1
|
Kasai S, Tamai M, Sugihara E, Oishi N, Hinata K, Akahane K, Goi K, Hata Y, Kondo T, Mitsui T, Tanaka M, Inukai T. In utero tumor development and identification of CTNNB1 mutation in a newborn case of ossifying renal tumor of infancy. Pediatr Blood Cancer 2024; 71:e30868. [PMID: 38217079 DOI: 10.1002/pbc.30868] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/24/2023] [Revised: 12/19/2023] [Accepted: 01/02/2024] [Indexed: 01/14/2024]
Affiliation(s)
- Shin Kasai
- Department of Pediatrics, Faculty of Medicine, University of Yamanashi, Yamanashi, Japan
| | - Minori Tamai
- Department of Pediatrics, Faculty of Medicine, University of Yamanashi, Yamanashi, Japan
| | - Eiji Sugihara
- Division of Gene Regulation, Cancer Center and Open Facility Center, Research Promotion Headquarters, Fujita Health University School of Medicine, Toyoake, Japan
| | - Naoki Oishi
- Department of Pathology, Faculty of Medicine, University of Yamanashi, Yamanashi, Japan
| | - Kyoko Hinata
- Department of Pediatrics, Faculty of Medicine, University of Yamanashi, Yamanashi, Japan
| | - Koshi Akahane
- Department of Pediatrics, Faculty of Medicine, University of Yamanashi, Yamanashi, Japan
| | - Kumiko Goi
- Department of Pediatrics, Faculty of Medicine, University of Yamanashi, Yamanashi, Japan
| | - Yuko Hata
- Division of Gene Regulation, Cancer Center and Open Facility Center, Research Promotion Headquarters, Fujita Health University School of Medicine, Toyoake, Japan
| | - Tetsuo Kondo
- Department of Pathology, Faculty of Medicine, University of Yamanashi, Yamanashi, Japan
| | - Takahiko Mitsui
- Department of Urology, Faculty of Medicine, University of Yamanashi, Yamanashi, Japan
| | - Mio Tanaka
- Department of Pathology, Kanagawa Children's Medical Center, Yokohama, Japan
| | - Takeshi Inukai
- Department of Pediatrics, Faculty of Medicine, University of Yamanashi, Yamanashi, Japan
| |
Collapse
|
2
|
Nirgude S, Naveh NSS, Kavari SL, Traxler EM, Kalish JM. Cancer predisposition signaling in Beckwith-Wiedemann Syndrome drives Wilms tumor development. Br J Cancer 2024; 130:638-650. [PMID: 38142265 PMCID: PMC10876704 DOI: 10.1038/s41416-023-02538-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2023] [Revised: 11/25/2023] [Accepted: 12/01/2023] [Indexed: 12/25/2023] Open
Abstract
BACKGROUND Wilms tumor (WT) exhibits structural and epigenetic changes at chromosome 11p15, which also cause Beckwith-Wiedemann Syndrome (BWS). Children diagnosed with BWS have increased risk for WT. The aim of this study is to identify the molecular signaling signatures in BWS driving these tumors. METHODS We performed whole exome sequencing, methylation array analysis, and gene expression analysis on BWS-WT samples. Our data were compared to publicly available nonBWS data. We categorized WT from BWS and nonBWS patients by assessment of 11p15 methylation status and defined 5 groups- control kidney, BWS-nontumor kidney, BWS-WT, normal-11p15 nonBWS-WT, altered-11p15 nonBWS-WT. RESULTS BWS-WT samples showed single nucleotide variants in BCORL1, ASXL1, ATM and AXL but absence of recurrent gene mutations associated with sporadic WT. We defined a narrow methylation range stratifying nonBWS-WT samples. BWS-WT and altered-11p15 nonBWS-WT showed enrichment of common and unique molecular signatures based on global differential methylation and gene expression analysis. CTNNB1 overexpression and broad range of interactions were seen in the BWS-WT interactome study. CONCLUSION While WT predisposition in BWS is well-established, as are 11p15 alterations in nonBWS-WT, this study focused on stratifying tumor genomics by 11p15 status. Further investigation of our findings may identify novel therapeutic targets in WT oncogenesis.
Collapse
Affiliation(s)
- Snehal Nirgude
- Division of Human Genetics and Center for Childhood Cancer Research, Children's Hospital of Philadelphia, Philadelphia, PA, 19104, USA
| | - Natali S Sobel Naveh
- Division of Human Genetics and Center for Childhood Cancer Research, Children's Hospital of Philadelphia, Philadelphia, PA, 19104, USA
| | - Sanam L Kavari
- Division of Human Genetics and Center for Childhood Cancer Research, Children's Hospital of Philadelphia, Philadelphia, PA, 19104, USA
| | - Emily M Traxler
- Division of Human Genetics and Center for Childhood Cancer Research, Children's Hospital of Philadelphia, Philadelphia, PA, 19104, USA
| | - Jennifer M Kalish
- Division of Human Genetics and Center for Childhood Cancer Research, Children's Hospital of Philadelphia, Philadelphia, PA, 19104, USA.
- Departments of Pediatrics and Genetics, Perelman School of Medicine at the University of Pennsylvania, Philadelphia, PA, 19104, USA.
| |
Collapse
|
3
|
Hosseiniyan Khatibi SM, Rahbar Saadat Y, Hejazian SM, Sharifi S, Ardalan M, Teshnehlab M, Zununi Vahed S, Pirmoradi S. Decoding the Possible Molecular Mechanisms in Pediatric Wilms Tumor and Rhabdoid Tumor of the Kidney through Machine Learning Approaches. Fetal Pediatr Pathol 2023; 42:825-844. [PMID: 37548233 DOI: 10.1080/15513815.2023.2242979] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/15/2023] [Accepted: 07/26/2023] [Indexed: 08/08/2023]
Abstract
Objective: Wilms tumor (WT) and Rhabdoid tumor (RT) are pediatric renal tumors and their differentiation is based on histopathological and molecular analysis. The present study aimed to introduce the panels of mRNAs and microRNAs involved in the pathogenesis of these cancers using deep learning algorithms. Methods: Filter, graph, and association rule mining algorithms were applied to the mRNAs/microRNAs data. Results: Candidate miRNAs and mRNAs with high accuracy (AUC: 97%/93% and 94%/97%, respectively) could differentiate the WT and RT classes in training and test data. Let-7a-2 and C19orf24 were identified in the WT, while miR-199b and RP1-3E10.2 were detected in the RT by analysis of Association Rule Mining. Conclusion: The application of the machine learning methods could identify mRNA/miRNA patterns to discriminate WT from RT. The identified miRNAs/mRNAs panels could offer novel insights into the underlying molecular mechanisms that are responsible for the initiation and development of these cancers. They may provide further insight into the pathogenesis, prognosis, diagnosis, and molecular-targeted therapy in pediatric renal tumors.
Collapse
Affiliation(s)
- Seyed Mahdi Hosseiniyan Khatibi
- Kidney Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
- Clinical Research Development Unit of Tabriz Valiasr Hospital, Tabriz University of Medical Sciences, Tabriz, Iran
| | | | | | - Simin Sharifi
- Dental and Periodontal Research Center, Tabriz University of Medical Sciences, Tabriz Iran
| | | | - Mohammad Teshnehlab
- Department of Electrical and Computer Engineering, K.N. Toosi University of Technology, Tehran, Iran
| | | | - Saeed Pirmoradi
- Clinical Research Development Unit of Tabriz Valiasr Hospital, Tabriz University of Medical Sciences, Tabriz, Iran
| |
Collapse
|
4
|
Wang Q, Wei WB, Shi XY, Rong WN. A novel PAX6 variant as the cause of aniridia in a Chinese patient with SRRRD. BMC Med Genomics 2023; 16:182. [PMID: 37542296 PMCID: PMC10401864 DOI: 10.1186/s12920-023-01620-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2023] [Accepted: 07/30/2023] [Indexed: 08/06/2023] Open
Abstract
BACKGROUND The genotype characteristics and their associated clinical phenotypes in patients with aniridia were analyzed to explore pathogenic variants using whole-exome sequencing. METHODS One patient with aniridia was enrolled at the Beijing Tongren Hospital. Comprehensive ophthalmic and general examinations were performed on the patient. DNA was extracted from the patient, and whole-exome sequencing was performed to identify the causative variant. The pathogenicity of the variant was predicted using in silico analysis and evaluated according to American College of Medical Genetics and Genomics guidelines. Relationships between genetic variants and clinical features were analyzed. RESULTS In addition to the classical aniridia phenotype showing complete iris aplasia, foveal hypoplasia, and ectopic lentis, the patient also exhibited spontaneous reattachment rhegmatogenous retinal detachment (SRRRD). Whole-exome sequencing identified a novel heterozygous variant, exon8:c.640_646del:p.R214Pfs*28. CONCLUSIONS The present study broadens the range of genetic variants described in aniridia and presents an aniridia patient with SRRRD.
Collapse
Affiliation(s)
- Qian Wang
- Beijing Tongren Eye Center, Beijing Key Laboratory of Intraocular Tumor Diagnosis and Treatment, Beijing Ophthalmology & Visual Sciences Key Lab, Medical Artificial Intelligence Research and Verification Laboratory of the Ministry of Industry and Information Technology, Beijing Tongren Hospital, Capital Medical University, China. 1 Dong Jiao Min Xiang, Dong Cheng District, Beijing, 100730, China
| | - Wen Bin Wei
- Beijing Tongren Eye Center, Beijing Key Laboratory of Intraocular Tumor Diagnosis and Treatment, Beijing Ophthalmology & Visual Sciences Key Lab, Medical Artificial Intelligence Research and Verification Laboratory of the Ministry of Industry and Information Technology, Beijing Tongren Hospital, Capital Medical University, China. 1 Dong Jiao Min Xiang, Dong Cheng District, Beijing, 100730, China
| | - Xiang Yu Shi
- Beijing Tongren Eye Center, Beijing Key Laboratory of Intraocular Tumor Diagnosis and Treatment, Beijing Ophthalmology & Visual Sciences Key Lab, Medical Artificial Intelligence Research and Verification Laboratory of the Ministry of Industry and Information Technology, Beijing Tongren Hospital, Capital Medical University, China. 1 Dong Jiao Min Xiang, Dong Cheng District, Beijing, 100730, China.
| | - Wei Ning Rong
- Ningxia Eye Hospital, People's Hospital of Ningxia Hui Autonomous Region, Third Clinical Medical College of Ningxia Medical University, Huanghe Road, Jinfeng District, the Ningxia Hui Autonomous Region, Yinchuan, 750002, China.
| |
Collapse
|
5
|
Morgan ED, Yahaya JJ, Ngaiza AI, Othieno E, Livex OA. Immunohistochemical expression of P53 protein in nephroblastoma: a predictor of unfavorable prognosis. J Egypt Natl Canc Inst 2023; 35:23. [PMID: 37518096 DOI: 10.1186/s43046-023-00183-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2023] [Accepted: 07/12/2023] [Indexed: 08/01/2023] Open
Abstract
OBJECTIVE Immunohistochemical expression of P53 protein is so closely related to status of mutation of P53 gene which is tightly linked with pathogenesis of nephroblastoma or Wilms tumor. This study aims to determine the immunohistochemical expression of P53 protein and its predictors in formalin-fixed paraffin-embedded tissue blocks of patients with nephroblastoma. MATERIALS AND METHODS A series of 83 histologically diagnosed cases of nephroblastoma from formalin-fixed paraffin-embedded tissue blocks archived at the Department of Pathology, Makerere University, in Kampala, Uganda, were analyzed. Monoclonal anti-p53 antibody (DO-7, DAKO) was used to assess the expression of P53 protein expression. Multivariable logistic regression analysis was performed to determine the predictors of P53 protein immunohistochemical expression, and statistical significance was considered when p-value was less than 0.05. RESULTS Most (42.2%, n = 35) of the cases were in advanced tumor stages (III-V), and almost one-quarter (21.7%, n = 18) of the cases were in high-risk group. The immunohistochemical expression of P53 protein was (8.4%, n = 7), and there were more (83.3%, n = 5) positive anaplastic cases for P53 protein compared with (2.6%, n = 2) of P53 expression for non-anaplastic cases. High risk (AOR = 3.42, 95% CI = 7.91-12.55, p = 0.037) and anaplasia (AOR = 1.41, 95% CI = 13.85-4.46, p = 0.001) were potential predictors of immunohistochemical expression of P53 protein. CONCLUSION Most of patients with nephroblastoma in resources-limited settings are diagnosed with advanced clinical stages. Association of P53 protein with anaplasia found in this study indicates the possibility of having novel target therapy for treatment of patients with anaplastic form of nephroblastoma with a focus of identifying molecules that lead to its suppression in such subpopulations of patients with nephroblastoma.
Collapse
Affiliation(s)
- Emmanuel D Morgan
- Department of Pathology, School of Health Sciences, Soroti University, Soroti, Uganda.
| | - James J Yahaya
- Department of Pathology, School of Health Sciences, Soroti University, Soroti, Uganda
| | - Advera I Ngaiza
- Department of Pathology, Muhimbili National Hospital, Dar-Es-Salaam, Tanzania
- Deparment of Pathology, Muhimbili University of Health and Allied Sciences, Dar-Es-Salaam, Tanzania
| | - Emmanuel Othieno
- Department of Pathology, School of Health Sciences, Soroti University, Soroti, Uganda
| | - Okwi A Livex
- Department of Pathology, Makerere University College of Health Sciences, Kampala, Uganda
| |
Collapse
|
6
|
van Belzen IAEM, van Tuil M, Badloe S, Strengman E, Janse A, Verwiel ETP, van der Leest DFM, de Vos S, Baker-Hernandez J, Groenendijk A, de Krijger R, Kerstens HHD, Drost J, van den Heuvel-Eibrink MM, Tops BBJ, Holstege FCP, Kemmeren P, Hehir-Kwa JY. Molecular Characterization Reveals Subclasses of 1q Gain in Intermediate Risk Wilms Tumors. Cancers (Basel) 2022; 14:4872. [PMID: 36230794 PMCID: PMC9564324 DOI: 10.3390/cancers14194872] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2022] [Revised: 09/26/2022] [Accepted: 09/28/2022] [Indexed: 11/18/2022] Open
Abstract
Chromosomal alterations have recurrently been identified in Wilms tumors (WTs) and some are associated with poor prognosis. Gain of 1q (1q+) is of special interest given its high prevalence and is currently actively studied for its prognostic value. However, the underlying mutational mechanisms and functional effects remain unknown. In a national unbiased cohort of 30 primary WTs, we integrated somatic SNVs, CNs and SVs with expression data and distinguished four clusters characterized by affected biological processes: muscle differentiation, immune system, kidney development and proliferation. Combined genome-wide CN and SV profiles showed that tumors profoundly differ in both their types of 1q+ and genomic stability and can be grouped into WTs with co-occurring 1p-/1q+, multiple chromosomal gains or CN neutral tumors. We identified 1q+ in eight tumors that differ in mutational mechanisms, subsequent rearrangements and genomic contexts. Moreover, 1q+ tumors were present in all four expression clusters reflecting activation of various biological processes, and individual tumors overexpress different genes on 1q. In conclusion, by integrating CNs, SVs and gene expression, we identified subgroups of 1q+ tumors reflecting differences in the functional effect of 1q gain, indicating that expression data is likely needed for further risk stratification of 1q+ WTs.
Collapse
Affiliation(s)
| | - Marc van Tuil
- Princess Máxima Center for Pediatric Oncology, 3584 CS Utrecht, The Netherlands
| | - Shashi Badloe
- Princess Máxima Center for Pediatric Oncology, 3584 CS Utrecht, The Netherlands
| | - Eric Strengman
- Princess Máxima Center for Pediatric Oncology, 3584 CS Utrecht, The Netherlands
| | - Alex Janse
- Princess Máxima Center for Pediatric Oncology, 3584 CS Utrecht, The Netherlands
| | | | | | - Sam de Vos
- Princess Máxima Center for Pediatric Oncology, 3584 CS Utrecht, The Netherlands
| | | | - Alissa Groenendijk
- Princess Máxima Center for Pediatric Oncology, 3584 CS Utrecht, The Netherlands
| | - Ronald de Krijger
- Princess Máxima Center for Pediatric Oncology, 3584 CS Utrecht, The Netherlands
| | | | - Jarno Drost
- Princess Máxima Center for Pediatric Oncology, 3584 CS Utrecht, The Netherlands
- Oncode Institute, 3521 AL Utrecht, The Netherlands
| | - Marry M. van den Heuvel-Eibrink
- Princess Máxima Center for Pediatric Oncology, 3584 CS Utrecht, The Netherlands
- UMCU-Wilhelmina Children’s Hospital—Child Health, 3584 EA Utrecht, The Netherlands
| | - Bastiaan B. J. Tops
- Princess Máxima Center for Pediatric Oncology, 3584 CS Utrecht, The Netherlands
| | | | - Patrick Kemmeren
- Princess Máxima Center for Pediatric Oncology, 3584 CS Utrecht, The Netherlands
- Center for Molecular Medicine, UMC Utrecht and Utrecht University, 3584 CX Utrecht, The Netherlands
| | - Jayne Y. Hehir-Kwa
- Princess Máxima Center for Pediatric Oncology, 3584 CS Utrecht, The Netherlands
| |
Collapse
|
7
|
Zhi T, Zhang WL, Zhang Y, Wang YZ, Huang DS. Prevalence, clinical features and prognosis of malignant solid tumors in infants: a 14-year study. Bosn J Basic Med Sci 2021; 21:598-606. [PMID: 33259778 PMCID: PMC8381201 DOI: 10.17305/bjbms.2020.5121] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2020] [Accepted: 11/30/2020] [Indexed: 11/16/2022] Open
Abstract
The onset of malignant solid tumors in infants is insidious and difficult to diagnose on time. The purpose of our study is to provide a theoretical basis for clinical diagnosis by retrospective analysis of the data in the past 14 years. Here, we retrospectively collected the clinical data of infants aged 0-12 months with malignant solid tumors in Beijing Tongren Hospital Affiliated to Capital Medical University from May 2005 to May 2019. The epidemiology, clinical characteristics, treatments and prognosis were statistically analyzed. A total of 496 infants (294 males and 202 females) with malignant solid tumors were analyzed. The main period of onset was 1-11 months. The most common tumor was retinoblastoma (RB, 51.8%), followed by hepatoblastoma (HB, 26.6%), neuroblastoma (NB, 10.5%), rhabdomyosarcoma (RMS, 3.4%), malignant renal tumors (3.2%), infantile fibrosarcoma (IFS, 1.6%), malignant teratoma (1.2%), Ewing's sarcoma (ES, 0.8%), medulloblastoma (MB, 0.4%) and inflammatory myofibroblastic tumor (IMT, 0.4%). The median follow-up time was 32 months (range 2-162 months). The 1-year, 3-year, and 5-year overall survival of all patients were 97.3%, 89.2%, and 81.1%, respectively, and event-free survival was 94.7%, 84.8%, and 75.8%, respectively. In conclusion, as a special group, malignant solid tumors in infants are complex, heterogeneous, and relatively rare. The prognosis of RB, HB, NB, RMS, malignant renal tumors, IFS, malignant teratoma, ES, MB, and IMT, were excellent duo to timely diagnosis and rational treatment.
Collapse
Affiliation(s)
- Tian Zhi
- Department of Pediatrics, Beijing Tongren Hospital, Capital Medical University, Beijing, China
| | - Wei-Ling Zhang
- Department of Pediatrics, Beijing Tongren Hospital, Capital Medical University, Beijing, China
| | - Yi Zhang
- Department of Pediatrics, Beijing Tongren Hospital, Capital Medical University, Beijing, China
| | - Yi-Zhuo Wang
- Department of Pediatrics, Beijing Tongren Hospital, Capital Medical University, Beijing, China
| | - Dong-Sheng Huang
- Department of Pediatrics, Beijing Tongren Hospital, Capital Medical University, Beijing, China
| |
Collapse
|
8
|
Grinberg S, Rous I, Cartry J. [An organoid biobank to help children with kidney cancer]. Med Sci (Paris) 2021; 37:811-813. [PMID: 34491194 DOI: 10.1051/medsci/2021126] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Affiliation(s)
- Séverine Grinberg
- Master 2 Immunologie Translationnelle et Biothérapies (ITB), Parcours Immunologie, Mention BMC, Sorbonne Université, Paris, France
| | - Isaure Rous
- Master 2 Immunologie Translationnelle et Biothérapies (ITB), Parcours Immunologie, Mention BMC, Sorbonne Université, Paris, France
| | - Jérôme Cartry
- Inserm U1279, Collective Invasion (Fanny Jaulin), Institut Gustave Roussy, France
| |
Collapse
|
9
|
Shi Q, Tang B, Li Y, Li Y, Lin T, He D, Wei G. Identification of CDC20 as a Novel Biomarker in Diagnosis and Treatment of Wilms Tumor. Front Pediatr 2021; 9:663054. [PMID: 34513754 PMCID: PMC8428148 DOI: 10.3389/fped.2021.663054] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/02/2021] [Accepted: 06/24/2021] [Indexed: 12/26/2022] Open
Abstract
Objective: Wilms tumor (WT) is a common malignant solid tumor in children. Many tumor biomarkers have been reported; however, there are poorly targetable molecular mechanisms which have been defined in WT. This study aimed to identify the oncogene in WT and explore the potential mechanisms. Methods: Differentially expressed genes (DEGs) in three independent RNA-seq datasets were downloaded from The Cancer Genome Atlas data portal and the Gene Expression Omnibus database (GSE66405 and GSE73209). The common DEGs were then subjected to Gene Ontology enrichment analysis, protein-protein interaction (PPI) network analysis, and gene set enrichment analysis. The protein expression levels of the hub gene were analyzed by immunohistochemical analysis and Western blotting in a 60 WT sample. The univariate Kaplan-Meier analysis for overall survival was performed, and the log-rank test was utilized. A small interfering RNA targeting cell division cycle 20 (CDC20) was transfected into G401 and SK-NEP-1 cell lines. The Cell Counting Kit-8 assay and wound healing assay were used to observe the changes in cell proliferation and migration after transfection. Flow cytometry was used to detect the effect on the cell cycle. Western blot was conducted to study the changes of related functional proteins. Results: We commonly identified 44 upregulation and 272 downregulation differentially expressed genes in three independent RNA-seq datasets. Gene and pathway enrichment analyses of the regulatory networks involving hub genes suggested that cell cycle changes are crucial in WT. The top 15 highly connected genes were found by PPI network analysis. Furthermore, we demonstrated that one candidate biomarker, CDC20, for the diagnosis of WT was detected, and its high expression predicted poor prognosis of WT patients. Moreover, the area under the curve value obtained by receiver operating characteristic curve analysis from paired WT samples was 0.9181. Finally, we found that the suppression of CDC20 inhibited proliferation and migration and resulted in G2/M phase arrest in WT cells. The mechanism may be involved in increasing the protein level of securin, cyclin B1, and cyclin A Conclusion: Our results suggest that CDC20 could serve as a candidate diagnostic and prognostic biomarker for WT, and suppression of CDC20 may be a potential approach for the prevention and treatment of WT.
Collapse
Affiliation(s)
- Qinlin Shi
- Ministry of Education Key Laboratory of Child Development and Disorders, Chongqing Key Laboratory of Pediatrics, Chongqing Key Laboratory of Children Urogenital Development and Tissue Engineering, China International Science and Technology Cooperation Base of Child Development and Critical Disorders, Pediatric Research Institute, Children's Hospital of Chongqing Medical University, Chongqing, China
- Department of Pediatric Urology Surgery, Children's Hospital of Chongqing Medical University, Chongqing, China
| | - Bo Tang
- Ministry of Education Key Laboratory of Child Development and Disorders, Chongqing Key Laboratory of Pediatrics, Chongqing Key Laboratory of Children Urogenital Development and Tissue Engineering, China International Science and Technology Cooperation Base of Child Development and Critical Disorders, Pediatric Research Institute, Children's Hospital of Chongqing Medical University, Chongqing, China
- Department of Pediatric Urology Surgery, Children's Hospital of Chongqing Medical University, Chongqing, China
| | - Yanping Li
- Ministry of Education Key Laboratory of Child Development and Disorders, Chongqing Key Laboratory of Pediatrics, Chongqing Key Laboratory of Children Urogenital Development and Tissue Engineering, China International Science and Technology Cooperation Base of Child Development and Critical Disorders, Pediatric Research Institute, Children's Hospital of Chongqing Medical University, Chongqing, China
- Department of Pediatric Urology Surgery, Children's Hospital of Chongqing Medical University, Chongqing, China
| | - Yonglin Li
- Ministry of Education Key Laboratory of Child Development and Disorders, Chongqing Key Laboratory of Pediatrics, Chongqing Key Laboratory of Children Urogenital Development and Tissue Engineering, China International Science and Technology Cooperation Base of Child Development and Critical Disorders, Pediatric Research Institute, Children's Hospital of Chongqing Medical University, Chongqing, China
- Department of Pediatric Urology Surgery, Children's Hospital of Chongqing Medical University, Chongqing, China
| | - Tao Lin
- Ministry of Education Key Laboratory of Child Development and Disorders, Chongqing Key Laboratory of Pediatrics, Chongqing Key Laboratory of Children Urogenital Development and Tissue Engineering, China International Science and Technology Cooperation Base of Child Development and Critical Disorders, Pediatric Research Institute, Children's Hospital of Chongqing Medical University, Chongqing, China
- Department of Pediatric Urology Surgery, Children's Hospital of Chongqing Medical University, Chongqing, China
| | - Dawei He
- Ministry of Education Key Laboratory of Child Development and Disorders, Chongqing Key Laboratory of Pediatrics, Chongqing Key Laboratory of Children Urogenital Development and Tissue Engineering, China International Science and Technology Cooperation Base of Child Development and Critical Disorders, Pediatric Research Institute, Children's Hospital of Chongqing Medical University, Chongqing, China
- Department of Pediatric Urology Surgery, Children's Hospital of Chongqing Medical University, Chongqing, China
| | - Guanghui Wei
- Ministry of Education Key Laboratory of Child Development and Disorders, Chongqing Key Laboratory of Pediatrics, Chongqing Key Laboratory of Children Urogenital Development and Tissue Engineering, China International Science and Technology Cooperation Base of Child Development and Critical Disorders, Pediatric Research Institute, Children's Hospital of Chongqing Medical University, Chongqing, China
- Department of Pediatric Urology Surgery, Children's Hospital of Chongqing Medical University, Chongqing, China
| |
Collapse
|
10
|
Akramov NR, Shavaliev RF, Osipova IV. New mutation in WT1 gene in a boy with an incomplete form of Denys-Drash syndrome: A CARE-compliant case report. Medicine (Baltimore) 2021; 100:e25864. [PMID: 34106634 PMCID: PMC8133155 DOI: 10.1097/md.0000000000025864] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/07/2021] [Accepted: 04/21/2021] [Indexed: 11/26/2022] Open
Abstract
RATIONALE Pediatric patients with WTl-associated syndromes (including Wilms' tumor-aniridia syndrome and Denys-Drash syndrome), Perlman syndrome, mosaic aneuploidy, and Fanconi anemia with a biallelic breast cancer type 2 susceptibility protein mutation have the highest risk of developing Wilms' tumor. PATIENT CONCERNS AND DIAGNOSIS We describe a patient with bilateral metachronous Wilms' tumor, ambiguous genitalia characterized by 46, XY disorder of sexual development (DSD) with scrotal hypospadias and bilateral abdominal cryptorchidism, but without nephropathy. At the age of 7 months, the child underwent left nephrectomy with left orchiopexy. At follow-up after 8 months, a second tumor with a diameter of 10 mm was detected in abdominal CT scans at the lower pole of the right kidney. INTERVENTION Intra-operative macroscopic inspection of the right kidney revealed a tight attachment of the right proximal ureter to the tumor. Thus, retroperitoneoscopic resection of the lower pole of the right kidney had to be changed to an open surgical procedure with partial resection of the proximal ureter and high uretero-ureterostomy. We subsequently performed orchiopexy and two-stage correction of hypospadias using a free skin graft. OUTCOMES At the last follow-up at the age of 8 years, no pathology requiring treatment was noted. A pair-end-reading (2 × 125) DNA analysis with an average coverage of at least 70 to 100 × revealed a previously unknown heterozygous mutation in exon 7 of the Wilms' tumor suppressor gene 1 (WT1) gene (chr11:32417947G>A), leading to the appearance of a site of premature translation termination in codon 369 (p.Arg369Ter, NM_024426.4). This mutation had not been registered previously in the control samples "1000 genomes," Exome Sequencing Project 6500, and the Exome Aggregation Consortium. Thus, to the best of our knowledge this represents a newly identified mutation causing incomplete Denys-Drash syndrome.
Collapse
Affiliation(s)
- Nail R. Akramov
- Kazan State Medical University
- Republican Clinical Hospital of the Ministry of Health of the Republic of Tatarstan
| | - Rafael F. Shavaliev
- Republican Clinical Hospital of the Ministry of Health of the Republic of Tatarstan
| | - Ilsiya V. Osipova
- Children's Republican Clinical Hospital of the Ministry of Health of the Republic of Tatarstan, Kazan, Russian Federation
| |
Collapse
|
11
|
Lopyan NM, Ehrlich PF. Surgical Management of Wilms Tumor (Nephroblastoma) and Renal Cell Carcinoma in Children and Young Adults. Surg Oncol Clin N Am 2021; 30:305-323. [PMID: 33706902 DOI: 10.1016/j.soc.2020.11.002] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/22/2022]
Abstract
This article reviews the epidemiology, pathophysiology, clinical presentation, and multimodality management of Wilms tumors and renal cell carcinoma in pediatric and young adults. Key renal Société Internationale d'Oncologie Pédiatrique and Children Oncology Group studies are presented. The article reviews the common staging systems and risk-adapted treatment strategies with particular attention to the surgical management.
Collapse
Affiliation(s)
- Natalie M Lopyan
- C.S. Mott Children's Hospital Section of Pediatric Surgery, 1540 East Hospital Drive, Ann Arbor, MI 48109, USA
| | - Peter F Ehrlich
- University of Michigan, C.S. Mott Children's Hospital Section of Pediatric Surgery, 1540 East Hospital Drive, SPC 4811, Ann Arbor, MI 48109, USA.
| |
Collapse
|
12
|
Chatterjee S, Ouidir M, Tekola-Ayele F. Pleiotropic genetic influence on birth weight and childhood obesity. Sci Rep 2021; 11:48. [PMID: 33420178 PMCID: PMC7794220 DOI: 10.1038/s41598-020-80084-9] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2020] [Accepted: 12/09/2020] [Indexed: 01/09/2023] Open
Abstract
Childhood obesity is a global public health problem. Understanding the molecular mechanisms that underlie early origins of childhood obesity can facilitate interventions. Consistent phenotypic and genetic correlations have been found between childhood obesity traits and birth weight (a proxy for in-utero growth), suggesting shared genetic influences (pleiotropy). We aimed to (1) investigate whether there is significant shared genetic influence between birth weight and childhood obesity traits, and (2) to identify genetic loci with shared effects. Using a statistical approach that integrates summary statistics and functional annotations for paired traits, we found strong evidence of pleiotropy (P < 3.53 × 10–127) and enrichment of functional annotations (P < 1.62 × 10–39) between birth weight and childhood body mass index (BMI)/obesity. The pleiotropic loci were enriched for regulatory features in skeletal muscle, adipose and brain tissues and in cell lines derived from blood lymphocytes. At 5% false discovery rate, 6 loci were associated with birth weight and childhood BMI and 13 loci were associated with birth weight and childhood obesity. Out of these 19 loci, one locus (EBF1) was novel to childhood obesity and one locus (LMBR1L) was novel to both birth weight and childhood BMI/obesity. These findings give evidence of substantial shared genetic effects in the regulation of both fetal growth and childhood obesity.
Collapse
Affiliation(s)
- Suvo Chatterjee
- Epidemiology Branch, Division of Intramural Population Health Research, Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, 6710B Rockledge Drive, Room 3204, Bethesda, 20892-7004, USA
| | - Marion Ouidir
- Epidemiology Branch, Division of Intramural Population Health Research, Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, 6710B Rockledge Drive, Room 3204, Bethesda, 20892-7004, USA
| | - Fasil Tekola-Ayele
- Epidemiology Branch, Division of Intramural Population Health Research, Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, 6710B Rockledge Drive, Room 3204, Bethesda, 20892-7004, USA.
| |
Collapse
|
13
|
Inhibition of Wilms' Tumor Proliferation and Invasion by Blocking TGF- β Receptor I in the TGF- β/Smad Signaling Pathway. BIOMED RESEARCH INTERNATIONAL 2020; 2020:8039840. [PMID: 33282954 PMCID: PMC7685794 DOI: 10.1155/2020/8039840] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/07/2020] [Revised: 09/09/2020] [Accepted: 10/27/2020] [Indexed: 12/13/2022]
Abstract
Wilms' tumor (WT) is a common embryonal tumor, and nephrogenic rests play a critical role in WT development. The transforming growth factor β (TGF-β) signaling pathway is fundamental to embryo development and cell growth and proliferation. Moreover, TGF-β contributes to WT development, but the mechanisms of disease pathogenicity are unknown. This study investigated whether the TGF-β signaling pathway was involved in WT and whether blocking TβRI receptor inhibited WT growth, proliferation, and invasion. A total of 60 WT patients with clinical data and surgical specimens were evaluated. Immunohistochemistry (IHC) was used to detect the expression of TGF-β1 and P-smad2/3. In vitro, the proliferation, migration, apoptosis, and epithelial-mesenchymal transition (EMT) protein expression were analyzed using the CCK8 assay, wound healing assay, transwell assay, flow cytometry, and western blot, respectively. In vivo, tumor morphology, tumor size, toxicity, and EMT protein expression were analyzed in tumor-bearing mice treated with a TβRI kinase inhibitor or PBS. High protein levels of TGF-β1 and P-samd2/3 were associated with clinical stage and metastasis or invasion. TβRI inhibition effectively suppressed WT proliferation and migration and promoted apoptosis in the human WT cell line G401, consequently decreasing EMT protein expression. In addition, the TβRI kinase inhibitor significantly impaired the subcutaneous growth of WT. It is worth noting that treatment with the TβRI kinase inhibitor did not cause liver and kidney injury. Our results indicate that the TGF-β/Smad signaling pathway plays a crucial role in WT progression. Blocking the TβRI receptor may be a novel strategy to treat and prevent WT.
Collapse
|
14
|
Kitamura E, Cowell JK, Chang CS, Hawthorn L. Variant profiles of genes mapping to chromosome 16q loss in Wilms tumors reveals link to cilia-related genes and pathways. Genes Cancer 2020; 11:137-153. [PMID: 33488951 PMCID: PMC7805536 DOI: 10.18632/genesandcancer.207] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2020] [Accepted: 09/08/2020] [Indexed: 11/25/2022] Open
Abstract
Background: Wilms tumor is the most common pediatric renal tumor and the fourth most common malignancy in children. Chromosome 16q deletion(del) or loss of heterozygosity (LOH) has been correlated with recurrence and overall poor prognosis, such that patients with 16qLOH and 1p allelic loss are treated with more aggressive chemotherapeutic regimens. Methods: In the present study, we have compared the variant profiles of Wilms tumors with and without 16q del/LOH using both data available from the TARGET database (42 samples) and tumors procured from our legacy collection (8 samples). Exome-Seq data was analyzed for tumor specific variants mapping to 16q. Whole exome analysis was also performed. An unbiased approach for somatic variant analysis was used to detect tumor-specific, somatic variants. Results: Of the 72 genes mapping to 16q, 42% were cilia-related genes and 28% of these were found to carry somatic variants specific to those tumors with 16qdel/LOH. Whole exome analyses further revealed that 30% of cilia-related genes across the genome carried alterations in tumors both with and without 16qdel/LOH. Additional pathway analyses revealed that many cilia-related pathway members also carried deleterious variant in these tumors including Sonic Hedgehog (SHh), Wnt, and Notch signaling pathways. Conclusions: The data suggest that cilia-related genes and pathways are compromised in Wilms tumors. The genes on chromosome 16q that carry deleterious variants in cilia-related genes may account for the more aggressive nature of tumors with 16q del/LOH.
Collapse
Affiliation(s)
- Eiko Kitamura
- Georgia Cancer Center, Augusta University, Augusta, GA, USA
| | - John K. Cowell
- Georgia Cancer Center, Augusta University, Augusta, GA, USA
| | | | | |
Collapse
|
15
|
Clinical, Genomic, and Pharmacological Study of MYCN-Amplified RB1 Wild-Type Metastatic Retinoblastoma. Cancers (Basel) 2020; 12:cancers12092714. [PMID: 32971811 PMCID: PMC7565107 DOI: 10.3390/cancers12092714] [Citation(s) in RCA: 24] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2020] [Revised: 08/11/2020] [Accepted: 08/23/2020] [Indexed: 12/15/2022] Open
Abstract
An uncommon subgroup of unilateral retinoblastomas with highly aggressive histological features, lacking aberrations in RB1 gene with high-level amplification of MYCN (MCYNamplRB1+/+) has only been described as intra-ocular cases treated with initial enucleation. Here, we present a comprehensive clinical, genomic, and pharmacological analysis of two cases of MCYNamplRB1+/+ with orbital and cervical lymph node involvement, but no central nervous system spread, rapidly progressing to fatal disease due to chemoresistance. Both patients showed in common MYCN high amplification and chromosome 16q and 17p loss. A somatic mutation in TP53, in homozygosis by LOH, and high chromosomal instability leading to aneuploidy was identified in the primary ocular tumor and sites of dissemination of one patient. High-throughput pharmacological screening was performed in a primary cell line derived from the lymph node dissemination of one case. This cell line showed resistance to broad spectrum chemotherapy consistent with the patient's poor response but sensitivity to the synergistic effects of panobinostat-bortezomib and carboplatin-panobinostat associations. From these cells we established a cell line derived xenograft model that closely recapitulated the tumor dissemination pattern of the patient and served to evaluate whether triple chemotherapy significantly prolonged survival of the animals. We report novel genomic alterations in two cases of metastatic MCYNamplRB1+/+ that may be associated with chemotherapy resistance and in vitro/in vivo models that serve as basis for tailoring therapy in these cases.
Collapse
|
16
|
Saliba J, Belsky N, Patel A, Thomas K, Carroll WL, Pierro J. From Favorable Histology to Relapse: The Clonal Evolution of a Wilms Tumor. Pediatr Dev Pathol 2020; 23:167-171. [PMID: 31526128 DOI: 10.1177/1093526619875919] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Favorable histology (FH) Wilms tumor (WT) is one of the most curable of all human cancers, yet a small minority of patients fail treatment. The underlying biological pathways that lead to therapy resistance are unknown. We report a case of initially unresectable, FH WT which revealed limited necrosis and persistent blastemal predominant histology following neoadjuvant chemotherapy. Despite intensification of therapy and whole abdominal radiation, the patient relapsed and succumbed to her disease. In an effort to discover candidate drivers of drug resistance, whole exome sequencing and copy number analysis were performed on samples from all 3 tumor specimens. Sequencing results revealed outgrowth of clones with a dramatically different genetic landscape including dominant mutations that could explain therapy evasion, some of which have not been previously reported in WT. Our results implicate PPM1D, previously shown to be associated with drug resistance in other tumors, as the major driver of treatment failure.
Collapse
Affiliation(s)
- Jason Saliba
- Department of Pediatrics, Laura and Isaac Perlmutter Cancer Center, New York University School of Medicine, New York, New York.,Department of Pathology, Laura and Isaac Perlmutter Cancer Center, New York University School of Medicine, New York, New York
| | - Natasha Belsky
- Department of Pediatrics, Laura and Isaac Perlmutter Cancer Center, New York University School of Medicine, New York, New York.,Department of Pathology, Laura and Isaac Perlmutter Cancer Center, New York University School of Medicine, New York, New York
| | - Ami Patel
- Department of Pediatrics, Laura and Isaac Perlmutter Cancer Center, New York University School of Medicine, New York, New York.,Department of Pathology, Laura and Isaac Perlmutter Cancer Center, New York University School of Medicine, New York, New York
| | - Kristen Thomas
- Department of Pediatrics, Laura and Isaac Perlmutter Cancer Center, New York University School of Medicine, New York, New York.,Department of Pathology, Laura and Isaac Perlmutter Cancer Center, New York University School of Medicine, New York, New York
| | - William L Carroll
- Department of Pediatrics, Laura and Isaac Perlmutter Cancer Center, New York University School of Medicine, New York, New York.,Department of Pathology, Laura and Isaac Perlmutter Cancer Center, New York University School of Medicine, New York, New York.,Division of Pediatric Hematology/Oncology, New York University School of Medicine, New York, New York
| | - Joanna Pierro
- Department of Pediatrics, Laura and Isaac Perlmutter Cancer Center, New York University School of Medicine, New York, New York.,Department of Pathology, Laura and Isaac Perlmutter Cancer Center, New York University School of Medicine, New York, New York.,Division of Pediatric Hematology/Oncology, New York University School of Medicine, New York, New York
| |
Collapse
|
17
|
Luo X, Dong J, He X, Shen L, Long C, Liu F, Liu X, Lin T, He D, Wei G. [Expression of miR-155-5p in Wilms tumor and its regulatory role in proliferation, migration and apoptosis of Wilms tumor cells in vitro]. NAN FANG YI KE DA XUE XUE BAO = JOURNAL OF SOUTHERN MEDICAL UNIVERSITY 2019; 39:1476-1481. [PMID: 31907159 DOI: 10.12122/j.issn.1673-4254.2019.12.12] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
Abstract
OBJECTIVE explore the expression of miR-155-5p in Wilms tumor and its effect in regulating the proliferation, migration and apoptosis of Wilms tumor cells. METHODS Specimens of tumor tissues and paired adjacent tissues were obtained from 40 patients with Wilms tumor for detection of the expression levels of miR-155-5p using RT-qPCR. Wilms tumor cell line G401 was transfected with miR-155-5p mimics and miR-155-5p inhibitor to induce miR-155-5p over-expression and its inhibition, respectively, and the changes in the cell proliferation, migration and apoptosis were assessed using cell counting kit-8 (CCK-8), wound healing assay and fl ow cytometry. RESULTS RT-qPCR showed that the expression of miR-155-5p decreased significantly in Wilms tumor tissues as compared with normal kidney tissues and was significantly associated with TNM stage (P < 0.05). In G401 cells, over-expression of miR-155-5p significantly inhibited the cell proliferation and migration and promoted cell apoptosis (P < 0.05), and down-regulation of miR-155-5p obviously enhanced the proliferation and migration and suppressed apoptosis of the cells (P < 0.05). CONCLUSIONS miR-155-5p is down-regulated in Wilms tumor and its expression level is correlated with TNM stage. miR-155-5p participates in the progression of Wilms tumor by inhibiting the proliferation and migration and promoting apoptosis of the tumor cells, and may serve as a novel biomarker for diagnosis, therapy and prognostic evaluation of Wilms tumor.
Collapse
Affiliation(s)
- Xin Luo
- Department of Pediatric Urologic Surgery, Children's Hospital of Chongqing Medical University; Chongqing Key Laboratory of Children Urogenital Development and Tissue Engineering, Ministry of Education Key Laboratory of Child Development and Disorders, National Clinical Research Center for Child Health and Disorders, China International Science and Technology Cooperation Base of Child Development and Critical Disorders, Chongqing Key Laboratory of Pediatrics, Chongqing 400014, China
| | - Junjun Dong
- Department of Pediatric Urologic Surgery, Children's Hospital of Chongqing Medical University; Chongqing Key Laboratory of Children Urogenital Development and Tissue Engineering, Ministry of Education Key Laboratory of Child Development and Disorders, National Clinical Research Center for Child Health and Disorders, China International Science and Technology Cooperation Base of Child Development and Critical Disorders, Chongqing Key Laboratory of Pediatrics, Chongqing 400014, China
| | - Xingyue He
- Department of Pediatric Urologic Surgery, Children's Hospital of Chongqing Medical University; Chongqing Key Laboratory of Children Urogenital Development and Tissue Engineering, Ministry of Education Key Laboratory of Child Development and Disorders, National Clinical Research Center for Child Health and Disorders, China International Science and Technology Cooperation Base of Child Development and Critical Disorders, Chongqing Key Laboratory of Pediatrics, Chongqing 400014, China
| | - Lianju Shen
- Department of Pediatric Urologic Surgery, Children's Hospital of Chongqing Medical University; Chongqing Key Laboratory of Children Urogenital Development and Tissue Engineering, Ministry of Education Key Laboratory of Child Development and Disorders, National Clinical Research Center for Child Health and Disorders, China International Science and Technology Cooperation Base of Child Development and Critical Disorders, Chongqing Key Laboratory of Pediatrics, Chongqing 400014, China
| | - Chunlan Long
- Department of Pediatric Urologic Surgery, Children's Hospital of Chongqing Medical University; Chongqing Key Laboratory of Children Urogenital Development and Tissue Engineering, Ministry of Education Key Laboratory of Child Development and Disorders, National Clinical Research Center for Child Health and Disorders, China International Science and Technology Cooperation Base of Child Development and Critical Disorders, Chongqing Key Laboratory of Pediatrics, Chongqing 400014, China
| | - Feng Liu
- Department of Pediatric Urologic Surgery, Children's Hospital of Chongqing Medical University; Chongqing Key Laboratory of Children Urogenital Development and Tissue Engineering, Ministry of Education Key Laboratory of Child Development and Disorders, National Clinical Research Center for Child Health and Disorders, China International Science and Technology Cooperation Base of Child Development and Critical Disorders, Chongqing Key Laboratory of Pediatrics, Chongqing 400014, China
| | - Xing Liu
- Department of Pediatric Urologic Surgery, Children's Hospital of Chongqing Medical University; Chongqing Key Laboratory of Children Urogenital Development and Tissue Engineering, Ministry of Education Key Laboratory of Child Development and Disorders, National Clinical Research Center for Child Health and Disorders, China International Science and Technology Cooperation Base of Child Development and Critical Disorders, Chongqing Key Laboratory of Pediatrics, Chongqing 400014, China
| | - Tao Lin
- Department of Pediatric Urologic Surgery, Children's Hospital of Chongqing Medical University; Chongqing Key Laboratory of Children Urogenital Development and Tissue Engineering, Ministry of Education Key Laboratory of Child Development and Disorders, National Clinical Research Center for Child Health and Disorders, China International Science and Technology Cooperation Base of Child Development and Critical Disorders, Chongqing Key Laboratory of Pediatrics, Chongqing 400014, China
| | - Dawei He
- Department of Pediatric Urologic Surgery, Children's Hospital of Chongqing Medical University; Chongqing Key Laboratory of Children Urogenital Development and Tissue Engineering, Ministry of Education Key Laboratory of Child Development and Disorders, National Clinical Research Center for Child Health and Disorders, China International Science and Technology Cooperation Base of Child Development and Critical Disorders, Chongqing Key Laboratory of Pediatrics, Chongqing 400014, China
| | - Guanghui Wei
- Department of Pediatric Urologic Surgery, Children's Hospital of Chongqing Medical University; Chongqing Key Laboratory of Children Urogenital Development and Tissue Engineering, Ministry of Education Key Laboratory of Child Development and Disorders, National Clinical Research Center for Child Health and Disorders, China International Science and Technology Cooperation Base of Child Development and Critical Disorders, Chongqing Key Laboratory of Pediatrics, Chongqing 400014, China
| |
Collapse
|
18
|
Zhang L, Gao X, Zhou X, Qin Z, Wang Y, Li R, Tang M, Wang W, Zhang W. Identification of key genes and microRNAs involved in kidney Wilms tumor by integrated bioinformatics analysis. Exp Ther Med 2019; 18:2554-2564. [PMID: 31555364 PMCID: PMC6755433 DOI: 10.3892/etm.2019.7870] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2018] [Accepted: 06/27/2019] [Indexed: 12/11/2022] Open
Abstract
Wilms tumor (WT) is one of the most common types of pediatric solid tumors; however, its molecular mechanisms remain unclear. The present study aimed to identify key genes and microRNAs (miRNAs), and to predict the underlying molecular mechanisms of WT using integrated bioinformatics analysis. Original gene expression profiles were downloaded from the Gene Expression Omnibus (GEO; accession, GSE66405) and The Cancer Genome Atlas (TCGA) databases. Similarly, miRNA expression patterns were downloaded from GEO (accession, GSE57370) and TCGA. R version 3.5.0 software was used to identify differentially expressed genes (DEGs) and differentially expressed miRNAs (DEMs) using the limma and edgeR packages. Kyoto Encyclopedia of Genes and Genomes pathway and Gene Ontology analyses were performed to examine the biological functions of the DEGs. Additionally, a protein-protein interaction (PPI) network was constructed to screen hub gene modules using Cytoscape software. By predicting target genes of the DEMs and integrating them with DEGs, the present study constructed a miRNA-mRNA regulatory network to predict the possible molecular mechanism of WT. Expression of hub genes was validated using the Oncomine database. A total of 613 genes and 29 miRNAs were identified to be differentially expressed in WT. By constructing a PPI network and screening hub gene modules, 5 upregulated genes, including BUB1 mitotic checkpoint serine/threonine kinase, BUB1B mitotic checkpoint serine/threonine kinase B, cell division cycle protein 45, cyclin B2 and pituitary tumor-transforming 1. These genes were identified to be associated with the cell cycle pathway, which suggested that these genes may serve important roles in WT. In addition, a miRNA-mRNA regulatory network was constructed and comprised 16 DEMs and 19 DEGs. In conclusion, key genes, miRNAs and the mRNA-miRNA regulatory network identified in the present study may improve understanding of the underlying molecular mechanisms in the occurrence and development of WT, and may aid the identification of potential biomarkers and therapeutic targets.
Collapse
Affiliation(s)
- Lei Zhang
- Department of Urology, The First Affiliated Hospital of Nanjing Medical University, Nanjing, Jiangsu 210029, P.R. China
| | - Xian Gao
- Department of Oncology, The First Affiliated Hospital of Nanjing Medical University, Nanjing, Jiangsu 210029, P.R. China
| | - Xiang Zhou
- Department of Urology, The First Affiliated Hospital of Nanjing Medical University, Nanjing, Jiangsu 210029, P.R. China
| | - Zhiqiang Qin
- Department of Urology, The First Affiliated Hospital of Nanjing Medical University, Nanjing, Jiangsu 210029, P.R. China
| | - Yi Wang
- Department of Urology, The First Affiliated Hospital of Nanjing Medical University, Nanjing, Jiangsu 210029, P.R. China
| | - Ran Li
- Department of Urology, The First Affiliated Hospital of Nanjing Medical University, Nanjing, Jiangsu 210029, P.R. China
| | - Min Tang
- Department of Urology, The First Affiliated Hospital of Nanjing Medical University, Nanjing, Jiangsu 210029, P.R. China
| | - Wei Wang
- Department of Urology, The First Affiliated Hospital of Nanjing Medical University, Nanjing, Jiangsu 210029, P.R. China
| | - Wei Zhang
- Department of Urology, The First Affiliated Hospital of Nanjing Medical University, Nanjing, Jiangsu 210029, P.R. China
| |
Collapse
|
19
|
Liu J, Hua RX, Fu W, Zhu J, Jia W, Zhang J, Zhou H, Cheng J, Xia H, Liu G, He J. MYC gene associated polymorphisms and Wilms tumor risk in Chinese children: a four-center case-control study. ANNALS OF TRANSLATIONAL MEDICINE 2019; 7:475. [PMID: 31700911 PMCID: PMC6803173 DOI: 10.21037/atm.2019.08.31] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Abstract
BACKGROUND Wilms tumor (WT) is a common embryonal malignancy in the kidney, ranking fourth in childhood cancer worldwide. MYC, a critical proto-oncogene, plays an important role in tumorigenesis. Single nucleotide polymorphisms in the MYC gene may lead to the deregulation of MYC proto-oncogene protein and thereby promote the initiation and development of tumors. METHODS Here, we assessed the association between MYC gene associated polymorphisms and WT susceptibility by performing a case-control study with 355 cases and 1070 controls. Two MYC gene associated polymorphisms (rs4645943 C > T, rs2070583 A > G) were genotyped by TaqMan technique. Odds ratios (ORs) and 95% confidence intervals (CIs) were used for evaluating the association between these two polymorphisms and WT susceptibility. RESULTS No significant association was detected between the selected polymorphisms and WT risk in the overall analysis as well as stratification analysis. CONCLUSIONS These results indicate that neither of two selected MYC gene associated polymorphisms might affect WT susceptibility in the Chinese population. Large well-designed studies with diverse ethnicities are warranted to verify these results.
Collapse
Affiliation(s)
- Jiabin Liu
- Department of Pediatric Surgery, Guangzhou Institute of Pediatrics, Guangzhou Women and Children’s Medical Center, Guangzhou Medical University, Guangzhou 510623, China
| | - Rui-Xi Hua
- Department of Oncology, The First Affiliated Hospital of Sun Yat-sen University, Guangzhou 510080, China
| | - Wen Fu
- Department of Pediatric Surgery, Guangzhou Institute of Pediatrics, Guangzhou Women and Children’s Medical Center, Guangzhou Medical University, Guangzhou 510623, China
| | - Jinhong Zhu
- Department of Pediatric Surgery, Guangzhou Institute of Pediatrics, Guangzhou Women and Children’s Medical Center, Guangzhou Medical University, Guangzhou 510623, China
- Department of Clinical Laboratory, Molecular Epidemiology Laboratory, Harbin Medical University Cancer Hospital, Harbin 150040, China
| | - Wei Jia
- Department of Pediatric Surgery, Guangzhou Institute of Pediatrics, Guangzhou Women and Children’s Medical Center, Guangzhou Medical University, Guangzhou 510623, China
| | - Jiao Zhang
- Department of Pediatric Surgery, The First Affiliated Hospital of Zhengzhou University, Zhengzhou 450052, China
| | - Haixia Zhou
- Department of Hematology, The Second Affiliated Hospital and Yuying Children’s Hospital of Wenzhou Medical University, Wenzhou 325027, China
| | - Jiwen Cheng
- Department of Pediatric Surgery, The Second Affiliated Hospital of Xi’an Jiaotong University, Xi’an 710004, China
| | - Huimin Xia
- Department of Pediatric Surgery, Guangzhou Institute of Pediatrics, Guangzhou Women and Children’s Medical Center, Guangzhou Medical University, Guangzhou 510623, China
| | - Guochang Liu
- Department of Pediatric Surgery, Guangzhou Institute of Pediatrics, Guangzhou Women and Children’s Medical Center, Guangzhou Medical University, Guangzhou 510623, China
| | - Jing He
- Department of Pediatric Surgery, Guangzhou Institute of Pediatrics, Guangzhou Women and Children’s Medical Center, Guangzhou Medical University, Guangzhou 510623, China
| |
Collapse
|
20
|
Luo X, Deng C, Liu F, Liu X, Lin T, He D, Wei G. HnRNPL promotes Wilms tumor progression by regulating the p53 and Bcl2 pathways. Onco Targets Ther 2019; 12:4269-4279. [PMID: 31213844 PMCID: PMC6549776 DOI: 10.2147/ott.s203046] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2019] [Accepted: 04/16/2019] [Indexed: 12/17/2022] Open
Abstract
Background: Wilms tumor (WT) is the most common renal tumor in children with diffusely anaplastic or unfavorable histology, indicative of a poor prognosis. Heterogeneous nuclear ribonucleoprotein L (hnRNPL) is an RNA-binding protein (RBP) and a regulator of alternative RNA splicing that plays an important role in the occurrence and development of several cancers. Methods: Next generation sequencing technologies was used to discovery differentially expressed genes between WT and adjacent nontumors. The gene ontology (GO) analysis was performed to uncover the biological functions of differentially expressed genes, and the kyoto encyclopedia of genes and genomes (KEGG) pathway enrichment analysis was applied to find out the related signal pathways. Expression levelsof hnRNPL with WT tissues and cells were determined by RT-qPCR.After silencing hnRNPL, the expression of hnRNPL, p53 and Bcl-2 were detected by RT-qPCR and Western blot in WT cell line. The regulatory effects of hnRNPLon proliferative and apoptotic potentials of WT cells were evaluated by MTT and flow cytometry, respectively. RNA-binding protein immuno-precipitation was used to confirm the direct interaction of hnRNPL with p53 mRNA. Mouse xenograft models ofhnRNPL knockdown were established to test the functions in the growth of WT in vivo. Results: High levels of hnRNPL were expressed in WT tissues and cells. Functional analysis revealed that hnRNPL silencing suppressed cell proliferation and promoted cell apoptosis in WT. Molecular mechanism exploration indicated that hnRNPL directly targeted p53. Moreover, knockdown of hnRNPL inhibited the expression of p53 and Bcl2 in WT. Additionally, hnRNPL silencing inhibited the growth of xenograft tumors in vivo. Conclusion: HnRNPL act as p53 mRNA-binding protein, which plays an important role in the proliferation and apoptosis of WT through p53 and Bcl2 pathways and these findings provide new insights into the mechanism of WT pathogenesis.
Collapse
Affiliation(s)
- Xin Luo
- Ministry of Education Key Laboratory of Child Development and Disorders, Chongqing Key Laboratory of Pediatrics, Chongqing Key Laboratory of Children Urogenital Development and Tissue Engineering, China International Science and Technology Cooperation Base of Child Development and Critical Disorders, Pediatric Research Institute, Children's Hospital of Chongqing Medical University, Chongqing 400014, People's Republic of China
| | - Changkai Deng
- Department of Pediatric Surgery, Chengdu Women and Children's Central Hospital, Chengdu 610073, People's Republic of China
| | - Feng Liu
- Ministry of Education Key Laboratory of Child Development and Disorders, Chongqing Key Laboratory of Pediatrics, Chongqing Key Laboratory of Children Urogenital Development and Tissue Engineering, China International Science and Technology Cooperation Base of Child Development and Critical Disorders, Pediatric Research Institute, Children's Hospital of Chongqing Medical University, Chongqing 400014, People's Republic of China.,Department of Pediatric Urology Surgery, Children's Hospital of Chongqing Medical University, Chongqing 400014, People's Republic of China
| | - Xing Liu
- Ministry of Education Key Laboratory of Child Development and Disorders, Chongqing Key Laboratory of Pediatrics, Chongqing Key Laboratory of Children Urogenital Development and Tissue Engineering, China International Science and Technology Cooperation Base of Child Development and Critical Disorders, Pediatric Research Institute, Children's Hospital of Chongqing Medical University, Chongqing 400014, People's Republic of China.,Department of Pediatric Urology Surgery, Children's Hospital of Chongqing Medical University, Chongqing 400014, People's Republic of China
| | - Tao Lin
- Ministry of Education Key Laboratory of Child Development and Disorders, Chongqing Key Laboratory of Pediatrics, Chongqing Key Laboratory of Children Urogenital Development and Tissue Engineering, China International Science and Technology Cooperation Base of Child Development and Critical Disorders, Pediatric Research Institute, Children's Hospital of Chongqing Medical University, Chongqing 400014, People's Republic of China.,Department of Pediatric Urology Surgery, Children's Hospital of Chongqing Medical University, Chongqing 400014, People's Republic of China
| | - Dawei He
- Ministry of Education Key Laboratory of Child Development and Disorders, Chongqing Key Laboratory of Pediatrics, Chongqing Key Laboratory of Children Urogenital Development and Tissue Engineering, China International Science and Technology Cooperation Base of Child Development and Critical Disorders, Pediatric Research Institute, Children's Hospital of Chongqing Medical University, Chongqing 400014, People's Republic of China.,Department of Pediatric Urology Surgery, Children's Hospital of Chongqing Medical University, Chongqing 400014, People's Republic of China
| | - Guanghui Wei
- Ministry of Education Key Laboratory of Child Development and Disorders, Chongqing Key Laboratory of Pediatrics, Chongqing Key Laboratory of Children Urogenital Development and Tissue Engineering, China International Science and Technology Cooperation Base of Child Development and Critical Disorders, Pediatric Research Institute, Children's Hospital of Chongqing Medical University, Chongqing 400014, People's Republic of China.,Department of Pediatric Urology Surgery, Children's Hospital of Chongqing Medical University, Chongqing 400014, People's Republic of China
| |
Collapse
|
21
|
Chen W, Zhuang J, Gong L, Dai Y, Diao H. Investigating the dysfunctional pathogenesis of Wilms' tumor through a multidimensional integration strategy. ANNALS OF TRANSLATIONAL MEDICINE 2019; 7:136. [PMID: 31157257 DOI: 10.21037/atm.2019.03.37] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Abstract
Background Wilms' tumor (WT) is a common kidney tumor in early childhood which is characterized by multiple congenital anomalies and syndromes. With the continuous improvement of medical standards, the cure rate and survival period of WT have increased. However, its molecular mechanism is still elusive. Methods A comprehensive multidimensional integration strategy was used to comprehensively analyze the mechanisms of WT. Results By integrating the potential pathogenic genes of kidney cancer and performing co-expression analysis on the disease-related genes, 23 functional modules were obtained. All the genes were differentially expressed in WT, and were mainly involved in many biological processes and signaling pathways, such as Wnt/β-catenin, mTOR/ERK and calcineurin. Additionally, based on the relationship between transcriptional and post-transcriptional regulatory systems, in functional modules, transcription factors (TFs) including STAT3, HDAC1 and SP1 as well as non-coding RNAs (ncRNAs) such as miR-335-5p, miR-21-5p and TUG1 were identified. Finally, potential drugs for these multifactor regulated dysfunctional modules which may have certain pharmacological or toxicological effects on WT such as cisplatin, sorafenib, and zinc were predicted. Conclusions A multidimensional dysfunction mechanism, involving disease-related genes, TFs and ncRNAs was revealed in the pathogenesis of WT. Functional modules were used to predict potential drugs which can be used in personalized therapy and drug delivery. This study explored the pathogenesis of WT from a new perspective, and provides new candidate targets and therapeutic drugs for improving the cure rate of WT.
Collapse
Affiliation(s)
- Wenbiao Chen
- State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, The First Affiliated Hospital, College of Medicine, Zhejiang University, Hangzhou 310003, China
| | - Jia Zhuang
- Department of Urinary Surgery, Puning People's Hospital Affiliated to Southern Medical University, Jieyang 515300, China
| | - Lan Gong
- Microbiome Research Centre, St George and Sutherland Clinical School, University of New South Wales, Sydney, NSW, Australia
| | - Yong Dai
- Clinical Medical Research Center, Shenzhen People's Hospital, The Second Clinical Medical College of Jinan University, Shenzhen 518020, China
| | - Hongyan Diao
- State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, The First Affiliated Hospital, College of Medicine, Zhejiang University, Hangzhou 310003, China
| |
Collapse
|
22
|
Abstract
Although differences exist in treatment and risk-stratification strategies for children with Wilms tumor (WT) between the European [International Society of Paediatric Oncology (SIOP)] and American [Children's Oncology Group (COG)] study groups, outcomes are very similar, with an overall survival of > 85%. Future strategies aim to de-intensify treatment and reduce toxicity for children with a low risk of relapse and intensify treatment for children with high-risk disease. For metastatic WT, response of lung nodules to chemotherapy is used as a marker to modify treatment intensity. For recurrent WT, a unified approach based on the use of agents that were not used for primary therapy is being introduced. Irinotecan is being explored as a new strategy in both metastatic and relapsed WT. Introduction of biology-driven approaches to risk stratification and new drug treatments has been slower in WT than in some other childhood cancers. While several new biological pathways have been identified recently in WT, their individual rarity has hampered their translation into clinical utility. Identification of robust prognostic factors requires extensive international collaborative studies because of the low proportion who relapse or die. Molecular profiling studies are in progress that should ultimately improve both risk classification and signposting to more targeted therapies for the small group for whom current therapies fail. Accrual of patients with WT to early-phase trials has been low, and the efficacy of these new agents has so far been very disappointing. Better in vitro model systems to test mechanistic dependence are needed so available new agents can be more rationally prioritized for recruitment of children with WT to early-phase trials.
Collapse
Affiliation(s)
- Radna Minou Oostveen
- UCL Great Ormond Street Hospital Institute of Child Health, 30 Guilford Street, London, WC1N 1EH, UK.
| | - Kathy Pritchard-Jones
- UCL Great Ormond Street Hospital Institute of Child Health, 30 Guilford Street, London, WC1N 1EH, UK
| |
Collapse
|
23
|
Phelps HM, Al-Jadiry MF, Corbitt NM, Pierce JM, Li B, Wei Q, Flores RR, Correa H, Uccini S, Frangoul H, Alsaadawi AR, Al-Badri SAF, Al-Darraji AF, Al-Saeed RM, Al-Hadad SA, Lovvorn Iii HN. Molecular and epidemiologic characterization of Wilms tumor from Baghdad, Iraq. World J Pediatr 2018; 14:585-593. [PMID: 30155617 PMCID: PMC6236303 DOI: 10.1007/s12519-018-0181-3] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/09/2018] [Accepted: 08/06/2018] [Indexed: 12/24/2022]
Abstract
BACKGROUND Wilms tumor (WT) is the most common childhood kidney cancer worldwide, yet its incidence and clinical behavior vary according to race and access to adequate healthcare resources. To guide and streamline therapy in the war-torn and resource-constrained city of Baghdad, Iraq, we conducted a first-ever molecular analysis of 20 WT specimens to characterize the biological features of this lethal disease within this challenged population. METHODS Next-generation sequencing of ten target genes associated with WT development and treatment resistance (WT1, CTNNB1, WTX, IGF2, CITED1, SIX2, p53, N-MYC, CRABP2, and TOP2A) was completed. Immunohistochemistry was performed for 6 marker proteins of WT (WT1, CTNNB1, NCAM, CITED1, SIX2, and p53). Patient outcomes were compiled. RESULTS Mutations were detected in previously described WT "hot spots" (e.g., WT1 and CTNNB1) as well as novel loci that may be unique to the Iraqi population. Immunohistochemistry showed expression domains most typical of blastemal-predominant WT. Remarkably, despite the challenges facing families and care providers, only one child, with combined WT1 and CTNNB1 mutations, was confirmed dead from disease. Median clinical follow-up was 40.5 months (range 6-78 months). CONCLUSIONS These data suggest that WT biology within a population of Iraqi children manifests features both similar to and unique from disease variants in other regions of the world. These observations will help to risk stratify WT patients living in this difficult environment to more or less intensive therapies and to focus treatment on cell-specific targets.
Collapse
Affiliation(s)
- Hannah M Phelps
- Vanderbilt University School of Medicine, 2215 Garland Avenue, Nashville, TN, 37232-9780, USA.
| | - Mazin F Al-Jadiry
- Oncology Unit, Children's Welfare Teaching Hospital, Baghdad University Medical City, Baghdad, Iraq
| | - Natasha M Corbitt
- Department of Pediatric Surgery, Vanderbilt University Medical Center, Nashville, USA
| | - Janene M Pierce
- Department of Pediatric Surgery, Vanderbilt University Medical Center, Nashville, USA
| | - Bingshan Li
- Department of Molecular Physiology and Biophysics, Vanderbilt University School of Medicine, Nashville, USA
| | - Qiang Wei
- Department of Molecular Physiology and Biophysics, Vanderbilt University School of Medicine, Nashville, USA
| | - Raina R Flores
- Division of Pediatric Pathology, Vanderbilt University Medical Center, Nashville, USA
| | - Hernan Correa
- Division of Pediatric Pathology, Vanderbilt University Medical Center, Nashville, USA
| | - Stefania Uccini
- Department of Clinical and Molecular Medicine, Sapienza University, Rome, Italy
| | - Haydar Frangoul
- Division of Pediatric Hematology and Oncology, Vanderbilt University Medical Center, Nashville, USA
| | - Adel R Alsaadawi
- Department of Pathology, Baghdad University Medical City, Baghdad, Iraq
| | - Safaa A F Al-Badri
- Oncology Unit, Children's Welfare Teaching Hospital, Wasit University College of Medicine, Wasit, Iraq
| | - Amir F Al-Darraji
- Oncology Unit, Children's Welfare Teaching Hospital, Baghdad University Medical City, Baghdad, Iraq
| | - Raghad M Al-Saeed
- Oncology Unit, Children's Welfare Teaching Hospital, Baghdad University Medical City, Baghdad, Iraq
| | - Salma A Al-Hadad
- Oncology Unit, Children's Welfare Teaching Hospital, Baghdad University Medical City, Baghdad, Iraq
| | - Harold N Lovvorn Iii
- Department of Pediatric Surgery, Vanderbilt University Medical Center, Nashville, USA
| |
Collapse
|
24
|
Abstract
PURPOSE OF REVIEW Aniridia is a rare and panocular disorder affecting most of the ocular structures which may have significant impact on vision. The purpose of this review is to describe the clinical features, genetics, and therapeutic options for this disease and to provide an update of current knowledge and latest research findings. RECENT FINDINGS Aside from the ocular features, a variety of associated systemic abnormalities, including hormonal, metabolic, gastrointestinal, genitourinary, and neurologic pathologies have been reported in children with aniridia. Although mutations in PAX6 are a major cause of aniridia, genetic defects in nearby genes, such as TRIM44 or ELP4, have also been reported to cause aniridia. Recent improvement in genetic testing technique will help more rapid and precise diagnosis for aniridia. A promising therapeutic approach called nonsense suppression therapy has been introduced and successfully used in an animal model. SUMMARY Aniridia is a challenging disease. The progressive nature of this condition and its potential complications require continuous and life-long ophthalmologic care. Genetic diagnosis for aniridia is important for establishing definitive molecular characterization as well as identifying individuals at high risk for Wilms tumor. Recent advancement in understanding the genetic pathogenesis of this disease offers promise for the approaches to treatment.
Collapse
|
25
|
Pan Z, He H, Tang L, Bu Q, Cheng H, Wang A, Lyu J, You H. Loss of heterozygosity on chromosome 16q increases relapse risk in Wilms' tumor: a meta-analysis. Oncotarget 2017; 8:66467-66475. [PMID: 29029528 PMCID: PMC5630428 DOI: 10.18632/oncotarget.20191] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2017] [Accepted: 08/06/2017] [Indexed: 02/05/2023] Open
Abstract
Wilms’ tumor (WT) is the most frequent malignant renal tumor in children. The survival rate is lower in patients with recurrence, and the factors that influence relapse in WT are not fully understood. Loss of heterozygosity on chromosome 16q (LOH 16q) has been reported to be associated with the relapse in WT, but this remains controversial. We performed a meta-analysis to clarify this. PUBMED, EMBASE, and the Cochrane Library were searched up to March 17, 2017. Ten studies involving 3385 patients were ultimately included in the meta-analysis. The meta-analysis showed that LOH 16q was significantly associated with the relapse in WT (relative risk [RR] = 1.74, 95% confidence interval [CI] = 1.43–2.13, P < 0.00001; hazard ratio [HR] = 1.76, 95% CI = 1.38–2.24, P < 0.00001). No significant heterogeneity among studies or publication bias was found. Sensitivity analysis showed omitting one study in each turn could not change the results. Subgroup analysis based on two studies indicated LOH 16q was more effective on elevated replase risk in patients with favorable-histology WT (RR = 2.52, 95% CI = 1.68–3.78, P < 0.00001; HR = 2.99, 95% CI = 1.84–4.88, P < 0.0001) but further work are needed to confirm this. These findings confirm that LOH 16q increased the relapse risk in WT, but more studies are required to further assess the association between LOH 16q and WT relapse among different subgroups.
Collapse
Affiliation(s)
- Zhenyu Pan
- Clinical Research Center, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, Shaanxi, 710061, China.,Department of Pharmacy, Xi'an Jiaotong University Affiliated Children's Hospital, Xi'an, Shaanxi, 710003, China
| | - Hairong He
- Clinical Research Center, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, Shaanxi, 710061, China
| | - Lina Tang
- Department of Pharmacy, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, Shaanxi, 710061, China
| | - Qingting Bu
- Department of Genetics, Northwest Women's and Children's Hospital, Xi'an, Shaanxi, 710061, China
| | - Hua Cheng
- Department of Pharmacy, Xi'an Jiaotong University Affiliated Children's Hospital, Xi'an, Shaanxi, 710003, China
| | - Anmin Wang
- Department of Pharmacy, Xi'an Jiaotong University Affiliated Children's Hospital, Xi'an, Shaanxi, 710003, China
| | - Jun Lyu
- Clinical Research Center, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, Shaanxi, 710061, China
| | - Haisheng You
- Department of Pharmacy, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, Shaanxi, 710061, China
| |
Collapse
|
26
|
Liu GC, Zhuo ZJ, Zhu SB, Zhu J, Jia W, Zhao Z, Hu JH, He J, Wang FH, Fu W. Associations between LMO1 gene polymorphisms and Wilms' tumor susceptibility. Oncotarget 2017; 8:50665-50672. [PMID: 28881592 PMCID: PMC5584185 DOI: 10.18632/oncotarget.16926] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2017] [Accepted: 03/22/2017] [Indexed: 02/07/2023] Open
Abstract
Wilms' tumor is the most common childhood renal malignancy. A genome-wide association study identified LIM domain only 1 (LMO1) as having oncogenic potential. We examined the associations between LMO1 gene polymorphisms and susceptibility to Wilms' tumor. In this hospital-based, case-control study, we recruited 145 children with Wilms' tumor and 531 cancer-free children. Four polymorphisms (rs110419 A>G, rs4758051 G>A, rs10840002 A>G and rs204938 A>G) were genotyped using Taqman methodology. Odds ratios (ORs) and 95% confidence intervals (CIs) were calculated to measure the associations between selected polymorphisms and Wilms' tumor susceptibility. Only rs110419 AG was found to be protective against Wilms' tumor (adjusted OR = 0.62, 95% CI = 0.41-0.94, P = 0.024) when compared to rs110419 AA. Wilms' tumor risk was markedly greater in children with 1-4 risk genotypes (nucleotide alterations) than in those with no risk genotypes (adjusted OR = 1.84, 95% CI = 1.25-2.69, P = 0.002). In a stratified analysis, the protective effect of rs110419 AG/GG was predominant in males. The association of 1-4 risk genotypes with Wilms' tumor risk was limited to subgroups of children who were >18 months old, female, and in clinical stages III+IV. Thus, LMO1 gene polymorphisms may contribute to Wilms' tumor risk, but this conclusion should be validated in other populations and larger studies.
Collapse
Affiliation(s)
- Guo-Chang Liu
- 1 Department of Pediatric Urology, Department of Pediatric Surgery, Guangzhou Institute of Pediatrics, Guangzhou Women and Children's Medical Center, Guangzhou Medical University, Guangzhou 510623, Guangdong, China
| | - Zhen-Jian Zhuo
- 2 School of Chinese Medicine, Faculty of Medicine, The Chinese University of Hong Kong, Hong Kong 999077, China
| | - Shi-Bo Zhu
- 1 Department of Pediatric Urology, Department of Pediatric Surgery, Guangzhou Institute of Pediatrics, Guangzhou Women and Children's Medical Center, Guangzhou Medical University, Guangzhou 510623, Guangdong, China
| | - Jinhong Zhu
- 3 Molecular Epidemiology Laboratory and Department of Laboratory Medicine, Harbin Medical University Cancer Hospital, Harbin 150040, Heilongjiang, China
| | - Wei Jia
- 1 Department of Pediatric Urology, Department of Pediatric Surgery, Guangzhou Institute of Pediatrics, Guangzhou Women and Children's Medical Center, Guangzhou Medical University, Guangzhou 510623, Guangdong, China
| | - Zhang Zhao
- 1 Department of Pediatric Urology, Department of Pediatric Surgery, Guangzhou Institute of Pediatrics, Guangzhou Women and Children's Medical Center, Guangzhou Medical University, Guangzhou 510623, Guangdong, China
| | - Jin-Hua Hu
- 1 Department of Pediatric Urology, Department of Pediatric Surgery, Guangzhou Institute of Pediatrics, Guangzhou Women and Children's Medical Center, Guangzhou Medical University, Guangzhou 510623, Guangdong, China
| | - Jing He
- 1 Department of Pediatric Urology, Department of Pediatric Surgery, Guangzhou Institute of Pediatrics, Guangzhou Women and Children's Medical Center, Guangzhou Medical University, Guangzhou 510623, Guangdong, China
| | - Feng-Hua Wang
- 1 Department of Pediatric Urology, Department of Pediatric Surgery, Guangzhou Institute of Pediatrics, Guangzhou Women and Children's Medical Center, Guangzhou Medical University, Guangzhou 510623, Guangdong, China
| | - Wen Fu
- 1 Department of Pediatric Urology, Department of Pediatric Surgery, Guangzhou Institute of Pediatrics, Guangzhou Women and Children's Medical Center, Guangzhou Medical University, Guangzhou 510623, Guangdong, China
| |
Collapse
|
27
|
Abstract
The objective of this article is to present an overview of recent trends in the management of Wilms’ tumor. With improved survival rates in the past few decades, critical long-term adverse therapy effects (such as renal insufficiency, secondary malignancies, and heart failure) and prevention measures (i.e. nephron-sparing surgery and minimizing the use of radiotherapy) have gained worldwide attention. Specific disease biomarkers that could help stratify high-risk from low-risk patients, and therefore fine-tune management, are in great demand. Ultimately, we aim to enhance clinical outcomes and maintain or improve current survival rates while avoiding undesirable treatment side effects and minimizing the exposure and intensity of chemotherapy and radiotherapy.
Collapse
Affiliation(s)
- Roberto I Lopes
- Division of Urology, The Hospital for Sick Children, Toronto, ON, Canada.,Department of Surgery, University of Toronto, Toronto, ON, Canada
| | - Armando Lorenzo
- Division of Urology, The Hospital for Sick Children, Toronto, ON, Canada.,Department of Surgery, University of Toronto, Toronto, ON, Canada
| |
Collapse
|
28
|
Theerakitthanakul K, Khrueathong J, Kruatong J, Graidist P, Raungrut P, Kayasut K, Sangkhathat S. Senescence Process in Primary Wilms' Tumor Cell Culture Induced by p53 Independent p21 Expression. J Cancer 2016; 7:1867-1876. [PMID: 27698927 PMCID: PMC5039371 DOI: 10.7150/jca.16316] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2016] [Accepted: 07/09/2016] [Indexed: 12/15/2022] Open
Abstract
Wilms tumor (WT) is an embryonal tumor occurring in developing kidney tissue. WT cells showing invasive cancer characteristics, also retain renal stem cell behaviours. In-vitro culture of WT is hampered by limited replicative potential. This study aimed to establish a longterm culture of WT cells to enable the study of molecular events to attempt to explain its cellular senescence. Methods: Primary cell cultures from fresh WT tumor specimen were established. Of 5 cultures tried, only 1 could be propagated for more than 7 passages. One culture, identified as PSU-SK-1, could be maintained > 35 passages and was then subjected to molecular characterization and evaluation for cancer characteristics. The cells consistently harbored concomitant mutations of CTNNB1 (Ser45Pro) and WT1 (Arg413Stop) thorough the cultivation. On Transwell invasion assays, the cells exhibited migration and invasion at 55% and 27% capability of the lung cancer cells, A549. On gelatin zymography, PSU-SK-1 showed high expression of the matrix metaloproteinase. The cells exhibited continuous proliferation with 24-hour doubling time until passages 28-30 when the growth slowed, showing increased cell size, retention of cells in G1/S proportion and positive β-galactosidase staining. As with those evidence of senescence in advanced cell passages, expression of p21 and cyclin D1 increased when the expression of β-catenin and its downstream protein, TCF, declined. There was also loss-of-expression of p53 in this cell line. In conclusion, cellular senescence was responsible for limited proliferation in the primary culture of WT, which was also associated with increased expression of p21 and was independent of p53 expression. Decreased activation of the Wnt signalling might explain the induction of p21 expression.
Collapse
Affiliation(s)
- Korkiat Theerakitthanakul
- Department of Biomedical Sciences, Faculty of Medicine, Prince of Songkla University, Hat Yai, Songkhla, Thailand 90110
| | - Jeerasak Khrueathong
- Department of Biomedical Sciences, Faculty of Medicine, Prince of Songkla University, Hat Yai, Songkhla, Thailand 90110
| | - Jirasak Kruatong
- Department of Biomedical Sciences, Faculty of Medicine, Prince of Songkla University, Hat Yai, Songkhla, Thailand 90110
| | - Potchanapond Graidist
- Department of Biomedical Sciences, Faculty of Medicine, Prince of Songkla University, Hat Yai, Songkhla, Thailand 90110
| | - Pritsana Raungrut
- Department of Biomedical Sciences, Faculty of Medicine, Prince of Songkla University, Hat Yai, Songkhla, Thailand 90110
| | - Kanita Kayasut
- Department of Pathology, Faculty of Medicine, Prince of Songkla University, Hat Yai, Songkhla, Thailand 90110
| | - Surasak Sangkhathat
- Department of Surgery, Faculty of Medicine, Prince of Songkla University, Hat Yai, Songkhla, Thailand 90110
| |
Collapse
|
29
|
Deng C, Dai R, Li X, Liu F. Genetic variation frequencies in Wilms' tumor: A meta-analysis and systematic review. Cancer Sci 2016; 107:690-9. [PMID: 26892980 PMCID: PMC4970837 DOI: 10.1111/cas.12910] [Citation(s) in RCA: 29] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2015] [Revised: 02/11/2016] [Accepted: 02/12/2016] [Indexed: 12/11/2022] Open
Abstract
Over the last few decades, numerous biomarkers in Wilms' tumor have been confirmed and shown variations in prevalence. Most of these studies were based on small sample sizes. We carried out a meta-analysis of the research published from 1992 to 2015 to obtain more precise and comprehensive outcomes for genetic tests. In the present study, 70 out of 5175 published reports were eligible for the meta-analysis, which was carried out using Stata 12.0 software. Pooled prevalence for gene mutations WT1, WTX, CTNNB1, TP53, MYCN, DROSHA, and DGCR8 was 0.141 (0.104, 0.178), 0.147 (0.110, 0.184), 0.140 (0.100, 0.190), 0.410 (0.214, 0.605), 0.071 (0.041, 0.100), 0.082 (0.048, 0.116), and 0.036 (0.026, 0.046), respectively. Pooled prevalence of loss of heterozygosity at 1p, 11p, 11q, 16q, and 22q was 0.109 (0.084, 0.133), 0.334 (0.295, 0.373), 0.199 (0.146, 0.252), 0.151 (0.129, 0.172), and 0.148 (0.108, 0.189), respectively. Pooled prevalence of 1q and chromosome 12 gain was 0.218 (0.161, 0.275) and 0.273 (0.195, 0.350), respectively. The limited prevalence of currently known genetic alterations in Wilms' tumors indicates that significant drivers of initiation and progression remain to be discovered. Subgroup analyses indicated that ethnicity may be one of the sources of heterogeneity. However, in meta-regression analyses, no study-level characteristics of indicators were found to be significant. In addition, the findings of our sensitivity analysis and possible publication bias remind us to interpret results with caution.
Collapse
Affiliation(s)
- Changkai Deng
- Department of Urology Surgery, Children's Hospital of Chongqing Medical University, Ministry of Education Key Laboratory of Child Development and Disorder, Key Laboratory of Pediatrics in Chongqing (CSTC2009CA5002), Chongqing International Science and Technology Cooperation Center for Child Development and Disorders, Chongqing, China.,Chengdu Women and Children's Central Hospital, Chengdu, China
| | - Rong Dai
- Chengdu Center for Disease Control and Prevention, Chengdu, China
| | - Xuliang Li
- Department of Urology Surgery, Children's Hospital of Chongqing Medical University, Ministry of Education Key Laboratory of Child Development and Disorder, Key Laboratory of Pediatrics in Chongqing (CSTC2009CA5002), Chongqing International Science and Technology Cooperation Center for Child Development and Disorders, Chongqing, China
| | - Feng Liu
- Department of Urology Surgery, Children's Hospital of Chongqing Medical University, Ministry of Education Key Laboratory of Child Development and Disorder, Key Laboratory of Pediatrics in Chongqing (CSTC2009CA5002), Chongqing International Science and Technology Cooperation Center for Child Development and Disorders, Chongqing, China
| |
Collapse
|