1
|
Smiles WJ, Ovens AJ, Oakhill JS, Kofler B. The metabolic sensor AMPK: Twelve enzymes in one. Mol Metab 2024; 90:102042. [PMID: 39362600 DOI: 10.1016/j.molmet.2024.102042] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/02/2024] [Revised: 09/12/2024] [Accepted: 09/27/2024] [Indexed: 10/05/2024] Open
Abstract
BACKGROUND AMP-activated protein kinase (AMPK) is an evolutionarily conserved regulator of energy metabolism. AMPK is sensitive to acute perturbations to cellular energy status and leverages fundamental bioenergetic pathways to maintain cellular homeostasis. AMPK is a heterotrimer comprised of αβγ-subunits that in humans are encoded by seven individual genes (isoforms α1, α2, β1, β2, γ1, γ2 and γ3), permitting formation of at least 12 different complexes with personalised biochemical fingerprints and tissue expression patterns. While the canonical activation mechanisms of AMPK are well-defined, delineation of subtle, as well as substantial, differences in the regulation of heterogenous AMPK complexes remain poorly defined. SCOPE OF REVIEW Here, taking advantage of multidisciplinary findings, we dissect the many aspects of isoform-specific AMPK function and links to health and disease. These include, but are not limited to, allosteric activation by adenine nucleotides and small molecules, co-translational myristoylation and post-translational modifications (particularly phosphorylation), governance of subcellular localisation, and control of transcriptional networks. Finally, we delve into current debate over whether AMPK can form novel protein complexes (e.g., dimers lacking the α-subunit), altogether highlighting opportunities for future and impactful research. MAJOR CONCLUSIONS Baseline activity of α1-AMPK is higher than its α2 counterpart and is more sensitive to synergistic allosteric activation by metabolites and small molecules. α2 complexes however, show a greater response to energy stress (i.e., AMP production) and appear to be better substrates for LKB1 and mTORC1 upstream. These differences may explain to some extent why in certain cancers α1 is a tumour promoter and α2 a suppressor. β1-AMPK activity is toggled by a 'myristoyl-switch' mechanism that likely precedes a series of signalling events culminating in phosphorylation by ULK1 and sensitisation to small molecules or endogenous ligands like fatty acids. β2-AMPK, not entirely beholden to this myristoyl-switch, has a greater propensity to infiltrate the nucleus, which we suspect contributes to its oncogenicity in some cancers. Last, the unique N-terminal extensions of the γ2 and γ3 isoforms are major regulatory domains of AMPK. mTORC1 may directly phosphorylate this region in γ2, although whether this is inhibitory, especially in disease states, is unclear. Conversely, γ3 complexes might be preferentially regulated by mTORC1 in response to physical exercise.
Collapse
Affiliation(s)
- William J Smiles
- Research Program for Receptor Biochemistry and Tumour Metabolism, Department of Paediatrics, University Hospital of the Paracelsus Medical University, Salzburg, Austria; Metabolic Signalling Laboratory, St. Vincent's Institute of Medical Research, Fitzroy, Melbourne, Australia.
| | - Ashley J Ovens
- Protein Engineering in Immunity & Metabolism, St. Vincent's Institute of Medical Research, Fitzroy, Melbourne, Australia
| | - Jonathan S Oakhill
- Metabolic Signalling Laboratory, St. Vincent's Institute of Medical Research, Fitzroy, Melbourne, Australia; Department of Medicine, University of Melbourne, Parkville, Australia
| | - Barbara Kofler
- Research Program for Receptor Biochemistry and Tumour Metabolism, Department of Paediatrics, University Hospital of the Paracelsus Medical University, Salzburg, Austria
| |
Collapse
|
2
|
Liu M, Gu L, Zhang Y, Li Y, Zhang L, Xin Y, Wang Y, Xu ZX. LKB1 inhibits telomerase activity resulting in cellular senescence through histone lactylation in lung adenocarcinoma. Cancer Lett 2024; 595:217025. [PMID: 38844063 DOI: 10.1016/j.canlet.2024.217025] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2023] [Revised: 05/15/2024] [Accepted: 06/02/2024] [Indexed: 06/10/2024]
Abstract
Despite the confirmed role of LKB1 in suppressing lung cancer progression, its precise effect on cellular senescence is unknown. The aim of this research was to clarify the role and mechanism of LKB1 in restraining telomerase activity in lung adenocarcinoma. The results showed that LKB1 induced cellular senescence and apoptosis either in vitro or in vivo. Overexpression of LKB1 in LKB1-deficient A549 cells led to the inhibition of telomerase activity and the induction of telomere dysfunction by regulating telomerase reverse transcriptase (TERT) expression in terms of transcription. As a transcription factor, Sp1 mediated TERT inhibition after LKB1 overexpression. LKB1 induced lactate production and inhibited histone H4 (Lys8) and H4 (Lys16) lactylation, which further altered Sp1-related transcriptional activity. The telomerase inhibitor BIBR1532 was beneficial for achieving the optimum curative effect of traditional chemotherapeutic drugs accompanied by the glycolysis inhibitor 2DG. These data reveal a new mechanism by which LKB1 regulates telomerase activity through lactylation-dependent transcriptional inhibition, and therefore, provide new insights into the effects of LKB1-mediated senescence in lung adenocarcinoma. Our research has opened up new possibilities for the creation of new cancer treatments.
Collapse
Affiliation(s)
- Mingdi Liu
- Key Laboratory of Pathobiology, Ministry of Education, Jilin University, Changchun, 130021, Jilin, China
| | - Liting Gu
- Key Laboratory of Pathobiology, Ministry of Education, Jilin University, Changchun, 130021, Jilin, China
| | - Yuning Zhang
- Key Laboratory of Pathobiology, Ministry of Education, Jilin University, Changchun, 130021, Jilin, China
| | - Yunkuo Li
- Department of Urology, the First Hospital of Jilin University, Changchun, 130021, Jilin, China
| | - Lihong Zhang
- Key Laboratory of Pathobiology, Ministry of Education, Jilin University, Changchun, 130021, Jilin, China
| | - Ying Xin
- Key Laboratory of Pathobiology, Ministry of Education, Jilin University, Changchun, 130021, Jilin, China.
| | - Yishu Wang
- Key Laboratory of Pathobiology, Ministry of Education, Jilin University, Changchun, 130021, Jilin, China.
| | - Zhi-Xiang Xu
- Key Laboratory of Pathobiology, Ministry of Education, Jilin University, Changchun, 130021, Jilin, China.
| |
Collapse
|
3
|
Li M, Zhang L, Guan T, Huang L, Zhu Y, Wen Y, Ma X, Yang X, Wan R, Chen J, Zhang C, Wang F, Tang H, Liu T. Energy stress-activated AMPK phosphorylates Snail1 and suppresses its stability and oncogenic function. Cancer Lett 2024; 595:216987. [PMID: 38815798 DOI: 10.1016/j.canlet.2024.216987] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2024] [Revised: 05/22/2024] [Accepted: 05/23/2024] [Indexed: 06/01/2024]
Abstract
Triple-negative breast cancer (TNBC) is a highly lethal malignancy with limited therapy options. Aberrant metabolism, a key hallmark of human cancers, plays a crucial role in tumor progression, therapeutic responses and TNBC-related death. However, the underlying mechanisms are not fully understood. In this study, we delineate a previously unrecognized role of aberrant glucose metabolism in regulating the turnover of Snail1, which is a key transcriptional factor of epithelial-mesenchymal transition (EMT) and critically contributes to the acquisition of stemness, metastasis and chemo-resistance. Mechanistically, we demonstrate that AMP-activated protein kinase (AMPK), when activated in response to glucose deprivation, directly phosphorylates Snail1 at Ser11. Such a phosphorylation modification of Snail1 facilitates its recruitment of the E3 ligase FBXO11 and promotes its degradation, thereby suppressing stemness, metastasis and increasing cellular sensitivity to chemotherapies in vitro and in vivo. Clinically, histological analyses reveal a negative correlation between p-AMPKα and Snail1 in TNBC specimens. Taken together, our findings establish a novel mechanism and functional significance of AMPK in linking glucose status to Snail1-dependent malignancies and underscore the potential of AMPK agonists as a promising therapeutic strategy in the management of TNBC.
Collapse
Affiliation(s)
- Mei Li
- State Key Laboratory of Bioactive Molecules and Druggability Assessment/International Cooperative Laboratory of Traditional Chinese Medicine Modernization and Innovative Drug Development of Ministry of Education (MOE) of China/College of Pharmacy, Jinan University, Guangzhou, 510632, China
| | - Litao Zhang
- Department of Breast Surgery, The First Affiliate Hospital of Jinan University, Guangzhou, 510632, China
| | - Tangming Guan
- State Key Laboratory of Bioactive Molecules and Druggability Assessment/International Cooperative Laboratory of Traditional Chinese Medicine Modernization and Innovative Drug Development of Ministry of Education (MOE) of China/College of Pharmacy, Jinan University, Guangzhou, 510632, China
| | - Lei Huang
- State Key Laboratory of Bioactive Molecules and Druggability Assessment/International Cooperative Laboratory of Traditional Chinese Medicine Modernization and Innovative Drug Development of Ministry of Education (MOE) of China/College of Pharmacy, Jinan University, Guangzhou, 510632, China
| | - Yingjie Zhu
- State Key Laboratory of Bioactive Molecules and Druggability Assessment/International Cooperative Laboratory of Traditional Chinese Medicine Modernization and Innovative Drug Development of Ministry of Education (MOE) of China/College of Pharmacy, Jinan University, Guangzhou, 510632, China
| | - Yalei Wen
- State Key Laboratory of Bioactive Molecules and Druggability Assessment/International Cooperative Laboratory of Traditional Chinese Medicine Modernization and Innovative Drug Development of Ministry of Education (MOE) of China/College of Pharmacy, Jinan University, Guangzhou, 510632, China
| | - Xiuqing Ma
- State Key Laboratory of Bioactive Molecules and Druggability Assessment/International Cooperative Laboratory of Traditional Chinese Medicine Modernization and Innovative Drug Development of Ministry of Education (MOE) of China/College of Pharmacy, Jinan University, Guangzhou, 510632, China
| | - Xiao Yang
- State Key Laboratory of Bioactive Molecules and Druggability Assessment/International Cooperative Laboratory of Traditional Chinese Medicine Modernization and Innovative Drug Development of Ministry of Education (MOE) of China/College of Pharmacy, Jinan University, Guangzhou, 510632, China
| | - Rui Wan
- State Key Laboratory of Bioactive Molecules and Druggability Assessment/International Cooperative Laboratory of Traditional Chinese Medicine Modernization and Innovative Drug Development of Ministry of Education (MOE) of China/College of Pharmacy, Jinan University, Guangzhou, 510632, China
| | - Jiayi Chen
- State Key Laboratory of Bioactive Molecules and Druggability Assessment/International Cooperative Laboratory of Traditional Chinese Medicine Modernization and Innovative Drug Development of Ministry of Education (MOE) of China/College of Pharmacy, Jinan University, Guangzhou, 510632, China
| | - Caishi Zhang
- State Key Laboratory of Bioactive Molecules and Druggability Assessment/International Cooperative Laboratory of Traditional Chinese Medicine Modernization and Innovative Drug Development of Ministry of Education (MOE) of China/College of Pharmacy, Jinan University, Guangzhou, 510632, China
| | - Feng Wang
- State Key Laboratory of Bioactive Molecules and Druggability Assessment/International Cooperative Laboratory of Traditional Chinese Medicine Modernization and Innovative Drug Development of Ministry of Education (MOE) of China/College of Pharmacy, Jinan University, Guangzhou, 510632, China.
| | - Hui Tang
- Department of Central Laboratory, The First Affiliated Hospital of Jinan University, Guangzhou, 510632, China; Department of Clinical Laboratory, The Fifth Affiliated Hospital of Jinan University Heyuan Shenhe People's Hospital, Heyuan, 517000, China.
| | - Tongzheng Liu
- State Key Laboratory of Bioactive Molecules and Druggability Assessment/International Cooperative Laboratory of Traditional Chinese Medicine Modernization and Innovative Drug Development of Ministry of Education (MOE) of China/College of Pharmacy, Jinan University, Guangzhou, 510632, China; The State Key Laboratory of Functions and Applications of Medicinal Plants, Guizhou Medical University, Guiyang, 550014, China.
| |
Collapse
|
4
|
Zhang S, Yun D, Yang H, Eckstein M, Elbait GD, Zhou Y, Lu Y, Yang H, Zhang J, Dörflein I, Britzen-Laurent N, Pfeffer S, Stemmler MP, Dahl A, Mukhopadhyay D, Chang D, He H, Zeng S, Lan B, Frey B, Hampel C, Lentsch E, Gollavilli PN, Büttner C, Ekici AB, Biankin A, Schneider-Stock R, Ceppi P, Grützmann R, Pilarsky C. Roflumilast inhibits tumor growth and migration in STK11/LKB1 deficient pancreatic cancer. Cell Death Discov 2024; 10:124. [PMID: 38461159 PMCID: PMC10924943 DOI: 10.1038/s41420-024-01890-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2023] [Revised: 02/22/2024] [Accepted: 02/26/2024] [Indexed: 03/11/2024] Open
Abstract
Pancreatic cancer is a malignant tumor of the digestive system. It is highly aggressive, easily metastasizes, and extremely difficult to treat. This study aimed to analyze the genes that might regulate pancreatic cancer migration to provide an essential basis for the prognostic assessment of pancreatic cancer and individualized treatment. A CRISPR knockout library directed against 915 murine genes was transfected into TB 32047 cell line to screen which gene loss promoted cell migration. Next-generation sequencing and PinAPL.py- analysis was performed to identify candidate genes. We then assessed the effect of serine/threonine kinase 11 (STK11) knockout on pancreatic cancer by wound-healing assay, chick agnosia (CAM) assay, and orthotopic mouse pancreatic cancer model. We performed RNA sequence and Western blotting for mechanistic studies to identify and verify the pathways. After accelerated Transwell migration screening, STK11 was identified as one of the top candidate genes. Further experiments showed that targeted knockout of STK11 promoted the cell migration and increased liver metastasis in mice. Mechanistic analyses revealed that STK11 knockout influences blood vessel morphogenesis and is closely associated with the enhanced expression of phosphodiesterases (PDEs), especially PDE4D, PDE4B, and PDE10A. PDE4 inhibitor Roflumilast inhibited STK11-KO cell migration and tumor size, further demonstrating that PDEs are essential for STK11-deficient cell migration. Our findings support the adoption of therapeutic strategies, including Roflumilast, for patients with STK11-mutated pancreatic cancer in order to improve treatment efficacy and ultimately prolong survival.
Collapse
Affiliation(s)
- Shuman Zhang
- Department of Surgery, Universitätsklinikum Erlangen, Friedrich-Alexander Universität Erlangen-Nürnberg (FAU), Erlangen, Germany
| | - Duo Yun
- Department of Surgery, Universitätsklinikum Erlangen, Friedrich-Alexander Universität Erlangen-Nürnberg (FAU), Erlangen, Germany
| | - Hao Yang
- Experimental Tumor pathology, Institute of Pathology, Universitätsklinikum Erlangen, Friedrich-Alexander Universität Erlangen-Nürnberg (FAU), Erlangen, Germany
| | - Markus Eckstein
- Institute of Pathology, Universitätsklinikum Erlangen, Friedrich-Alexander-Universität Erlangen-Nürnberg (FAU), Erlangen, Germany
| | - Gihan Daw Elbait
- Department of Biology, Khalifa University of Science and Technology, Abu Dhabi, United Arab Emirates
| | - Yaxing Zhou
- Department of Surgery, Universitätsklinikum Erlangen, Friedrich-Alexander Universität Erlangen-Nürnberg (FAU), Erlangen, Germany
| | - Yanxi Lu
- Department of Surgery, Universitätsklinikum Erlangen, Friedrich-Alexander Universität Erlangen-Nürnberg (FAU), Erlangen, Germany
| | - Hai Yang
- Department of Surgery, Universitätsklinikum Erlangen, Friedrich-Alexander Universität Erlangen-Nürnberg (FAU), Erlangen, Germany
| | - Jinping Zhang
- Department of Surgery, Universitätsklinikum Erlangen, Friedrich-Alexander Universität Erlangen-Nürnberg (FAU), Erlangen, Germany
| | - Isabella Dörflein
- Department of Surgery, Universitätsklinikum Erlangen, Friedrich-Alexander Universität Erlangen-Nürnberg (FAU), Erlangen, Germany
| | - Nathalie Britzen-Laurent
- Department of Surgery, Universitätsklinikum Erlangen, Friedrich-Alexander Universität Erlangen-Nürnberg (FAU), Erlangen, Germany
| | - Susanne Pfeffer
- Department of Surgery, Universitätsklinikum Erlangen, Friedrich-Alexander Universität Erlangen-Nürnberg (FAU), Erlangen, Germany
| | - Marc P Stemmler
- Department of Experimental Medicine 1, Nikolaus-Fiebiger Center for Molecular Medicine, Friedrich-Alexander-Universität Erlangen-Nürnberg (FAU), Erlangen, Germany
| | - Andreas Dahl
- DRESDEN-concept Genome Center a DFG NGS Competence Center; TU Dresden, 01307, Dresden, Germany
| | - Debabrata Mukhopadhyay
- Departments of Biochemistry and Molecular Biology, Mayo Clinic College of Medicine and Science, Jacksonville, USA
| | - David Chang
- Wolfson Wohl Cancer Research Centre, Institute of Cancer Sciences, University of Glasgow, Glasgow, Scotland, UK
- West of Scotland Pancreatic Unit, Glasgow Royal Infirmary, Glasgow, UK
| | - Hang He
- Department of Pancreatic Surgery, Huashan Hospital, Shanghai Medical College, Fudan University, Shanghai, 200040, China
| | - Siyuan Zeng
- Department of Breast and Thyroid Surgery, Hunan Provincial People's Hospital (The First Affiliated Hospital of Hunan Normal University), Changsha, China
| | - Bin Lan
- Department of Interventional Radiology and Vascular Surgery, Hunan Provincial People's Hospital (The First Affiliated Hospital of Hunan Normal University), Changsha, 410002, China
| | - Benjamin Frey
- Translational Radiobiology, Department of Radiation Oncology, Universitätsklinikum Erlangen, Friedrich-Alexander Universität Erlangen-Nürnberg (FAU), Erlangen, Germany
| | - Chuanpit Hampel
- Experimental Tumor pathology, Institute of Pathology, Universitätsklinikum Erlangen, Friedrich-Alexander Universität Erlangen-Nürnberg (FAU), Erlangen, Germany
| | - Eva Lentsch
- Department of Surgery, Universitätsklinikum Erlangen, Friedrich-Alexander Universität Erlangen-Nürnberg (FAU), Erlangen, Germany
| | - Paradesi Naidu Gollavilli
- Department of Biochemistry and Molecular Biology (BMB), University of Southern Denmark, Odense, Denmark
| | - Christian Büttner
- Institute of Human Genetics, Friedrich-Alexander-Universität Erlangen-Nürnberg (FAU), Erlangen, Germany
| | - Arif B Ekici
- Institute of Human Genetics, Friedrich-Alexander-Universität Erlangen-Nürnberg (FAU), Erlangen, Germany
| | - Andrew Biankin
- Wolfson Wohl Cancer Research Centre, Institute of Cancer Sciences, University of Glasgow, Glasgow, Scotland, UK
- West of Scotland Pancreatic Unit, Glasgow Royal Infirmary, Glasgow, UK
| | - Regine Schneider-Stock
- Experimental Tumor pathology, Institute of Pathology, Universitätsklinikum Erlangen, Friedrich-Alexander Universität Erlangen-Nürnberg (FAU), Erlangen, Germany
| | - Paolo Ceppi
- Department of Biochemistry and Molecular Biology (BMB), University of Southern Denmark, Odense, Denmark
| | - Robert Grützmann
- Department of Surgery, Universitätsklinikum Erlangen, Friedrich-Alexander Universität Erlangen-Nürnberg (FAU), Erlangen, Germany
| | - Christian Pilarsky
- Department of Surgery, Universitätsklinikum Erlangen, Friedrich-Alexander Universität Erlangen-Nürnberg (FAU), Erlangen, Germany.
| |
Collapse
|
5
|
Yang W, Wang S, Tong S, Zhang WD, Qin JJ. Expanding the ubiquitin code in pancreatic cancer. Biochim Biophys Acta Mol Basis Dis 2024; 1870:166884. [PMID: 37704111 DOI: 10.1016/j.bbadis.2023.166884] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2023] [Revised: 08/23/2023] [Accepted: 09/06/2023] [Indexed: 09/15/2023]
Abstract
The ubiquitin-proteasome system (UPS) is a fundamental regulatory mechanism in cells, vital for maintaining cellular homeostasis, compiling signaling transduction, and determining cell fates. These biological processes require the coordinated signal cascades of UPS members, including ubiquitin ligases, ubiquitin-conjugating enzymes, deubiquitinases, and proteasomes, to ubiquitination and de-ubiquitination on substrates. Recent studies indicate that ubiquitination code rewriting is particularly prominent in pancreatic cancer. High frequency mutation or aberrant hyperexpression of UPS members dysregulates ferroptosis, tumor microenvironment, and metabolic rewiring processes and contribute to tumor growth, metastasis, immune evasion, and acquired drug resistance. We conduct an in-depth overview of ubiquitination process in pancreatic cancer, highlighting the role of ubiquitin code in tumor-promoting and tumor-suppressor pathways. Furthermore, we review current UPS modulators and analyze the potential of UPS modulators as cancer therapy.
Collapse
Affiliation(s)
- Wenyan Yang
- College of Pharmaceutical Science, Zhejiang University of Technology, Huzhou 313200, China; Zhejiang Cancer Hospital, Hangzhou Institute of Medicine (HIM), Chinese Academy of Sciences, Hangzhou 310022, China
| | - Shiqun Wang
- Zhejiang Cancer Hospital, Hangzhou Institute of Medicine (HIM), Chinese Academy of Sciences, Hangzhou 310022, China
| | - Shengqiang Tong
- College of Pharmaceutical Science, Zhejiang University of Technology, Huzhou 313200, China
| | - Wei-Dong Zhang
- Shanghai Frontiers Science Center of TCM Chemical Biology, Institute of Interdisciplinary Integrative Medicine Research, Shanghai University of Traditional Chinese Medicine, Shanghai 201203, China.
| | - Jiang-Jiang Qin
- Zhejiang Cancer Hospital, Hangzhou Institute of Medicine (HIM), Chinese Academy of Sciences, Hangzhou 310022, China; Key Laboratory of Prevention, Diagnosis and Therapy of Upper Gastrointestinal Cancer of Zhejiang Province, Hangzhou 310022, China.
| |
Collapse
|
6
|
Lv S, Zhang J, Peng X, Liu H, Liu Y, Wei F. Ubiquitin signaling in pancreatic ductal adenocarcinoma. Front Mol Biosci 2023; 10:1304639. [PMID: 38174069 PMCID: PMC10761520 DOI: 10.3389/fmolb.2023.1304639] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2023] [Accepted: 12/05/2023] [Indexed: 01/05/2024] Open
Abstract
Pancreatic ductal adenocarcinoma (PDAC) is a highly lethal malignant tumor of the digestive system, characterized by rapid progression and being prone to metastasis. Few effective treatment options are available for PDAC, and its 5-year survival rate is less than 9%. Many cell biological and signaling events are involved in the development of PDAC, among which protein post-translational modifications (PTMs), such as ubiquitination, play crucial roles. Catalyzed mostly by a three-enzyme cascade, ubiquitination induces changes in protein activity mainly by altering their stability in PDAC. Due to their role in substrate recognition, E3 ubiquitin ligases (E3s) dictate the outcome of the modification. Ubiquitination can be reversed by deubiquitylases (DUBs), which, in return, modified proteins to their native form. Dysregulation of E3s or DUBs that disrupt protein homeostasis is involved in PDAC. Moreover, the ubiquitination system has been exploited to develop therapeutic strategies, such as proteolysis-targeting chimeras (PROTACs). In this review, we summarize recent progress in our understanding of the role of ubiquitination in the development of PDAC and offer perspectives in the design of new therapies against this highly challenging disease.
Collapse
Affiliation(s)
- Shengnan Lv
- Department of Hepatobiliary and Pancreatic Surgery, General Surgery Center, The First Hospital of Jilin University, Changchun, Jilin, China
| | - Jian Zhang
- Department of Hepatobiliary and Pancreatic Surgery, General Surgery Center, The First Hospital of Jilin University, Changchun, Jilin, China
| | - Xinyu Peng
- Department of Hepatobiliary and Pancreatic Surgery, General Surgery Center, The First Hospital of Jilin University, Changchun, Jilin, China
| | - Huan Liu
- Department of Hepatobiliary and Pancreatic Surgery, General Surgery Center, The First Hospital of Jilin University, Changchun, Jilin, China
| | - Yan Liu
- Key Laboratory of Jilin Province for Zoonosis Prevention and Control, Changchun Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Changchun, China
| | - Feng Wei
- Department of Hepatobiliary and Pancreatic Surgery, General Surgery Center, The First Hospital of Jilin University, Changchun, Jilin, China
| |
Collapse
|
7
|
Lu MZ, Li DY, Wang XF. Effect of metformin use on the risk and prognosis of ovarian cancer: an updated systematic review and meta-analysis. Panminerva Med 2023; 65:351-361. [PMID: 31290300 DOI: 10.23736/s0031-0808.19.03640-1] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
INTRODUCTION Emerging evidence suggests that metformin has a potential antitumor effect both in vitro and in vivo. Increasing epidemiological studies indicate that diabetic patients receiving metformin therapy have lower incidences of cancer and have better survival rates. However, there are limited and inconsistent studies available about the effect of metformin therapy on ovarian cancer (OC). Thus, we conducted this meta-analysis to study the effect of metformin therapy on OC. Meanwhile, we systematically reviewed relevant studies to provide a framework for future research. EVIDENCE ACQUISITION We conducted a systematic literature search on PubMed, Web of Science, Springerlink, CNKI, VIP, SinoMed, and Wanfang up to the period of October 2018. A random-effects meta-analysis model was used to derive pooled effect estimates. EVIDENCE SYNTHESIS A total of 13 studies were retrieved of which 5 studies explained the prevention and 8 studies explained the treatment for OC. Our pooled results showed that metformin has a potential preventive effect on OC in diabetic women (pooled odds ratio [OR] 0.62, 95% confidence interval [95% CI] 0.34, 1.11; P<0.001). In addition, metformin can also significantly prolong progression-free survival (PFS) (pooled hazard ratio [HR] 0.49, 95% CI 0.34, 0.70; P=0.002), and overall survival (OS) (HR 0.71, 95%CI 0.61, 0.82; P<0.001) in patients with OC, regardless of whether they had diabetes. CONCLUSIONS The use of metformin can potentially reduce the risk of OC among diabetics, and it also can significantly improve PFS and OS in patients with OC. A further large clinical investigation would be needed to adopt our finding in practice, however, our systematic review provides an insight for future study designs.
Collapse
Affiliation(s)
- Min-Zhen Lu
- Second Clinical Medical College of Southern Medical University, Guangzhou, China -
| | - De-Yu Li
- Department of Oncology, Fujian Provincial Hospital, Fujian, China
| | - Xue-Feng Wang
- Department of Obstetrics and Gynecology, Third Hospital of Southern Medical University, Guangzhou, China
| |
Collapse
|
8
|
Hu L, Liu M, Tang B, Li Q, Pan BS, Xu C, Lin HK. Posttranslational regulation of liver kinase B1 (LKB1) in human cancer. J Biol Chem 2023; 299:104570. [PMID: 36870679 PMCID: PMC10068580 DOI: 10.1016/j.jbc.2023.104570] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/02/2023] [Revised: 02/20/2023] [Accepted: 02/22/2023] [Indexed: 03/06/2023] Open
Abstract
Liver kinase B1 (LKB1) is a serine-threonine kinase that participates in multiple cellular and biological processes, including energy metabolism, cell polarity, cell proliferation, cell migration, and many others. LKB1 is initially identified as a germline-mutated causative gene in Peutz-Jeghers syndrome (PJS) and is commonly regarded as a tumor suppressor due to frequent inactivation in a variety of cancers. LKB1 directly binds and activates its downstream kinases including the AMP-activated protein kinase (AMPK) and AMPK-related kinases by phosphorylation, which has been intensively investigated for the past decades. An increasing number of studies has uncovered the posttranslational modifications (PTMs) of LKB1 and consequent changes in its localization, activity, and interaction with substrates. The alteration in LKB1 function as a consequence of genetic mutations and aberrant upstream signaling regulation leads to tumor development and progression. Here, we review current knowledge about the mechanism of LKB1 in cancer and the contributions of PTMs, such as phosphorylation, ubiquitination, SUMOylation, acetylation, prenylation, and others, to the regulation of LKB1 function, offering new insights into the therapeutic strategies in cancer.
Collapse
Affiliation(s)
- Lanlin Hu
- Department of Oncology & Cancer Institute, Sichuan Academy of Medical Sciences, Sichuan Provincial People's Hospital, University of Electronic Science and Technology of China, Chengdu, China; Department of Laboratory Medicine and Sichuan Provincial Key Laboratory for Human Disease Gene Study, Sichuan Provincial People's Hospital, University of Electronic Science and Technology of China, Chengdu, China; Sichuan Cancer Hospital & Institute, Sichuan Cancer Center, University of Electronic Science and Technology of China, Chengdu, China
| | - Mingxin Liu
- Department of Oncology & Cancer Institute, Sichuan Academy of Medical Sciences, Sichuan Provincial People's Hospital, University of Electronic Science and Technology of China, Chengdu, China; Sichuan Cancer Hospital & Institute, Sichuan Cancer Center, University of Electronic Science and Technology of China, Chengdu, China
| | - Bo Tang
- Department of Oncology & Cancer Institute, Sichuan Academy of Medical Sciences, Sichuan Provincial People's Hospital, University of Electronic Science and Technology of China, Chengdu, China; Department of Laboratory Medicine and Sichuan Provincial Key Laboratory for Human Disease Gene Study, Sichuan Provincial People's Hospital, University of Electronic Science and Technology of China, Chengdu, China; Sichuan Cancer Hospital & Institute, Sichuan Cancer Center, University of Electronic Science and Technology of China, Chengdu, China
| | - Qiang Li
- Sichuan Cancer Hospital & Institute, Sichuan Cancer Center, University of Electronic Science and Technology of China, Chengdu, China
| | - Bo-Syong Pan
- Department of Cancer Biology, Wake Forest School of Medicine, Winston-Salem, North Carolina, USA
| | - Chuan Xu
- Department of Oncology & Cancer Institute, Sichuan Academy of Medical Sciences, Sichuan Provincial People's Hospital, University of Electronic Science and Technology of China, Chengdu, China; Department of Laboratory Medicine and Sichuan Provincial Key Laboratory for Human Disease Gene Study, Sichuan Provincial People's Hospital, University of Electronic Science and Technology of China, Chengdu, China; Department of Cancer Biology, Wake Forest School of Medicine, Winston-Salem, North Carolina, USA.
| | - Hui-Kuan Lin
- Department of Cancer Biology, Wake Forest School of Medicine, Winston-Salem, North Carolina, USA.
| |
Collapse
|
9
|
Serine/Threonine Kinase 11 Plays a Canonical Role in Malignant Progression of KRAS -Mutant and GNAS -Wild-Type Intraductal Papillary Mucinous Neoplasms of the Pancreas. Ann Surg 2023; 277:e384-e395. [PMID: 33914475 DOI: 10.1097/sla.0000000000004842] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
Abstract
OBJECTIVE We aimed to elucidate the clinicopathobiological significance of Serine/Threonine Kinase 11 (STK11) in pancreatic intraductal papillary mucinous neoplasms (IPMNs). BACKGROUND STK11 is a tumor suppressor involved in certain IPMNs; however, its significance is not well known. METHODS In 184 IPMNs without Peutz-Jeghers syndrome, we analyzed expression of STK11 and phosphorylated-AMPKa in all cases, and p16, p53, SMAD4, and β-catenin in 140 cases by immunohistochemistry; and we analyzed mutations in 37 genes, including whole coding exons of STK11, CDKN2A, TP53, and SMAD4, and hotspots of KRAS, BRAF, and GNAS in 64 cases by targeted sequencing. KRAS and GNAS were additionally analyzed in 86 STK11-normal IPMNs using digital-PCR. RESULTS Consistent loss or reduction of STK11 expression was observed in 26 of 184 (14%) IPMNs. These STK11-aberrant IPMNs were 17 of 45 (38%) pancreatobiliary, 8 of 27 (30%) oncocytic, 1 of 54 (2%) gastric, and 0 of 58 (0%) intestinal subtypes ( P = 8.5E-11), and 20 of 66 (30%) invasive, 6 of 74 (8%) high-grade, and 0 of 44 (0%) low-grade ( P = 3.9E-06). Sixteen somatic STK11 mutations (5 frameshift, 6 nonsense, 1 splicing, and 4 missense) were detected in 15/26 STK11-aberrant IPMNs ( P = 4.1E-06). All STK11-aberrantIPMNs were GNAS -wild-type and 96% of them were KRAS or BRAF -mutant.Morphologically, STK11-aberrant IPMNs presented "fern-like" arborizing papillae with thin fibrovascular core. Phosphorylated-AMPKa was down-regulated in STK11-aberrant IPMNs (92%, P = 6.8E-11). Patients with STK11-aberrant IPMNs showed poorer survival than patients with STK11-normal IPMNs ( P = 3.6E-04 overall; P = 6.1E-04 disease-free). CONCLUSION STK11 may play a canonical role in malignant progression and poor survival of patients with IPMNs. Aberrant STK11-driven phosphorylated AMPK downregulation may provide therapeutic opportunities with mTOR inhibitors/AMPK activators.
Collapse
|
10
|
Targeting CSC-related transcription factors by E3 ubiquitin ligases for cancer therapy. Semin Cancer Biol 2022; 87:84-97. [PMID: 36371028 DOI: 10.1016/j.semcancer.2022.11.002] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2022] [Revised: 10/07/2022] [Accepted: 11/07/2022] [Indexed: 11/10/2022]
Abstract
Evidence has revealed that transcription factors play essential roles in regulation of multiple cellular processes, including cell proliferation, metastasis, EMT, cancer stem cells and chemoresistance. Dysregulated expression levels of transcription factors contribute to tumorigenesis and malignant progression. The expression of transcription factors is tightly governed by several signaling pathways, noncoding RNAs and E3 ubiquitin ligases. Cancer stem cells (CSCs) have been validated in regulation of tumor metastasis, reoccurrence and chemoresistance in human cancer. Transcription factors have been verified to participate in regulation of CSC formation, including Oct4, SOX2, KLF4, c-Myc, Nanog, GATA, SALL4, Bmi-1, OLIG2, POU3F2 and FOX proteins. In this review article, we will describe the critical role of CSC-related transcription factors. We will further discuss which E3 ligases regulate the degradation of these CSC-related transcription factors and their underlying mechanisms. We also mentioned the functions and mechanisms of EMT-associated transcription factors such as ZEB1, ZEB2, Snail, Slug, Twist1 and Twist2. Furthermore, we highlight the therapeutic potential via targeting E3 ubiquitin ligases for modulation of these transcription factors.
Collapse
|
11
|
Mercado-Gómez M, Prieto-Fernández E, Goikoetxea-Usandizaga N, Vila-Vecilla L, Azkargorta M, Bravo M, Serrano-Maciá M, Egia-Mendikute L, Rodríguez-Agudo R, Lachiondo-Ortega S, Lee SY, Eguileor Giné A, Gil-Pitarch C, González-Recio I, Simón J, Petrov P, Jover R, Martínez-Cruz LA, Ereño-Orbea J, Delgado TC, Elortza F, Jiménez-Barbero J, Nogueiras R, Prevot V, Palazon A, Martínez-Chantar ML. The spike of SARS-CoV-2 promotes metabolic rewiring in hepatocytes. Commun Biol 2022; 5:827. [PMID: 35978143 PMCID: PMC9383691 DOI: 10.1038/s42003-022-03789-9] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2021] [Accepted: 08/02/2022] [Indexed: 01/08/2023] Open
Abstract
Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) causes a multi-organ damage that includes hepatic dysfunction, which has been observed in over 50% of COVID-19 patients. Liver injury in COVID-19 could be attributed to the cytopathic effects, exacerbated immune responses or treatment-associated drug toxicity. Herein we demonstrate that hepatocytes are susceptible to infection in different models: primary hepatocytes derived from humanized angiotensin-converting enzyme-2 mice (hACE2) and primary human hepatocytes. Pseudotyped viral particles expressing the full-length spike of SARS-CoV-2 and recombinant receptor binding domain (RBD) bind to ACE2 expressed by hepatocytes, promoting metabolic reprogramming towards glycolysis but also impaired mitochondrial activity. Human and hACE2 primary hepatocytes, where steatosis and inflammation were induced by methionine and choline deprivation, are more vulnerable to infection. Inhibition of the renin-angiotensin system increases the susceptibility of primary hepatocytes to infection with pseudotyped viral particles. Metformin, a common therapeutic option for hyperglycemia in type 2 diabetes patients known to partially attenuate fatty liver, reduces the infection of human and hACE2 hepatocytes. In summary, we provide evidence that hepatocytes are amenable to infection with SARS-CoV-2 pseudovirus, and we propose that metformin could be a therapeutic option to attenuate infection by SARS-CoV-2 in patients with fatty liver. SARS-CoV-2 pseudovirus infects human hepatocytes leading to metabolic reprogramming towards glycolysis and impaired mitochondrial activity, and metformin can reduce infection under steatotic conditions.
Collapse
Affiliation(s)
- Maria Mercado-Gómez
- Liver Disease Lab, CIC bioGUNE, Basque Research and Technology Alliance (BRTA), 48160, Derio, Bizkaia, Spain
| | - Endika Prieto-Fernández
- Cancer Immunology and Immunotherapy Lab, CIC bioGUNE, Basque Research and Technology Alliance (BRTA), 48160, Derio, Bizkaia, Spain
| | - Naroa Goikoetxea-Usandizaga
- Liver Disease Lab, CIC bioGUNE, Basque Research and Technology Alliance (BRTA), 48160, Derio, Bizkaia, Spain
| | - Laura Vila-Vecilla
- Cancer Immunology and Immunotherapy Lab, CIC bioGUNE, Basque Research and Technology Alliance (BRTA), 48160, Derio, Bizkaia, Spain
| | - Mikel Azkargorta
- Proteomics Platform, CIC bioGUNE, Basque Research and Technology Alliance (BRTA), ProteoRedISCIII, 48160, Derio, Bizkaia, Spain.,Centro de Investigación Biomédica en Red de Enfermedades Hepáticas y Digestivas (CIBERehd), Instituto de Salud Carlos III, 28029, Madrid, Spain
| | - Miren Bravo
- Liver Disease Lab, CIC bioGUNE, Basque Research and Technology Alliance (BRTA), 48160, Derio, Bizkaia, Spain
| | - Marina Serrano-Maciá
- Liver Disease Lab, CIC bioGUNE, Basque Research and Technology Alliance (BRTA), 48160, Derio, Bizkaia, Spain
| | - Leire Egia-Mendikute
- Cancer Immunology and Immunotherapy Lab, CIC bioGUNE, Basque Research and Technology Alliance (BRTA), 48160, Derio, Bizkaia, Spain
| | - Rubén Rodríguez-Agudo
- Liver Disease Lab, CIC bioGUNE, Basque Research and Technology Alliance (BRTA), 48160, Derio, Bizkaia, Spain
| | - Sofia Lachiondo-Ortega
- Liver Disease Lab, CIC bioGUNE, Basque Research and Technology Alliance (BRTA), 48160, Derio, Bizkaia, Spain
| | - So Young Lee
- Cancer Immunology and Immunotherapy Lab, CIC bioGUNE, Basque Research and Technology Alliance (BRTA), 48160, Derio, Bizkaia, Spain
| | - Alvaro Eguileor Giné
- Liver Disease Lab, CIC bioGUNE, Basque Research and Technology Alliance (BRTA), 48160, Derio, Bizkaia, Spain
| | - Clàudia Gil-Pitarch
- Liver Disease Lab, CIC bioGUNE, Basque Research and Technology Alliance (BRTA), 48160, Derio, Bizkaia, Spain
| | - Irene González-Recio
- Liver Disease Lab, CIC bioGUNE, Basque Research and Technology Alliance (BRTA), 48160, Derio, Bizkaia, Spain
| | - Jorge Simón
- Liver Disease Lab, CIC bioGUNE, Basque Research and Technology Alliance (BRTA), 48160, Derio, Bizkaia, Spain.,Centro de Investigación Biomédica en Red de Enfermedades Hepáticas y Digestivas (CIBERehd), Instituto de Salud Carlos III, 28029, Madrid, Spain
| | - Petar Petrov
- Centro de Investigación Biomédica en Red de Enfermedades Hepáticas y Digestivas (CIBERehd), Instituto de Salud Carlos III, 28029, Madrid, Spain.,Experimental Hepatology Joint Research Unit, IIS Hospital La Fe, Valencia, Spain
| | - Ramiro Jover
- Centro de Investigación Biomédica en Red de Enfermedades Hepáticas y Digestivas (CIBERehd), Instituto de Salud Carlos III, 28029, Madrid, Spain.,Experimental Hepatology Joint Research Unit, IIS Hospital La Fe, Valencia, Spain.,Dep. Biochemistry and Molecular Biology, University of Valencia, Valencia, Spain
| | - Luis Alfonso Martínez-Cruz
- Liver Disease Lab, CIC bioGUNE, Basque Research and Technology Alliance (BRTA), 48160, Derio, Bizkaia, Spain
| | - June Ereño-Orbea
- Chemical Glycobiology Lab, CIC bioGUNE, Basque Research and Technology Alliance (BRTA), 48160, Derio, Bizkaia, Spain.,Ikerbasque, Basque Foundation for Science, Bilbao, Spain.,Department of Organic Chemistry, University of the Basque Country, UPV/EHU, 48940, Leioa, Spain
| | - Teresa Cardoso Delgado
- Liver Disease Lab, CIC bioGUNE, Basque Research and Technology Alliance (BRTA), 48160, Derio, Bizkaia, Spain
| | - Felix Elortza
- Proteomics Platform, CIC bioGUNE, Basque Research and Technology Alliance (BRTA), ProteoRedISCIII, 48160, Derio, Bizkaia, Spain.,Centro de Investigación Biomédica en Red de Enfermedades Hepáticas y Digestivas (CIBERehd), Instituto de Salud Carlos III, 28029, Madrid, Spain
| | - Jesús Jiménez-Barbero
- Chemical Glycobiology Lab, CIC bioGUNE, Basque Research and Technology Alliance (BRTA), 48160, Derio, Bizkaia, Spain.,Ikerbasque, Basque Foundation for Science, Bilbao, Spain.,Department of Organic Chemistry, University of the Basque Country, UPV/EHU, 48940, Leioa, Spain.,Centro de Investigación Biomédica En Red de Enfermedades Respiratorias (CIBERES), 28029, Madrid, Spain
| | - Ruben Nogueiras
- Department of Physiology, Center for Research in Molecular Medicine and Chronic Diseases (CIMUS), University of Santiago de Compostela-Instituto de Investigación Sanitaria, CIBER Fisiopatología de a Obesidad y Nutrición (CIBERobn), Galician Agency of Innovation (GAIN), Xunta de Galicia, 15782, Santiago de Compostela, Spain
| | - Vincent Prevot
- Univ. Lille, Inserm, CHU Lille, Development and Plasticity of the Neuroendocrine Brain Lab, UMR-S1172 INSERM, DISTALZ, EGID, Lille, France
| | - Asis Palazon
- Cancer Immunology and Immunotherapy Lab, CIC bioGUNE, Basque Research and Technology Alliance (BRTA), 48160, Derio, Bizkaia, Spain. .,Ikerbasque, Basque Foundation for Science, Bilbao, Spain.
| | - María L Martínez-Chantar
- Liver Disease Lab, CIC bioGUNE, Basque Research and Technology Alliance (BRTA), 48160, Derio, Bizkaia, Spain. .,Centro de Investigación Biomédica en Red de Enfermedades Hepáticas y Digestivas (CIBERehd), Instituto de Salud Carlos III, 28029, Madrid, Spain.
| |
Collapse
|
12
|
Wang Z, Wang Z, Wang Y, Wu J, Yu Z, Chen C, Chen J, Wu B, Chen Y. High risk and early onset of cancer in Chinese patients with Peutz-Jeghers syndrome. Front Oncol 2022; 12:900516. [PMID: 36033506 PMCID: PMC9406140 DOI: 10.3389/fonc.2022.900516] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2022] [Accepted: 07/12/2022] [Indexed: 11/13/2022] Open
Abstract
Peutz-Jeghers syndrome (PJS) is an autosomal dominant inherited disorder associated with a predisposition to a variety of cancers. Previous studies that have evaluated the cancer spectrum and risk of this rare disease have primarily been based on small data sets or heterogeneous cohorts from different countries. Here, we report the results of a large homogeneous cohort of Chinese PJS patients who were followed prospectively from 2006 to July 2021, and clinical data before 2006 were retrospectively collected. A total of 412 PJS patients (56.55% males) from 208 families were enrolled, contributing 12,798 person-years of follow-up. A total of 113 cancers were diagnosed in 109 patients (26.46%). The median age at the first cancer diagnosis was 40 years. In particular, patients born after the 1980s were diagnosed with cancer at an earlier median age of 30.5 years. The cumulative cancer risk was sharply increased to 30.9% at age 40 years; this high cancer risk age was 10 years earlier than that reported in previous Western studies, and increased to 76.2% at an age of 60 years. The most common cancer was gastrointestinal (GI) cancer (64.6%), in which colorectal cancer constituted a significantly larger proportional distribution (32.74%), when compared with previous investigations (11.1%−20.83%). There was some evidence that overrepresentation point variants in domain XI of STK11 may be associated with GI cancers. Furthermore, the incidences of gynecological and lung cancers were second only to that of GI cancer in this cohort. These results may provide novel insight for justifying surveillance to detect cancers at an earlier phase to improve clinical outcomes. Furthermore, the potential STK11 genotype-phenotype association could be the basis for future genetic counseling.
Collapse
Affiliation(s)
- Zhiqing Wang
- Department of Gastroenterology, State Key Laboratory of Organ Failure Research, Guangdong Provincial Key Laboratory of Gastroenterology, Nanfang Hospital, Southern Medical University, Guangzhou, China
| | - Zhi Wang
- Department of Gastroenterology, State Key Laboratory of Organ Failure Research, Guangdong Provincial Key Laboratory of Gastroenterology, Nanfang Hospital, Southern Medical University, Guangzhou, China
- Department of Gastroenterology, Shenzhen Hospital, Southern Medical University, Shenzhen, China
| | - Ying Wang
- Department of Gastroenterology, State Key Laboratory of Organ Failure Research, Guangdong Provincial Key Laboratory of Gastroenterology, Nanfang Hospital, Southern Medical University, Guangzhou, China
- Department of Gastroenterology, Shenzhen Hospital, Southern Medical University, Shenzhen, China
| | - Jianhua Wu
- Department of Oncology, Nanfang Hospital, Southern Medical University, Guangzhou, China
| | - Zonglin Yu
- Department of Gastroenterology, State Key Laboratory of Organ Failure Research, Guangdong Provincial Key Laboratory of Gastroenterology, Nanfang Hospital, Southern Medical University, Guangzhou, China
| | - Chudi Chen
- Department of Gastroenterology, State Key Laboratory of Organ Failure Research, Guangdong Provincial Key Laboratory of Gastroenterology, Nanfang Hospital, Southern Medical University, Guangzhou, China
| | - Junsheng Chen
- Department of Gastroenterology, State Key Laboratory of Organ Failure Research, Guangdong Provincial Key Laboratory of Gastroenterology, Nanfang Hospital, Southern Medical University, Guangzhou, China
| | - Baoping Wu
- Department of Gastroenterology, State Key Laboratory of Organ Failure Research, Guangdong Provincial Key Laboratory of Gastroenterology, Nanfang Hospital, Southern Medical University, Guangzhou, China
| | - Ye Chen
- Department of Gastroenterology, State Key Laboratory of Organ Failure Research, Guangdong Provincial Key Laboratory of Gastroenterology, Nanfang Hospital, Southern Medical University, Guangzhou, China
- Department of Gastroenterology, Shenzhen Hospital, Southern Medical University, Shenzhen, China
- *Correspondence: Ye Chen,
| |
Collapse
|
13
|
Tang X, Sui X, Weng L, Liu Y. SNAIL1: Linking Tumor Metastasis to Immune Evasion. Front Immunol 2021; 12:724200. [PMID: 34917071 PMCID: PMC8669501 DOI: 10.3389/fimmu.2021.724200] [Citation(s) in RCA: 33] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2021] [Accepted: 11/15/2021] [Indexed: 12/12/2022] Open
Abstract
The transcription factor Snail1, a key inducer of epithelial-mesenchymal transition (EMT), plays a critical role in tumor metastasis. Its stability is strictly controlled by multiple intracellular signal transduction pathways and the ubiquitin-proteasome system (UPS). Increasing evidence indicates that methylation and acetylation of Snail1 also affects tumor metastasis. More importantly, Snail1 is involved in tumor immunosuppression by inducing chemokines and immunosuppressive cells into the tumor microenvironment (TME). In addition, some immune checkpoints potentiate Snail1 expression, such as programmed death ligand 1 (PD-L1) and T cell immunoglobulin 3 (TIM-3). This mini review highlights the pathways and molecules involved in maintenance of Snail1 level and the significance of Snail1 in tumor immune evasion. Due to the crucial role of EMT in tumor metastasis and tumor immunosuppression, comprehensive understanding of Snail1 function may contribute to the development of novel therapeutics for cancer.
Collapse
Affiliation(s)
- Xiaolong Tang
- Department of Laboratory Medicine, Binzhou Medical University, Binzhou, China
| | - Xue Sui
- Department of Laboratory Medicine, Binzhou Medical University, Binzhou, China
| | - Liang Weng
- Department of Oncology, Xiangya Cancer Center, Xiangya Hospital, Central South University, Changsha, China.,Key Laboratory of Molecular Radiation Oncology Hunan Province, Xiangya Hospital, Central South University, Changsha, China.,Hunan International Science and Technology Collaboration Base of Precision Medicine for Cancer, Xiangya Hospital, Central South University, Changsha, China.,Hunan Provincial Clinical Research Center for Respiratory Diseases, Xiangya Hospital, Central South University, Changsha, China.,Institute of Gerontological Cancer Research, National Clinical Research Center for Gerontology, Changsha, China.,Center for Molecular Imaging of Central South University, Xiangya Hospital, Changsha, China
| | - Yongshuo Liu
- Department of Clinical Laboratory, Binzhou Medical University Hospital, Binzhou, China.,Biomedical Pioneering Innovation Center (BIOPIC), Beijing Advanced Innovation Center for Genomics, Peking-Tsinghua Center for Life Sciences, Peking University Genome Editing Research Center, State Key Laboratory of Protein and Plant Gene Research, School of Life Sciences, Peking University, Beijing, China
| |
Collapse
|
14
|
Ala M, Ala M. Metformin for Cardiovascular Protection, Inflammatory Bowel Disease, Osteoporosis, Periodontitis, Polycystic Ovarian Syndrome, Neurodegeneration, Cancer, Inflammation and Senescence: What Is Next? ACS Pharmacol Transl Sci 2021; 4:1747-1770. [PMID: 34927008 DOI: 10.1021/acsptsci.1c00167] [Citation(s) in RCA: 47] [Impact Index Per Article: 11.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2021] [Indexed: 12/15/2022]
Abstract
Diabetes is accompanied by several complications. Higher prevalence of cancers, cardiovascular diseases, chronic kidney disease (CKD), obesity, osteoporosis, and neurodegenerative diseases has been reported among patients with diabetes. Metformin is the oldest oral antidiabetic drug and can improve coexisting complications of diabetes. Clinical trials and observational studies uncovered that metformin can remarkably prevent or alleviate cardiovascular diseases, obesity, polycystic ovarian syndrome (PCOS), osteoporosis, cancer, periodontitis, neuronal damage and neurodegenerative diseases, inflammation, inflammatory bowel disease (IBD), tuberculosis, and COVID-19. In addition, metformin has been proposed as an antiaging agent. Numerous mechanisms were shown to be involved in the protective effects of metformin. Metformin activates the LKB1/AMPK pathway to interact with several intracellular signaling pathways and molecular mechanisms. The drug modifies the biologic function of NF-κB, PI3K/AKT/mTOR, SIRT1/PGC-1α, NLRP3, ERK, P38 MAPK, Wnt/β-catenin, Nrf2, JNK, and other major molecules in the intracellular signaling network. It also regulates the expression of noncoding RNAs. Thereby, metformin can regulate metabolism, growth, proliferation, inflammation, tumorigenesis, and senescence. Additionally, metformin modulates immune response, autophagy, mitophagy, endoplasmic reticulum (ER) stress, and apoptosis and exerts epigenetic effects. Furthermore, metformin protects against oxidative stress and genomic instability, preserves telomere length, and prevents stem cell exhaustion. In this review, the protective effects of metformin on each disease will be discussed using the results of recent meta-analyses, clinical trials, and observational studies. Thereafter, it will be meticulously explained how metformin reprograms intracellular signaling pathways and alters molecular and cellular interactions to modify the clinical presentations of several diseases.
Collapse
Affiliation(s)
- Moein Ala
- School of Medicine, Tehran University of Medical Sciences (TUMS), 1416753955 Tehran, Iran
| | - Mahan Ala
- School of Dentistry, Golestan University of Medical Sciences (GUMS), 4814565589 Golestan, Iran
| |
Collapse
|
15
|
New Insight into the Effects of Metformin on Diabetic Retinopathy, Aging and Cancer: Nonapoptotic Cell Death, Immunosuppression, and Effects beyond the AMPK Pathway. Int J Mol Sci 2021; 22:ijms22179453. [PMID: 34502359 PMCID: PMC8430477 DOI: 10.3390/ijms22179453] [Citation(s) in RCA: 34] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2021] [Revised: 08/25/2021] [Accepted: 08/25/2021] [Indexed: 12/12/2022] Open
Abstract
Under metabolic stress conditions such as hypoxia and glucose deprivation, an increase in the AMP:ATP ratio activates the AMP-activated protein kinase (AMPK) pathway, resulting in the modulation of cellular metabolism. Metformin, which is widely prescribed for type 2 diabetes mellitus (T2DM) patients, regulates blood sugar by inhibiting hepatic gluconeogenesis and promoting insulin sensitivity to facilitate glucose uptake by cells. At the molecular level, the most well-known mechanism of metformin-mediated cytoprotection is AMPK pathway activation, which modulates metabolism and protects cells from degradation or pathogenic changes, such as those related to aging and diabetic retinopathy (DR). Recently, it has been revealed that metformin acts via AMPK- and non-AMPK-mediated pathways to exert effects beyond those related to diabetes treatment that might prevent aging and ameliorate DR. This review focuses on new insights into the anticancer effects of metformin and its potential modulation of several novel types of nonapoptotic cell death, including ferroptosis, pyroptosis, and necroptosis. In addition, the antimetastatic and immunosuppressive effects of metformin and its hypothesized mechanism are also discussed, highlighting promising cancer prevention strategies for the future.
Collapse
|
16
|
Caja L, Dadras MS, Mezheyeuski A, Rodrigues-Junior DM, Liu S, Webb AT, Gomez-Puerto MC, Ten Dijke P, Heldin CH, Moustakas A. The protein kinase LKB1 promotes self-renewal and blocks invasiveness in glioblastoma. J Cell Physiol 2021; 237:743-762. [PMID: 34350982 DOI: 10.1002/jcp.30542] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2021] [Revised: 07/10/2021] [Accepted: 07/24/2021] [Indexed: 12/13/2022]
Abstract
The role of liver kinase B1 (LKB1) in glioblastoma (GBM) development remains poorly understood. LKB1 may regulate GBM cell metabolism and has been suggested to promote glioma invasiveness. After analyzing LKB1 expression in GBM patient mRNA databases and in tumor tissue via multiparametric immunohistochemistry, we observed that LKB1 was localized and enriched in GBM tumor cells that co-expressed SOX2 and NESTIN stemness markers. Thus, LKB1-specific immunohistochemistry can potentially reveal subpopulations of stem-like cells, advancing GBM patient molecular pathology. We further analyzed the functions of LKB1 in patient-derived GBM cultures under defined serum-free conditions. Silencing of endogenous LKB1 impaired 3D-gliomasphere frequency and promoted GBM cell invasion in vitro and in the zebrafish collagenous tail after extravasation of circulating GBM cells. Moreover, loss of LKB1 function revealed mitochondrial dysfunction resulting in decreased ATP levels. Treatment with the clinically used drug metformin impaired 3D-gliomasphere formation and enhanced cytotoxicity induced by temozolomide, the primary chemotherapeutic drug against GBM. The IC50 of temozolomide in the GBM cultures was significantly decreased in the presence of metformin. This combinatorial effect was further enhanced after LKB1 silencing, which at least partially, was due to increased apoptosis. The expression of genes involved in the maintenance of tumor stemness, such as growth factors and their receptors, including members of the platelet-derived growth factor (PDGF) family, was suppressed after LKB1 silencing. The defect in gliomasphere growth caused by LKB1 silencing was bypassed after supplementing the cells with exogenous PFDGF-BB. Our data support the parallel roles of LKB1 in maintaining mitochondrial homeostasis, 3D-gliomasphere survival, and hindering migration in GBM. Thus, the natural loss of, or pharmacological interference with LKB1 function, may be associated with benefits in patient survival but could result in tumor spread.
Collapse
Affiliation(s)
- Laia Caja
- Department of Medical Biochemistry and Microbiology and Ludwig Institute for Cancer Research, Science for Life Laboratory, Biomedical Center, Uppsala University, Uppsala, Sweden
| | - Mahsa Shahidi Dadras
- Department of Medical Biochemistry and Microbiology and Ludwig Institute for Cancer Research, Science for Life Laboratory, Biomedical Center, Uppsala University, Uppsala, Sweden.,Department of Immunology, Genetics and Pathology, Rudbeck Laboratory, Science for Life Laboratory, Uppsala University, Uppsala, Sweden
| | - Artur Mezheyeuski
- Department of Immunology, Genetics and Pathology, Rudbeck Laboratory, Science for Life Laboratory, Uppsala University, Uppsala, Sweden
| | - Dorival Mendes Rodrigues-Junior
- Department of Medical Biochemistry and Microbiology and Ludwig Institute for Cancer Research, Science for Life Laboratory, Biomedical Center, Uppsala University, Uppsala, Sweden
| | - Sijia Liu
- Department of Cell and Chemical Biology, Oncode Institute, Leiden University Medical Center, Leiden, The Netherlands
| | - Anna Taylor Webb
- Department of Medical Biochemistry and Microbiology and Ludwig Institute for Cancer Research, Science for Life Laboratory, Biomedical Center, Uppsala University, Uppsala, Sweden.,Department of Cell and Molecular Biology, Karolinska Institutet, Stockholm, Sweden
| | - Maria Catalina Gomez-Puerto
- Department of Cell and Chemical Biology, Oncode Institute, Leiden University Medical Center, Leiden, The Netherlands
| | - Peter Ten Dijke
- Department of Cell and Chemical Biology, Oncode Institute, Leiden University Medical Center, Leiden, The Netherlands
| | - Carl-Henrik Heldin
- Department of Medical Biochemistry and Microbiology and Ludwig Institute for Cancer Research, Science for Life Laboratory, Biomedical Center, Uppsala University, Uppsala, Sweden
| | - Aristidis Moustakas
- Department of Medical Biochemistry and Microbiology and Ludwig Institute for Cancer Research, Science for Life Laboratory, Biomedical Center, Uppsala University, Uppsala, Sweden
| |
Collapse
|
17
|
Chen N, Zheng Q, Wan G, Guo F, Zeng X, Shi P. Impact of posttranslational modifications in pancreatic carcinogenesis and treatments. Cancer Metastasis Rev 2021; 40:739-759. [PMID: 34342796 DOI: 10.1007/s10555-021-09980-4] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/30/2021] [Accepted: 07/06/2021] [Indexed: 01/22/2023]
Abstract
Pancreatic cancer (PC) is a highly aggressive cancer, with a 9% 5-year survival rate and a high risk of recurrence. In part, this is because PC is composed of heterogeneous subgroups with different biological and functional characteristics and personalized anticancer treatments are required. Posttranslational modifications (PTMs) play an important role in modifying protein functions/roles and are required for the maintenance of cell viability and biological processes; thus, their dysregulation can lead to disease. Different types of PTMs increase the functional diversity of the proteome, which subsequently influences most aspects of normal cell biology or pathogenesis. This review primarily focuses on ubiquitination, SUMOylation, and NEDDylation, as well as the current understanding of their roles and molecular mechanisms in pancreatic carcinogenesis. Additionally, we briefly summarize studies and clinical trials on PC treatments to advance our knowledge of drugs available to target the ubiquitination, SUMOylation, and NEDDylation PTM types. Further investigation of PTMs could be a critical field of study in relation to PC, as they have been implicated in the initiation and progression of many other types of cancer.
Collapse
Affiliation(s)
- Nianhong Chen
- Center Lab of Longhua Branch and Department of Infectious Disease, Shenzhen People's Hospital, 2Nd Clinical Medical College, Jinan University, Guangzhou, People's Republic of China.
- Guangdong Provincial Key Laboratory of Regional Immunity and Diseases, Medicine School, Guangdong Province, Shenzhen University, Shenzhen, 518037, People's Republic of China.
- Department of Cell Biology & University of Pittsburgh Cancer Institute, University of Pittsburgh School of Medicine, Pittsburgh, PA, 15213, USA.
- Laboratory of Signal Transduction, Department of Radiation Oncology, Memorial Sloan-Kettering Cancer Center, 1275 York Avenue, New York, NY, 10065, USA.
| | - Qiaoqiao Zheng
- State Key Laboratory of Bioreactor Engineering, East China University of Science and Technology, Shanghai, China
| | - Guoqing Wan
- Center Lab of Longhua Branch and Department of Infectious Disease, Shenzhen People's Hospital, 2Nd Clinical Medical College, Jinan University, Guangzhou, People's Republic of China
- Guangdong Provincial Key Laboratory of Regional Immunity and Diseases, Medicine School, Guangdong Province, Shenzhen University, Shenzhen, 518037, People's Republic of China
| | - Feng Guo
- Department of Medicine, Stanford School of Medicine, Stanford, CA, 94305, USA
| | - Xiaobin Zeng
- Center Lab of Longhua Branch and Department of Infectious Disease, Shenzhen People's Hospital, 2Nd Clinical Medical College, Jinan University, Guangzhou, People's Republic of China.
- Guangdong Provincial Key Laboratory of Regional Immunity and Diseases, Medicine School, Guangdong Province, Shenzhen University, Shenzhen, 518037, People's Republic of China.
| | - Ping Shi
- State Key Laboratory of Bioreactor Engineering, East China University of Science and Technology, Shanghai, China.
| |
Collapse
|
18
|
Peng X, Guo C, Wu Y, Ying M, Chang R, Song L, Zhan L, Zhan X. miR‑224‑5p regulates the proliferation, migration and invasion of pancreatic mucinous cystadenocarcinoma by targeting PTEN. Mol Med Rep 2021; 23:346. [PMID: 33760113 PMCID: PMC7974333 DOI: 10.3892/mmr.2021.11985] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2020] [Accepted: 02/18/2021] [Indexed: 01/07/2023] Open
Abstract
Pancreatic mucinous cystadenocarcinoma (MCC) is a rare malignant tumor, with a limited number of studies. The present study aimed to investigate the function and mechanism of microRNA (miR)-224-5p on proliferation, migration and invasion of MCC of the pancreas. Reverse transcription-quantitative PCR was used to explorethe expression of miR-224-5p and the PTEN gene. MTT, wound healing, Transwell and tumorigenesis assays were conducted to investigate the proliferation, migration and invasion of MCC1 cells in vitro and in vivo. Western blot analysis was employed to test the protein expression of PTEN. The target gene of miR-224-5p was assessed and verified by luciferase assay. miR-224-5p expression was notably higher, while PTEN expression was lower, in MCC1 cells compared with normal tissues and cells. Overexpression of miR-224-5p promoted the proliferation, migration and invasion of MCC and knockdown of miR-224-5p inhibited these functions. Bioinformatics analysis and luciferase assay indicated that PTEN was the direct target gene of miR-224-5p. The negative correlation between miR-224-5p and PTEN was confirmed both in vitro and in vivo. PTEN reversed the effects of miR-224-5p on proliferation, migration and invasion of MCC1 cells. The present study revealed for the first time, to the best of the authors' knowledge, that miR-224-5p was highly expressed and served an oncogenic role in MCC. miR-224-5p not only regulated the proliferation, migration and invasion of pancreatic MCC but may also be a potential therapeutic target for MCC.
Collapse
Affiliation(s)
- Xiaobo Peng
- Department of Oncology, Changhai Hospital Affiliated to Naval Military Medical University, Shanghai 200433, P.R. China
| | - Chengtao Guo
- Department of Oncology, Changhai Hospital Affiliated to Naval Military Medical University, Shanghai 200433, P.R. China
| | - Yanjun Wu
- CAS Key Laboratory of Nutrition, Metabolism and Food Safety, Shanghai Institute of Nutrition and Health, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, University of Chinese Academy of Sciences, Shanghai 200031, P.R. China
| | - Mingzhen Ying
- Department of Oncology, Changhai Hospital Affiliated to Naval Military Medical University, Shanghai 200433, P.R. China
| | - Renxu Chang
- CAS Key Laboratory of Nutrition, Metabolism and Food Safety, Shanghai Institute of Nutrition and Health, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, University of Chinese Academy of Sciences, Shanghai 200031, P.R. China
| | - Lele Song
- CAS Key Laboratory of Nutrition, Metabolism and Food Safety, Shanghai Institute of Nutrition and Health, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, University of Chinese Academy of Sciences, Shanghai 200031, P.R. China
| | - Lixing Zhan
- CAS Key Laboratory of Nutrition, Metabolism and Food Safety, Shanghai Institute of Nutrition and Health, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, University of Chinese Academy of Sciences, Shanghai 200031, P.R. China
| | - Xianbao Zhan
- Department of Oncology, Changhai Hospital Affiliated to Naval Military Medical University, Shanghai 200433, P.R. China
| |
Collapse
|
19
|
Zhang Y, Meng Q, Sun Q, Xu ZX, Zhou H, Wang Y. LKB1 deficiency-induced metabolic reprogramming in tumorigenesis and non-neoplastic diseases. Mol Metab 2020; 44:101131. [PMID: 33278637 PMCID: PMC7753952 DOI: 10.1016/j.molmet.2020.101131] [Citation(s) in RCA: 47] [Impact Index Per Article: 9.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/19/2020] [Revised: 11/22/2020] [Accepted: 11/26/2020] [Indexed: 02/07/2023] Open
Abstract
Background Live kinase B1 (LKB1) is a tumor suppressor that is mutated in Peutz-Jeghers syndrome (PJS) and a variety of cancers. Lkb1 encodes serine-threonine kinase (STK) 11 that activates AMP-activated protein kinase (AMPK) and its 13 superfamily members, regulating multiple biological processes, such as cell polarity, cell cycle arrest, embryo development, apoptosis, and bioenergetics metabolism. Increasing evidence has highlighted that deficiency of LKB1 in cancer cells induces extensive metabolic alterations that promote tumorigenesis and development. LKB1 also participates in the maintenance of phenotypes and functions of normal cells through metabolic regulation. Scope of review Given the important role of LKB1 in metabolic regulation, we provide an overview of the association of metabolic alterations in glycolysis, aerobic oxidation, the pentose phosphate pathway (PPP), gluconeogenesis, glutamine, lipid, and serine induced by aberrant LKB1 signals in tumor progression, non-neoplastic diseases, and functions of immune cells. Major conclusions In this review, we summarize layers of evidence demonstrating that disordered metabolisms in glucose, glutamine, lipid, and serine caused by LKB1 deficiency promote carcinogenesis and non-neoplastic diseases. The metabolic reprogramming resulting from the loss of LKB1 confers cancer cells with growth or survival advantages. Nevertheless, it also causes a metabolic frangibility for LKB1-deficient cancer cells. The metabolic regulation of LKB1 also plays a vital role in maintaining cellular phenotype in the progression of non-neoplastic diseases. In addition, lipid metabolic regulation of LKB1 plays an important role in controlling the function, activity, proliferation, and differentiation of several types of immune cells. We conclude that in-depth knowledge of metabolic pathways regulated by LKB1 is conducive to identifying therapeutic targets and developing drug combinations to treat cancers and metabolic diseases and achieve immunoregulation.
Collapse
Affiliation(s)
- Yanghe Zhang
- Key Laboratory of Pathobiology, Ministry of Education, Jilin University, Changchun, 130021, China
| | - Qingfei Meng
- Key Laboratory of Pathobiology, Ministry of Education, Jilin University, Changchun, 130021, China
| | - Qianhui Sun
- School of Life Sciences, Henan University, Kaifeng, 475004, China
| | - Zhi-Xiang Xu
- Key Laboratory of Pathobiology, Ministry of Education, Jilin University, Changchun, 130021, China; School of Life Sciences, Henan University, Kaifeng, 475004, China.
| | - Honglan Zhou
- Department of Urology, First Hospital of Jilin University, Changchun, 130021, China.
| | - Yishu Wang
- Key Laboratory of Pathobiology, Ministry of Education, Jilin University, Changchun, 130021, China.
| |
Collapse
|
20
|
Rana U, Callan E, Entringer B, Michalkiewicz T, Joshi A, Parchur AK, Teng RJ, Konduri GG. AMP-Kinase Dysfunction Alters Notch Ligands to Impair Angiogenesis in Neonatal Pulmonary Hypertension. Am J Respir Cell Mol Biol 2020; 62:719-731. [PMID: 32048878 DOI: 10.1165/rcmb.2019-0275oc] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022] Open
Abstract
Decreased angiogenesis contributes to persistent pulmonary hypertension of the newborn (PPHN); mechanisms remain unclear. AMPK (5'AMP activated protein kinase) is a key regulator of cell metabolism. We investigated the hypothesis that a decrease in AMPK function leads to mitochondrial dysfunction and altered balance of notch ligands delta-like 4 (DLL4) and Jagged 1 (Jag1) to impair angiogenesis in PPHN. Studies were done in fetal lambs with PPHN induced by prenatal ductus arteriosus constriction and gestation-matched control lambs. PPHN lambs were treated with saline or AMPK agonist metformin. Angiogenesis was assessed in lungs with micro-computed tomography angiography and histology. AMPK function; expression of mitochondrial electron transport chain (ETC) complex proteins I-V, Dll4, and Jag1; mitochondrial number; and in vitro angiogenesis function were assessed in pulmonary artery endothelial cells (PAEC) from control and PPHN lambs. AMPK function was decreased in PPHN PAEC and lung sections. Expression of mitochondrial transcription factor, PGC-1α, ETC complex proteins I-V, and mitochondrial number were decreased in PPHN. In vitro angiogenesis of PAEC and capillary number and vessel volume fraction in the lung were decreased in PPHN. Expression of DLL4 was increased and Jag1 was decreased in PAEC from PPHN lambs. AMPK agonists A769662 and metformin increased the mitochondrial complex proteins and number, in vitro angiogenesis, and Jag1 levels and decreased DLL4 levels in PPHN PAEC. Infusion of metformin in vivo increased the vessel density in PPHN lungs. Decreased AMPK function contributes to impaired angiogenesis in PPHN by altered balance of notch ligands in PPHN.
Collapse
Affiliation(s)
- Ujala Rana
- Department of Pediatrics and Children's Research Institute, and
| | - Emily Callan
- Department of Pediatrics and Children's Research Institute, and
| | | | | | - Amit Joshi
- Department of Radiology and Center for Imaging, Medical College of Wisconsin, Milwaukee, Wisconsin
| | - Abdul K Parchur
- Department of Radiology and Center for Imaging, Medical College of Wisconsin, Milwaukee, Wisconsin
| | - Ru-Jeng Teng
- Department of Pediatrics and Children's Research Institute, and
| | | |
Collapse
|
21
|
Chen YC, Li H, Wang J. Mechanisms of metformin inhibiting cancer invasion and migration. Am J Transl Res 2020; 12:4885-4901. [PMID: 33042396 PMCID: PMC7540116] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2020] [Accepted: 08/01/2020] [Indexed: 06/11/2023]
Abstract
Cancer currently ranks among the leading causes of death globally. Cancer invasion and metastasis transform locally grown cancers to a systemic and life-threatening disease, which accounts for the most significant challenge in cancer treatment. Recent studies showed that Metformin, the most commonly used first-line oral drug for the treatment of type 2 diabetes (T2DM), could prevent and treat various cancers. Moreover, multiple evidence suggested that metformin inhibited cancer invasion and metastasis, which could improve the prognosis of cancer patients administrated with metformin. To better understand the anti-cancer role of metformin, the present review summarized the potential mechanisms of inhibiting cancer invasion and metastasis by metformin, including AMPK signaling pathway, EMT signaling pathway, epigenetic modification and so on. However, multiple problems remain unresolved and more clinical trials are needed to prove the inhibition of cancer invasion and metastasis by metformin.
Collapse
Affiliation(s)
- Yong Chang Chen
- Gynecologic Oncology Clinical Research Center, Hunan Cancer Hospital, Central South UniversityChangsha 410013, Hunan, China
- University of South ChinaHengyang 421001, Hunan, China
| | - He Li
- Gynecologic Oncology Clinical Research Center, Hunan Cancer Hospital, Central South UniversityChangsha 410013, Hunan, China
| | - Jing Wang
- Gynecologic Oncology Clinical Research Center, Hunan Cancer Hospital, Central South UniversityChangsha 410013, Hunan, China
| |
Collapse
|
22
|
LKB1 inhibits intrahepatic cholangiocarcinoma by repressing the transcriptional activity of the immune checkpoint PD-L1. Life Sci 2020; 257:118068. [PMID: 32653521 DOI: 10.1016/j.lfs.2020.118068] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2020] [Revised: 06/28/2020] [Accepted: 07/06/2020] [Indexed: 11/20/2022]
Abstract
AIMS Intrahepatic cholangiocarcinoma (ICC) is a highly malignant tumour with increasing incidence and high mortality. Liver kinase B1 (LKB1) regulates cellular energy metabolism and cell division and affects immune microenvironment. This study aimed to uncover the underlying function and mechanism of LKB1 in ICC. MAIN METHODS To determine the correlation between LKB1 levels and clinicopathological features, the expression profile of LKB1 in ICC tissue specimens was examined by qRT-PCR and western blotting. In vitro experiments were conducted to examine the anticancer effect of LKB1 in ICC. Changes in the expression of epithelial-mesenchymal transition (EMT)-associated markers and immune checkpoints were analysed by qRT-PCR, western blotting, immunofluorescence and flow cytometry. The influence of LKB1 on the transcriptional activity of PD-L1 was determined by dual-luciferase reporter assays and IFNγ induction. KEY FINDINGS LKB1 was expressed at low levels in ICC and tightly associated with poor prognosis. LKB1 knockdown promoted the proliferation, migration, matrix adhesion and EMT of ICC cells. Notably, LKB1 silencing upregulated the surface expression of PD-L1 in ICC cells. Suppressed and mutated LKB1 enhanced the transcriptional activity of PD-L1 in ICC cells, leading to high expression of the immune checkpoint PD-L1. Furthermore, inhibiting LKB1 suppressed ICC cell apoptosis induced by IFNγ. SIGNIFICANCE By suppressing malignant transformation and the immune checkpoint PD-L1 of cancer cells, LKB1 plays an important role in inhibiting ICC and is a potential target for clinical diagnosis and treatment. This study may provide new strategies for improving the efficiency of cancer immunotherapy.
Collapse
|
23
|
Ma F, Wang H, Liu K, Wang Z, Chen S. CSN6 inhibition suppresses pancreatic adenocarcinoma metastasis via destabilizing the c-Fos protein. Exp Cell Res 2020; 391:112004. [PMID: 32289284 DOI: 10.1016/j.yexcr.2020.112004] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2020] [Revised: 04/05/2020] [Accepted: 04/07/2020] [Indexed: 12/31/2022]
Abstract
Deubiquitinase (DUB) can reverse the ubiquitin signal, and participate in virtually all aspects of cancer progression. Thus, DUB represents an attractive target for development of anticancer drugs. However, little is known about DUB which can be used as drug targets. Here, we found that the constitutive photomorphogenic 9 (COP9) signalosome complex subunit 6 (COPS6/CSN6), a DUB belongs to JAMM/MPN domain-associated metallopeptidases(JAMMs) class, was highly expressed in pancreatic adenocarcinoma(PAAD) tissues. High expression of CSN6 was associated with tumor TNM stage and metastasis in PAAD patients. Moreover, we demonstrated that CSN6 promoted invasion and metastasis through regulating forkhead box protein A1 (FOXA1) in PAAD cells. Re-expression of FOXA1 rescued the decreased invasion and metastasis caused by CSN6 knockdown, whereas inhibition of FOXA1 alleviated the pro-metastasis effect induced by CSN6 overexpression. Further, CSN6 regulated the expression of FOXA1 via c-Fos in PAAD cells. Mechanistically, CSN6 stabilized c-Fos protein by binding to it and decreasing its ubiquitination. Our work identified CSN6 as a targeting-permissible deubiquitinase, and CSN6 inhibition maybe a potential treatment strategy for PAAD.
Collapse
Affiliation(s)
- Fangqi Ma
- Department of Oncology, Shanxian Central Hospital, Heze, Shandong, 274300, PR China
| | - Hong Wang
- Department of Oncology, Shanxian Central Hospital, Heze, Shandong, 274300, PR China
| | - Kefen Liu
- Department of Oncology, Shanxian Central Hospital, Heze, Shandong, 274300, PR China
| | - Zhongqiang Wang
- Department of Oncology, Shanxian Haijiya Hospital, Heze, Shandong, 274300, PR China
| | - Shijun Chen
- Department of Oncology, Shanxian Haijiya Hospital, Heze, Shandong, 274300, PR China.
| |
Collapse
|
24
|
Tekcham DS, Chen D, Liu Y, Ling T, Zhang Y, Chen H, Wang W, Otkur W, Qi H, Xia T, Liu X, Piao HL, Liu H. F-box proteins and cancer: an update from functional and regulatory mechanism to therapeutic clinical prospects. Am J Cancer Res 2020; 10:4150-4167. [PMID: 32226545 PMCID: PMC7086354 DOI: 10.7150/thno.42735] [Citation(s) in RCA: 48] [Impact Index Per Article: 9.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2019] [Accepted: 02/04/2020] [Indexed: 12/16/2022] Open
Abstract
E3 ubiquitin ligases play a critical role in cellular mechanisms and cancer progression. F-box protein is the core component of the SKP1-cullin 1-F-box (SCF)-type E3 ubiquitin ligase and directly binds to substrates by various specific domains. According to the specific domains, F-box proteins are further classified into three sub-families: 1) F-box with leucine rich amino acid repeats (FBXL); 2) F-box with WD 40 amino acid repeats (FBXW); 3) F-box only with uncharacterized domains (FBXO). Here, we summarize the substrates of F-box proteins, discuss the important molecular mechanism and emerging role of F-box proteins especially from the perspective of cancer development and progression. These findings will shed new light on malignant tumor progression mechanisms, and suggest the potential role of F-box proteins as cancer biomarkers and therapeutic targets for future cancer treatment.
Collapse
|
25
|
Wang WD, Shang Y, Li Y, Chen SZ. Honokiol inhibits breast cancer cell metastasis by blocking EMT through modulation of Snail/Slug protein translation. Acta Pharmacol Sin 2019; 40:1219-1227. [PMID: 31235819 DOI: 10.1038/s41401-019-0240-x] [Citation(s) in RCA: 37] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2019] [Accepted: 04/25/2019] [Indexed: 02/06/2023] Open
Abstract
Honokiol (HNK), an active compound isolated from traditional Chinese medicine Magnolia officinalis, has shown potent anticancer activities. In the present study, we investigated the effects of HNK on breast cancer metastasis in vitro and in vivo, as well as the underlying molecular mechanisms. We showed that HNK (10-70 μmol/L) dose-dependently inhibited the viability of human mammary epithelial tumor cell lines MCF7, MDA-MB-231, and mouse mammary tumor cell line 4T1. In the transwell and scratch migration assays, HNK (10, 20, 30 μmol/L) dose-dependently suppressed the invasion and migration of the breast cancer cells. We demonstrated that HNK (10-50 μmol/L) dose-dependently upregulated the epithelial marker E-cadherin and downregulated the mesenchymal markers such as Snail, Slug, and vimentin at the protein level in breast cancer cells. Using a puromycin incorporation assay, we showed that HNK decreased the Snail translation efficiency in the breast cancer cells. In a mouse model of tumor metastasis, administration of HNK (50 mg/kg every day, intraperitoneal (i.p.), 6 times per week for 30 days) significantly decreased the number of metastatic 4T1 cell-derived nodules and ameliorated the histological alterations in the lungs. In addition, HNK-treated mice showed decreased Snail expression and increased E-cadherin expression in metastatic nodules. In conclusion, HNK inhibits EMT in the breast cancer cells by downregulating Snail and Slug protein expression at the mRNA translation level. HNK has potential as an integrative medicine for combating breast cancer by targeting EMT.
Collapse
|
26
|
Baulida J, Díaz VM, Herreros AGD. Snail1: A Transcriptional Factor Controlled at Multiple Levels. J Clin Med 2019; 8:jcm8060757. [PMID: 31141910 PMCID: PMC6616578 DOI: 10.3390/jcm8060757] [Citation(s) in RCA: 39] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2019] [Revised: 05/23/2019] [Accepted: 05/23/2019] [Indexed: 12/27/2022] Open
Abstract
Snail1 transcriptional factor plays a key role in the control of epithelial to mesenchymal transition and fibroblast activation. As a consequence, Snail1 expression and function is regulated at multiple levels from gene transcription to protein modifications, affecting its interaction with specific cofactors. In this review, we describe the different elements that control Snail1 expression and its activity both as transcriptional repressor or activator.
Collapse
Affiliation(s)
- Josep Baulida
- Programa de Recerca en Càncer, Institut Hospital del Mar d'Investigacions Mèdiques (IMIM), Unidad Asociada al CSIC, 08003 Barcelona, Spain.
| | - Víctor M Díaz
- Programa de Recerca en Càncer, Institut Hospital del Mar d'Investigacions Mèdiques (IMIM), Unidad Asociada al CSIC, 08003 Barcelona, Spain.
- Departament de Ciències Experimentals i de la Salut, Universitat Pompeu Fabra, 08003 Barcelona, Spain.
| | - Antonio García de Herreros
- Programa de Recerca en Càncer, Institut Hospital del Mar d'Investigacions Mèdiques (IMIM), Unidad Asociada al CSIC, 08003 Barcelona, Spain.
- Departament de Ciències Experimentals i de la Salut, Universitat Pompeu Fabra, 08003 Barcelona, Spain.
| |
Collapse
|
27
|
Song L, Guo J, Chang R, Peng X, Li J, Xu X, Zhan X, Zhan L. LKB1 obliterates Snail stability and inhibits pancreatic cancer metastasis in response to metformin treatment. Cancer Sci 2018; 109:1382-1392. [PMID: 29601127 PMCID: PMC5980291 DOI: 10.1111/cas.13591] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2017] [Revised: 03/11/2018] [Accepted: 03/15/2018] [Indexed: 02/06/2023] Open
Abstract
Metastasis to distant organs is a particularly ominous feature of malignant cancer. LKB1 (also known as STK11) has been identified as a tumor suppressor in several types of cancers. Here, we show that LKB1 is at low levels and is negatively associated with poor clinical outcomes in pancreatic cancer (PC). LKB1 is inversely correlated with Snail protein in PC, in which the loss of LKB1 facilitates metastasis through elevating Snail protein level. Furthermore, LKB1 boosts Snail's interaction with E3 ligase FBXL14, leading to increasing ubiquitin‐mediated Snail degradation. Notably, metformin could increase Snail protein ubiquitination via augmenting the location of LKB1 at cytoplasm as well as increasing LKB1 expression. Altogether, our data established that LKB1 impedes invasion and metastasis by decreasing the Snail protein level in PC. Targeting the LKB1/FBXL14/Snail axis may represent a promising therapeutic strategy and metformin might be beneficial for PC therapy through activating the LKB1‐mediated Snail ubiquitination pathway.
Collapse
Affiliation(s)
- Lele Song
- Key Laboratory of Food Safety Research, Institute for Nutritional Sciences, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, Shanghai, China.,University of the Chinese Academy of Sciences, Shanghai, China.,Changhai Hospital, The Second Military Medical University, Shanghai, China
| | - Jingyu Guo
- Key Laboratory of Food Safety Research, Institute for Nutritional Sciences, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, Shanghai, China.,University of the Chinese Academy of Sciences, Shanghai, China
| | - Renxu Chang
- Key Laboratory of Food Safety Research, Institute for Nutritional Sciences, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, Shanghai, China.,University of the Chinese Academy of Sciences, Shanghai, China
| | - Xiaobo Peng
- Changhai Hospital, The Second Military Medical University, Shanghai, China
| | - Jie Li
- Changhai Hospital, The Second Military Medical University, Shanghai, China
| | - Xiaorong Xu
- Department of Gastroenterology, The Shanghai Tenth People's Hospital, Tongji University, Shanghai, China
| | - Xianbao Zhan
- Changhai Hospital, The Second Military Medical University, Shanghai, China
| | - Lixing Zhan
- Key Laboratory of Food Safety Research, Institute for Nutritional Sciences, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, Shanghai, China
| |
Collapse
|