1
|
Merlin JPJ, Abrahamse H. Optimizing CRISPR/Cas9 precision: Mitigating off-target effects for safe integration with photodynamic and stem cell therapies in cancer treatment. Biomed Pharmacother 2024; 180:117516. [PMID: 39332185 DOI: 10.1016/j.biopha.2024.117516] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2024] [Revised: 09/22/2024] [Accepted: 09/25/2024] [Indexed: 09/29/2024] Open
Abstract
CRISPR/Cas9 precision genome editing has revolutionized cancer treatment by introducing specific alterations to the cancer genome. But the therapeutic potential of CRISPR/Cas9 is limited by off-target effects, which can cause undesired changes to genomic regions and create major safety concerns. The primary emphasis lies in their implications within the realm of cancer photodynamic therapy (PDT), where precision is paramount. PDT is a promising cancer treatment method; nevertheless, its effectiveness is severely limited and readily leads to recurrence due to the therapeutic resistance of cancer stem cells (CSCs). With a focus on targeted genome editing into cancer cells during PDT and stem cell treatment (SCT), the review aims to further the ongoing search for safer and more accurate CRISPR/Cas9-mediated methods. At the core of this exploration are recent advancements and novel techniques that offer promise in mitigating the risks associated with off-target effects. With a focus on cancer PDT and SCT, this review critically assesses the landscape of off-target effects in CRISPR/Cas9 applications, offering a comprehensive knowledge of their nature and prevalence. A key component of the review is the assessment of cutting-edge delivery methods, such as technologies based on nanoparticles (NPs), to optimize the distribution of CRISPR components. Additionally, the study delves into the intricacies of guide RNA design, focusing on advancements that bolster specificity and minimize off-target effects, crucial elements in ensuring the precision required for effective cancer PDT and SCT. By synthesizing insights from various methodologies, including the exploration of innovative genome editing tools and leveraging robust validation methods and bioinformatics tools, the review aspires to chart a course towards more reliable and precise CRISPR-Cas9 applications in cancer PDT and SCT. For safe PDT and SCT integration in cancer therapy, CRISPR/Cas9 precision optimization is essential. Utilizing sophisticated molecular and computational techniques to address off-target effects is crucial to realizing the therapeutic promise of these technologies, which will ultimately lead to the development of individualized and successful cancer treatment strategies. Our long-term goals are to improve precision genome editing for more potent cancer therapy approaches by refining the way CRISPR/Cas9 is integrated with photodynamic and stem cell therapies.
Collapse
Affiliation(s)
- J P Jose Merlin
- Laser Research Centre, Faculty of Health Sciences, University of Johannesburg, South Africa.
| | - Heidi Abrahamse
- Laser Research Centre, Faculty of Health Sciences, University of Johannesburg, South Africa
| |
Collapse
|
2
|
Xiong B, Liu W, Liu Y, Chen T, Lin A, Song J, Qu L, Luo P, Jiang A, Wang L. A Multi-Omics Prognostic Model Capturing Tumor Stemness and the Immune Microenvironment in Clear Cell Renal Cell Carcinoma. Biomedicines 2024; 12:2171. [PMID: 39457484 PMCID: PMC11504857 DOI: 10.3390/biomedicines12102171] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2024] [Revised: 09/11/2024] [Accepted: 09/20/2024] [Indexed: 10/28/2024] Open
Abstract
Background: Cancer stem-like cells (CSCs), a distinct subset recognized for their stem cell-like abilities, are intimately linked to the resistance to radiotherapy, metastatic behaviors, and self-renewal capacities in tumors. Despite their relevance, the definitive traits and importance of CSCs in the realm of oncology are still not fully comprehended, particularly in the context of clear cell renal cell carcinoma (ccRCC). A comprehensive understanding of these CSCs' properties in relation to stemness, and their impact on the efficacy of treatment and resistance to medication, is of paramount importance. Methods: In a meticulous research effort, we have identified new molecular categories designated as CRCS1 and CRCS2 through the application of an unsupervised clustering algorithm. The analysis of these subtypes included a comprehensive examination of the tumor immune environment, patterns of metabolic activity, progression of the disease, and its response to immunotherapy. In addition, we have delved into understanding these subtypes' distinctive clinical presentations, the landscape of their genomic alterations, and the likelihood of their response to various pharmacological interventions. Proceeding from these insights, prognostic models were developed that could potentially forecast the outcomes for patients with ccRCC, as well as inform strategies for the surveillance of recurrence after treatment and the handling of drug-resistant scenarios. Results: Compared with CRCS1, CRCS2 patients had a lower clinical stage/grading and a better prognosis. The CRCS2 subtype was in a hypoxic state and was characterized by suppression and exclusion of immune function, which was sensitive to gefitinib, erlotinib, and saracatinib. The constructed prognostic risk model performed well in both training and validation cohorts, helping to identify patients who may benefit from specific treatments or who are at risk of recurrence and drug resistance. A novel therapeutic target, SAA2, regulating neutrophil and fibroblast infiltration, and, thus promoting ccRCC progression, was identified. Conclusions: Our findings highlight the key role of CSCs in shaping the ccRCC tumor microenvironment, crucial for therapy research and clinical guidance. Recognizing tumor stemness helps to predict treatment efficacy, recurrence, and drug resistance, informing treatment strategies and enhancing ccRCC patient outcomes.
Collapse
Affiliation(s)
- Beibei Xiong
- Department of Oncology, The First People’s Hospital of Shuangliu District, Chengdu 610200, China;
| | - Wenqiang Liu
- Department of Urology, Changhai Hospital, Navel Medical University (Second Military Medical University), Shanghai 200433, China; (W.L.); (Y.L.); (T.C.); (J.S.)
| | - Ying Liu
- Department of Urology, Changhai Hospital, Navel Medical University (Second Military Medical University), Shanghai 200433, China; (W.L.); (Y.L.); (T.C.); (J.S.)
| | - Tong Chen
- Department of Urology, Changhai Hospital, Navel Medical University (Second Military Medical University), Shanghai 200433, China; (W.L.); (Y.L.); (T.C.); (J.S.)
| | - Anqi Lin
- Department of Oncology, Zhujiang Hospital, Southern Medical University, Guangzhou 510280, China; (A.L.); (P.L.)
| | - Jiaao Song
- Department of Urology, Changhai Hospital, Navel Medical University (Second Military Medical University), Shanghai 200433, China; (W.L.); (Y.L.); (T.C.); (J.S.)
| | - Le Qu
- Department of Urology, Affiliated Jinling Hospital, Medical School of Nanjing University, Nanjing 210002, China;
| | - Peng Luo
- Department of Oncology, Zhujiang Hospital, Southern Medical University, Guangzhou 510280, China; (A.L.); (P.L.)
| | - Aimin Jiang
- Department of Urology, Changhai Hospital, Navel Medical University (Second Military Medical University), Shanghai 200433, China; (W.L.); (Y.L.); (T.C.); (J.S.)
| | - Linhui Wang
- Department of Urology, Changhai Hospital, Navel Medical University (Second Military Medical University), Shanghai 200433, China; (W.L.); (Y.L.); (T.C.); (J.S.)
| |
Collapse
|
3
|
Jin N, Jin Y, Oikawa Y, Nakano A, Ohsumi Y, Weisman LS. A non-canonical CDK, Pho85 regulates the restart of the cell-cycle following stress. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.08.27.609989. [PMID: 39253458 PMCID: PMC11383280 DOI: 10.1101/2024.08.27.609989] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/11/2024]
Abstract
Environmental stress induces an arrest of the cell cycle. Thus, release from this arrest is essential for cell survival. The cell-cycle-arrest occurs via the down regulation of the cyclins that drive the main cyclin dependent kinase, CDK1/Cdc28. However, it was not clear how cells escape this potentially fatal arrest. Here we show that prior to the restoration of CDK1/Cdc28 cyclins, a non-canonical CDK, Pho85, initiates a cascade to restart the cell cycle. We demonstrate that following stress, Pho85 phosphorylates the Sch9 kinase, which in turn directly phosphorylates the transcriptional inhibitor Whi5, the yeast analog of RB1/retinoblastoma, and a CDK1 target. This promotes Whi5 translocation from the nucleus, and the release of the stress-induced arrest at G 1 phase. In addition, we find that in parallel with Pho85, CDK1/Cdc28 also plays a role in the control of Whi5. Together, these findings provide insights into how cells re-enter the cell cycle during recovery from stress and reveal that a non-canonical CDK and cyclin takes on essential roles and acts via a pathway that functions in parallel with CDK1/Cdc28.
Collapse
|
4
|
Aria H, Azizi M, Nazem S, Mansoori B, Darbeheshti F, Niazmand A, Daraei A, Mansoori Y. Competing endogenous RNAs regulatory crosstalk networks: The messages from the RNA world to signaling pathways directing cancer stem cell development. Heliyon 2024; 10:e35208. [PMID: 39170516 PMCID: PMC11337742 DOI: 10.1016/j.heliyon.2024.e35208] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2024] [Revised: 07/08/2024] [Accepted: 07/24/2024] [Indexed: 08/23/2024] Open
Abstract
Cancer stem cells (CSCs) are one of the cell types that account for cancer heterogeneity. The cancer cells arrest in G0 and generate non-CSC progeny through self-renewal and pluripotency, resulting in tumor recurrence, metastasis, and resistance to chemotherapy. They can stimulate tumor relapse and re-grow a metastatic tumor. So, CSCs is a promising target for eradicating tumors, and developing an anti-CSCs therapy has been considered. In recent years competing endogenous RNA (ceRNA) has emerged as a significant class of post-transcriptional regulators that affect gene expression via competition for microRNA (miRNA) binding. Furthermore, aberrant ceRNA expression is associated with tumor progression. Recent findings show that ceRNA network can cause tumor progression through the effect on CSCs. To overcome therapeutic resistance due to CSCs, we need to improve our current understanding of the mechanisms by which ceRNAs are implicated in CSC-related relapse. Thus, this review was designed to discuss the role of ceRNAs in CSCs' function. Targeting ceRNAs may open the path for new cancer therapeutic targets and can be used in clinical research.
Collapse
Affiliation(s)
- Hamid Aria
- Noncommunicable Diseases Research Center, Fasa University of Medical Sciences, Fasa, Iran
- Department of Immunology, School of Medicine, Isfahan University of Medical Sciences, Isfahan, Iran
| | - Mahdieh Azizi
- Department of Immunology, School of Medicine, Isfahan University of Medical Sciences, Isfahan, Iran
| | - Shima Nazem
- Department of Clinical Biochemistry, Faculty of Medicine, Tehran University of Medical Sciences, Tehran, Iran
| | - Behnam Mansoori
- Pediatrics Department, School of Medicine, Fasa University of Medical Sciences, Fasa, Iran
| | - Farzaneh Darbeheshti
- Department of Radiation Oncology, Dana-Farber Cancer Institute and Brigham and Women's Hospital, Harvard Medical School, Boston, MA, USA
| | - Anoosha Niazmand
- Department of Genetics and Molecular Biology, School of Medicine, Isfahan University of Medical Sciences, Isfahan, Iran
| | - Abdolreza Daraei
- Cellular and Molecular Biology Research Center, Health Research Institute, Babol University of Medical Sciences, Babol, Iran
- Department of Medical Genetics, School of Medicine, Babol University of Medical Sciences, Babol, Iran
| | - Yaser Mansoori
- Noncommunicable Diseases Research Center, Fasa University of Medical Sciences, Fasa, Iran
- Department of Medical Genetics, Fasa University of Medical Sciences, Fasa, Iran
| |
Collapse
|
5
|
Higa T, Nakayama KI. Cell cycle heterogeneity and plasticity of colorectal cancer stem cells. Cancer Sci 2024; 115:1370-1377. [PMID: 38413370 PMCID: PMC11093209 DOI: 10.1111/cas.16117] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2023] [Revised: 01/23/2024] [Accepted: 02/05/2024] [Indexed: 02/29/2024] Open
Abstract
Cancer stem cells (CSCs) are a long-lived and self-renewing cancer cell population that drives tumor propagation and maintains cancer heterogeneity. They are also implicated in the therapeutic resistance of various types of cancer. Recent studies of CSCs in colorectal cancer (CRC) have uncovered fundamental paradigms that have increased understanding of CSC systems in solid tumors. Colorectal CSCs share multiple biological properties with normal intestinal stem cells (ISCs), including expression of the stem cell marker Lgr5. New evidence suggests that colorectal CSCs manifest substantial heterogeneity, as exemplified by the existence of both actively cycling Lgr5+ CSCs as well as quiescent Lgr5+ CSCs that are resistant to conventional anticancer therapies. The classical view of a rigid cell hierarchy and irreversible cell differentiation trajectory in normal and neoplastic tissues is now challenged by the finding that differentiated cells have the capacity to revert to stem cells through dynamic physiological reprogramming events. Such plasticity of CSC systems likely underlies both carcinogenesis and therapeutic resistance in CRC. Further characterization of the mechanisms underpinning the heterogeneity and plasticity of CSCs should inform future development of eradicative therapeutic strategies for CRC.
Collapse
Affiliation(s)
- Tsunaki Higa
- Department of Molecular and Cellular Biology, Medical Institute of BioregulationKyushu UniversityFukuokaJapan
| | - Keiichi I. Nakayama
- Department of Molecular and Cellular Biology, Medical Institute of BioregulationKyushu UniversityFukuokaJapan
- Anticancer Strategies Laboratory, TMDU Advanced Research InstituteTokyo Medical and Dental UniversityTokyoJapan
| |
Collapse
|
6
|
Wang L, Liu H, Liu Y, Guo S, Yan Z, Chen G, Wu Q, Xu S, Zhou Q, Liu L, Peng M, Cheng X, Yan T. Potential markers of cancer stem-like cells in ESCC: a review of the current knowledge. Front Oncol 2024; 13:1324819. [PMID: 38239657 PMCID: PMC10795532 DOI: 10.3389/fonc.2023.1324819] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2023] [Accepted: 12/01/2023] [Indexed: 01/22/2024] Open
Abstract
In patients with esophageal squamous cell carcinoma (ESCC), the incidence and mortality rate of ESCC in our country are also higher than those in the rest of the world. Despite advances in the treatment department method, patient survival rates have not obviously improved, which often leads to treatment obstruction and cancer repeat. ESCC has special cells called cancer stem-like cells (CSLCs) with self-renewal and differentiation ability, which reflect the development process and prognosis of cancer. In this review, we evaluated CSLCs, which are identified from the expression of cell surface markers in ESCC. By inciting EMTs to participate in tumor migration and invasion, stem cells promote tumor redifferentiation. Some factors can inhibit the migration and invasion of ESCC via the EMT-related pathway. We here summarize the research progress on the surface markers of CSLCs, EMT pathway, and the microenvironment in the process of tumor growth. Thus, these data may be more valuable for clinical applications.
Collapse
Affiliation(s)
- Lu Wang
- Translational Medicine Research Center, Shanxi Medical University, Taiyuan, Shanxi, China
- Key Laboratory of Cellular Physiology of the Ministry of Education, Department of Pathology, Shanxi Medical University, Taiyuan, Shanxi, China
| | - Huijuan Liu
- Translational Medicine Research Center, Shanxi Medical University, Taiyuan, Shanxi, China
- Key Laboratory of Cellular Physiology of the Ministry of Education, Department of Pathology, Shanxi Medical University, Taiyuan, Shanxi, China
| | - Yiqian Liu
- Translational Medicine Research Center, Shanxi Medical University, Taiyuan, Shanxi, China
- Key Laboratory of Cellular Physiology of the Ministry of Education, Department of Pathology, Shanxi Medical University, Taiyuan, Shanxi, China
| | - Shixing Guo
- Clinical Laboratory Medicine Centre, Shenzhen Hospital, Southern Medical University, Shenzhen, China
| | - Zhenpeng Yan
- Translational Medicine Research Center, Shanxi Medical University, Taiyuan, Shanxi, China
- Key Laboratory of Cellular Physiology of the Ministry of Education, Department of Pathology, Shanxi Medical University, Taiyuan, Shanxi, China
| | - Guohui Chen
- Translational Medicine Research Center, Shanxi Medical University, Taiyuan, Shanxi, China
- Key Laboratory of Cellular Physiology of the Ministry of Education, Department of Pathology, Shanxi Medical University, Taiyuan, Shanxi, China
| | - Qinglu Wu
- Translational Medicine Research Center, Shanxi Medical University, Taiyuan, Shanxi, China
- Key Laboratory of Cellular Physiology of the Ministry of Education, Department of Pathology, Shanxi Medical University, Taiyuan, Shanxi, China
| | - Songrui Xu
- Translational Medicine Research Center, Shanxi Medical University, Taiyuan, Shanxi, China
- Key Laboratory of Cellular Physiology of the Ministry of Education, Department of Pathology, Shanxi Medical University, Taiyuan, Shanxi, China
| | - Qichao Zhou
- Translational Medicine Research Center, Shanxi Medical University, Taiyuan, Shanxi, China
- Key Laboratory of Cellular Physiology of the Ministry of Education, Department of Pathology, Shanxi Medical University, Taiyuan, Shanxi, China
| | - Lili Liu
- Translational Medicine Research Center, Shanxi Medical University, Taiyuan, Shanxi, China
- Key Laboratory of Cellular Physiology of the Ministry of Education, Department of Pathology, Shanxi Medical University, Taiyuan, Shanxi, China
| | - Meilan Peng
- Translational Medicine Research Center, Shanxi Medical University, Taiyuan, Shanxi, China
- Key Laboratory of Cellular Physiology of the Ministry of Education, Department of Pathology, Shanxi Medical University, Taiyuan, Shanxi, China
| | - Xiaolong Cheng
- Translational Medicine Research Center, Shanxi Medical University, Taiyuan, Shanxi, China
- Key Laboratory of Cellular Physiology of the Ministry of Education, Department of Pathology, Shanxi Medical University, Taiyuan, Shanxi, China
| | - Ting Yan
- Translational Medicine Research Center, Shanxi Medical University, Taiyuan, Shanxi, China
- Key Laboratory of Cellular Physiology of the Ministry of Education, Department of Pathology, Shanxi Medical University, Taiyuan, Shanxi, China
| |
Collapse
|
7
|
Wang W, Jiang K, Liu X, Li J, Zhou W, Wang C, Cui J, Liang T. FBXW7 and human tumors: mechanisms of drug resistance and potential therapeutic strategies. Front Pharmacol 2023; 14:1278056. [PMID: 38027013 PMCID: PMC10680170 DOI: 10.3389/fphar.2023.1278056] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2023] [Accepted: 10/11/2023] [Indexed: 12/01/2023] Open
Abstract
Drug therapy, including chemotherapy, targeted therapy, immunotherapy, and endocrine therapy, stands as the foremost therapeutic approach for contemporary human malignancies. However, increasing drug resistance during antineoplastic therapy has become a substantial barrier to favorable outcomes in cancer patients. To enhance the effectiveness of different cancer therapies, an in-depth understanding of the unique mechanisms underlying tumor drug resistance and the subsequent surmounting of antitumor drug resistance is required. Recently, F-box and WD Repeat Domain-containing-7 (FBXW7), a recognized tumor suppressor, has been found to be highly associated with tumor therapy resistance. This review provides a comprehensive summary of the underlying mechanisms through which FBXW7 facilitates the development of drug resistance in cancer. Additionally, this review elucidates the role of FBXW7 in therapeutic resistance of various types of human tumors. The strategies and challenges implicated in overcoming tumor therapy resistance by targeting FBXW7 are also discussed.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | - Tingting Liang
- Cancer Center, The First Hospital of Jilin University, Changchun, Jilin, China
| |
Collapse
|
8
|
Su J, Li R, Chen Z, Liu S, Zhao H, Deng S, Zeng L, Xu Z, Zhao S, Zhou Y, Li M, He X, Liu J, Xue C, Bai R, Zhuang L, Zhou Q, Zhang S, Chen R, Huang X, Lin D, Zheng J, Zhang J. N 6-methyladenosine Modification of FZR1 mRNA Promotes Gemcitabine Resistance in Pancreatic Cancer. Cancer Res 2023; 83:3059-3076. [PMID: 37326469 DOI: 10.1158/0008-5472.can-22-3346] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2022] [Revised: 02/21/2023] [Accepted: 06/13/2023] [Indexed: 06/17/2023]
Abstract
The therapeutic options for treating pancreatic ductal adenocarcinoma (PDAC) are limited, and resistance to gemcitabine, a cornerstone of PDAC chemotherapy regimens, remains a major challenge. N6-methyladenosine (m6A) is a prevalent modification in mRNA that has been linked to diverse biological processes in human diseases. Herein, by characterizing the global m6A profile in a panel of gemcitabine-sensitive and gemcitabine-insensitive PDAC cells, we identified a key role for elevated m6A modification of the master G0-G1 regulator FZR1 in regulating gemcitabine sensitivity. Targeting FZR1 m6A modification augmented the response to gemcitabine treatment in gemcitabine-resistant PDAC cells both in vitro and in vivo. Mechanistically, GEMIN5 was identified as a novel m6A mediator that specifically bound to m6A-modified FZR1 and recruited the eIF3 translation initiation complex to accelerate FZR1 translation. FZR1 upregulation maintained the G0-G1 quiescent state and suppressed gemcitabine sensitivity in PDAC cells. Clinical analysis further demonstrated that both high levels of FZR1 m6A modification and FZR1 protein corresponded to poor response to gemcitabine. These findings reveal the critical function of m6A modification in regulating gemcitabine sensitivity in PDAC and identify the FZR1-GEMIN5 axis as a potential target to enhance gemcitabine response. SIGNIFICANCE Increased FZR1 translation induced by m6A modification engenders a gemcitabine-resistant phenotype by inducing a quiescent state and confers a targetable vulnerability to improve treatment response in PDAC.
Collapse
Affiliation(s)
- Jiachun Su
- Sun Yat-sen University Cancer Center, State Key Laboratory of Oncology in South China and Collaborative Innovation Center for Cancer Medicine, Guangzhou, China
- Department of Clinical Laboratory Medicine, Sun Yat-sen University Cancer Center, Guangzhou, China
| | - Rui Li
- Sun Yat-sen University Cancer Center, State Key Laboratory of Oncology in South China and Collaborative Innovation Center for Cancer Medicine, Guangzhou, China
| | - Ziming Chen
- Sun Yat-sen University Cancer Center, State Key Laboratory of Oncology in South China and Collaborative Innovation Center for Cancer Medicine, Guangzhou, China
| | - Shaoqiu Liu
- Sun Yat-sen University Cancer Center, State Key Laboratory of Oncology in South China and Collaborative Innovation Center for Cancer Medicine, Guangzhou, China
| | - Hongzhe Zhao
- Sun Yat-sen University Cancer Center, State Key Laboratory of Oncology in South China and Collaborative Innovation Center for Cancer Medicine, Guangzhou, China
| | - Shuang Deng
- Sun Yat-sen University Cancer Center, State Key Laboratory of Oncology in South China and Collaborative Innovation Center for Cancer Medicine, Guangzhou, China
| | - Lingxing Zeng
- Sun Yat-sen University Cancer Center, State Key Laboratory of Oncology in South China and Collaborative Innovation Center for Cancer Medicine, Guangzhou, China
| | - Zilan Xu
- Sun Yat-sen University Cancer Center, State Key Laboratory of Oncology in South China and Collaborative Innovation Center for Cancer Medicine, Guangzhou, China
| | - Sihan Zhao
- Sun Yat-sen University Cancer Center, State Key Laboratory of Oncology in South China and Collaborative Innovation Center for Cancer Medicine, Guangzhou, China
| | - Yifan Zhou
- Sun Yat-sen University Cancer Center, State Key Laboratory of Oncology in South China and Collaborative Innovation Center for Cancer Medicine, Guangzhou, China
| | - Mei Li
- Department of Pathology, Sun Yat-sen University Cancer Center, Guangzhou, China
| | - Xiaowei He
- Sun Yat-sen University Cancer Center, State Key Laboratory of Oncology in South China and Collaborative Innovation Center for Cancer Medicine, Guangzhou, China
| | - Ji Liu
- Sun Yat-sen University Cancer Center, State Key Laboratory of Oncology in South China and Collaborative Innovation Center for Cancer Medicine, Guangzhou, China
| | - Chunling Xue
- Sun Yat-sen University Cancer Center, State Key Laboratory of Oncology in South China and Collaborative Innovation Center for Cancer Medicine, Guangzhou, China
| | - Ruihong Bai
- Sun Yat-sen University Cancer Center, State Key Laboratory of Oncology in South China and Collaborative Innovation Center for Cancer Medicine, Guangzhou, China
| | - Lisha Zhuang
- Sun Yat-sen University Cancer Center, State Key Laboratory of Oncology in South China and Collaborative Innovation Center for Cancer Medicine, Guangzhou, China
| | - Quanbo Zhou
- Department of Pancreaticobiliary Surgery, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou, China
| | - Shaoping Zhang
- Sun Yat-sen University Cancer Center, State Key Laboratory of Oncology in South China and Collaborative Innovation Center for Cancer Medicine, Guangzhou, China
| | - Rufu Chen
- Guangdong Provincial People's Hospital & Guangdong Academy of Medical Sciences, Guangzhou, China
| | - Xudong Huang
- Sun Yat-sen University Cancer Center, State Key Laboratory of Oncology in South China and Collaborative Innovation Center for Cancer Medicine, Guangzhou, China
| | - Dongxin Lin
- Sun Yat-sen University Cancer Center, State Key Laboratory of Oncology in South China and Collaborative Innovation Center for Cancer Medicine, Guangzhou, China
- Department of Etiology and Carcinogenesis, National Cancer Center/National Clinical Research Center/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
- Jiangsu Key Lab of Cancer Biomarkers, Prevention and Treatment, Collaborative Innovation Center for Cancer Medicine, Nanjing Medical University, Nanjing, China
| | - Jian Zheng
- Sun Yat-sen University Cancer Center, State Key Laboratory of Oncology in South China and Collaborative Innovation Center for Cancer Medicine, Guangzhou, China
- Jiangsu Key Lab of Cancer Biomarkers, Prevention and Treatment, Collaborative Innovation Center for Cancer Medicine, Nanjing Medical University, Nanjing, China
| | - Jialiang Zhang
- Sun Yat-sen University Cancer Center, State Key Laboratory of Oncology in South China and Collaborative Innovation Center for Cancer Medicine, Guangzhou, China
| |
Collapse
|
9
|
Bou Antoun N, Chioni AM. Dysregulated Signalling Pathways Driving Anticancer Drug Resistance. Int J Mol Sci 2023; 24:12222. [PMID: 37569598 PMCID: PMC10418675 DOI: 10.3390/ijms241512222] [Citation(s) in RCA: 12] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2023] [Revised: 07/28/2023] [Accepted: 07/28/2023] [Indexed: 08/13/2023] Open
Abstract
One of the leading causes of death worldwide, in both men and women, is cancer. Despite the significant development in therapeutic strategies, the inevitable emergence of drug resistance limits the success and impedes the curative outcome. Intrinsic and acquired resistance are common mechanisms responsible for cancer relapse. Several factors crucially regulate tumourigenesis and resistance, including physical barriers, tumour microenvironment (TME), heterogeneity, genetic and epigenetic alterations, the immune system, tumour burden, growth kinetics and undruggable targets. Moreover, transforming growth factor-beta (TGF-β), Notch, epidermal growth factor receptor (EGFR), integrin-extracellular matrix (ECM), nuclear factor kappa-light-chain-enhancer of activated B cells (NF-κB), phosphoinositol-3-kinase/protein kinase B/mammalian target of rapamycin (PI3K/Akt/mTOR), wingless-related integration site (Wnt/β-catenin), Janus kinase/signal transducers and activators of transcription (JAK/STAT) and RAS/RAF/mitogen-activated protein kinase (MAPK) signalling pathways are some of the key players that have a pivotal role in drug resistance mechanisms. To guide future cancer treatments and improve results, a deeper comprehension of drug resistance pathways is necessary. This review covers both intrinsic and acquired resistance and gives a comprehensive overview of recent research on mechanisms that enable cancer cells to bypass barriers put up by treatments, and, like "satellite navigation", find alternative routes by which to carry on their "journey" to cancer progression.
Collapse
Affiliation(s)
| | - Athina-Myrto Chioni
- School of Life Sciences Pharmacy and Chemistry, Biomolecular Sciences Department, Kingston University London, Kingston-upon-Thames KT1 2EE, UK;
| |
Collapse
|
10
|
Wang Y, Yu Y, Yang W, Wu L, Yang Y, Lu Q, Zhou J. SETD4 Confers Cancer Stem Cell Chemoresistance in Nonsmall Cell Lung Cancer Patients via the Epigenetic Regulation of Cellular Quiescence. Stem Cells Int 2023; 2023:7367854. [PMID: 37274024 PMCID: PMC10239305 DOI: 10.1155/2023/7367854] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2022] [Revised: 04/23/2023] [Accepted: 05/08/2023] [Indexed: 06/06/2023] Open
Abstract
Increasing evidence indicates that quiescent cancer stem cells (CSCs) are a root cause of chemoresistance. SET domain-containing protein 4 (SETD4) epigenetically regulates cell quiescence in breast cancer stem cells (BCSCs), and SETD4-positive BCSCs are chemoradioresistant. However, the role of SETD4 in chemoresistance, tumor progression, and prognosis in nonsmall cell lung cancer (NSCLC) patients is unclear. Here, SETD4-positive cells were identified as quiescent lung cancer stem cells (qLCSCs) since they expressed high levels of ALDH1 and CD133 and low levels of Ki67. SETD4 expression was significantly higher in advanced-stage NSCLC tissues than in early-stage NSCLC tissues and significantly higher in samples from the chemoresistant group than in those from the chemosensitive group. Patients with high SETD4 expression had shorter progression-free survival (PFS) times than those with low SETD4 expression. SETD4 facilitated heterochromatin formation via H4K20me3, thereby leading to cell quiescence. RNA-seq analysis showed upregulation of genes involved in cell proliferation, glucose metabolism, and PI3K-AKT signaling in activated qLCSCs (A-qLCSCs) compared with qLCSCs. In addition, SETD4 overexpression facilitated PTEN-mediated inhibition of the PI3K-mTOR pathway. In summary, SETD4 confers chemoresistance, tumor progression, and a poor prognosis by regulating CSCs in NSCLC patients.
Collapse
Affiliation(s)
- Yuehong Wang
- Department of Respiratory Disease, The First Affiliated Hospital, College of Medicine, Zhejiang University, Hangzhou 310003, China
| | - Yuman Yu
- Department of Geriatrics, The First Affiliated Hospital, College of Medicine, Zhejiang University, Hangzhou 310003, China
| | - Weijun Yang
- MOE Laboratory of Biosystem Homeostasis and Protection, College of Life Sciences, Zhejiang University, Hangzhou 310058, China
| | - Linying Wu
- Department of Respiratory Disease, The First Affiliated Hospital, College of Medicine, Zhejiang University, Hangzhou 310003, China
| | - Yaoshun Yang
- MOE Laboratory of Biosystem Homeostasis and Protection, College of Life Sciences, Zhejiang University, Hangzhou 310058, China
| | - Qianyun Lu
- MOE Laboratory of Biosystem Homeostasis and Protection, College of Life Sciences, Zhejiang University, Hangzhou 310058, China
| | - Jianying Zhou
- Department of Respiratory Disease, The First Affiliated Hospital, College of Medicine, Zhejiang University, Hangzhou 310003, China
| |
Collapse
|
11
|
UM171 cooperates with PIM1 inhibitors to restrict HSC expansion markers and suppress leukemia progression. Cell Death Dis 2022; 8:448. [PMID: 36335089 PMCID: PMC9637110 DOI: 10.1038/s41420-022-01244-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2022] [Revised: 10/24/2022] [Accepted: 10/27/2022] [Indexed: 11/08/2022]
Abstract
The pyrimido-indole derivative UM171 promotes human Hematopoietic Stem Cells Expansion (HSCE), but its impact on leukemia is not known. Herein, we show in a mouse model of erythroleukemia that UM171 strongly suppresses leukemia progression. UM171 inhibits cell cycle progression and apoptosis of leukemic cells in culture. The effect of UM171 on leukemia differentiation was accompanied by increased expression of HSCE markers. RNAseq analysis combined with Q-RT-PCR and western blotting revealed that the PIM1 protein kinase is highly elevated in response to UM171 treatment. Moreover, docking analysis combined with immunoprecipitation assays revealed high binding affinity of UM171 to PIM1. Interestingly, pan-PIM kinase inhibitors counteracted the effect of UM171 on HSCE marker expression and PIM1 transcription, but not its suppression of leukemic cell growth. Moreover, combination treatment with UM171 and a pan-PIM inhibitor further suppressed leukemic cell proliferation compared to each drug alone. To uncover the mechanism of growth inhibition, we showed strong upregulation of the cyclin-dependent kinase inhibitor P21CIP1 and the transcription factor KLF2 by UM171. In accordance, KLF2 knockdown attenuated growth inhibition by UM171. KLF2 upregulation by UM171 is also responsible for the activation of P21CIP1 in leukemic cells leading to a G1/S arrest and suppression of leukemogenesis. Thus, suppression of leukemic growth by UM171 through KLF2 and P21CIP1 is thwarted by PIM-mediated expansion of leukemic stemness, uncovering a novel therapeutic modality involving combined UM171 plus PIM inhibitors.
Collapse
|
12
|
Safa AR. Drug and apoptosis resistance in cancer stem cells: a puzzle with many pieces. CANCER DRUG RESISTANCE (ALHAMBRA, CALIF.) 2022; 5:850-872. [PMID: 36627897 PMCID: PMC9771762 DOI: 10.20517/cdr.2022.20] [Citation(s) in RCA: 19] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 02/02/2022] [Revised: 05/10/2022] [Accepted: 05/26/2022] [Indexed: 01/13/2023]
Abstract
Resistance to anticancer agents and apoptosis results in cancer relapse and is associated with cancer mortality. Substantial data have provided convincing evidence establishing that human cancers emerge from cancer stem cells (CSCs), which display self-renewal and are resistant to anticancer drugs, radiation, and apoptosis, and express enhanced epithelial to mesenchymal progression. CSCs represent a heterogeneous tumor cell population and lack specific cellular targets, which makes it a great challenge to target and eradicate them. Similarly, their close relationship with the tumor microenvironment creates greater complexity in developing novel treatment strategies targeting CSCs. Several mechanisms participate in the drug and apoptosis resistance phenotype in CSCs in various cancers. These include enhanced expression of ATP-binding cassette membrane transporters, activation of various cytoprotective and survival signaling pathways, dysregulation of stemness signaling pathways, aberrant DNA repair mechanisms, increased quiescence, autophagy, increased immune evasion, deficiency of mitochondrial-mediated apoptosis, upregulation of anti-apoptotic proteins including c-FLIP [cellular FLICE (FADD-like IL-1β-converting enzyme)-inhibitory protein], Bcl-2 family members, inhibitors of apoptosis proteins, and PI3K/AKT signaling. Studying such mechanisms not only provides mechanistic insights into these cells that are unresponsive to drugs, but may lead to the development of targeted and effective therapeutics to eradicate CSCs. Several studies have identified promising strategies to target CSCs. These emerging strategies may help target CSC-associated drug resistance and metastasis in clinical settings. This article will review the CSCs drug and apoptosis resistance mechanisms and how to target CSCs.
Collapse
Affiliation(s)
- Ahmad R. Safa
- Department of Pharmacology and Toxicology, Indiana University School of Medicine, Indianapolis, IN 46202, USA
| |
Collapse
|
13
|
Hosokawa T, Tanaka S, Mori T, Baba Y, Katayama Y. Quiescent B Cells Acquire Sensitivity to Cell Cycle Arresting Agents by B Cell Receptor Stimulation. Biol Pharm Bull 2022; 45:847-850. [PMID: 35786592 DOI: 10.1248/bpb.b22-00176] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
For the treatment of autoimmune diseases, depletion of B cells specific for auto-antigens is important because they will be a source of plasmablasts/plasma cells to produce autoantibodies. However, because some types of B cells like naïve B cells and memory B cells are at quiescent phase, they are insensitive to anticancer drugs which exert cytotoxicity by arresting the cell cycle. Here we show that B cell receptor (BCR) stimulation increases the sensitivity of anticancer drugs by promoting the proliferation of quiescent B cells. The BCR stimulation to primary naïve B cells enhanced sensitivity to several anticancer drugs which arrest the cell cycle through different mechanisms. The present results indicated that combination of the BCR stimulation and anticancer drugs is a promising strategy for the antigen-specific depletion of pathogenic quiescent B cells.
Collapse
Affiliation(s)
| | - Shinya Tanaka
- Division of Immunology and Genome Biology, Medical Institute of Bioregulation, Kyushu University
| | - Takeshi Mori
- Graduate School of Systems Life Sciences, Kyushu University.,Department of Applied Chemistry, Faculty of Engineering, Kyushu University
| | - Yoshihiro Baba
- Division of Immunology and Genome Biology, Medical Institute of Bioregulation, Kyushu University
| | - Yoshiki Katayama
- Graduate School of Systems Life Sciences, Kyushu University.,Department of Applied Chemistry, Faculty of Engineering, Kyushu University.,International Research Center for Molecular Systems, Kyushu University.,Center for Advanced Medical Innovation, Kyushu University.,Department of Biomedical Engineering, Chung Yuan Christian University
| |
Collapse
|
14
|
Jiang Y, Huang W, Sun X, Yang X, Wu Y, Shi J, Zheng J, Fan S, Liu J, Wang J, Liang Z, Yang N, Liu Z, Liu Y. DTX-P7, a peptide-drug conjugate, is highly effective for non-small cell lung cancer. J Hematol Oncol 2022; 15:73. [PMID: 35659720 PMCID: PMC9164557 DOI: 10.1186/s13045-022-01274-8] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2022] [Accepted: 04/23/2022] [Indexed: 01/06/2023] Open
Abstract
Despite tremendous success of molecular targeted therapy together with immunotherapy, only a small subset of patients can benefit from them. Chemotherapy remains the mainstay treatment for most of tumors including non-small cell lung cancer (NSCLC); however, non-selective adverse effects on healthy tissues and secondary resistance are the main obstacles. Meanwhile, the quiescent or dormant cancer stem-like cells (CSLCs) are resistant to antimitotic chemoradiotherapy. Complete remission can only be realized when both proliferative cancer cells and quiescent cancer stem cells are targeted. In the present research, we constructed a cooperatively combating conjugate (DTX-P7) composed of docetaxel (DTX) and a heptapeptide (P7), which specifically binds to cell surface Hsp90, and assessed the anti-tumor effects of DTX-P7 on non-small cell lung cancer. DTX-P7 preferentially suppressed tumor growth compared with DTX in vivo with a favorable distribution to tumor tissues and long circulation half-life. Furthermore, we revealed a distinctive mechanism whereby DTX-P7 induced unfolded protein response and eventually promoted apoptosis. More importantly, we found that DTX-P7 promoted cell cycle reentry of slow-proliferating CSLCs and subsequently killed them, exhibiting a "proliferate to kill" pattern. Collecitvely, by force of active targeting delivery of DTX via membrane-bound Hsp90, DTX-P7 induces unfolded protein response and subsequent apoptosis by degrading Hsp90, meanwhile awakens and kills the dormant cancer stem cells. Thus, DTX-P7 deserves further development as a promising anticancer therapeutic for treatment of various membrane-harboring Hsp90 cancer types.
Collapse
Affiliation(s)
- Yao Jiang
- Department of Pharmacology, Institute of Basic Medical Sciences, Chinese Academy of Medical Sciences & School of Basic Medicine, Peking Union Medical College, Beijing, 100005, China
| | - Wei Huang
- Department of Pharmacology, Institute of Basic Medical Sciences, Chinese Academy of Medical Sciences & School of Basic Medicine, Peking Union Medical College, Beijing, 100005, China
| | - Xiaojiao Sun
- State Key Laboratory of Natural and Biomimetic Drugs, School of Pharmaceutical Sciences, Peking University, Beijing, 100191, China
| | - Xiaozhou Yang
- Department of Pharmacology, Institute of Basic Medical Sciences, Chinese Academy of Medical Sciences & School of Basic Medicine, Peking Union Medical College, Beijing, 100005, China
| | - Youming Wu
- Department of Pharmacology, Institute of Basic Medical Sciences, Chinese Academy of Medical Sciences & School of Basic Medicine, Peking Union Medical College, Beijing, 100005, China
| | - Jiaojiao Shi
- Department of Pharmacology, Institute of Basic Medical Sciences, Chinese Academy of Medical Sciences & School of Basic Medicine, Peking Union Medical College, Beijing, 100005, China
| | - Ji Zheng
- Department of Pharmacology, Institute of Basic Medical Sciences, Chinese Academy of Medical Sciences & School of Basic Medicine, Peking Union Medical College, Beijing, 100005, China
| | - Shujie Fan
- Department of Pharmacology, Institute of Basic Medical Sciences, Chinese Academy of Medical Sciences & School of Basic Medicine, Peking Union Medical College, Beijing, 100005, China
| | - Junya Liu
- Department of Pharmacology, Institute of Basic Medical Sciences, Chinese Academy of Medical Sciences & School of Basic Medicine, Peking Union Medical College, Beijing, 100005, China
| | - Jun Wang
- Department of Pharmacology, Institute of Basic Medical Sciences, Chinese Academy of Medical Sciences & School of Basic Medicine, Peking Union Medical College, Beijing, 100005, China
| | - Zhen Liang
- Department of Pharmacology, Institute of Basic Medical Sciences, Chinese Academy of Medical Sciences & School of Basic Medicine, Peking Union Medical College, Beijing, 100005, China
| | - Nan Yang
- Department of Pharmacology, Institute of Basic Medical Sciences, Chinese Academy of Medical Sciences & School of Basic Medicine, Peking Union Medical College, Beijing, 100005, China.
| | - Zhenming Liu
- Department of Pharmacology, Institute of Basic Medical Sciences, Chinese Academy of Medical Sciences & School of Basic Medicine, Peking Union Medical College, Beijing, 100005, China.
| | - Yanyong Liu
- Department of Pharmacology, Institute of Basic Medical Sciences, Chinese Academy of Medical Sciences & School of Basic Medicine, Peking Union Medical College, Beijing, 100005, China.
| |
Collapse
|
15
|
Geng R, Harland N, Montes-Mojarro IA, Fend F, Aicher WK, Stenzl A, Amend B. CD24: A Marker for an Extended Expansion Potential of Urothelial Cancer Cell Organoids In Vitro? Int J Mol Sci 2022; 23:5453. [PMID: 35628262 PMCID: PMC9141653 DOI: 10.3390/ijms23105453] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2022] [Revised: 05/03/2022] [Accepted: 05/09/2022] [Indexed: 02/04/2023] Open
Abstract
BACKGROUND Bladder cancer is the most cost-intensive cancer due to high recurrence rates and long follow-up times. Bladder cancer organoids were considered interesting tools for investigating better methods for the detection and treatment of this cancer. METHODS Organoids were generated from urothelial carcinoma tissue samples, then expanded and characterized; the expression of immune modulatory antigens and tumor stem cells markers CD24 and CD44 was explored in early (P ≤ 3) and later (P ≥ 5) passages (P) by immunofluorescence and by quantitative PCR of cDNA. The expression of these factors was investigated in the corresponding cancer tissue samples by immunohistochemistry. RESULTS The expression of the PD-L1 was detected on some but not all organoids. CD276 and CD47 were observed on organoids in all passages investigated. Organoids growing beyond passage 8 expressed both CD24 and CD44 at elevated levels in early and late cultures. Organoids proliferating to the eighth passage initially expressed both CD24 and CD44, but lost CD24 expression over time, while CD44 remained. Organoids growing only up to the 6th passage failed to express CD24 but expressed CD44. CONCLUSIONS The data indicate that the expression of CD24 in urothelial cancer cell organoids may serve as an indicator for the prolonged proliferation potential of the cells.
Collapse
Affiliation(s)
- Ruizhi Geng
- Center for Medical Research, University Hospital, Eberhard Karls University, 72074 72072 Tuebingen, Germany; (R.G.); (W.K.A.)
| | - Niklas Harland
- Department of Urology, University of Tuebingen Hospital, 72076 Tuebingen, Germany; (N.H.); (A.S.)
| | - Ivonne A. Montes-Mojarro
- Institute for Pathology, Eberhard Karls University, 72074 Tuebingen, Germany; (I.A.M.-M.); (F.F.)
| | - Falko Fend
- Institute for Pathology, Eberhard Karls University, 72074 Tuebingen, Germany; (I.A.M.-M.); (F.F.)
| | - Wilhelm K. Aicher
- Center for Medical Research, University Hospital, Eberhard Karls University, 72074 72072 Tuebingen, Germany; (R.G.); (W.K.A.)
| | - Arnulf Stenzl
- Department of Urology, University of Tuebingen Hospital, 72076 Tuebingen, Germany; (N.H.); (A.S.)
| | - Bastian Amend
- Department of Urology, University of Tuebingen Hospital, 72076 Tuebingen, Germany; (N.H.); (A.S.)
| |
Collapse
|
16
|
Wang K, Liu S, Dou Z, Zhang S, Yang X. Loss of Krüppel-like factor 9 facilitates stemness in ovarian cancer ascites-derived multicellular spheroids via Notch1/slug signaling. Cancer Sci 2021; 112:4220-4233. [PMID: 34363722 PMCID: PMC8486214 DOI: 10.1111/cas.15100] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2021] [Revised: 08/01/2021] [Accepted: 08/04/2021] [Indexed: 12/29/2022] Open
Abstract
The ascites that develops in advanced OC, both at diagnosis and upon recurrence, is a rich source of multicellular spheroids/aggregates (MCSs/MCAs), which are the major seeds of tumor cell dissemination within the abdominal cavity. However, the molecular mechanism by which specific ascites-derived tumor cells survive and metastasize remains largely unknown. In this study, we elucidated cancer stem cell (CSC) properties of ascites-derived MCSs, concomitant with enhanced malignancy, induced EMT, and low KLF9 (Krüppel-like factor 9) expression, compared with PTCs. KLF9 was also downregulated in OC cell line-derived spheroids and the CD117+ CD44+ subpopulation in MCSs. Functional experiments demonstrated that KLF9 negatively modulated stem-like properties in OC cells. Mechanistic studies revealed that KLF9 reduced the transcriptional expression of Notch1 by directly binding to the Notch1 promoter, thereby inhibiting the function of slug in a CSL-dependent manner. Clinically, expression of KLF9 was associated with histological grade and loss of KLF9 predicts poor prognosis in OC.
Collapse
Affiliation(s)
- Kun Wang
- Department of Obstetrics and Gynecology, Qilu Hospital of Shandong University, Ji'nan, China
| | - Shujie Liu
- Department of Obstetrics and Gynecology, Qilu Hospital of Shandong University, Ji'nan, China
| | - Zhiyuan Dou
- Department of Obstetrics and Gynecology, Qilu Hospital of Shandong University, Ji'nan, China
| | - Shuo Zhang
- Department of Obstetrics and Gynecology, Qilu Hospital of Shandong University, Ji'nan, China
| | - Xingsheng Yang
- Department of Obstetrics and Gynecology, Qilu Hospital of Shandong University, Ji'nan, China
| |
Collapse
|
17
|
Talukdar S, Chang Z, Winterhoff B, Starr TK. Single-Cell RNA Sequencing of Ovarian Cancer: Promises and Challenges. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2021; 1330:113-123. [PMID: 34339033 DOI: 10.1007/978-3-030-73359-9_7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Ovarian cancer remains the leading cause of death from gynecologic malignancy in the Western world. Tumors are comprised of heterogeneous populations of various cancer, immune, and stromal cells; it is hypothesized that rare cancer stem cells within these subpopulations lead to disease recurrence and treatment resistance. Technological advances now allow for the analysis of tumor genomes and transcriptomes at the single-cell level, which provides the resolution to potentially identify these rare cancer stem cells within the larger tumor.In this chapter, we review the evolution of next-generation RNA sequencing techniques, the methodology of single-cell isolation and sequencing, sequencing data analysis, and the potential applications in ovarian cancer. We also summarize the current published work using single-cell sequencing in ovarian cancer.By utilizing this novel technique to characterize the gene expression of rare subpopulations, new targets and treatment pathways may be identified in ovarian cancer to change treatment paradigms.
Collapse
Affiliation(s)
- Shobhana Talukdar
- Division of Gynecologic Oncology, Department of Obstetrics, Gynecology and Women's Health, University of Minnesota School of Medicine, Minneapolis, MN, USA
| | - Zenas Chang
- Division of Gynecologic Oncology, Department of Obstetrics, Gynecology and Women's Health, University of Minnesota School of Medicine, Minneapolis, MN, USA
| | - Boris Winterhoff
- Division of Gynecologic Oncology, Department of Obstetrics, Gynecology and Women's Health, University of Minnesota School of Medicine, Minneapolis, MN, USA
- Masonic Cancer Center, University of Minnesota, Minneapolis, MN, USA
| | - Timothy K Starr
- Division of Gynecologic Oncology, Department of Obstetrics, Gynecology and Women's Health, University of Minnesota School of Medicine, Minneapolis, MN, USA.
- Masonic Cancer Center, University of Minnesota, Minneapolis, MN, USA.
- Institute of Health Informatics, University of Minnesota, Minneapolis, MN, USA.
| |
Collapse
|
18
|
Keyvani-Ghamsari S, Khorsandi K, Rasul A, Zaman MK. Current understanding of epigenetics mechanism as a novel target in reducing cancer stem cells resistance. Clin Epigenetics 2021; 13:120. [PMID: 34051847 PMCID: PMC8164819 DOI: 10.1186/s13148-021-01107-4] [Citation(s) in RCA: 40] [Impact Index Per Article: 13.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2021] [Accepted: 05/19/2021] [Indexed: 12/13/2022] Open
Abstract
At present, after extensive studies in the field of cancer, cancer stem cells (CSCs) have been proposed as a major factor in tumor initiation, progression, metastasis, and recurrence. CSCs are a subpopulation of bulk tumors, with stem cell-like properties and tumorigenic capabilities, having the abilities of self-renewal and differentiation, thereby being able to generate heterogeneous lineages of cancer cells and lead to resistance toward anti-tumor treatments. Highly resistant to conventional chemo- and radiotherapy, CSCs have heterogeneity and can migrate to different organs and metastasize. Recent studies have demonstrated that the population of CSCs and the progression of cancer are increased by the deregulation of different epigenetic pathways having effects on gene expression patterns and key pathways connected with cell proliferation and survival. Further, epigenetic modifications (DNA methylation, histone modifications, and RNA methylations) have been revealed to be key drivers in the formation and maintenance of CSCs. Hence, identifying CSCs and targeting epigenetic pathways therein can offer new insights into the treatment of cancer. In the present review, recent studies are addressed in terms of the characteristics of CSCs, the resistance thereof, and the factors influencing the development thereof, with an emphasis on different types of epigenetic changes in genes and main signaling pathways involved therein. Finally, targeted therapy for CSCs by epigenetic drugs is referred to, which is a new approach in overcoming resistance and recurrence of cancer.
Collapse
Affiliation(s)
| | - Khatereh Khorsandi
- Department of Photodynamic, Medical Laser Research Center, Yara Institute, ACECR, Tehran, Iran.
| | - Azhar Rasul
- Department of Zoology, Government College University Faisalabad, Faisalabad, 38000, Pakistan
| | - Muhammad Khatir Zaman
- Department of Biotechnology, Abdul Wali Khan University Mardan (AWKUM), Mardan, 23200, Pakistan
| |
Collapse
|
19
|
Yu L, Guo QM, Wang Y, Xu Y, Liu L, Zhang XT. EpCAM expression in esophageal cancer and its correlation with immunotherapy of solitomab. J Thorac Dis 2021; 13:2404-2413. [PMID: 34012588 PMCID: PMC8107559 DOI: 10.21037/jtd-21-442] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/09/2022]
Abstract
Background Recurrence of esophageal cancer (EC) after chemotherapy may mainly be explained by the existence of chemotherapy-resistant cells, and an effective drug against chemotherapy-resistant cells is highly sought. The aim of this study was to investigate the cytotoxicity of bispecific antibody solitomab combined with γ δ T cells on Eca109 cell spheres. Methods We cultured Eca109 cell spheres in serum-free medium, and the morphological differences between wild-type Eca109 cells and Eca109 cell spheres were compared by microscope and flow cytometry. Different concentrations of nanoparticle albumin-bound paclitaxel (Nab-PTX) and cisplatin were used to treat the two groups of cells and compare their drug resistance. Flow cytometry was then used to detect the expression level of epithelial cell adhesion molecule (EpCAM) and the cytotoxicity of γ δ T cells combined with bispecific antibody solitomab on the two groups. Results Flow cytometry analysis showed that Eca109 cell spheres were smaller in size and had less cytoplasmic granules and CCK-8 assay showed that the viability of Eca109 cell spheres treated with different concentrations of Nab-PTX and cisplatin was significantly higher than that of wild-type Eca109 cells (P<0.05). Flow cytometry also showed that the expression level of EpCAM on Eca109 cell spheres was higher than that of wild-type Eca109 cells. Co-culture experiment showed that there was no significant difference in the cytotoxicity of γ δ T cells to wild-type Eca109 cells and Eca109 cell spheres without solitomab. However, after adding solitomab, the cytotoxicity of γ δ T cells to Eca109 cell spheres was significantly higher than that of wild-type Eca109 cells (P<0.05). Conclusions EC Eca109 cell spheres have strong stem cell characteristics such as multidrug resistance and may contain a high proportion of EC stem cells. Further, EC Eca109 cell spheres have a high expression level of EpCAM, and EpCAM may be one of the markers of EC stem cells. Therefore, EpCAM could be used as a potential molecular target of immunotherapy for EC, and solitomab may become an effective immunotherapeutic drug for chemotherapy-resistant EC cells.
Collapse
Affiliation(s)
- Lan Yu
- Department of Stereotactic Radiotherapy, Affiliated Qingdao Central Hospital, Qingdao University, Qingdao, China
| | - Qing-Ming Guo
- Biotherapy Center, Affiliated Qingdao Central Hospital, Qingdao University, Qingdao, China
| | - Yu Wang
- Department of Stereotactic Radiotherapy, Affiliated Qingdao Central Hospital, Qingdao University, Qingdao, China
| | - Yan Xu
- Department of Stereotactic Radiotherapy, Affiliated Qingdao Central Hospital, Qingdao University, Qingdao, China
| | - Li Liu
- Department of Stereotactic Radiotherapy, Affiliated Qingdao Central Hospital, Qingdao University, Qingdao, China
| | - Xiao-Tao Zhang
- Department of Stereotactic Radiotherapy, Affiliated Qingdao Central Hospital, Qingdao University, Qingdao, China
| |
Collapse
|
20
|
Discovery of a chemical compound that suppresses expression of BEX2, a dormant cancer stem cell-related protein. Biochem Biophys Res Commun 2021; 537:132-139. [PMID: 33412384 DOI: 10.1016/j.bbrc.2020.11.022] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2020] [Accepted: 11/06/2020] [Indexed: 01/06/2023]
Abstract
Cancer stem cells (CSCs) are believed to cause cancer metastasis and recurrence. BEX2 (brain expressed X-linked gene 2) is a CSC-related gene that is expressed in dormant CSCs in cholangiocarcinoma and induces resistance against chemotherapy. The aim of the present study was to identify small compounds that have activity to inhibit BEX2 expression and result in the attenuation of CSC-related phenotypes. We screened 9600 small chemical compounds in high-throughput screening using cholangiocarcinoma cell line HuCCT1 expressing BEX2 protein fused with NanoLuc, and identified a compound, BMPP (1, 3-Benzenediol, [4-(4-methoxyphenyl)-1H-pyrazol-3-yl]). BMPP was found to exert decreasing effects on BEX2 protein expression and G0 phase population of the tumor cells, and increasing effects on ATP levels and chemotherapeutic sensitivity of the cells. These findings indicate that BMPP is a valuable chemical compound for reducing dormant CSC-related phenotypes. Thus, the identification of BMPP as a potential CSC suppressor provides scope for the development of novel therapeutic modalities for the treatment of cancers with BEX2 overexpressing CSCs.
Collapse
|
21
|
Kharkar PS. Cancer Stem Cell (CSC) Inhibitors in Oncology-A Promise for a Better Therapeutic Outcome: State of the Art and Future Perspectives. J Med Chem 2020; 63:15279-15307. [PMID: 33325699 DOI: 10.1021/acs.jmedchem.0c01336] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
Cancer stem cells (CSCs), a subpopulation of cancer cells endowed with self-renewal, tumorigenicity, pluripotency, chemoresistance, differentiation, invasive ability, and plasticity, reside in specialized tumor niches and are responsible for tumor maintenance, metastasis, therapy resistance, and tumor relapse. The new-age "hierarchical or CSC" model of tumor heterogeneity is based on the concept of eradicating CSCs to prevent tumor relapse and therapy resistance. Small-molecular entities and biologics acting on various stemness signaling pathways, surface markers, efflux transporters, or components of complex tumor microenvironment are under intense investigation as potential anti-CSC agents. In addition, smart nanotherapeutic tools have proved their utility in achieving CSC targeting. Several CSC inhibitors in clinical development have shown promise, either as mono- or combination therapy, in refractory and difficult-to-treat cancers. Clinical investigations with CSC marker follow-up as a measure of clinical efficacy are needed to turn the "hype" into the "hope" these new-age oncology therapeutics have to offer.
Collapse
Affiliation(s)
- Prashant S Kharkar
- Department of Pharmaceutical Sciences and Technology, Institute of Chemical Technology, Matunga, Mumbai 400 019, India
| |
Collapse
|
22
|
Zhang S, Gong Y, Li C, Yang W, Li L. Beyond regulations at DNA levels: A review of epigenetic therapeutics targeting cancer stem cells. Cell Prolif 2020; 54:e12963. [PMID: 33314500 PMCID: PMC7848960 DOI: 10.1111/cpr.12963] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2020] [Revised: 11/10/2020] [Accepted: 11/12/2020] [Indexed: 02/05/2023] Open
Abstract
In the past few years, the paramount role of cancer stem cells (CSCs), in terms of cancer initiation, proliferation, metastasis, invasion and chemoresistance, has been revealed by accumulating studies. However, this level of cellular plasticity cannot be entirely explained by genetic mutations. Research on epigenetic modifications as a complementary explanation for the properties of CSCs has been increasing over the past several years. Notably, therapeutic strategies are currently being developed in an effort to reverse aberrant epigenetic alterations using specific chemical inhibitors. In this review, we summarize the current understanding of CSCs and their role in cancer progression, and provide an overview of epigenetic alterations seen in CSCs. Importantly, we focus on primary cancer therapies that target the epigenetic modification of CSCs by the use of specific chemical inhibitors, such as histone deacetylase (HDAC) inhibitors, DNA methyltransferase (DNMT) inhibitors and microRNA‐based (miRNA‐based) therapeutics.
Collapse
Affiliation(s)
- Shunhao Zhang
- State Key Laboratory of Oral Disease, National Clinical Research Center for Oral Disease, Department of Oral and Maxillofacial Surgery, West China Hospital of Stomatology, Sichuan University, Sichuan Province, Chengdu, China
| | - Yanji Gong
- State Key Laboratory of Oral Disease, National Clinical Research Center for Oral Disease, Department of Temporomandibular Joint, West China Hospital of Stomatology, Sichuan University, Chengdu, Sichuan Province, China.,State Key Laboratory of Oral Disease, National Clinical Research Center for Oral Disease, Department of Head and Neck Oncology, West China Hospital of Stomatology, Sichuan University, Chengdu, Sichuan Province, China
| | - Chunjie Li
- State Key Laboratory of Oral Disease, National Clinical Research Center for Oral Disease, Department of Head and Neck Oncology, West China Hospital of Stomatology, Sichuan University, Chengdu, Sichuan Province, China
| | - Wenbin Yang
- State Key Laboratory of Oral Disease, National Clinical Research Center for Oral Disease, Department of Oral and Maxillofacial Surgery, West China Hospital of Stomatology, Sichuan University, Sichuan Province, Chengdu, China
| | - Longjiang Li
- State Key Laboratory of Oral Disease, National Clinical Research Center for Oral Disease, Department of Head and Neck Oncology, West China Hospital of Stomatology, Sichuan University, Chengdu, Sichuan Province, China
| |
Collapse
|
23
|
Valle S, Alcalá S, Martin-Hijano L, Cabezas-Sáinz P, Navarro D, Muñoz ER, Yuste L, Tiwary K, Walter K, Ruiz-Cañas L, Alonso-Nocelo M, Rubiolo JA, González-Arnay E, Heeschen C, Garcia-Bermejo L, Hermann PC, Sánchez L, Sancho P, Fernández-Moreno MÁ, Sainz B. Exploiting oxidative phosphorylation to promote the stem and immunoevasive properties of pancreatic cancer stem cells. Nat Commun 2020; 11:5265. [PMID: 33067432 PMCID: PMC7567808 DOI: 10.1038/s41467-020-18954-z] [Citation(s) in RCA: 73] [Impact Index Per Article: 18.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2019] [Accepted: 09/22/2020] [Indexed: 12/18/2022] Open
Abstract
Pancreatic ductal adenocarcinoma (PDAC), the fourth leading cause of cancer death, has a 5-year survival rate of approximately 7-9%. The ineffectiveness of anti-PDAC therapies is believed to be due to the existence of a subpopulation of tumor cells known as cancer stem cells (CSCs), which are functionally plastic, and have exclusive tumorigenic, chemoresistant and metastatic capacities. Herein, we describe a 2D in vitro system for long-term enrichment of pancreatic CSCs that is amenable to biological and CSC-specific studies. By changing the carbon source from glucose to galactose in vitro, we force PDAC cells to utilize OXPHOS, resulting in enrichment of CSCs defined by increased CSC biomarker and pluripotency gene expression, greater tumorigenic potential, induced but reversible quiescence, increased OXPHOS activity, enhanced invasiveness, and upregulated immune evasion properties. This CSC enrichment method can facilitate the discovery of new CSC-specific hallmarks for future development into targets for PDAC-based therapies.
Collapse
Affiliation(s)
- Sandra Valle
- Department of Biochemistry, Universidad Autónoma de Madrid (UAM) and Instituto de Investigaciones Biomédicas "Alberto Sols" (IIBM), CSIC-UAM, Madrid, Spain
- Cancer Stem Cells and Fibroinflammatory Microenvironment Group, Chronic Diseases and Cancer Area 3 - Instituto Ramón y Cajal de Investigación Sanitaria (IRYCIS), Madrid, Spain
| | - Sonia Alcalá
- Department of Biochemistry, Universidad Autónoma de Madrid (UAM) and Instituto de Investigaciones Biomédicas "Alberto Sols" (IIBM), CSIC-UAM, Madrid, Spain
- Cancer Stem Cells and Fibroinflammatory Microenvironment Group, Chronic Diseases and Cancer Area 3 - Instituto Ramón y Cajal de Investigación Sanitaria (IRYCIS), Madrid, Spain
| | - Laura Martin-Hijano
- Department of Biochemistry, Universidad Autónoma de Madrid (UAM) and Instituto de Investigaciones Biomédicas "Alberto Sols" (IIBM), CSIC-UAM, Madrid, Spain
- Cancer Stem Cells and Fibroinflammatory Microenvironment Group, Chronic Diseases and Cancer Area 3 - Instituto Ramón y Cajal de Investigación Sanitaria (IRYCIS), Madrid, Spain
| | - Pablo Cabezas-Sáinz
- Department of Zoology, Genetics and Physical Anthropology, Veterinary Faculty, Universidad de Santiago de Compostela, Lugo, Spain
| | - Diego Navarro
- Department of Biochemistry, Universidad Autónoma de Madrid (UAM) and Instituto de Investigaciones Biomédicas "Alberto Sols" (IIBM), CSIC-UAM, Madrid, Spain
- Cancer Stem Cells and Fibroinflammatory Microenvironment Group, Chronic Diseases and Cancer Area 3 - Instituto Ramón y Cajal de Investigación Sanitaria (IRYCIS), Madrid, Spain
| | | | - Lourdes Yuste
- Department of Biochemistry, Universidad Autónoma de Madrid (UAM) and Instituto de Investigaciones Biomédicas "Alberto Sols" (IIBM), CSIC-UAM, Madrid, Spain
- Cancer Stem Cells and Fibroinflammatory Microenvironment Group, Chronic Diseases and Cancer Area 3 - Instituto Ramón y Cajal de Investigación Sanitaria (IRYCIS), Madrid, Spain
| | - Kanishka Tiwary
- Department of Internal Medicine I, Ulm University, Ulm, Germany
| | - Karolin Walter
- Department of Internal Medicine I, Ulm University, Ulm, Germany
| | - Laura Ruiz-Cañas
- Department of Biochemistry, Universidad Autónoma de Madrid (UAM) and Instituto de Investigaciones Biomédicas "Alberto Sols" (IIBM), CSIC-UAM, Madrid, Spain
- Cancer Stem Cells and Fibroinflammatory Microenvironment Group, Chronic Diseases and Cancer Area 3 - Instituto Ramón y Cajal de Investigación Sanitaria (IRYCIS), Madrid, Spain
| | - Marta Alonso-Nocelo
- Department of Biochemistry, Universidad Autónoma de Madrid (UAM) and Instituto de Investigaciones Biomédicas "Alberto Sols" (IIBM), CSIC-UAM, Madrid, Spain
- Cancer Stem Cells and Fibroinflammatory Microenvironment Group, Chronic Diseases and Cancer Area 3 - Instituto Ramón y Cajal de Investigación Sanitaria (IRYCIS), Madrid, Spain
| | - Juan A Rubiolo
- Department of Zoology, Genetics and Physical Anthropology, Veterinary Faculty, Universidad de Santiago de Compostela, Lugo, Spain
| | | | - Christopher Heeschen
- Stem Cells & Cancer Group, Molecular Pathology Programme, Spanish National Cancer Research Centre (CNIO), Madrid, Spain
- Center for Single-Cell Omics and Key Laboratory of Oncogenes and Related Genes, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | | | | | - Laura Sánchez
- Department of Zoology, Genetics and Physical Anthropology, Veterinary Faculty, Universidad de Santiago de Compostela, Lugo, Spain
| | | | - Miguel Ángel Fernández-Moreno
- Department of Biochemistry, Universidad Autónoma de Madrid (UAM) and Instituto de Investigaciones Biomédicas "Alberto Sols" (IIBM), CSIC-UAM, Madrid, Spain.
- Centro de Investigación Biomédica en Red en Enfermedades Raras (CIBERER), Madrid, Spain.
- Instituto de Investigación Sanitaria Hospital 12 de Octubre (imas12), Madrid, Spain.
| | - Bruno Sainz
- Department of Biochemistry, Universidad Autónoma de Madrid (UAM) and Instituto de Investigaciones Biomédicas "Alberto Sols" (IIBM), CSIC-UAM, Madrid, Spain.
- Cancer Stem Cells and Fibroinflammatory Microenvironment Group, Chronic Diseases and Cancer Area 3 - Instituto Ramón y Cajal de Investigación Sanitaria (IRYCIS), Madrid, Spain.
| |
Collapse
|
24
|
Lee SH, Reed-Newman T, Anant S, Ramasamy TS. Regulatory Role of Quiescence in the Biological Function of Cancer Stem Cells. Stem Cell Rev Rep 2020; 16:1185-1207. [DOI: 10.1007/s12015-020-10031-8] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
|
25
|
Xu C, Sun M, Zhang X, Xu Z, Miyamoto H, Zheng Y. Activation of Glucocorticoid Receptor Inhibits the Stem-Like Properties of Bladder Cancer via Inactivating the β-Catenin Pathway. Front Oncol 2020; 10:1332. [PMID: 32850423 PMCID: PMC7419687 DOI: 10.3389/fonc.2020.01332] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2020] [Accepted: 06/25/2020] [Indexed: 12/18/2022] Open
Abstract
Background: Glucocorticoid receptor (GR) signaling pathway has been shown to involve epithelial -to- mesenchymal transition which was implicated in the regulation of bladder cancer stem cells (CSCs) in our previous study. Herein, we aim to figure out how GR affects the stem-like properties of bladder cancer cells. Methods: We used dexamethasone (DEX) treatment or gene-knockdown/-knockout techniques to activate or silence the GR pathway, respectively. Then we applied immunohistochemical staining and flow cytometry to assess the associations between the expression levels of GR and a stem cell surface marker CD44. Stem-like properties were assessed by reactive oxygen species (ROS), sphere-formation and side population assays. The expression levels of cancer stem cell-associated molecules were assessed by quantitative PCR and Western blotting. Tumor growth was compared using mouse xenograft models. Results: In GR-positive bladder cancer cells, DEX significantly reduced the expression of CD44 as well as pluripotency transcription factors including β-catenin and its downstream target (C-MYC, Snail, and OCT-4), the rate of sphere formation, and the proportion of side populations, and induced the intracellular levels of ROS. By contrast, GR silencing in bladder cancer cells showed the opposite effects. In xenograft-bearing mice, GR silencing resulted in the enhancement of tumor growth. Conclusions: These data suggested that GR activity was inversely associated with the stem-like properties of bladder cancer cells, potentially via inactivating the β-catenin pathway.
Collapse
Affiliation(s)
- Congcong Xu
- Department of Urology, The Second Affiliated Hospital of Zhejiang University School of Medicine, Hangzhou, China.,Department of Urology, The First Affiliated Hospital of Zhejiang University School of Medicine, Hangzhou, China
| | - Mingwei Sun
- Department of Urology, The Second Affiliated Hospital of Zhejiang University School of Medicine, Hangzhou, China
| | - Xiaozhen Zhang
- Department of Hepatobiliary and Pancreatic Surgery, The First Affiliated Hospital of Zhejiang University School of Medicine, Hangzhou, China
| | - Zhen Xu
- Department of Urology, The Second Affiliated Hospital of Zhejiang University School of Medicine, Hangzhou, China
| | - Hiroshi Miyamoto
- Department of Pathology and Laboratory Medicine, University of Rochester Medical Center, Rochester, NY, United States
| | - Yichun Zheng
- Department of Urology, The Second Affiliated Hospital of Zhejiang University School of Medicine, Hangzhou, China
| |
Collapse
|
26
|
Mohapatra P, Singh P, Sahoo SK. Phytonanomedicine: a novel avenue to treat recurrent cancer by targeting cancer stem cells. Drug Discov Today 2020; 25:1307-1321. [PMID: 32554061 DOI: 10.1016/j.drudis.2020.06.003] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2020] [Revised: 05/11/2020] [Accepted: 06/08/2020] [Indexed: 12/17/2022]
Abstract
Research suggests that tumor relapse and metastasis is caused by minor population of tumor-initiating cells called cancer stem cells (CSCs), which exhibit self-renewability, quiescence, antiapoptosis, and drug resistance. Conventional chemotherapeutics target rapidly proliferating cells but fail to exert cytotoxic effects on CSCs, thus enriching them and driving metastasis and relapse. Hence, targeting CSCs is essential for developing novel therapies for effective cancer treatment. Pertaining to this, several phytochemicals have been identified that exhibit anti-CSC activity. However, poor pharmacokinetics prevents their clinical translation. Hence, developing phytonanomedicine can help to improve the pharmacokinetic profile of these biologically active molecules. In this review, we summarize the current state of the art of phytonanomedicine in the context of CSCs and their clinical status in cancer treatment.
Collapse
Affiliation(s)
| | - Priya Singh
- Institute of Life Sciences, Bhubaneswar, Odisha, India
| | | |
Collapse
|
27
|
Safa AR. Resistance to drugs and cell death in cancer stem cells (CSCs). JOURNAL OF TRANSLATIONAL SCIENCE 2020; 6:341. [PMID: 35330670 PMCID: PMC8941648 DOI: 10.15761/jts.1000341] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 04/14/2023]
Abstract
Human cancers emerge from cancer stem cells (CSCs), which are resistant to cancer chemotherapeutic agents, radiation, and cell death. Moreover, autophagy provides the cytoprotective effect which contributes to drug resistance in these cells. Furthermore, much evidence shows that CSCs cause tumor initiation, progression, metastasis, and cancer recurrence. Various signaling pathways including the phosphatidylinositol 3-kinase (PI3K)/Akt/mammalian target of rapamycin (mTOR), maternal embryonic leucine zipper kinase (MELK), NOTCH1, and Wnt/β-catenin as well as the CSC markers maintain CSC properties. Several mechanisms including overexpression of ABC multidrug resistance transporters, a deficiency in mitochondrial-mediated apoptosis, upregulation of c-FLIP, overexpression of anti-apoptotic Bcl-2 family members and inhibitors of apoptosis proteins (IAPs), and PI3K/AKT signaling contribute to enhancing resistance to chemotherapeutic drugs and cell death induction in CSCs in various cancers. Studying such pathways may help provide detailed understanding of CSC mechanisms of resistance to chemotherapeutic agents and apoptosis and may lead to the development of effective therapeutics to eradicate CSCs.
Collapse
Affiliation(s)
- Ahmad R Safa
- Correspondence to: Ahmad R. Safa, Department of Pharmacology and Toxicology, 635 Barnhill, Dr. MS A416, Indiana University School of Medicine, Indianapolis, IN, USA,
| |
Collapse
|
28
|
Ghoneum A, Gonzalez D, Abdulfattah AY, Said N. Metabolic Plasticity in Ovarian Cancer Stem Cells. Cancers (Basel) 2020; 12:E1267. [PMID: 32429566 PMCID: PMC7281273 DOI: 10.3390/cancers12051267] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2020] [Revised: 05/15/2020] [Accepted: 05/15/2020] [Indexed: 12/18/2022] Open
Abstract
Ovarian Cancer is the fifth most common cancer in females and remains the most lethal gynecological malignancy as most patients are diagnosed at late stages of the disease. Despite initial responses to therapy, recurrence of chemo-resistant disease is common. The presence of residual cancer stem cells (CSCs) with the unique ability to adapt to several metabolic and signaling pathways represents a major challenge in developing novel targeted therapies. The objective of this study is to investigate the transcripts of putative ovarian cancer stem cell (OCSC) markers in correlation with transcripts of receptors, transporters, and enzymes of the energy generating metabolic pathways involved in high grade serous ovarian cancer (HGSOC). We conducted correlative analysis in data downloaded from The Cancer Genome Atlas (TCGA), studies of experimental OCSCs and their parental lines from Gene Expression Omnibus (GEO), and Cancer Cell Line Encyclopedia (CCLE). We found positive correlations between the transcripts of OCSC markers, specifically CD44, and glycolytic markers. TCGA datasets revealed that NOTCH1, CD133, CD44, CD24, and ALDH1A1, positively and significantly correlated with tricarboxylic acid cycle (TCA) enzymes. OVCAR3-OCSCs (cancer stem cells derived from a well-established epithelial ovarian cancer cell line) exhibited enrichment of the electron transport chain (ETC) mainly in complexes I, III, IV, and V, further supporting reliance on the oxidative phosphorylation (OXPHOS) phenotype. OVCAR3-OCSCs also exhibited significant increase in CD36, ACACA, SCD, and CPT1A, with CD44, CD133, and ALDH1A1 exhibiting positive correlations with lipid metabolic enzymes. TCGA data show positive correlations between OCSC markers and glutamine metabolism enzymes, whereas in OCSC experimental models of GSE64999, GSE28799, and CCLE, the number of positive and negative correlations observed was significantly lower and was different between model systems. Appropriate integration and validation of data model systems with those in patients' specimens is needed not only to bridge our knowledge gap of metabolic programing of OCSCs, but also in designing novel strategies to target the metabolic plasticity of dormant, resistant, and CSCs.
Collapse
Affiliation(s)
- Alia Ghoneum
- Departments of Cancer Biology, Wake Forest University School of Medicine, Winston Salem, NC 27157, USA; (A.G.); (D.G.); (A.Y.A.)
| | - Daniela Gonzalez
- Departments of Cancer Biology, Wake Forest University School of Medicine, Winston Salem, NC 27157, USA; (A.G.); (D.G.); (A.Y.A.)
| | - Ammar Yasser Abdulfattah
- Departments of Cancer Biology, Wake Forest University School of Medicine, Winston Salem, NC 27157, USA; (A.G.); (D.G.); (A.Y.A.)
- Faculty of Medicine, University of Alexandria, Alexandria 21131, Egypt
| | - Neveen Said
- Departments of Cancer Biology, Wake Forest University School of Medicine, Winston Salem, NC 27157, USA; (A.G.); (D.G.); (A.Y.A.)
- Departments of Pathology, Wake Forest University School of Medicine, Winston Salem, NC 27157, USA
- Departments of Urology, Wake Forest University School of Medicine, Winston Salem, NC 27157, USA
- Comprehensive Cancer Center, Wake Forest Baptist Health Sciences, Winston Salem, NC 27157, USA
| |
Collapse
|
29
|
Abstract
Artificial intelligence (AI) has contributed substantially to the resolution of a variety of biomedical problems, including cancer, over the past decade. Deep learning, a subfield of AI that is highly flexible and supports automatic feature extraction, is increasingly being applied in various areas of both basic and clinical cancer research. In this review, we describe numerous recent examples of the application of AI in oncology, including cases in which deep learning has efficiently solved problems that were previously thought to be unsolvable, and we address obstacles that must be overcome before such application can become more widespread. We also highlight resources and datasets that can help harness the power of AI for cancer research. The development of innovative approaches to and applications of AI will yield important insights in oncology in the coming decade.
Collapse
Affiliation(s)
- Hideyuki Shimizu
- Department of Molecular and Cellular BiologyMedical Institute of BioregulationKyushu UniversityFukuokaJapan
| | - Keiichi I. Nakayama
- Department of Molecular and Cellular BiologyMedical Institute of BioregulationKyushu UniversityFukuokaJapan
| |
Collapse
|
30
|
Sabini C, Sorbi F, Cunnea P, Fotopoulou C. Ovarian cancer stem cells: ready for prime time? Arch Gynecol Obstet 2020; 301:895-899. [PMID: 32200419 DOI: 10.1007/s00404-020-05510-9] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2019] [Accepted: 03/12/2020] [Indexed: 01/03/2023]
Abstract
INTRODUCTION The role of cancer stem cells (CSC) remains controversial and increasingly subject of investigation as a potential oncogenetic platform with promising therapeutic implications. Understanding the role of CSCs in a highly heterogeneous disease like epithelial ovarian cancer (EOC) may potentially lead to the better understanding of the oncogenetic and metastatic pathways of the disease, but also to develop novel strategies against its progression and platinum resistance. METHODS We have performed a review of all relevant literature that addresses the oncogenetic potential of stem cells in EOC, their mechanisms, and the associated therapeutic targets. RESULTS Cancer stem cells (CSCs) have been reported to be implicated not only in the development and pathways of intratumoral heterogeneity (ITH), but also potentially modulating the tumor microenvironment, leading to the selection of sub-clones resistant to chemotherapy. Furthermore, it appears that the enhanced DNA repair abilities of CSCs are connected with their endurance and resistance maintaining their genomic integrity during novel targeted treatments such as PARP inhibitors, allowing them to survive and causing disease relapse functioning as a tumor seeds. CONCLUSIONS It appears that CSCs play a major role in the underlying mechanisms of oncogenesis and development of relapse in EOC. Part of promising future plans would be to not only use them as therapeutic targets, but also extent their value on a preventative level through engineering mechanisms and prevention of EOC in its origin.
Collapse
Affiliation(s)
- Carlotta Sabini
- Department of Biomedical, Experimental and Clinical Sciences, Division of Obstetrics and Gynecology, University of Florence, 50134, Florence, Italy
| | - Flavia Sorbi
- Department of Biomedical, Experimental and Clinical Sciences, Division of Obstetrics and Gynecology, University of Florence, 50134, Florence, Italy
| | - Paula Cunnea
- West London Gynecological Cancer Centre, Imperial College NHS Trust, London, W12 OHS, UK.,Department of Surgery and Cancer, Imperial College London, Du Cane Road, London, W12 0HS, UK
| | - Christina Fotopoulou
- West London Gynecological Cancer Centre, Imperial College NHS Trust, London, W12 OHS, UK. .,Department of Surgery and Cancer, Imperial College London, Du Cane Road, London, W12 0HS, UK.
| |
Collapse
|
31
|
Glioblastoma Multiforme Stem Cell Cycle Arrest by Alkylaminophenol Through the Modulation of EGFR and CSC Signaling Pathways. Cells 2020; 9:cells9030681. [PMID: 32164385 PMCID: PMC7140667 DOI: 10.3390/cells9030681] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2020] [Revised: 03/03/2020] [Accepted: 03/09/2020] [Indexed: 12/22/2022] Open
Abstract
Cancer stem cells (CSCs), a small subpopulation of cells existing in the tumor microenvironment promoting cell proliferation and growth. Targeting the stemness of the CSC population would offer a vital therapeutic opportunity. 3,4-Dihydroquinolin-1(2H)-yl)(p-tolyl)methyl)phenol (THTMP), a small synthetic phenol compound, is proposed to play a significant role in controlling the CSC proliferation and survival. We assessed the potential therapeutic effects of THTMP on glioblastoma multiforme (GBM) and its underlying mechanism in various signaling pathways. To fully comprehend the effect of THTMP on the CSCs, CD133+ GBM stem cell (GSC) and CD133- GBM Non-stem cancer cells (NSCC) population from LN229 and SNB19 cell lines was used. Cell cycle arrest, apoptosis assay and transcriptome analysis were performed for individual cell population. THTMP strongly inhibited NSCC and in a subtle way for GSC in a time-dependent manner and inhibit the resistance variants better than that of temozolomide (TMZ). THTMP arrest the CSC cell population at both G1/S and G2/M phase and induce ROS-mediated apoptosis. Gene expression profiling characterize THTMP as an inhibitor of the p53 signaling pathway causing DNA damage and cell cycle arrest in CSC population. We show that the THTMP majorly affects the EGFR and CSC signaling pathways. Specifically, modulation of key genes involved in Wnt, Notch and Hedgehog, revealed the significant role of THTMP in disrupting the CSCs’ stemness and functions. Moreover, THTMP inhibited cell growth, proliferation and metastasis of multiple mesenchymal patient-tissue derived GBM-cell lines. THTMP arrests GBM stem cell cycle through the modulation of EGFR and CSC signaling pathways.
Collapse
|
32
|
Yang L, Shi P, Zhao G, Xu J, Peng W, Zhang J, Zhang G, Wang X, Dong Z, Chen F, Cui H. Targeting cancer stem cell pathways for cancer therapy. Signal Transduct Target Ther 2020; 5:8. [PMID: 32296030 PMCID: PMC7005297 DOI: 10.1038/s41392-020-0110-5] [Citation(s) in RCA: 988] [Impact Index Per Article: 247.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2019] [Revised: 12/15/2019] [Accepted: 12/19/2019] [Indexed: 12/18/2022] Open
Abstract
Since cancer stem cells (CSCs) were first identified in leukemia in 1994, they have been considered promising therapeutic targets for cancer therapy. These cells have self-renewal capacity and differentiation potential and contribute to multiple tumor malignancies, such as recurrence, metastasis, heterogeneity, multidrug resistance, and radiation resistance. The biological activities of CSCs are regulated by several pluripotent transcription factors, such as OCT4, Sox2, Nanog, KLF4, and MYC. In addition, many intracellular signaling pathways, such as Wnt, NF-κB (nuclear factor-κB), Notch, Hedgehog, JAK-STAT (Janus kinase/signal transducers and activators of transcription), PI3K/AKT/mTOR (phosphoinositide 3-kinase/AKT/mammalian target of rapamycin), TGF (transforming growth factor)/SMAD, and PPAR (peroxisome proliferator-activated receptor), as well as extracellular factors, such as vascular niches, hypoxia, tumor-associated macrophages, cancer-associated fibroblasts, cancer-associated mesenchymal stem cells, extracellular matrix, and exosomes, have been shown to be very important regulators of CSCs. Molecules, vaccines, antibodies, and CAR-T (chimeric antigen receptor T cell) cells have been developed to specifically target CSCs, and some of these factors are already undergoing clinical trials. This review summarizes the characterization and identification of CSCs, depicts major factors and pathways that regulate CSC development, and discusses potential targeted therapy for CSCs.
Collapse
Affiliation(s)
- Liqun Yang
- State Key Laboratory of Silkworm Genome Biology, Southwest University, 400716, Chongqing, China
- Cancer Center, Medical Research Institute, Southwest University, 400716, Chongqing, China
| | - Pengfei Shi
- State Key Laboratory of Silkworm Genome Biology, Southwest University, 400716, Chongqing, China
- Cancer Center, Medical Research Institute, Southwest University, 400716, Chongqing, China
| | - Gaichao Zhao
- State Key Laboratory of Silkworm Genome Biology, Southwest University, 400716, Chongqing, China
- Cancer Center, Medical Research Institute, Southwest University, 400716, Chongqing, China
| | - Jie Xu
- State Key Laboratory of Silkworm Genome Biology, Southwest University, 400716, Chongqing, China
- Cancer Center, Medical Research Institute, Southwest University, 400716, Chongqing, China
| | - Wen Peng
- State Key Laboratory of Silkworm Genome Biology, Southwest University, 400716, Chongqing, China
- Cancer Center, Medical Research Institute, Southwest University, 400716, Chongqing, China
| | - Jiayi Zhang
- State Key Laboratory of Silkworm Genome Biology, Southwest University, 400716, Chongqing, China
- Cancer Center, Medical Research Institute, Southwest University, 400716, Chongqing, China
| | - Guanghui Zhang
- State Key Laboratory of Silkworm Genome Biology, Southwest University, 400716, Chongqing, China
- Cancer Center, Medical Research Institute, Southwest University, 400716, Chongqing, China
| | - Xiaowen Wang
- State Key Laboratory of Silkworm Genome Biology, Southwest University, 400716, Chongqing, China
- Cancer Center, Medical Research Institute, Southwest University, 400716, Chongqing, China
| | - Zhen Dong
- State Key Laboratory of Silkworm Genome Biology, Southwest University, 400716, Chongqing, China
- Cancer Center, Medical Research Institute, Southwest University, 400716, Chongqing, China
| | - Fei Chen
- Department of Pharmaceutical Sciences, Eugene Applebaum College of Pharmacy and Health Sciences, Wayne State University, Detroit, MI, 48201, USA
| | - Hongjuan Cui
- State Key Laboratory of Silkworm Genome Biology, Southwest University, 400716, Chongqing, China.
- Cancer Center, Medical Research Institute, Southwest University, 400716, Chongqing, China.
| |
Collapse
|
33
|
Thymoquinone Enhances Paclitaxel Anti-Breast Cancer Activity via Inhibiting Tumor-Associated Stem Cells Despite Apparent Mathematical Antagonism. Molecules 2020; 25:molecules25020426. [PMID: 31968657 PMCID: PMC7024316 DOI: 10.3390/molecules25020426] [Citation(s) in RCA: 29] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2019] [Revised: 01/10/2020] [Accepted: 01/17/2020] [Indexed: 12/12/2022] Open
Abstract
Thymoquinone (TQ) has shown substantial evidence for its anticancer effects. Using human breast cancer cells, we evaluated the chemomodulatory effect of TQ on paclitaxel (PTX). TQ showed weak cytotoxic properties against MCF-7 and T47D breast cancer cells with IC50 values of 64.93 ± 14 µM and 165 ± 2 µM, respectively. Combining TQ with PTX showed apparent antagonism, increasing the IC50 values of PTX from 0.2 ± 0.07 µM to 0.7 ± 0.01 µM and from 0.1 ± 0.01 µM to 0.15 ± 0.02 µM in MCF-7 and T47D cells, respectively. Combination index analysis showed antagonism in both cell lines with CI values of 4.6 and 1.6, respectively. However, resistance fractions to PTX within MCF-7 and T47D cells (42.3 ± 1.4% and 41.9 ± 1.1%, respectively) were completely depleted by combination with TQ. TQ minimally affected the cell cycle, with moderate accumulation of cells in the S-phase. However, a significant increase in Pre-G phase cells was observed due to PTX alone and PTX combination with TQ. To dissect this increase in the Pre-G phase, apoptosis, necrosis, and autophagy were assessed by flowcytometry. TQ significantly increased the percent of apoptotic/necrotic cell death in T47D cells after combination with paclitaxel. On the other hand, TQ significantly induced autophagy in MCF-7 cells. Furthermore, TQ was found to significantly decrease breast cancer-associated stem cell clone (CD44+/CD24-cell) in both MCF-7 and T47D cells. This was mirrored by the downregulation of TWIST-1 gene and overexpression of SNAIL-1 and SNAIL-2 genes. TQ therefore possesses potential chemomodulatory effects to PTX when studied in breast cancer cells via enhancing PTX induced cell death including autophagy. In addition, TQ depletes breast cancer-associated stem cells and sensitizes breast cancer cells to PTX killing effects.
Collapse
|
34
|
Raskov H, Orhan A, Salanti A, Gögenur I. Premetastatic niches, exosomes and circulating tumor cells: Early mechanisms of tumor dissemination and the relation to surgery. Int J Cancer 2020; 146:3244-3255. [PMID: 31808150 DOI: 10.1002/ijc.32820] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2019] [Revised: 11/15/2019] [Accepted: 11/29/2019] [Indexed: 12/12/2022]
Abstract
The physiological stress response to surgery promotes wound healing and functional recovery and includes the activation of neural, inflammatory and proangiogenic signaling pathways. Paradoxically, the same pathways also promote metastatic spread and growth of residual cancer. Human and animal studies show that cancer surgery can increase survival, migration and proliferation of residual tumor cells. To secure the survival and growth of disseminated tumor cells, the formation of premetastatic niches in target organs involves a complex interplay between microenvironment, immune system, circulating tumor cells, as well as chemical mediators and exosomes secreted by the primary tumor. This review describes the current understanding of the early mechanisms of dissemination, as well as how surgery may facilitate disease progression.
Collapse
Affiliation(s)
- Hans Raskov
- Center for Surgical Science, Zealand University Hospital, Køge, Denmark
| | - Adile Orhan
- Center for Surgical Science, Zealand University Hospital, Køge, Denmark.,Department of Biomedical Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Ali Salanti
- Centre for Medical Parasitology at Department of Immunology and Microbiology, University of Copenhagen and Department of Infectious Diseases, Copenhagen University Hospital, Copenhagen, Denmark
| | - Ismail Gögenur
- Center for Surgical Science, Zealand University Hospital, Køge, Denmark.,Department of Clinical Medicine, University of Copenhagen, Copenhagen, Denmark
| |
Collapse
|
35
|
Nakagawa T, Nakayama K, Nakayama KI. Knockout Mouse Models Provide Insight into the Biological Functions of CRL1 Components. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2020; 1217:147-171. [PMID: 31898227 DOI: 10.1007/978-981-15-1025-0_10] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
The CRL1 complex, also known as the SCF complex, is a ubiquitin ligase that in mammals consists of an adaptor protein (SKP1), a scaffold protein (CUL1), a RING finger protein (RBX1, also known as ROC1), and one of about 70 F-box proteins. Given that the F-box proteins determine the substrate specificity of the CRL1 complex, the variety of these proteins allows the generation of a large number of ubiquitin ligases that promote the degradation or regulate the function of many substrate proteins and thereby control numerous key cellular processes. The physiological and pathological functions of these many CRL1 ubiquitin ligases have been studied by the generation and characterization of knockout mouse models that lack specific CRL1 components. In this chapter, we provide a comprehensive overview of these mouse models and discuss the role of each CRL1 component in mouse physiology and pathology.
Collapse
Affiliation(s)
- Tadashi Nakagawa
- Division of Cell Proliferation, ART, Graduate School of Medicine, Tohoku University, Sendai, Japan
| | - Keiko Nakayama
- Division of Cell Proliferation, ART, Graduate School of Medicine, Tohoku University, Sendai, Japan.
| | - Keiichi I Nakayama
- Department of Molecular and Cellular Biology, Medical Institute of Bioregulation, Kyushu University, Fukuoka, Japan.
| |
Collapse
|
36
|
Hidayat M, Mitsuishi Y, Takahashi F, Tajima K, Yae T, Miyahara K, Hayakawa D, Winardi W, Ihara H, Koinuma Y, Wirawan A, Nurwidya F, Kato M, Kobayashi I, Sasaki S, Takamochi K, Hayashi T, Suehara Y, Moriyama M, Moriyama H, Habu S, Takahashi K. Role of FBXW7 in the quiescence of gefitinib-resistant lung cancer stem cells in EGFR-mutant non-small cell lung cancer. Bosn J Basic Med Sci 2019; 19:355-367. [PMID: 31202256 DOI: 10.17305/bjbms.2019.4227] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2019] [Accepted: 05/18/2019] [Indexed: 12/12/2022] Open
Abstract
Several recent studies suggest that cancer stem cells (CSCs) are involved in intrinsic resistance to cancer treatment. Maintenance of quiescence is crucial for establishing resistance of CSCs to cancer therapeutics. F-box/WD repeat-containing protein 7 (FBXW7) is a ubiquitin ligase that regulates quiescence by targeting the c-MYC protein for ubiquitination. We previously reported that gefitinib-resistant persisters (GRPs) in EGFR-mutant non-small cell lung cancer (NSCLC) cells highly expressed octamer-binding transcription factor 4 (Oct-4) as well as the lung CSC marker CD133, and they exhibited distinctive features of the CSC phenotype. However, the role of FBXW7 in lung CSCs and their resistance to epidermal growth factor receptor (EGFR)-tyrosine kinase inhibitors in NSCLC is not fully understood. In this study, we developed GRPs from the two NSCLC cell lines PC9 and HCC827, which express an EGFR exon 19 deletion mutation, by treatment with a high concentration of gefitinib. The GRPs from both PC9 and HCC827 cells expressed high levels of CD133 and FBXW7, but low levels of c-MYC. Cell cycle analysis demonstrated that the majority of GRPs existed in the G0/G1 phase. Knockdown of the FBXW7 gene significantly reduced the cell number of CD133-positive GRPs and reversed the cell population in the G0/G1-phase. We also found that FBXW7 expression in CD133-positive cells was increased and c-MYC expression was decreased in gefitinib-resistant tumors of PC9 cells in mice and in 9 out of 14 tumor specimens from EGFR-mutant NSCLC patients with acquired resistance to gefitinib. These findings suggest that FBXW7 plays a pivotal role in the maintenance of quiescence in gefitinib-resistant lung CSCs in EGFR mutation-positive NSCLC.
Collapse
Affiliation(s)
- Moulid Hidayat
- Department of Respiratory Medicine; Research Institute for Diseases of Old Ages, Graduate School of Medicine, Juntendo University, Tokyo, Japan.
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
37
|
Hutcherson RJ, Kemp MG. ATR kinase inhibition sensitizes quiescent human cells to the lethal effects of cisplatin but increases mutagenesis. Mutat Res 2019; 816-818:111678. [PMID: 31557599 PMCID: PMC6905468 DOI: 10.1016/j.mrfmmm.2019.111678] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2019] [Revised: 08/19/2019] [Accepted: 09/15/2019] [Indexed: 12/25/2022]
Abstract
The ATR protein kinase is known to protect cells from DNA damage induced during the replicative phase of the cell cycle. Small molecule ATR kinase inhibitors have therefore been developed to improve the effectiveness of DNA damage-based chemotherapy regimens aimed at killing rapidly proliferating tumor cells. However, whether ATR functions in a similar manner in non-replicating cells has not been examined and is important considering the fact that most cells in the body, including cancer stem cells in solid tumors, normally reside in either a quiescent or differentiated non-replicating state. Using cultured human cell lines maintained in a quiescent or slowly growing state in vitro, ATR was found to be activated following treatment with the common anti-cancer drug cisplatin in a manner dependent on the nucleotide excision repair (NER) system. Moreover, treatment with the ATR kinase inhibitors VE-821 and AZD6738 enhanced quiescent cell killing and apoptotic signaling induced by cisplatin. However, ATR kinase inhibition in quiescent cells treated with a low concentration of cisplatin also elevated the level of mutagenesis at the hypoxanthine phosphoribosyltransferase locus and resulted in increased levels of PCNA mono-ubiquitination. These results suggest that the excision gaps generated by NER may require a greater utilization of potentially mutagenic translesion synthesis polymerases in the absence of ATR kinase function. Thus, though ATR kinase inhibitors can aid in the killing of cisplatin-treated quiescent cells, such treatments may also result in a greater reliance on alternative mutagenic DNA polymerases to complete the repair of cisplatin-DNA adducts.
Collapse
Affiliation(s)
- Rebekah J Hutcherson
- Department of Pharmacology and Toxicology, Wright State University Boonshoft School of Medicine, 3640 Colonel Glenn Hwy, Dayton, OH, 45435, United States
| | - Michael G Kemp
- Department of Pharmacology and Toxicology, Wright State University Boonshoft School of Medicine, 3640 Colonel Glenn Hwy, Dayton, OH, 45435, United States.
| |
Collapse
|
38
|
Jahanban-Esfahlan R, Seidi K, Manjili MH, Jahanban-Esfahlan A, Javaheri T, Zare P. Tumor Cell Dormancy: Threat or Opportunity in the Fight against Cancer. Cancers (Basel) 2019; 11:cancers11081207. [PMID: 31430951 PMCID: PMC6721805 DOI: 10.3390/cancers11081207] [Citation(s) in RCA: 65] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2019] [Revised: 08/11/2019] [Accepted: 08/13/2019] [Indexed: 12/15/2022] Open
Abstract
Tumor dormancy, a clinically undetectable state of cancer, makes a major contribution to the development of multidrug resistance (MDR), minimum residual disease (MRD), tumor outgrowth, cancer relapse, and metastasis. Despite its high incidence, the whole picture of dormancy-regulated molecular programs is far from clear. That is, it is unknown when and which dormant cells will resume proliferation causing late relapse, and which will remain asymptomatic and harmless to their hosts. Thus, identification of dormancy-related culprits and understanding their roles can help predict cancer prognosis and may increase the probability of timely therapeutic intervention for the desired outcome. Here, we provide a comprehensive review of the dormancy-dictated molecular mechanisms, including angiogenic switch, immune escape, cancer stem cells, extracellular matrix (ECM) remodeling, metabolic reprogramming, miRNAs, epigenetic modifications, and stress-induced p38 signaling pathways. Further, we analyze the possibility of leveraging these dormancy-related molecular cues to outmaneuver cancer and discuss the implications of such approaches in cancer treatment.
Collapse
Affiliation(s)
- Rana Jahanban-Esfahlan
- Drug Applied Research Center, Tabriz University of Medical Sciences, Tabriz 9841, Iran
- Department of Medical Biotechnology, Faculty of Advanced Medical Sciences, Tabriz University of Medical Sciences, Tabriz 9841, Iran
- Student Research Committee, Tabriz University of Medical Sciences, Tabriz 9841, Iran
| | - Khaled Seidi
- Biotechnology Research Center, Tabriz University of Medical Sciences, Tabriz 9841, Iran
| | - Masoud H Manjili
- Department of Microbiology & Immunology, VCU School of Medicine, Massey Cancer Center, Richmond, VA 23298, USA
| | | | - Tahereh Javaheri
- Ludwig Boltzmann Institute for Cancer Research, 1090 Vienna, Austria.
| | - Peyman Zare
- Faculty of Medicine, Cardinal Stefan Wyszyński University in Warsaw, 01-938 Warsaw, Poland.
| |
Collapse
|
39
|
Karacicek B, Erac Y, Tosun M. Functional consequences of enhanced expression of STIM1 and Orai1 in Huh-7 hepatocellular carcinoma tumor-initiating cells. BMC Cancer 2019; 19:751. [PMID: 31366337 PMCID: PMC6668110 DOI: 10.1186/s12885-019-5947-z] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2019] [Accepted: 07/16/2019] [Indexed: 12/18/2022] Open
Abstract
Background The endoplasmic reticulum (ER) Ca2+ sensor, stromal interaction molecule1 (STIM1) activates the plasma membrane (PM) channel Orai1 in order to mediate store-operated Ca2+ entry (SOCE) in response to ER store depletion. Enhanced expression of STIM1 in cancer tissue has been associated with poor patient prognosis. Therefore, this study investigated the functional consequences of enhanced expression of STIM1 and Orai1 in a tumor-initiating subpopulation of Huh-7 hepatocellular carcinoma (HCC) cells that express epithelial cell adhesion molecule (EpCAM) and Prominin 1 (CD133). Methods We performed qRT-PCR, intracellular Ca2+ monitoring, protein analyses, and real-time cell proliferation assays on EpCAM(+)CD133(+) subpopulation of tumor-initiating Huh-7 HCC cells expressing high levels of STIM1 and/or Orai1. Statistical significance between the means of two groups was evaluated using unpaired Student’s t-test. Results Enhanced STIM1 expression significantly increased ER Ca2+ release and proliferation rate of EpCAM(+)CD133(+) cells. Conclusion STIM1 overexpression may facilitate cancer cell survival by increasing ER Ca2+-buffering capacity, which makes more Ca2+ available for the cytosolic events, on the other hand, possibly preventing Ca2+-dependent enzymatic activity in mitochondria whose Ca2+ uniporter requires much higher cytosolic Ca2+ levels.
Collapse
Affiliation(s)
- B Karacicek
- Izmir Biomedicine and Genome Center (IBG), Dokuz Eylul University, 35340, Izmir, Turkey
| | - Y Erac
- Department of Pharmacology, Faculty of Pharmacy, Ege University, 35100, Izmir, Turkey
| | - M Tosun
- Department of Pharmacology, School of Medicine, Izmir University of Economics, 35330, Izmir, Turkey.
| |
Collapse
|
40
|
Kenda Suster N, Virant-Klun I. Presence and role of stem cells in ovarian cancer. World J Stem Cells 2019; 11:383-397. [PMID: 31396367 PMCID: PMC6682502 DOI: 10.4252/wjsc.v11.i7.383] [Citation(s) in RCA: 61] [Impact Index Per Article: 12.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/18/2019] [Revised: 04/23/2019] [Accepted: 06/13/2019] [Indexed: 02/06/2023] Open
Abstract
Ovarian cancer is the deadliest gynecological malignancy. It is typically diagnosed at advanced stages of the disease, with metastatic sites disseminated widely within the abdominal cavity. Ovarian cancer treatment is challenging due to high disease recurrence and further complicated pursuant to acquired chemoresistance. Cancer stem cell (CSC) theory proposes that both tumor development and progression are driven by undifferentiated stem cells capable of self-renewal and tumor-initiation. The most recent evidence revealed that CSCs in terms of ovarian cancer are not only responsible for primary tumor growth, metastasis and relapse of disease, but also for the development of chemoresistance. As the elimination of this cell population is critical for increasing treatment success, a deeper understanding of ovarian CSCs pathobiology, including epithelial-mesenchymal transition, signaling pathways and tumor microenvironment, is needed. Finally, before introducing new therapeutic agents for ovarian cancer, targeting CSCs, accurate identification of different ovarian stem cell subpopulations, including the very small embryonic-like stem cells suggested as progenitors, is necessary. To these ends, reliable markers of ovarian CSCs should be identified. In this review, we present the current knowledge and a critical discussion concerning ovarian CSCs and their clinical role.
Collapse
Affiliation(s)
- Natasa Kenda Suster
- Department of Gynecology, Division of Obstetrics and Gynecology, University Medical Centre Ljubljana, Ljubljana 1000, Slovenia
| | - Irma Virant-Klun
- Department of Human Reproduction, Division of Obstetrics and Gynecology, University Medical Centre Ljubljana, Ljubljana 1000, Slovenia
| |
Collapse
|
41
|
Lee CH, Decker AM, Cackowski FC, Taichman RS. Bone microenvironment signaling of cancer stem cells as a therapeutic target in metastatic prostate cancer. Cell Biol Toxicol 2019; 36:115-130. [PMID: 31250347 DOI: 10.1007/s10565-019-09483-7] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2018] [Accepted: 06/18/2019] [Indexed: 01/06/2023]
Abstract
Prostate cancer (PCa) is one of the most prevalent cancers and the second leading cause of cancer death among US males. When diagnosed in an early disease stage, primary tumors of PCa may be treated with surgical resection or radiation, sometimes combined with androgen deprivation therapy, with favorable outcomes. Unfortunately, the treatment efficacy of each approach decreases significantly in later stages of PCa that involve metastasis to soft tissues and bone. Metastatic PCa is a heterogeneous disease containing host cells, mature cancer cells, and subpopulation of cancer stem cells (CSC). CSCs are highly tumorigenic due to their self-renewing and differentiating potential, clinically resulting in recurrence and resistance to standard therapies. Therefore, there is a large unmet clinical need to develop therapies, which target CSC activity. In this review, we summarize the main signaling pathways that are implicated in the current pre-clinical and clinical studies of recurrent metastatic PCa within the bone microenvironment targeting CSCs and discuss the trajectory of therapeutics moving forward.
Collapse
Affiliation(s)
- Clara H Lee
- Department of Periodontics and Oral Medicine, University of Michigan School of Dentistry, Ann Arbor, MI, 48109, USA
| | - Ann M Decker
- Department of Periodontics and Oral Medicine, University of Michigan School of Dentistry, Ann Arbor, MI, 48109, USA
| | - Frank C Cackowski
- Department of Periodontics and Oral Medicine, University of Michigan School of Dentistry, Ann Arbor, MI, 48109, USA.,Department of Internal Medicine, Division of Hematology/Oncology, University of Michigan School of Medicine, Ann Arbor, MI, 48109, USA
| | - Russell S Taichman
- Department of Periodontics and Oral Medicine, University of Michigan School of Dentistry, Ann Arbor, MI, 48109, USA. .,Department of Periodontology, University of Alabama Birmingham School of Dentistry, Birmingham, Alabama, USA.
| |
Collapse
|
42
|
Feng Z, Meng S, Zhou H, Xu Z, Tang Y, Li P, Liu C, Huang Y, Wu M. Functions and Potential Applications of Circular RNAs in Cancer Stem Cells. Front Oncol 2019; 9:500. [PMID: 31263676 PMCID: PMC6584801 DOI: 10.3389/fonc.2019.00500] [Citation(s) in RCA: 23] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2019] [Accepted: 05/28/2019] [Indexed: 12/12/2022] Open
Abstract
Circular RNAs (circRNAs) were discovered in the 1970s, but they have drawn increasing attention in recent years. Currently, we know that circRNAs are not "wrongly spliced" during transcription but play important roles in the initiation and development of various diseases, including cancers. Recently, a growing number of studies have suggested that cancer stem cells (CSCs) may contribute to the origination and maintenance of cancers. This review briefly introduces the major functions of circRNAs, including interacting with other noncoding RNAs, competing with pre-mRNA splicing, binding with proteins to form a scaffold, promoting protein nuclear translocation and even translating proteins in a cap-independent manner. Furthermore, we describe the regulatory mechanism of circRNAs in CSC phenotypes and discuss the potential clinical applications of circRNAs in CSC-targeted therapy, including functioning as new biomarkers, acting as vaccines and breaking the therapeutic resistance of CSCs. Finally, we discuss the major limitations and challenges in the field, which will be beneficial for the future clinical use of circRNAs.
Collapse
Affiliation(s)
- Ziyang Feng
- Hunan Provincial Tumor Hospital and the Affiliated Tumor Hospital of Xiangya Medical School, Central South University, Changsha, China.,The Key Laboratory of Carcinogenesis of the Chinese Ministry of Health, The Key Laboratory of Carcinogenesis and Cancer Invasion of the Chinese Ministry of Education, Cancer Research Institute, Central South University, Changsha, China
| | - Shujuan Meng
- Hunan Provincial Tumor Hospital and the Affiliated Tumor Hospital of Xiangya Medical School, Central South University, Changsha, China.,The Key Laboratory of Carcinogenesis of the Chinese Ministry of Health, The Key Laboratory of Carcinogenesis and Cancer Invasion of the Chinese Ministry of Education, Cancer Research Institute, Central South University, Changsha, China
| | - Hecheng Zhou
- Hunan Provincial Tumor Hospital and the Affiliated Tumor Hospital of Xiangya Medical School, Central South University, Changsha, China.,The Key Laboratory of Carcinogenesis of the Chinese Ministry of Health, The Key Laboratory of Carcinogenesis and Cancer Invasion of the Chinese Ministry of Education, Cancer Research Institute, Central South University, Changsha, China
| | - Zihao Xu
- Hunan Provincial Tumor Hospital and the Affiliated Tumor Hospital of Xiangya Medical School, Central South University, Changsha, China.,The Key Laboratory of Carcinogenesis of the Chinese Ministry of Health, The Key Laboratory of Carcinogenesis and Cancer Invasion of the Chinese Ministry of Education, Cancer Research Institute, Central South University, Changsha, China
| | - Ying Tang
- Hunan Provincial Tumor Hospital and the Affiliated Tumor Hospital of Xiangya Medical School, Central South University, Changsha, China.,The Key Laboratory of Carcinogenesis of the Chinese Ministry of Health, The Key Laboratory of Carcinogenesis and Cancer Invasion of the Chinese Ministry of Education, Cancer Research Institute, Central South University, Changsha, China
| | - Peiyao Li
- The Xiangya Hospital, Central South University, Changsha, China
| | - Changhong Liu
- Hunan Provincial Tumor Hospital and the Affiliated Tumor Hospital of Xiangya Medical School, Central South University, Changsha, China.,The Key Laboratory of Carcinogenesis of the Chinese Ministry of Health, The Key Laboratory of Carcinogenesis and Cancer Invasion of the Chinese Ministry of Education, Cancer Research Institute, Central South University, Changsha, China
| | - Yongkai Huang
- The Affiliated Zhuzhou Hospital Xiangya Medical College, Central South University, Zhuzhou, China
| | - Minghua Wu
- Hunan Provincial Tumor Hospital and the Affiliated Tumor Hospital of Xiangya Medical School, Central South University, Changsha, China.,The Key Laboratory of Carcinogenesis of the Chinese Ministry of Health, The Key Laboratory of Carcinogenesis and Cancer Invasion of the Chinese Ministry of Education, Cancer Research Institute, Central South University, Changsha, China
| |
Collapse
|
43
|
Olejniczak-Kęder A, Szaryńska M, Wrońska A, Siedlecka-Kroplewska K, Kmieć Z. Effects of 5-FU and anti-EGFR antibody in combination with ASA on the spherical culture system of HCT116 and HT29 colorectal cancer cell lines. Int J Oncol 2019; 55:223-242. [PMID: 31180528 DOI: 10.3892/ijo.2019.4809] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2019] [Accepted: 05/06/2019] [Indexed: 11/06/2022] Open
Abstract
The aim of this study was to examine the effects of 5‑fluorouracil (5‑FU), anti‑epidermal growth factor receptor (EGFR) antibody and aspirin (ASA) on the characteristics of two CRC cell lines, HCT116 and HT29, maintained in a spherical culture system. We observed that the morphology of both the HCT116 and HT29 cell‑derived spheres was significantly impaired and the size of the colonospheres was markedly reduced following treatment with the aforementioned three drugs. In contrast to adherent cultures, the spherical cultures were more resistant to the tested drugs, as was reflected by their capacity to re‑create the colonospheres when sustained in serum‑free medium. Flow cytometric analysis of the drug‑treated HCT116 cell‑derived spheres revealed changes in the fraction of cells expressing markers of cancer stem cells (CSCs), whereas the CSC phenotype of HT29 cell‑derived colonospheres was affected to a lesser extent. All reagents enhanced the percentage of non‑viable cells in the colonospheres despite the diminished fraction of active caspase‑3‑positive cells following treatment of the HT29 cell‑derived spheres with anti‑EGFR antibody. Increased autophagy, assessed by acridine orange staining, was noted following the incubation of the HT29‑colonospheres with ASA and 5‑FU in comparison to the control. Notably, the percentage of cyclooxygenase (COX)‑2‑positive cells was not affected by ASA, although its activity was markedly elevated in the colonospheres incubated with anti‑EGFR antibody. On the whole, the findings of this study indicate that all the tested drugs were involved in different cellular processes, which suggests that they should be considered for the combined therapeutic treatment of CRC, particularly for targeting the population of CSC‑like cells. Thus, cancer cell‑derived spheres may be used as a preferable model for in vitro anticancer drug testing.
Collapse
Affiliation(s)
| | - Magdalena Szaryńska
- Department of Histology, Medical University of Gdansk, 80-211 Gdansk, Poland
| | - Agata Wrońska
- Department of Histology, Medical University of Gdansk, 80-211 Gdansk, Poland
| | | | - Zbigniew Kmieć
- Department of Histology, Medical University of Gdansk, 80-211 Gdansk, Poland
| |
Collapse
|
44
|
Honma S, Hisamori S, Nishiuchi A, Itatani Y, Obama K, Shimono Y, Sakai Y. F-Box/WD Repeat Domain-Containing 7 Induces Chemotherapy Resistance in Colorectal Cancer Stem Cells. Cancers (Basel) 2019; 11:cancers11050635. [PMID: 31067777 PMCID: PMC6562509 DOI: 10.3390/cancers11050635] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2019] [Revised: 04/22/2019] [Accepted: 05/03/2019] [Indexed: 12/30/2022] Open
Abstract
Although the cancer stem cell (CSC) concept has provided a reasonable explanation for cancer recurrence following chemotherapy, the relationship between CSCs and chemotherapy resistance has not been thoroughly investigated, especially in solid tumors. We aimed to identify the mechanism underlying colorectal cancer (CRC) chemoresistance focusing on the cell cycle mediator F-Box/WD repeat domain-containing 7 (FBXW7). From 55 consecutive CRC cases who underwent neoadjuvant chemotherapy (NAC) or neoadjuvant chemoradiotherapy (NACRT) at Kyoto University Hospital, pre-treatment endoscopic biopsy specimens were collected and divided into two groups upon immunohistochemical (IHC) analysis: 21 cases of FBXW7 high expression (FBXW7-high group) and 34 cases of low expression (FBXW7-low group). High FBXW7 expression in pre-treatment biopsy specimen was significantly associated with poor pathological therapeutic effect (p = 0.019). The proportion of FBXW7-positive cells in surgically resected CRC specimens from patients who underwent NAC or NACRT was significantly higher than that in the pre-treatment biopsy specimens (p < 0.001). The expression of FBXW7 was inversely correlated with that of Ki67 in both pre-treatment biopsy specimens and surgically resected specimens. FBXW7 expression in the EpCAMhigh/CD44high subpopulation isolated by flow cytometry from CRC samples was significantly higher than that in the EpCAMhigh/CD44low subpopulation. Cell-cycle analysis in CRC cell lines revealed that, upon FBXW7 silencing, the proportion of G0/G1 cells was significantly lower than that in control cells. Moreover, knockdown of FBXW7 in CRC cell lines increased the sensitivity to anti-cancer drugs in vitro and in vivo. A subset of CRC stem cells possesses chemoresistance through FBXW7 expression. Cell cycle arrest induced by FBXW7 expression should be considered as a potential therapeutic target to overcome chemoresistance in CRC stem cell subsets.
Collapse
Affiliation(s)
- Shusaku Honma
- Department of Surgery, Graduate School of Medicine, Kyoto University, Kyoto 606-8507, Japan.
| | - Shigeo Hisamori
- Department of Surgery, Graduate School of Medicine, Kyoto University, Kyoto 606-8507, Japan.
| | - Aya Nishiuchi
- Department of Surgery, Graduate School of Medicine, Kyoto University, Kyoto 606-8507, Japan.
| | - Yoshiro Itatani
- Department of Surgery, Graduate School of Medicine, Kyoto University, Kyoto 606-8507, Japan.
| | - Kazutaka Obama
- Department of Surgery, Graduate School of Medicine, Kyoto University, Kyoto 606-8507, Japan.
| | - Yohei Shimono
- Department of Biochemistry, School of Medicine, Fujita Health University, Aichi 470-1192, Japan.
| | - Yoshiharu Sakai
- Department of Surgery, Graduate School of Medicine, Kyoto University, Kyoto 606-8507, Japan.
| |
Collapse
|
45
|
Li Y, Wan YY, Zhu B. Immune Cell Metabolism in Tumor Microenvironment. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2019; 1011:163-196. [PMID: 28875490 DOI: 10.1007/978-94-024-1170-6_5] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
Tumor microenvironment (TME) is composed of tumor cells, immune cells, cytokines, extracellular matrix, etc. The immune system and the metabolisms of glucose, lipids, amino acids, and nucleotides are integrated in the tumorigenesis and development. Cancer cells and immune cells show metabolic reprogramming in the TME, which intimately links immune cell functions and edits tumor immunology. Recent findings in immune cell metabolism hold the promising possibilities toward clinical therapeutics for treating cancer. This chapter introduces the updated understandings of metabolic reprogramming of immune cells in the TME and suggests new directions in manipulation of immune responses for cancer diagnosis and therapy.
Collapse
Affiliation(s)
- Yongsheng Li
- Institute of Cancer, Xinqiao Hospital, Third Military Medical University, Chongqing, China
| | - Yisong Y Wan
- Lineberger Comprehensive Cancer Center, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
| | - Bo Zhu
- Institute of Cancer, Xinqiao Hospital, Third Military Medical University, Chongqing, China.
| |
Collapse
|
46
|
Domenichini A, Edmands JS, Adamska A, Begicevic RR, Paternoster S, Falasca M. Pancreatic cancer tumorspheres are cancer stem-like cells with increased chemoresistance and reduced metabolic potential. Adv Biol Regul 2019; 72:63-77. [PMID: 30853342 DOI: 10.1016/j.jbior.2019.02.001] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2019] [Revised: 02/18/2019] [Accepted: 02/18/2019] [Indexed: 12/11/2022]
Abstract
Cancer stem cells are a population of slow-cycling cells within the tumour bulk, with self-renewal capacity that attracts interest as a therapeutic target. In highly heterogeneous tumours, like pancreatic ductal adenocarcinoma (PDAC) however, the characterisation of cancer stem cells has led to controversial results due to the lack of consensus on specific markers. Here we investigated the characteristics of a population of pancreatic cancer tumorspheres derived from different human pancreatic cancer cell lines and a primary line from a genetically engineered KPC mouse model, using flow cytometry and western blotting to analyse surface and stemness markers. We analysed tumorspheres tumorigenic potential using anchorage-independent soft agar assay as well as their metabolic plasticity and chemoresistance. Pancreatic cancer tumorspheres display a heterogeneous pattern of surface and stemness markers, nevertheless they are characterised by an increased tumorigenic potential and higher chemoresistance. In addition, we have shown that pancreatic cancer tumorspheres have a unique metabolic profile with reduced metabolic potential. Together our results indicate that, despite the heterogeneity characterising pancreatic cancer tumorspheres, we can identify a functional vulnerability that represents a window for pharmacological intervention and development of novel therapeutic strategies.
Collapse
Affiliation(s)
- Alice Domenichini
- Metabolic Signalling Group, School of Pharmacy & Biomedical Sciences, Curtin Health Innovation Research Institute, Curtin University, Perth, WA, 6102, Australia
| | - Jeanne S Edmands
- Curtin Health Innovation Research Institute, Curtin University, Perth, WA, 6102, Australia
| | - Aleksandra Adamska
- Metabolic Signalling Group, School of Pharmacy & Biomedical Sciences, Curtin Health Innovation Research Institute, Curtin University, Perth, WA, 6102, Australia
| | - Romana-Rea Begicevic
- Metabolic Signalling Group, School of Pharmacy & Biomedical Sciences, Curtin Health Innovation Research Institute, Curtin University, Perth, WA, 6102, Australia
| | - Silvano Paternoster
- Metabolic Signalling Group, School of Pharmacy & Biomedical Sciences, Curtin Health Innovation Research Institute, Curtin University, Perth, WA, 6102, Australia
| | - Marco Falasca
- Metabolic Signalling Group, School of Pharmacy & Biomedical Sciences, Curtin Health Innovation Research Institute, Curtin University, Perth, WA, 6102, Australia.
| |
Collapse
|
47
|
Echeverria PC, Bhattacharya K, Joshi A, Wang T, Picard D. The sensitivity to Hsp90 inhibitors of both normal and oncogenically transformed cells is determined by the equilibrium between cellular quiescence and activity. PLoS One 2019; 14:e0208287. [PMID: 30726209 PMCID: PMC6364869 DOI: 10.1371/journal.pone.0208287] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2018] [Accepted: 01/11/2019] [Indexed: 12/11/2022] Open
Abstract
The molecular chaperone Hsp90 is an essential and highly abundant central node in the interactome of eukaryotic cells. Many of its large number of client proteins are relevant to cancer. A hallmark of Hsp90-dependent proteins is that their accumulation is compromised by Hsp90 inhibitors. Combined with the anecdotal observation that cancer cells may be more sensitive to Hsp90 inhibitors, this has led to clinical trials aiming to develop Hsp90 inhibitors as anti-cancer agents. However, the sensitivity to Hsp90 inhibitors has not been studied in rigorously matched normal versus cancer cells, and despite the discovery of important regulators of Hsp90 activity and inhibitor sensitivity, it has remained unclear, why cancer cells might be more sensitive. To revisit this issue more systematically, we have generated an isogenic pair of normal and oncogenically transformed NIH-3T3 cell lines. Our proteomic analysis of the impact of three chemically different Hsp90 inhibitors shows that these affect a substantial portion of the oncogenic program and that indeed, transformed cells are hypersensitive. Targeting the oncogenic signaling pathway reverses the hypersensitivity, and so do inhibitors of DNA replication, cell growth, translation and energy metabolism. Conversely, stimulating normal cells with growth factors or challenging their proteostasis by overexpressing an aggregation-prone sensitizes them to Hsp90 inhibitors. Thus, the differential sensitivity to Hsp90 inhibitors may not stem from any particular intrinsic difference between normal and cancer cells, but rather from a shift in the balance between cellular quiescence and activity.
Collapse
Affiliation(s)
- Pablo C. Echeverria
- Département de Biologie Cellulaire, Université de Genève, Sciences III, Genève, Switzerland
| | - Kaushik Bhattacharya
- Département de Biologie Cellulaire, Université de Genève, Sciences III, Genève, Switzerland
| | - Abhinav Joshi
- Département de Biologie Cellulaire, Université de Genève, Sciences III, Genève, Switzerland
| | - Tai Wang
- Département de Biologie Cellulaire, Université de Genève, Sciences III, Genève, Switzerland
| | - Didier Picard
- Département de Biologie Cellulaire, Université de Genève, Sciences III, Genève, Switzerland
- * E-mail:
| |
Collapse
|
48
|
Winterhoff B, Talukdar S, Chang Z, Wang J, Starr TK. Single-cell sequencing in ovarian cancer: a new frontier in precision medicine. Curr Opin Obstet Gynecol 2019; 31:49-55. [DOI: 10.1097/gco.0000000000000516] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
|
49
|
Zhang W, Wang G, Liang A. DNA Damage Response in Quiescent Hematopoietic Stem Cells and Leukemia Stem Cells. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2019; 1143:147-171. [PMID: 31338819 DOI: 10.1007/978-981-13-7342-8_7] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
In humans, hematopoietic stem cells (HSCs) adopt unique responsive pathways counteracting with the DNA-damaging assaults to weigh the balance between the maintenance of normal stem cell poor for whole-life blood regeneration and the transformation to leukemia stem cells (LSCs) for leukemia initiation. LSCs also take actions of combating with the attack launched by externally therapeutic drugs that can kill most leukemic cells, to avoid extermination and promote disease relapse. Therefore, the collection of knowledge about all these underlined mechanisms would present a preponderance for later studies. In this chapter, the universal DNA damage response (DDR) mechanisms were firstly introduced, and then DDR of HSCs were presented focusing on the DNA double-strand breaks in the quiescent state of HSCs, which poses a big advantage in promoting its transformation into preleukemic HSCs. Lastly, the DDR of LSCs were summarized based on the major outcomes triggered by different pathways in specific leukemia, upon which some aspects for future investigations were envisioned under our currently limited scope of knowledge.
Collapse
Affiliation(s)
- Wenjun Zhang
- Department of Hematology, Tongji Hospital, Tongji University School of Medicine, Shanghai, China
| | - Guangming Wang
- Department of Hematology, Tongji Hospital, Tongji University School of Medicine, Shanghai, China
| | - Aibin Liang
- Department of Hematology, Tongji Hospital, Tongji University School of Medicine, Shanghai, China.
| |
Collapse
|
50
|
Haidari F, Abiri B, Iravani M, Razavi SM, Vafa M. The Effects of UVB and Vitamin D on Decreasing Risk of Colorectal Cancer Incidence and Mortality: A Review of the Epidemiology, Clinical Trials, and Mechanisms. Nutr Cancer 2018; 71:709-717. [PMID: 30588844 DOI: 10.1080/01635581.2018.1521444] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
The solar ultraviolet B-vitamin D-cancer hypothesis was first suggested in 1980 based on a geographical ecological study. Since then, several ecological and observational studies, as well as researches of mechanisms have supported the hypothesis. Also, the association between vitamin D condition and cancer risk has been assessed in a number of epidemiologic studies, while data from interventional studies remain scant. In regard of cancer locations, the body of evidence is most substantial for colorectal cancer, for which support comes from studies of 25(OH)D, vitamin D intake, and region of residence in a sunny weather. Collectively evidence demonstrates that vitamin D has a potent and beneficial effect at antagonizing and blocking several mitogenic mechanisms related to tumorigenesis. Taken together with the epidemiological studies and limited clinical trials, individuals may need to consider elevating 25(OH)D levels via sun exposure and/or vitamin D supplementation to decrease risk of colorectal cancer, in addition to standard care, treat cancer.
Collapse
Affiliation(s)
- Fatemeh Haidari
- a Department of Nutritional Sciences, Nutrition and Metabolic Diseases Research Center, Ahvaz Jundishapur University of Medical Sciences , Ahvaz , Iran
| | - Behnaz Abiri
- b Department of Nutrition, Faculty of Paramedicine , Ahvaz Jundishapur University of Medical Sciences , Ahvaz , Iran
| | - Masood Iravani
- c Department of Medical Oncology and Hematology , Tehran University of Medical Sciences , Tehran , Iran
| | - Seyyed-Mohsen Razavi
- d Department of Medical Oncology and Hematology , Iran University of Medical Sciences , Tehran , Iran
| | - Mohammadreza Vafa
- e Department of Nutrition, School of Public Health , Iran University of Medical Sciences , Tehran , Iran
| |
Collapse
|