1
|
Suwabe T, Shibasaki Y, Tamura S, Katagiri T, Fuse K, Ida-Kurasaki T, Ushiki T, Sone H, Narita M, Masuko M. Decade-long WT1-specific CTLs induced by WT1 peptide vaccination. Int J Hematol 2024; 119:399-406. [PMID: 38427208 DOI: 10.1007/s12185-024-03723-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2023] [Revised: 01/17/2024] [Accepted: 01/25/2024] [Indexed: 03/02/2024]
Abstract
INTRODUCTION The peptide-based cancer vaccine targeting Wilms' tumor 1 (WT1) is a promising immunotherapeutic strategy for hematological malignancies. It remains unclear how long and to what extent the WT1-specific CD8 + cytotoxic T cell (CTL) persist after WT1 peptide vaccination. METHODS The WT1 peptide vaccine was administered with written consent to a patient with CML in the chronic phase who did not respond well to imatinib, and the patient was followed for 12 years after vaccination. Immune monitoring was performed by specific amplification of WT1-specific CTLs using a mixed lymphocyte peptide culture. T-cell receptors (TCRs) of amplified WT1-specific CTLs were analyzed using next-generation sequencing. This study was approved by the Institutional Review Board of our institution. RESULT WT1-specific CTLs, which were initially detected during WT1 peptide vaccination, persisted at a frequency of less than 5 cells per 1,000,000 CD8 + T cells for more than 10 years. TCR repertoire analysis confirmed the diversity of WT1-specific CTLs 11 years after vaccination. CTLs exhibited WT1 peptide-specific cytotoxicity in vitro. CONCLUSION The WT1 peptide vaccine induced an immune response that persists for more than 10 years, even after cessation of vaccination in the CML patient.
Collapse
Affiliation(s)
- Tatsuya Suwabe
- Department of Hematopoietic Stem Cell Transplantation, Niigata University Medical and Dental Hospital, Niigata, Japan
| | - Yasuhiko Shibasaki
- Department of Hematology, Endocrinology and Metabolism, Niigata University Faculty of Medicine, 1-754 Asahimachi-Dori, Chuo-Ku, Niigata City, Niigata, 951-8510, Japan
| | - Suguru Tamura
- Department of Hematology, Endocrinology and Metabolism, Niigata University Faculty of Medicine, 1-754 Asahimachi-Dori, Chuo-Ku, Niigata City, Niigata, 951-8510, Japan
| | - Takayuki Katagiri
- Department of Hematology, Endocrinology and Metabolism, Niigata University Faculty of Medicine, 1-754 Asahimachi-Dori, Chuo-Ku, Niigata City, Niigata, 951-8510, Japan
| | - Kyoko Fuse
- Department of Hematology, Endocrinology and Metabolism, Niigata University Faculty of Medicine, 1-754 Asahimachi-Dori, Chuo-Ku, Niigata City, Niigata, 951-8510, Japan
| | - Tori Ida-Kurasaki
- Department of Hematology, Endocrinology and Metabolism, Niigata University Faculty of Medicine, 1-754 Asahimachi-Dori, Chuo-Ku, Niigata City, Niigata, 951-8510, Japan
| | - Takashi Ushiki
- Laboratory of Hematology and Oncology, Graduate School of Health Sciences, Niigata University, Niigata, Japan
| | - Hirohito Sone
- Department of Hematology, Endocrinology and Metabolism, Niigata University Faculty of Medicine, 1-754 Asahimachi-Dori, Chuo-Ku, Niigata City, Niigata, 951-8510, Japan
| | - Miwako Narita
- Laboratory of Hematology and Oncology, Graduate School of Health Sciences, Niigata University, Niigata, Japan
| | - Masayoshi Masuko
- Department of Hematopoietic Stem Cell Transplantation, Niigata University Medical and Dental Hospital, Niigata, Japan.
| |
Collapse
|
2
|
Gera K, Chauhan A, Castillo P, Rahman M, Mathavan A, Mathavan A, Oganda-Rivas E, Elliott L, Wingard JR, Sayour EJ. Vaccines: a promising therapy for myelodysplastic syndrome. J Hematol Oncol 2024; 17:4. [PMID: 38191498 PMCID: PMC10773074 DOI: 10.1186/s13045-023-01523-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2023] [Accepted: 12/23/2023] [Indexed: 01/10/2024] Open
Abstract
Myelodysplastic neoplasms (MDS) define clonal hematopoietic malignancies characterized by heterogeneous mutational and clinical spectra typically seen in the elderly. Curative treatment entails allogeneic hematopoietic stem cell transplant, which is often not a feasible option due to older age and significant comorbidities. Immunotherapy has the cytotoxic capacity to elicit tumor-specific killing with long-term immunological memory. While a number of platforms have emerged, therapeutic vaccination presents as an appealing strategy for MDS given its promising safety profile and amenability for commercialization. Several preclinical and clinical trials have investigated the efficacy of vaccines in MDS; these include peptide vaccines targeting tumor antigens, whole cell-based vaccines and dendritic cell-based vaccines. These therapeutic vaccines have shown acceptable safety profiles, but consistent clinical responses remain elusive despite robust immunological reactions. Combining vaccines with immunotherapeutic agents holds promise and requires further investigation. Herein, we highlight therapeutic vaccine trials while reviewing challenges and future directions of successful vaccination strategies in MDS.
Collapse
Affiliation(s)
- Kriti Gera
- Department of Medicine, University of Florida, Gainesville, FL, USA
| | - Anjali Chauhan
- Department of Neurosurgery, Preston A. Wells, Jr. Center for Brain Tumor Immunotherapy, University of Florida, Gainesville, FL, USA
| | - Paul Castillo
- Division of Hematology and Oncology, Department of Pediatrics, University of Florida, Gainesville, FL, USA
| | - Maryam Rahman
- Department of Neurosurgery, Preston A. Wells, Jr. Center for Brain Tumor Immunotherapy, University of Florida, Gainesville, FL, USA
| | - Akash Mathavan
- Department of Medicine, University of Florida, Gainesville, FL, USA
| | - Akshay Mathavan
- Department of Medicine, University of Florida, Gainesville, FL, USA
| | - Elizabeth Oganda-Rivas
- Department of Neurosurgery, Preston A. Wells, Jr. Center for Brain Tumor Immunotherapy, University of Florida, Gainesville, FL, USA
| | - Leighton Elliott
- Division of Hematology and Oncology, Department of Medicine, University of Florida, Gainesville, FL, USA
| | - John R Wingard
- Division of Hematology and Oncology, Department of Medicine, University of Florida, Gainesville, FL, USA.
| | - Elias J Sayour
- Department of Neurosurgery, Preston A. Wells, Jr. Center for Brain Tumor Immunotherapy, University of Florida, Gainesville, FL, USA.
| |
Collapse
|
3
|
Wu J, Yan H, Xiang C. Wilms' tumor gene 1 in hematological malignancies: friend or foe? Hematology 2023; 28:2254557. [PMID: 37668240 DOI: 10.1080/16078454.2023.2254557] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2023] [Accepted: 08/29/2023] [Indexed: 09/06/2023] Open
Abstract
Wilms' tumor gene 1 (WT1) is a transcription and post-translational factor that has a crucial role in the biological and pathological processes of several human malignancies. For hematological malignancies, WT1 overexpression or mutation has been found in leukemia and myelodysplastic syndrome. About 70-90% of acute myeloid leukemia patients showed WT1 overexpression, and 6-15% of patients carried WT1 mutations. WT1 has been widely regarded as a marker for monitoring minimal residual disease in acute myeloid leukemia. Many researchers were interested in developing WT1 targeting therapy. In this review, we summarized biological and pathological functions, correlation with other genes and clinical features, prognosis value and targeting therapy of WT1 in hematological features.
Collapse
Affiliation(s)
- Jie Wu
- Department of Emergency Medicine, The Fifth People's Hospital of Huai'an and Huai'an Hospital Affiliated to Yangzhou University, Huai'an, People's Republic of China
| | - Hui Yan
- Department of Clinical Medicine, Medical College, Yangzhou University, Yangzhou, People's Republic of China
| | - Chunli Xiang
- Department of General Medicine, The Affiliated Huai'an Hospital of Xuzhou Medical University and Huai'an Second People's Hospital, Huai'an, People's Republic of China
| |
Collapse
|
4
|
Ueki H, Kitagawa K, Kato M, Yanase S, Okamura Y, Bando Y, Hara T, Terakawa T, Furukawa J, Nakano Y, Fujisawa M, Shirakawa T. An oral cancer vaccine using Bifidobacterium vector augments combination of anti-PD-1 and anti-CTLA-4 antibodies in mouse renal cell carcinoma model. Sci Rep 2023; 13:9994. [PMID: 37340017 DOI: 10.1038/s41598-023-37234-6] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2022] [Accepted: 06/18/2023] [Indexed: 06/22/2023] Open
Abstract
Recently, immune checkpoint inhibitor (ICI) based combination therapies, including anti-PD-1 antibody, nivolumab with anti-CTLA-4 antibody, and ipilimumab have become the primary treatment option for metastatic or unresectable renal cell carcinoma (RCC). However, despite the combination of two ICIs, 60-70% of patients are still resistant to first-line cancer immunotherapy. In the present study, undertook combination immunotherapy for RCC using an oral cancer vaccine (Bifidobacterium longum displaying WT1 tumor associated antigen (B. longum 420)) with anti-PD-1 and anti-CTLA-4 antibodies in a mouse syngeneic model of RCC to explore possible synergistic effects. We found that B. longum 420 significantly improved the survival of mice bearing RCC tumors treated by anti-PD-1 and anti-CTLA-4 antibodies compared to the mice treated by the antibodies alone. This result suggests that B. longum 420 oral cancer vaccine as an adjunct to ICIs could provide a novel treatment option for RCC patients. Our microbiome analysis revealed that the proportion of Lactobacilli was significantly increased by B. longum 420. Although the detailed mechanism of action is unknown, it is possible that microbiome alteration by B. longum 420 enhances the efficacy of the ICIs.
Collapse
Affiliation(s)
- Hideto Ueki
- Department of Urology, Kobe University Graduate School of Medicine, Kusunoki-cho, Chuo-ku, Kobe, 650-0017, Japan
- Laboratory of Translational Research for Biologics, Department of Advanced Medical Science, Kobe University Graduate School of Science, Technology and Innovation, Kusunoki-cho, Chuo-ku, Kobe, 650-0017, Japan
| | - Koichi Kitagawa
- Laboratory of Translational Research for Biologics, Department of Advanced Medical Science, Kobe University Graduate School of Science, Technology and Innovation, Kusunoki-cho, Chuo-ku, Kobe, 650-0017, Japan
| | - Mako Kato
- Laboratory of Translational Research for Biologics, Department of Advanced Medical Science, Kobe University Graduate School of Science, Technology and Innovation, Kusunoki-cho, Chuo-ku, Kobe, 650-0017, Japan
| | - Shihoko Yanase
- Laboratory of Translational Research for Biologics, Department of Advanced Medical Science, Kobe University Graduate School of Science, Technology and Innovation, Kusunoki-cho, Chuo-ku, Kobe, 650-0017, Japan
| | - Yasuyoshi Okamura
- Department of Urology, Kobe University Graduate School of Medicine, Kusunoki-cho, Chuo-ku, Kobe, 650-0017, Japan
| | - Yukari Bando
- Department of Urology, Kobe University Graduate School of Medicine, Kusunoki-cho, Chuo-ku, Kobe, 650-0017, Japan
| | - Takuto Hara
- Department of Urology, Kobe University Graduate School of Medicine, Kusunoki-cho, Chuo-ku, Kobe, 650-0017, Japan
| | - Tomoaki Terakawa
- Department of Urology, Kobe University Graduate School of Medicine, Kusunoki-cho, Chuo-ku, Kobe, 650-0017, Japan
| | - Junya Furukawa
- Department of Urology, Kobe University Graduate School of Medicine, Kusunoki-cho, Chuo-ku, Kobe, 650-0017, Japan
| | - Yuzo Nakano
- Department of Urology, Kobe University Graduate School of Medicine, Kusunoki-cho, Chuo-ku, Kobe, 650-0017, Japan
| | - Masato Fujisawa
- Department of Urology, Kobe University Graduate School of Medicine, Kusunoki-cho, Chuo-ku, Kobe, 650-0017, Japan
| | - Toshiro Shirakawa
- Department of Urology, Kobe University Graduate School of Medicine, Kusunoki-cho, Chuo-ku, Kobe, 650-0017, Japan.
- Laboratory of Translational Research for Biologics, Department of Advanced Medical Science, Kobe University Graduate School of Science, Technology and Innovation, Kusunoki-cho, Chuo-ku, Kobe, 650-0017, Japan.
| |
Collapse
|
5
|
Mechanism of action of DSP-7888 (adegramotide/nelatimotide) Emulsion, a peptide-based therapeutic cancer vaccine with the potential to turn up the heat on non-immunoreactive tumors. Clin Transl Oncol 2023; 25:396-407. [PMID: 36138335 PMCID: PMC9510518 DOI: 10.1007/s12094-022-02946-0] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2022] [Accepted: 09/01/2022] [Indexed: 01/27/2023]
Abstract
BACKGROUND Wilms' tumor 1 (WT1) is highly expressed in various solid tumors and hematologic malignancies. DSP-7888 (adegramotide/nelatimotide) Emulsion is an investigational therapeutic cancer vaccine comprising three synthetic epitopes derived from WT1. We evaluated the mechanism of action of DSP-7888 Emulsion, which is hypothesized to induce WT1-specific cytotoxic T lymphocytes (CTLs) and helper T lymphocytes (HTLs). METHODS The ability of nelatimotide and adegramotide to induce WT1-specific CD8+ T cells and CD4+ T cells was assessed in human peripheral blood mononuclear cells (PBMCs). The ability of DSP-7888 Emulsion to induce WT1-specific CTLs in vivo was assessed using human leukocyte antigen-I (HLA-I) transgenic mice. To assess how adegramotide, the helper peptide in DSP-7888 Emulsion, enhances WT1-specific CTLs, HLA-I transgenic mice were administered DSP-7888 or nelatimotide-only Emulsion. Interferon-gamma secretion under antigen stimulation by splenocytes co-cultured with or without tumor cells was then quantified. The effects of combination treatment with DSP-7888 Emulsion and an anti-programmed cell death protein 1 (PD-1) antibody on tumor volume and the frequency of tumor-infiltrating WT1-specific T cells were assessed in HLA-I transgenic mice implanted with WT1 antigen-positive tumors. RESULTS The peptides in DSP-7888 Emulsion were shown to induce WT1-specific CTLs and HTLs in both human PBMCs and HLA-I transgenic mice. Unlike splenocytes from nelatimotide-only Emulsion-treated mice, splenocytes from DSP-7888 Emulsion-treated mice exhibited high levels of interferon-gamma secretion, including when co-cultured with tumor cells; interferon-gamma secretion was further enhanced by concomitant treatment with anti-PD-1. HLA-I transgenic mice administered DSP-7888 Emulsion plus anti-PD-1 experienced significantly greater reductions in tumor size than mice treated with either agent alone. This reduction in tumor volume was accompanied by increased numbers of tumor-infiltrating WT1-specific CTLs. CONCLUSIONS DSP-7888 Emulsion can promote both cytotoxic and helper T-cell-mediated immune responses against WT1-positive tumors. Adegramotide enhances CTL numbers, and the CTLs induced by treatment with both nelatimotide and adegramotide are capable of functioning within the immunosuppressive tumor microenvironment. The ability of anti-PD-1 to enhance the antitumor activity of DSP-7888 Emulsion in mice implanted with WT1-positive tumors suggests the potential for synergy.
Collapse
|
6
|
Peng X, Zhu X, Di T, Tang F, Guo X, Liu Y, Bai J, Li Y, Li L, Zhang L. The yin-yang of immunity: Immune dysregulation in myelodysplastic syndrome with different risk stratification. Front Immunol 2022; 13:994053. [PMID: 36211357 PMCID: PMC9537682 DOI: 10.3389/fimmu.2022.994053] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2022] [Accepted: 09/07/2022] [Indexed: 11/13/2022] Open
Abstract
Myelodysplastic syndrome (MDS) is a heterogeneous group of myeloid clonal diseases with diverse clinical courses, and immune dysregulation plays an important role in the pathogenesis of MDS. However, immune dysregulation is complex and heterogeneous in the development of MDS. Lower-risk MDS (LR-MDS) is mainly characterized by immune hyperfunction and increased apoptosis, and the immunosuppressive therapy shows a good response. Instead, higher-risk MDS (HR-MDS) is characterized by immune suppression and immune escape, and the immune activation therapy may improve the survival of HR-MDS. Furthermore, the immune dysregulation of some MDS changes dynamically which is characterized by the coexistence and mutual transformation of immune hyperfunction and immune suppression. Taken together, the authors think that the immune dysregulation in MDS with different risk stratification can be summarized by an advanced philosophical thought “Yin-Yang theory” in ancient China, meaning that the opposing forces may actually be interdependent and interconvertible. Clarifying the mechanism of immune dysregulation in MDS with different risk stratification can provide the new basis for diagnosis and clinical treatment. This review focuses on the manifestations and roles of immune dysregulation in the different risk MDS, and summarizes the latest progress of immunotherapy in MDS.
Collapse
Affiliation(s)
- Xiaohuan Peng
- Department of Hematology, Lanzhou University Second Hospital, Lanzhou University, Lanzhou, China
- Key Laboratory of the Hematology of Gansu Province, Lanzhou University Second Hospital, Lanzhou University, Lanzhou, China
| | - Xiaofeng Zhu
- Department of Hematology, Lanzhou University Second Hospital, Lanzhou University, Lanzhou, China
- Key Laboratory of the Hematology of Gansu Province, Lanzhou University Second Hospital, Lanzhou University, Lanzhou, China
| | - Tianning Di
- Department of Hematology, Lanzhou University Second Hospital, Lanzhou University, Lanzhou, China
- Key Laboratory of the Hematology of Gansu Province, Lanzhou University Second Hospital, Lanzhou University, Lanzhou, China
| | - Futian Tang
- Key Laboratory of the Digestive System Tumors of Gansu Province, Lanzhou University Second Hospital, Lanzhou University, Lanzhou, China
| | - Xiaojia Guo
- Department of Hematology, Lanzhou University Second Hospital, Lanzhou University, Lanzhou, China
| | - Yang Liu
- Department of Hematology, Lanzhou University Second Hospital, Lanzhou University, Lanzhou, China
| | - Jun Bai
- Key Laboratory of the Hematology of Gansu Province, Lanzhou University Second Hospital, Lanzhou University, Lanzhou, China
| | - Yanhong Li
- Key Laboratory of the Hematology of Gansu Province, Lanzhou University Second Hospital, Lanzhou University, Lanzhou, China
| | - Lijuan Li
- Department of Hematology, Lanzhou University Second Hospital, Lanzhou University, Lanzhou, China
- Key Laboratory of the Hematology of Gansu Province, Lanzhou University Second Hospital, Lanzhou University, Lanzhou, China
- *Correspondence: Lijuan Li, ; Liansheng Zhang,
| | - Liansheng Zhang
- Department of Hematology, Lanzhou University Second Hospital, Lanzhou University, Lanzhou, China
- Key Laboratory of the Hematology of Gansu Province, Lanzhou University Second Hospital, Lanzhou University, Lanzhou, China
- *Correspondence: Lijuan Li, ; Liansheng Zhang,
| |
Collapse
|
7
|
Ueda Y, Usuki K, Fujita J, Matsumura I, Aotsuka N, Sekiguchi N, Nakazato T, Iwasaki H, Takahara‐Matsubara M, Sugimoto S, Goto M, Naoe T, Kizaki M, Miyazaki Y, Aakashi K. Phase 1/2 study evaluating the safety and efficacy of DSP-7888 dosing emulsion in myelodysplastic syndromes. Cancer Sci 2022; 113:1377-1392. [PMID: 34932235 PMCID: PMC8990724 DOI: 10.1111/cas.15245] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2021] [Revised: 11/11/2021] [Accepted: 12/06/2021] [Indexed: 11/27/2022] Open
Abstract
DSP-7888 is an immunotherapeutic cancer vaccine derived from the Wilms' tumor gene 1 (WT1) protein. This phase 1/2 open-label study evaluated the safety and efficacy of DSP-7888 dosing emulsion in patients with myelodysplastic syndromes (MDS). DSP-7888 was administered intradermally (3.5 or 10.5 mg) every 2 weeks for 6 months and then every 2-4 weeks until lack of benefit. Twelve patients were treated in phase 1 (3.5 mg, n = 6; 10.5 mg, n = 6), with no dose-limiting toxicities reported. Thus, the 10.5 mg dose was selected as the recommended phase 2 dose, and 35 patients were treated in phase 2. Forty-seven patients received ≥1 dose of the study drug and comprised the safety analysis set. The most common adverse drug reaction (ADR) was injection site reactions (ISR; 91.5%). Grade 3 ISR were common (58.8%) in phase 1 but occurred less frequently in 2 (22.9%) following implementation of risk minimization strategies. Other common ADR were pyrexia (10.6%) and febrile neutropenia (8.5%). In the efficacy analysis set, comprising patients with higher-risk MDS after azacitidine failure in phases 1 and 2 (n = 42), the disease control rate was 19.0%, and the median overall survival (OS) was 8.6 (90% confidence interval [CI], 6.8-10.3) months. Median OS was 10.0 (90% CI, 7.6-11.4) months in patients with a WT1-specific immune response (IR; n = 33) versus 4.1 (90% CI, 2.3-8.1) months in those without a WT1-specific IR (n = 9; P = .0034). The acceptable safety and clinical activity findings observed support the continued development of DSP-7888 dosing emulsion.
Collapse
Affiliation(s)
- Yasunori Ueda
- Department of Hematology/OncologyKurashiki Central HospitalOkayamaJapan
| | - Kensuke Usuki
- Department of HematologyNTT Medical Center TokyoTokyoJapan
| | - Jiro Fujita
- Department of Hematology and OncologyOsaka University HospitalOsakaJapan
| | - Itaru Matsumura
- Department of Hematology and RheumatologyKindai University HospitalOsakaJapan
| | - Nobuyuki Aotsuka
- Department of Hematology OncologyJapanese Red Cross Narita HospitalChibaJapan
| | - Naohiro Sekiguchi
- Department of HematologyNational Hospital Organization Disaster Medical CenterTokyoJapan
| | - Tomonori Nakazato
- Department of HematologyYokohama Municipal Citizen’s HospitalKanagawaJapan
| | - Hiromi Iwasaki
- Department of HematologyNational Hospital Organization Kyushu Medical CenterFukuokaJapan
| | | | | | | | - Tomoki Naoe
- National Hospital Organization Nagoya Medical CenterAichiJapan
| | | | - Yasushi Miyazaki
- Department of HematologyAtomic Bomb Disease and Hibakusha Medicine UnitAtomic Bomb Disease InstituteNagasaki UniversityNagasakiJapan
| | - Koichi Aakashi
- Department of Medicine and Biosystemic Science Faculty of MedicineKyushu UniversityFukuokaJapan
| |
Collapse
|
8
|
Holmberg-Thydén S, Dufva IH, Gang AO, Breinholt MF, Schejbel L, Andersen MK, Kadivar M, Svane IM, Grønbæk K, Hadrup SR, El Fassi D. Epigenetic therapy in combination with a multi-epitope cancer vaccine targeting shared tumor antigens for high-risk myelodysplastic syndrome - a phase I clinical trial. Cancer Immunol Immunother 2021; 71:433-444. [PMID: 34218294 DOI: 10.1007/s00262-021-02993-6] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2020] [Accepted: 06/19/2021] [Indexed: 11/30/2022]
Abstract
BACKGROUND Standard care for patients with high-risk myelodysplastic syndrome (MDS) is hypomethylating agents such as azacitidine (AZA), which can induce expression of methylated tumor-associated antigens and therefore potentiate immunotherapeutic targeting. METHOD In this phase 1 trial, we combined AZA with a therapeutic peptide vaccine targeting antigens encoded from NY-ESO-1, MAGE-A3, PRAME, and WT-1, which have previously been demonstrated to be upregulated by AZA treatment. RESULT Five patients who had responded to AZA monotherapy were included in the study and treated with the vaccine. The combination therapy showed only few adverse events during the study period, whereof none classified as serious. However, no specific immune responses could be detected using intracellular cytokine staining or ELISpot assays. Minor changes in the phenotypic composition of immune cells and their expression of stimulatory and inhibitory markers were detected. All patients progressed to AML with a mean time to progression from inclusion (TTP) of 5.2 months (range 2.8 to 7.6). Mean survival was 18.1 months (range 10.9 to 30.6) from MDS diagnosis and 11.3 months (range 4.3 to 22.2) from inclusion. Sequencing of bone marrow showed clonal expansion of malignant cells, as well as appearance of novel mutations. CONCLUSION The patients progressed to AML with an average time of only five months after initiating the combination therapy. This may be unrelated to the experimental treatment, but the trial was terminated early as there was no sign of clinical benefit or immunological response. Why the manuscript is especially interesting This study is the first to exploit the potential synergistic effects of combining a multi-peptide cancer vaccine with epigenetic therapy in MDS. Although our results are negative, they emphasize challenges to induce immune reactivity in patients with high-risk MDS.
Collapse
Affiliation(s)
- Staffan Holmberg-Thydén
- Department of Hematology, Copenhagen University Hospital, Copenhagen, Denmark.,Experimental & Translational Immunology (XTI), Health Technology, T-Cells and Cancer, Technical University of Denmark, Lyngby, Denmark
| | - Inge Høgh Dufva
- Department of Oncology and Palliative Care, Copenhagen University Hospital, Hillerød, Denmark
| | - Anne Ortved Gang
- Department of Hematology, Copenhagen University Hospital, Copenhagen, Denmark.,Department of Clinical Medicine, University of Copenhagen, Copenhagen, Denmark
| | | | - Lone Schejbel
- Department of Pathology, Copenhagen University Hospital, Herlev, Denmark
| | | | - Mohammad Kadivar
- Experimental & Translational Immunology (XTI), Health Technology, T-Cells and Cancer, Technical University of Denmark, Lyngby, Denmark
| | - Inge Marie Svane
- Department of Clinical Medicine, University of Copenhagen, Copenhagen, Denmark.,National Center for Cancer Immune Therapy, Copenhagen University Hospital, Herlev, Denmark.,Department of Oncology, Copenhagen University Hospital, Herlev, Denmark
| | - Kirsten Grønbæk
- Department of Hematology, Copenhagen University Hospital, Copenhagen, Denmark.,Department of Clinical Medicine, University of Copenhagen, Copenhagen, Denmark.,Biotech Research and Innovation Centre, BRIC, University of Copenhagen, Copenhagen, Denmark
| | - Sine Reker Hadrup
- Experimental & Translational Immunology (XTI), Health Technology, T-Cells and Cancer, Technical University of Denmark, Lyngby, Denmark.
| | - Daniel El Fassi
- Department of Hematology, Copenhagen University Hospital, Copenhagen, Denmark. .,Department of Clinical Medicine, University of Copenhagen, Copenhagen, Denmark.
| |
Collapse
|
9
|
Immunotherapy in AML: a brief review on emerging strategies. Clin Transl Oncol 2021; 23:2431-2447. [PMID: 34160771 DOI: 10.1007/s12094-021-02662-1] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2021] [Accepted: 06/04/2021] [Indexed: 12/13/2022]
Abstract
Acute myeloid leukemia (AML), the most common form of leukemia amongst adults, is one of the most important hematological malignancies. Epidemiological data show both high incidence rates and low survival rates, especially in secondary cases among adults. Although classic and novel chemotherapeutic approaches have extensively improved disease prognosis and survival, the need for more personalized and target-specific methods with less side effects have been inevitable. Therefore, immunotherapeutic methods are of importance. In the following review, primarily a brief understanding of the molecular basis of the disease has been represented. Second, prior to the introduction of immunotherapeutic approaches, the entangled relationship of AML and patient's immune system has been discussed. At last, mechanistic and clinical evidence of each of the immunotherapy approaches have been covered.
Collapse
|
10
|
Branched Multipeptide-combined Adjuvants Potentially Improve the Antitumor Effects on Glioblastoma. J Immunother 2021; 44:151-161. [PMID: 33512855 DOI: 10.1097/cji.0000000000000359] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2020] [Accepted: 11/27/2020] [Indexed: 11/25/2022]
Abstract
The promising immunotherapy effects of a multiple antigenic peptide on glioblastoma (GBM) in a previous study encourage the use of adjuvants to enhance its therapeutic efficacy. Among adjuvants, pan HLA-DR-binding epitope (PADRE) and anti-programmed cell death protein 1 (anti-PD1) have potentially been tested for cancer immunotherapy. Therefore, here we evaluated the ability of PADRE and anti-PD1 to enhance the function of the branched multipeptide against GBM. The potential utility of tumor-associated antigens (ErbB-2 and WT-1) targeting GBM with HLA-A24 was confirmed and a branched multipeptide was constructed from these antigens. The effects of the branched multipeptide and PADRE on immunophenotyping and polarized Th cytokine production in dendritic cells were clarified. The expression of PD1 on T cells and PDL1 on GBM cells was also investigated. The interferon-γ enzyme-linked immunospot and lactate dehydrogenase release assays were performed to determine the function of GBM peptide antigen-specific cytotoxic T cells against GBM cells. Overall, this study showed that both ErbB-2 and WT-1 are potential candidates for branched multipeptide construction. The branched multipeptide and PADRE enhanced the expression of major histocompatibility complex and co-stimulatory molecules and the production of polarized Th1 cytokines in dendritic cells. The increase in the number of interferon-γ+ effector T cells was consistent with the increase in the percentage specific lysis of GBM target cells by GBM peptide antigen-specific cytotoxic T cells in the presence of the branched multipeptide, PADRE, and anti-PD1. Our study suggests the combination of branched multipeptide and adjuvants such as PADRE and anti-PD1 can potentially enhance the effects of immunotherapy for GBM treatment.
Collapse
|
11
|
Jiang Y, Lv X, Ge X, Qu H, Zhang Q, Lu K, Lu Y, Xue C, Zhang L, Wang X. Wilms tumor gent 1 (WT1)-specific adoptive immunotherapy in hematologic diseases. Int Immunopharmacol 2021; 94:107504. [PMID: 33657524 DOI: 10.1016/j.intimp.2021.107504] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2020] [Revised: 02/10/2021] [Accepted: 02/11/2021] [Indexed: 11/19/2022]
Abstract
As an attractive tumor-associated antigen (TAA), Wilms tumor gene 1 (WT1) is usually overexpressed in malignant hematological diseases. In recent years, WT1-specific adoptive immunotherapy has been the "hot spot" for tumor treatment. The main immunotherapeutic techniques associated with WT1 include WT1-specific cytotoxic T lymphocytes (CTLs), vaccine, and T cell receptor (TCR) gene therapy. WT1-based adoptive immunotherapy exhibited promising anti-tumorous effect with tolerable safety. There are still many limitations needed to be improved including the weak immunogenetics of WT1, immune tolerance, and short persistence of the immune response. In this review, we summarized the progress of productive technologies and the clinical or preclinical investigations of WT1-specific immunotherapy in hematological diseases.
Collapse
Affiliation(s)
- Yujie Jiang
- Department of Hematology, Shandong Provincial Hospital, Cheeloo College of Medicine, Shandong University, Jinan 250021, China; Department of Hematology, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan 250021, China.
| | - Xiao Lv
- Department of Hematology, Shandong Provincial Hospital, Cheeloo College of Medicine, Shandong University, Jinan 250021, China; Department of Hematology, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan 250021, China
| | - Xueling Ge
- Department of Hematology, Shandong Provincial Hospital, Cheeloo College of Medicine, Shandong University, Jinan 250021, China; Department of Hematology, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan 250021, China
| | - Huiting Qu
- Department of Hematology, Shandong Provincial Hospital, Cheeloo College of Medicine, Shandong University, Jinan 250021, China; Department of Hematology, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan 250021, China
| | - Qian Zhang
- Department of Hematology, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan 250021, China
| | - Kang Lu
- Department of Hematology, Shandong Provincial Hospital, Cheeloo College of Medicine, Shandong University, Jinan 250021, China; Department of Hematology, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan 250021, China
| | - Yingxue Lu
- Department of Hematology, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan 250021, China
| | - Chao Xue
- Department of Hematology, Shandong Provincial Hospital, Cheeloo College of Medicine, Shandong University, Jinan 250021, China
| | - Lingyan Zhang
- Department of Hematology, Shandong Provincial Hospital, Cheeloo College of Medicine, Shandong University, Jinan 250021, China; Department of Hematology, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan 250021, China
| | - Xin Wang
- Department of Hematology, Shandong Provincial Hospital, Cheeloo College of Medicine, Shandong University, Jinan 250021, China; Department of Hematology, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan 250021, China; School of Medicine, Shandong University, Jinan, Shandong 250012, China.
| |
Collapse
|
12
|
Chen J, Zhang H, Zhou L, Hu Y, Li M, He Y, Li Y. Enhancing the Efficacy of Tumor Vaccines Based on Immune Evasion Mechanisms. Front Oncol 2021; 10:584367. [PMID: 33614478 PMCID: PMC7886973 DOI: 10.3389/fonc.2020.584367] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2020] [Accepted: 12/22/2020] [Indexed: 12/11/2022] Open
Abstract
Tumor vaccines aim to expand tumor-specific T cells and reactivate existing tumor-specific T cells that are in a dormant or unresponsive state. As such, there is growing interest in improving the durable anti-tumor activity of tumor vaccines. Failure of vaccine-activated T cells to protect against tumors is thought to be the result of the immune escape mechanisms of tumor cells and the intricate immunosuppressive tumor microenvironment. In this review, we discuss how tumor cells and the tumor microenvironment influence the effects of tumor infiltrating lymphocytes and summarize how to improve the efficacy of tumor vaccines by improving the design of current tumor vaccines and combining tumor vaccines with other therapies, such as metabolic therapy, immune checkpoint blockade immunotherapy and epigenetic therapy.
Collapse
Affiliation(s)
- Jianyu Chen
- Department of Hematology, Zhujiang Hospital, Southern Medical University, Guangzhou, China
| | - Honghao Zhang
- Department of Hematology, Zhujiang Hospital, Southern Medical University, Guangzhou, China
| | - Lijuan Zhou
- Department of Hematology, Zhujiang Hospital, Southern Medical University, Guangzhou, China
| | - Yuxing Hu
- Department of Hematology, Zhujiang Hospital, Southern Medical University, Guangzhou, China
| | - Meifang Li
- Department of Hematology, Zhujiang Hospital, Southern Medical University, Guangzhou, China
| | - Yanjie He
- Department of Hematology, Zhujiang Hospital, Southern Medical University, Guangzhou, China
| | - Yuhua Li
- Department of Hematology, Zhujiang Hospital, Southern Medical University, Guangzhou, China.,Bioland Laboratory (Guangzhou Regenerative Medicine and Health Guangdong Laboratory), Guangzhou, China
| |
Collapse
|
13
|
Abstract
There are strong biologic and preclinical rationales for the development of therapeutic cancer vaccines; however, the clinical translation of this treatment strategy has been challenging. It is now understood that many previous clinical trials of cancer vaccines used target antigens or vaccine designs that inherently lacked sufficient immunogenicity to induce clinical responses. Despite the historical track record, breakthrough advances in cancer immunobiology and vaccine technologies have supported continued interest in therapeutic cancer vaccinations, with the hope that next-generation vaccine strategies will enable patients with cancer to develop long-lasting anti-tumor immunity. There has been substantial progress identifying antigens and vaccine vectors that lead to strong and broad T cell responses, tailoring vaccine designs to achieve optimal antigen presentation, and finding combination partners employing complementary mechanisms of action (e.g., checkpoint inhibitors) to overcome the diverse methods cancer cells use to evade and suppress the immune system. Results from randomized, phase 3 studies testing therapeutic cancer vaccines based on these advances are eagerly awaited. Here, we summarize the successes and failures in the clinical development of cancer vaccines, address how this historical experience and advances in science and technology have shaped efforts to improve vaccines, and offer a clinical perspective on the future role of vaccine therapies for cancer.
Collapse
|
14
|
WT1-specific CD8 + cytotoxic T cells with the capacity for antigen-specific expansion accumulate in the bone marrow in MDS. Int J Hematol 2021; 113:723-734. [PMID: 33502734 DOI: 10.1007/s12185-021-03083-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2020] [Revised: 01/12/2021] [Accepted: 01/13/2021] [Indexed: 10/22/2022]
Abstract
Wilms' tumor 1 (WT1) is a tumor-associated antigen and immunotherapy target in myelodysplastic syndrome (MDS). Further information is needed on the characteristics of WT1-specific CD8 + T cells to develop immunotherapeutic strategies for MDS. To clarify the frequency, distribution, and phenotype of WT1-specific CD8 + T cells, which occur innately in MDS patients, we analyzed paired peripheral blood (PB) and bone marrow (BM) samples from 39 patients with MDS or acute myeloid leukemia with myelodysplasia-related changes. The median frequency of WT1 tetramer-binding CD8 + T cells in the CD8 + T cell population was 0.11% in PB and 0.18% in BM. A further tetramer assay combined with mixed lymphocyte peptide culture (MLPC assay) was used to detect functional WT1-specific CD8 + T cells that could respond to the WT1 peptide. Functional WT1-specific CD8 + T cells were detected in BM in 61% of patients, which was significantly higher than in PB (23%, p = 0.001). The frequency of these cells estimated by the MLPC assay was tenfold higher in BM than in PB. The majority of WT1 tetramer-binding CD8 + T cells in BM had a unique phenotype with co-expression of CD39 and CXCR4. These findings will facilitate the development of novel immunotherapeutic strategies for MDS.
Collapse
|
15
|
Nishida S, Tsuboi A, Tanemura A, Ito T, Nakajima H, Shirakata T, Morimoto S, Fujiki F, Hosen N, Oji Y, Kumanogoh A, Kawase I, Oka Y, Azuma I, Morita S, Sugiyama H. Immune adjuvant therapy using Bacillus Calmette-Guérin cell wall skeleton (BCG-CWS) in advanced malignancies: A phase 1 study of safety and immunogenicity assessments. Medicine (Baltimore) 2019; 98:e16771. [PMID: 31415377 PMCID: PMC6831317 DOI: 10.1097/md.0000000000016771] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/19/2022] Open
Abstract
The cell wall skeleton of Bacillus Calmette-Guérin (BCG-CWS) is a bioactive component that is a strong immune adjuvant for cancer immunotherapy. BCG-CWS activates the innate immune system through various pattern recognition receptors and is expected to elicit antigen-specific cellular immune responses when co-administered with tumor antigens. To determine the recommended dose (RD) of BCG-CWS based on its safety profile, we conducted a phase I dose-escalation study of BCG-CWS in combination with WT1 peptide for patients with advanced cancer.The primary endpoint was the proportion of treatment-related adverse events (AEs) at each BCG-CWS dose. The secondary endpoints were immune responses and clinical effects. A BCG-CWS dose of 50, 100, or 200 μg/body was administered intradermally on days 0, 7, 21, and 42, followed by 2 mg of WT1 peptide on the next day. For the escalation of a dose level, 3 + 3 design was used.Study subjects were 18 patients with advanced WT1-expressing cancers refractory to standard anti-cancer therapies (7 melanoma, 5 colorectal, 4 hepatobiliary, 1 ovarian, and 1 lung). Dose-limiting toxicity occurred in the form of local skin reactions in 2 patients at a dose of 200 μg although no serious treatment-related systemic AEs were observed. Neutrophils and monocytes transiently increased in response to BCG-CWS. Some patients demonstrated the induction of the CD4 T cell subset and its differentiation from the naïve to memory phenotype, resulting in a tumor response.The RD of BCG-CWS was determined to be 100 μg/body. This dose was well tolerated and showed promising clinical effects with the induction of an appropriate immune response.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | | | | | - Yusuke Oji
- Department of Functional Diagnostic Science, Osaka University Graduate School of Medicine
| | - Atsushi Kumanogoh
- Department of Respiratory Medicine and Clinical Immunology
- Department of Immunopathology, Immunology Frontier Research Center, Osaka University, Suita, Osaka
| | - Ichiro Kawase
- Department of Respiratory Medicine and Clinical Immunology
| | - Yoshihiro Oka
- Department of Respiratory Medicine and Clinical Immunology
- Department of Cancer Stem Cell Biology
- Department of Immunopathology, Immunology Frontier Research Center, Osaka University, Suita, Osaka
| | | | - Satoshi Morita
- Department of Biomedical Statistics and Bioinformatics, Kyoto University Graduate School of Medicine, Kyoto, Japan
| | | |
Collapse
|
16
|
Kitagawa K, Gonoi R, Tatsumi M, Kadowaki M, Katayama T, Hashii Y, Fujisawa M, Shirakawa T. Preclinical Development of a WT1 Oral Cancer Vaccine Using a Bacterial Vector to Treat Castration-Resistant Prostate Cancer. Mol Cancer Ther 2019; 18:980-990. [PMID: 30824610 DOI: 10.1158/1535-7163.mct-18-1105] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2018] [Revised: 12/28/2018] [Accepted: 02/22/2019] [Indexed: 11/16/2022]
Abstract
Previously, we constructed a recombinant Bifidobacterium longum displaying a partial mouse Wilms' tumor 1 (WT1) protein (B. longum 420) as an oral cancer vaccine using a bacterial vector and demonstrated that oral administration of B. longum 420 significantly inhibited tumor growth compared with the Db126 WT1 peptide vaccine in the TRAMP-C2, mouse castration-resistant prostate cancer (CRPC) syngeneic tumor model. The present study demonstrated that oral administration of 1.0×109 colony-forming units of B. longum 420 induced significantly higher cytotoxicity against TRAMP-C2 cells than intraperitoneal injection of 100 μg of Db126, and the in vivo antitumor activity of B. longum 420 in the TRAMP-C2 tumor model could be augmented by intraperitoneal injections of 250 μg of anti-PD-1 antibody. For the clinical development, we produced the B440 pharmaceutical formulation, which is lyophilized powder of inactivated B. longum 440 displaying the partially modified human WT1 protein. We confirmed that B. longum 440 could induce cellular immunity specific to multiple WT1 epitopes. In a preclinical dosage study, B440 significantly inhibited growth of the TRAMP-C2 tumors compared with that of the control groups (PBS and B. longum not expressing WT1) at all dosages (1, 5, and 10 mg/body of B440). These mouse doses were considered to correspond with practical oral administration doses of 0.2, 1, and 2 g/body for humans. Taken together, these results suggest that the B440 WT1 oral cancer vaccine can be developed as a novel oral immuno-oncology drug to treat CRPC as a monotherapy or as an adjunct to immune checkpoint inhibitors.
Collapse
Affiliation(s)
- Koichi Kitagawa
- Division of Advanced Medical Science, Kobe University Graduate School of Science, Technology and Innovation, Kobe, Japan.,Division of Translational Research for Biologics, Department of Internal Medicine Related, Kobe University Graduate School of Medicine, Kobe, Japan
| | - Reina Gonoi
- Division of Advanced Medical Science, Kobe University Graduate School of Science, Technology and Innovation, Kobe, Japan
| | - Maho Tatsumi
- Division of Advanced Medical Science, Kobe University Graduate School of Science, Technology and Innovation, Kobe, Japan
| | - Masahide Kadowaki
- Division of Advanced Medical Science, Kobe University Graduate School of Science, Technology and Innovation, Kobe, Japan
| | - Takane Katayama
- Division of Integrated Life Science, Graduate School of Biostudies, Kyoto University, Kyoto, Japan
| | - Yoshiko Hashii
- Department of Pediatrics, Osaka University Graduate School of Medicine, Suita, Japan
| | - Masato Fujisawa
- Department of Urology, Kobe University Graduate School of Medicine, Kobe, Japan
| | - Toshiro Shirakawa
- Division of Advanced Medical Science, Kobe University Graduate School of Science, Technology and Innovation, Kobe, Japan. .,Division of Translational Research for Biologics, Department of Internal Medicine Related, Kobe University Graduate School of Medicine, Kobe, Japan.,Department of Urology, Kobe University Graduate School of Medicine, Kobe, Japan
| |
Collapse
|
17
|
Klausen U, Holmberg S, Holmström MO, Jørgensen NGD, Grauslund JH, Svane IM, Andersen MH. Novel Strategies for Peptide-Based Vaccines in Hematological Malignancies. Front Immunol 2018; 9:2264. [PMID: 30327655 PMCID: PMC6174926 DOI: 10.3389/fimmu.2018.02264] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2018] [Accepted: 09/11/2018] [Indexed: 12/12/2022] Open
Abstract
Peptides vaccination is an interesting approach to activate T-cells toward desired antigens in hematological malignancies. In addition to classical tumor associated antigens, such as cancer testis antigens, new potential targets for peptide vaccination comprise neo-antigens including JAK2 and CALR mutations, and antigens from immune regulatory proteins in the tumor microenvironment such as programmed death 1 ligands (PD-L1 and PD-L2). Immunosuppressive defenses of tumors are an important challenge to overcome and the T cell suppressive ligands PD-L1 and PD-L2 are often present in tumor microenvironments. Thus, PD-L1 and PD-L2 are interesting targets for peptide vaccines in diseases where the tumor microenvironment is known to play an essential role such as multiple myeloma and follicular lymphoma. In myelodysplastic syndromes the drug azacitidine re-exposes tumor associated antigens, why vaccination with related peptides would be an interesting addition. In myeloproliferative neoplasms the JAK2 and CALR mutations has proven to be immunogenic neo-antigens and thus possible targets for peptide vaccination. In this mini review we summarize the basis for these novel approaches, which has led to the initiation of clinical trials with various peptide vaccines in myelodysplastic syndromes, myeloproliferative neoplasms, multiple myeloma, and follicular lymphoma.
Collapse
Affiliation(s)
- Uffe Klausen
- Center for Cancer Immune Therapy, Herlev Hospital, Department of Hematology and Oncology, Herlev, Denmark
| | - Staffan Holmberg
- Department of Hematology, Herlev Hospital, Herlev, Denmark
- Division of Immunology - T cells & Cancer, DTU Nanotech, Technical University of Denmark, Lyngby, Denmark
| | - Morten Orebo Holmström
- Center for Cancer Immune Therapy, Herlev Hospital, Department of Hematology and Oncology, Herlev, Denmark
- Department of Hematology, Zealand University Hospital, Roskilde, Denmark
| | | | - Jacob Handlos Grauslund
- Center for Cancer Immune Therapy, Herlev Hospital, Department of Hematology and Oncology, Herlev, Denmark
- Department of Hematology, Zealand University Hospital, Roskilde, Denmark
| | - Inge Marie Svane
- Center for Cancer Immune Therapy, Herlev Hospital, Department of Hematology and Oncology, Herlev, Denmark
- Institute for Clinical Medicine, University of Copenhagen, Copenhagen, Denmark
| | - Mads Hald Andersen
- Center for Cancer Immune Therapy, Herlev Hospital, Department of Hematology and Oncology, Herlev, Denmark
- Institute for Immunology and Microbiology, University of Copenhagen, Copenhagen, Denmark
| |
Collapse
|
18
|
Guo J, Luan X, Cong Z, Sun Y, Wang L, McKenna SL, Cahill MR, O'Driscoll CM. The potential for clinical translation of antibody-targeted nanoparticles in the treatment of acute myeloid leukaemia. J Control Release 2018; 286:154-166. [DOI: 10.1016/j.jconrel.2018.07.024] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2018] [Revised: 07/12/2018] [Accepted: 07/13/2018] [Indexed: 02/06/2023]
|
19
|
Targeting cancer stem cells and their niche: perspectives for future therapeutic targets and strategies. Semin Cancer Biol 2018; 53:139-155. [PMID: 30081228 DOI: 10.1016/j.semcancer.2018.08.002] [Citation(s) in RCA: 85] [Impact Index Per Article: 14.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2018] [Revised: 07/30/2018] [Accepted: 08/02/2018] [Indexed: 02/07/2023]
Abstract
A small subpopulation of cells within the bulk of tumors share features with somatic stem cells, in that, they are capable of self-renewal, they differentiate, and are highly resistant to conventional therapy. These cells have been referred to as cancer stem cells (CSCs). Recent reports support the central importance of a cancer stem cell-like niche that appears to help foster the generation and maintenance of CSCs. In response to signals provided by this microenvironment, CSCs express the tumorigenic characteristics that can drive tumor metastasis by the induction of epithelial-mesenchymal-transition (EMT) that in turn fosters the migration and recolonization of the cells as secondary tumors within metastatic niches. We summarize here recent advances in cancer stem cell research including the characterization of their genetic and epigenetic features, metabolic specialities, and crosstalk with aging-associated processes. Potential strategies for targeting CSCs, and their niche, by regulating CSCs plasticity, or therapeutic sensitivity is discussed. Finally, it is hoped that new strategies and related therapeutic approaches as outlined here may help prevent the formation of the metastatic niche, as well as counter tumor progression and metastatic growth.
Collapse
|
20
|
Antitumor activity of CAR-T cells targeting the intracellular oncoprotein WT1 can be enhanced by vaccination. Blood 2018; 132:1134-1145. [PMID: 30045840 DOI: 10.1182/blood-2017-08-802926] [Citation(s) in RCA: 59] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2017] [Accepted: 07/17/2018] [Indexed: 12/31/2022] Open
Abstract
The recent success of chimeric antigen receptor (CAR)-T cell therapy for treatment of hematologic malignancies supports further development of treatments for both liquid and solid tumors. However, expansion of CAR-T cell therapy is limited by the availability of surface antigens specific for the tumor while sparing normal cells. There is a rich diversity of tumor antigens from intracellularly expressed proteins that current and conventional CAR-T cells are unable to target. Furthermore, adoptively transferred T cells often suffer from exhaustion and insufficient expansion, in part, because of the immunosuppressive mechanisms operating in tumor-bearing hosts. Therefore, it is necessary to develop means to further activate and expand those CAR-T cells in vivo. The Wilms tumor 1 (WT1) is an intracellular oncogenic transcription factor that is an attractive target for cancer immunotherapy because of its overexpression in a wide range of leukemias and solid tumors, and a low level of expression in normal adult tissues. In the present study, we developed CAR-T cells consisting of a single chain variable fragment (scFv) specific to the WT1235-243/HLA-A*2402 complex. The therapeutic efficacy of our CAR-T cells was demonstrated in a xenograft model, which was further enhanced by vaccination with dendritic cells (DCs) loaded with the corresponding antigen. This enhanced efficacy was mediated, at least partly, by the expansion and activation of CAR-T cells. CAR-T cells shown in the present study not only demonstrate the potential to expand the range of targets available to CAR-T cells, but also provide a proof of concept that efficacy of CAR-T cells targeting peptide/major histocompatibility complex can be boosted by vaccination.
Collapse
|
21
|
Correlates of immune and clinical activity of novel cancer vaccines. Semin Immunol 2018; 39:119-136. [PMID: 29709421 DOI: 10.1016/j.smim.2018.04.001] [Citation(s) in RCA: 46] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/06/2018] [Revised: 04/16/2018] [Accepted: 04/17/2018] [Indexed: 12/30/2022]
Abstract
Cancer vaccines are solely meant to amplify the pool of type 1 cytokine oriented CD4+ and CD8+ T cells that recognize tumor antigen and ultimately foster control and destruction of a growing tumor. They are not designed to deal with all aspects of immune ignorance, exclusion, suppression and escape that are generally in place in patients with cancer and may prevent the T cells to enter the tumor or to exert their effector function. This simple fact prompted for a reappraisal of the many recent trials in which therapeutic cancer vaccines have been examined as monotherapy. In this review, I focus on trials examining therapeutic cancer vaccines at different stages of existing disease. The analysis of vaccine-induced immune responses and clinical activity of therapeutic cancer vaccines revealed four levels of evidence for vaccine efficacy. The lowest levels, reflect the many trials in which the strength of the tumor-reactive T cell response of vaccinated patients is associated with better clinical outcome or change in tumor marker. The highest levels indicate occasional regressions of tumors and metastases after vaccination or reflect a stronger clinical impact of vaccine in a randomized trial. A whole series of trials in which vaccine-induced tumor immunity correlates with the clinical impact of cancer vaccines in premalignant diseases, settings of low tumor burden or tumor regressions in patients with cancer, form an attest to the fact that cancer vaccines work. While the current number of true clinical responders in each cancer trial is too low for firm conclusions on immune correlates of clinical reactivity in cancer, extrapolation of the results from vaccinated patients with pre-cancers suggest a requirement of broad type 1 T cell reactivity.
Collapse
|
22
|
Marin-Acevedo JA, Soyano AE, Dholaria B, Knutson KL, Lou Y. Cancer immunotherapy beyond immune checkpoint inhibitors. J Hematol Oncol 2018; 11:8. [PMID: 29329556 PMCID: PMC5767051 DOI: 10.1186/s13045-017-0552-6] [Citation(s) in RCA: 135] [Impact Index Per Article: 22.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2017] [Accepted: 12/28/2017] [Indexed: 12/17/2022] Open
Abstract
Malignant cells have the capacity to rapidly grow exponentially and spread in part by suppressing, evading, and exploiting the host immune system. Immunotherapy is a form of oncologic treatment directed towards enhancing the host immune system against cancer. In recent years, manipulation of immune checkpoints or pathways has emerged as an important and effective form of immunotherapy. Agents that target cytotoxic T lymphocyte-associated molecule-4 (CTLA-4), programmed cell death receptor-1 (PD-1), and programmed cell death ligand-1 (PD-L1) are the most widely studied and recognized. Immunotherapy, however, extends beyond immune checkpoint therapy by using new molecules such as chimeric monoclonal antibodies and antibody drug conjugates that target malignant cells and promote their destruction. Genetically modified T cells expressing chimeric antigen receptors are able to recognize specific antigens on cancer cells and subsequently activate the immune system. Native or genetically modified viruses with oncolytic activity are of great interest as, besides destroying malignant cells, they can increase anti-tumor activity in response to the release of new antigens and danger signals as a result of infection and tumor cell lysis. Vaccines are also being explored, either in the form of autologous or allogenic tumor peptide antigens, genetically modified dendritic cells that express tumor peptides, or even in the use of RNA, DNA, bacteria, or virus as vectors of specific tumor markers. Most of these agents are yet under development, but they promise to be important options to boost the host immune system to control and eliminate malignancy. In this review, we have provided detailed discussion of different forms of immunotherapy agents other than checkpoint-modifying drugs. The specific focus of this manuscript is to include first-in-human phase I and phase I/II clinical trials intended to allow the identification of those drugs that most likely will continue to develop and possibly join the immunotherapeutic arsenal in a near future.
Collapse
Affiliation(s)
| | - Aixa E Soyano
- Department of Hematology and Oncology, Mayo Clinic, 4500 San Pablo Road, Jacksonville, FL, 32224, USA
| | - Bhagirathbhai Dholaria
- Department of Hematology and Oncology, Mayo Clinic, 4500 San Pablo Road, Jacksonville, FL, 32224, USA
- Current address: Department of Blood and Marrow Transplant and Cellular Immunotherapy, Moffitt Cancer Center, Tampa, FL, USA
| | - Keith L Knutson
- Department of Immunology, Mayo Clinic, Jacksonville, FL, USA
| | - Yanyan Lou
- Department of Hematology and Oncology, Mayo Clinic, 4500 San Pablo Road, Jacksonville, FL, 32224, USA.
| |
Collapse
|
23
|
Ueda Y, Ogura M, Miyakoshi S, Suzuki T, Heike Y, Tagashira S, Tsuchiya S, Ohyashiki K, Miyazaki Y. Phase 1/2 study of the WT1 peptide cancer vaccine WT4869 in patients with myelodysplastic syndrome. Cancer Sci 2017; 108:2445-2453. [PMID: 28949050 PMCID: PMC5715294 DOI: 10.1111/cas.13409] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2017] [Revised: 09/14/2017] [Accepted: 09/21/2017] [Indexed: 01/23/2023] Open
Abstract
WT4869 is a synthetic peptide vaccine derived from the Wilms’ tumor gene 1 (WT1) protein. This phase 1/2 open‐label study evaluated the safety and efficacy of WT4869, and biomarkers for response, in patients with myelodysplastic syndrome. WT4869 (5–1200 μg/dose) was administered intradermally every 2 weeks, according to a 3 + 3 dose‐escalation method in higher‐risk (International Prognostic Scoring System score ≥1.5) or lower‐risk (score <1.5) red blood cell transfusion‐dependent patients with myelodysplastic syndrome. Twenty‐six patients were enrolled and treated (median age, 75 years; range, 32 to 89). The most common adverse event was injection site reaction (61.5%). Main grade 3 or 4 adverse events were neutropenia (30.8%), febrile neutropenia, pneumonia, elevated blood creatine phosphokinase levels and hypoalbuminemia (all 7.7%). Dose‐limiting toxicities occurred in 1 patient in the 50 μg/dose cohort (pyrexia, muscle hemorrhage and hypoalbuminemia) and 1 patient in the 400 μg/dose cohort (pneumonitis); however, the maximum tolerated dose could not be determined from this trial. The overall response rate was 18.2%, the disease control rate was 59.1% and median overall survival was 64.71 weeks (95% confidence interval: 50.29, 142.86) as assessed by the Kaplan–Meier method. Subgroup analysis of azacitidine‐refractory patients with higher‐risk myelodysplastic syndrome (11 patients) showed median overall survival of 55.71 weeks (approximately 13 months). WT1‐specific cytotoxic T lymphocyte induction was observed in 11 of 25 evaluable patients. WT4869 was well tolerated in patients with myelodysplastic syndrome and preliminary data suggest that WT4869 is efficacious. This trial was registered at www.clinicaltrials.jp as JapicCTI‐101374.
Collapse
Affiliation(s)
- Yasunori Ueda
- Department of Hematology/Oncology, Kurashiki Central Hospital, Kurashiki, Japan
| | - Michinori Ogura
- Department of Hematology and Oncology, Nagoya Daini Red Cross Hospital, Nagoya, Japan
| | - Shigesaburo Miyakoshi
- Department of Hematology, Tokyo Metropolitan Geriatric Hospital and Institute of Gerontology, Tokyo, Japan
| | - Takahiro Suzuki
- Division of Hematology, Department of Medicine, Jichi Medical University, Shimotsuke, Japan
| | - Yuji Heike
- Department of Hematopoietic Stem Cell Transplantation, National Cancer Center Hospital, Tokyo, Japan
| | | | | | - Kazuma Ohyashiki
- Department of Hematology, Tokyo Medical University, Tokyo, Japan
| | | |
Collapse
|