐l‐α‐methyl‐tyrosine ([18F]FAMT), a PET probe for tumor imaging, has advantages of high cancer‐specificity and lower physiologic background. FAMT‐PET has been proved useful in clinical studies for the prediction of prognosis, the assessment of therapy response and the differentiation of malignant tumors from inflammation and benign lesions. The tumor uptake of [18F]FAMT in PET is strongly correlated with the expression of L‐type amino acid transporter 1 (LAT1), an isoform of system L upregulated in cancers. In this study, to assess the transporter‐mediated mechanisms in FAMT uptake by tumors, we examined amino acid transporters for FAMT transport. We synthesized [14C]FAMT and measured its transport by human amino acid transporters expressed in Xenopus oocytes. The transport of FAMT was compared with that of l‐methionine, a well‐studied amino acid PET probe. The significance of LAT1 in FAMT uptake by tumor cells was confirmed by siRNA knockdown. Among amino acid transporters, [14C]FAMT was specifically transported by LAT1, whereas l‐[14C]methionine was taken up by most of the transporters. Km of LAT1‐mediated [14C]FAMT transport was 72.7 μM, similar to that for endogenous substrates. Knockdown of LAT1 resulted in the marked reduction of [14C]FAMT transport in HeLa S3 cells, confirming the contribution of LAT1 in FAMT uptake by tumor cells. FAMT is highly specific to cancer‐type amino acid transporter LAT1, which explains the cancer‐specific accumulation of [18F]FAMT in PET. This, vice versa, further supports the cancer‐specific expression of LAT1. This study has established FAMT as a LAT1‐specific molecular probe to monitor the expression of a potential tumor biomarker LAT1.
Collapse
Affiliation(s)
- Ling Wei
- Department of Bio-system Pharmacology, Graduate School of Medicine, Osaka University, Suita, Japan
| | - Hideyuki Tominaga
- Advanced Clinical Research Center, Fukushima Medical University, Fukushima, Japan
| | - Ryuichi Ohgaki
- Department of Bio-system Pharmacology, Graduate School of Medicine, Osaka University, Suita, Japan
| | - Pattama Wiriyasermkul
- Department of Bio-system Pharmacology, Graduate School of Medicine, Osaka University, Suita, Japan
| | - Kohei Hagiwara
- Department of Bio-system Pharmacology, Graduate School of Medicine, Osaka University, Suita, Japan
| | - Suguru Okuda
- Department of Bio-system Pharmacology, Graduate School of Medicine, Osaka University, Suita, Japan
| | - Kyoichi Kaira
- Department of Oncology Clinical Development, Gunma University Graduate School of Medicine, Maebashi, Japan
| | - Noboru Oriuchi
- Advanced Clinical Research Center, Fukushima Medical University, Fukushima, Japan
| | - Shushi Nagamori
- Department of Bio-system Pharmacology, Graduate School of Medicine, Osaka University, Suita, Japan
| | - Yoshikatsu Kanai
- Department of Bio-system Pharmacology, Graduate School of Medicine, Osaka University, Suita, Japan
| |
Collapse
|