1
|
Jacob Bunu S, Cai H, Wu L, Zhang H, Zhou Z, Xu Z, Shi J, Zhu W. TRIP13 - a potential drug target in cancer pharmacotherapy. Bioorg Chem 2024; 151:107650. [PMID: 39042962 DOI: 10.1016/j.bioorg.2024.107650] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2024] [Revised: 07/12/2024] [Accepted: 07/14/2024] [Indexed: 07/25/2024]
Abstract
ATPases Associated with Diverse Cellular Activity (AAA+ATPases) are important enzymatic functional proteins in human cells. Thyroid Hormone Receptor Interacting Protein-13 (TRIP13) is a member of this protein superfamily, that partly regulates DNA repair pathways and spindle assembly checkpoints during mitosis. TRIP13 is reported as an oncogene involving multiple pathways in many human malignancies, including multiple myeloma, brain tumors, etc. The structure of TRIP13 reveals the mechanisms for ATP binding and how TRIP13 recognizes the Mitotic Arrest Deficiency-2 (MAD2) protein, with p31comet acting as an adapter protein. DCZ0415, TI17, DCZ5417, and DCZ5418 are the reported small-molecule inhibitors of TRIP13, which have been demonstrated to inhibit TRIP13's biological functions significantly and effective in suppressing various types of malignant cells, indicating that TRIP13 is a significant anticancer drug target. Currently, no systematic reviews are cutting across the functions, structure, and novel inhibitors of TRIP13. This review provides a comprehensive overview of TRIP13's biological functions, its roles in eighteen different cancers, four small molecule inhibitors, different underlying molecular mechanisms, and its functionality as a potential anticancer drug target.
Collapse
Affiliation(s)
- Samuel Jacob Bunu
- State Key Laboratory of Drug Research, Drug Discovery and Design Center, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai 201203, China; School of Pharmacy, University of Chinese Academy of Sciences, No.19A Yuquan Road, Beijing 100049, China
| | - Haiyan Cai
- Department of Hematology, Shanghai East Hospital, Tongji University School of Medicine, Shanghai 200120, China
| | - Leyun Wu
- State Key Laboratory of Drug Research, Drug Discovery and Design Center, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai 201203, China; School of Pharmacy, University of Chinese Academy of Sciences, No.19A Yuquan Road, Beijing 100049, China
| | - Hui Zhang
- Department of Hematology, Shanghai East Hospital, Tongji University School of Medicine, Shanghai 200120, China
| | - Zhaoyin Zhou
- State Key Laboratory of Drug Research, Drug Discovery and Design Center, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai 201203, China
| | - Zhijian Xu
- State Key Laboratory of Drug Research, Drug Discovery and Design Center, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai 201203, China; School of Pharmacy, University of Chinese Academy of Sciences, No.19A Yuquan Road, Beijing 100049, China
| | - Jumei Shi
- Department of Hematology, Shanghai East Hospital, Tongji University School of Medicine, Shanghai 200120, China.
| | - Weiliang Zhu
- State Key Laboratory of Drug Research, Drug Discovery and Design Center, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai 201203, China; School of Pharmacy, University of Chinese Academy of Sciences, No.19A Yuquan Road, Beijing 100049, China.
| |
Collapse
|
2
|
Yu H, Fan J, Zhang Y, Zhao Z, Lin Z, Jiang P. Syndecan-3 inhibits LPS-induced Inflammation of Bovine Mammary Epithelial Cells through the NF-κB Signal Transduction Pathway. J Dairy Sci 2024:S0022-0302(24)01164-0. [PMID: 39343222 DOI: 10.3168/jds.2024-25212] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2024] [Accepted: 08/20/2024] [Indexed: 10/01/2024]
Abstract
In mastitis, excessive inflammation caused by lipopolysaccharide (LPS) is an important factor leading to mammary tissue damage. Therefore, exploring the regulatory factors that can inhibit the widespread inflammation caused by LPS is crucial. Syndecan-3 (SDC3) has been found to play an active role in anti-inflammatory infection by inhibiting leukocyte adhesion, reducing the accumulation of inflammatory products, such as reactive oxygen species, and competing with chemokines; however, the role and regulatory mechanism of SDC3 in mastitis remains unknown. Therefore, this study aimed to reveal the effect of SDC3 on LPS-induced inflammation in bovine mammary epithelial cells (BMECs) and explore its possible molecular mechanisms. First, we constructed a BMEC inflammatory model. It was found that cells stimulated with 10 μg/mL LPS for 24 h strongly induced the expression of inflammatory cytokines and had no toxic effect on cells, which was the best condition to simulate the BMECs inflammatory response in vitro. Subsequently, we used overexpression and RNAi interference, Real Time Quantitative PCR (RT-qPCR), and Western blot assays to explore the effects of SDC3 on LPS-induced inflammatory factors and their mechanisms. The results showed that overexpression of SDC3 could inhibit the transcriptional levels of inflammatory cytokines IL-6, IL-1β, and TNFα induced by LPS and inhibit the activation of the NF-κB inflammatory pathway by inhibiting the expression of NF-κB p50 and p-IκBα and promoting the expression of IκBα. Our results suggest that SDC3 inhibits the LPS-induced inflammatory response of BMECs through the NF-κB pathway, in which NF-κB p50 may be an important target of SDC3. These findings lay the foundation for elucidating the molecular regulatory mechanisms of dairy cow mastitis.
Collapse
Affiliation(s)
- Haibin Yu
- College of Coastal Agricultural Sciences, Guangdong Ocean University, Zhanjiang 524088, China; The Key Laboratory of Animal Resources and Breed Innovation in Western Guangdong Province, Zhanjiang 524088, China
| | - Jing Fan
- College of Coastal Agricultural Sciences, Guangdong Ocean University, Zhanjiang 524088, China; The Key Laboratory of Animal Resources and Breed Innovation in Western Guangdong Province, Zhanjiang 524088, China
| | - Yongliang Zhang
- College of Animal Science, South China Agricultural University, Guangzhou 510642, China
| | - Zhihui Zhao
- College of Coastal Agricultural Sciences, Guangdong Ocean University, Zhanjiang 524088, China; The Key Laboratory of Animal Resources and Breed Innovation in Western Guangdong Province, Zhanjiang 524088, China
| | - Ziwei Lin
- College of Coastal Agricultural Sciences, Guangdong Ocean University, Zhanjiang 524088, China; The Key Laboratory of Animal Resources and Breed Innovation in Western Guangdong Province, Zhanjiang 524088, China.
| | - Ping Jiang
- College of Coastal Agricultural Sciences, Guangdong Ocean University, Zhanjiang 524088, China; The Key Laboratory of Animal Resources and Breed Innovation in Western Guangdong Province, Zhanjiang 524088, China.
| |
Collapse
|
3
|
Wang JB, Lin TX, Fan DH, Gao YX, Chen YJ, Wu YK, Xu KX, Qiu QZ, Li P, Xie JW, Lin JX, Chen QY, Cao LL, Huang CM, Zheng CH. CircUBA2 promotes the cancer stem cell-like properties of gastric cancer through upregulating STC1 via sponging miR-144-5p. Cancer Cell Int 2024; 24:276. [PMID: 39103836 DOI: 10.1186/s12935-024-03423-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2024] [Accepted: 06/27/2024] [Indexed: 08/07/2024] Open
Abstract
BACKGROUND Cancer stem cells (CSCs) are critical factors that limit the effectiveness of gastric cancer (GC) therapy. Circular RNAs (circRNAs) are confirmed as important regulators of many cancers. However, their role in regulating CSC-like properties of GC remains largely unknown. Our study aimed to investigate the role of circUBA2 in CSC maintenance and the underlying mechanisms. METHODS We identified circUBA2 as an upregulated gene using circRNA microarray analysis. qRT-PCR was used to examine the circUBA2 levels in normal and GC tissues. In vitro and in vivo functional assays were performed to validate the role of circUBA2 in proliferation, migration, metastasis and CSC-like properties of GC cell. The relationship between circUBA2, miR-144-5p and STC1 was characterised using bioinformatics analysis, a dual fluorescence reporter system, FISH, and RIP assays. RESULTS CircUBA2 expression was significantly increased in GC tissues, and patients with GC with high circUBA2 expression had a poor prognosis. CircUBA2 enhances CSC-like properties of GC, thereby promoting cell proliferation, migration, and metastasis. Mechanistically, circUBA2 promoted GC malignancy and CSC-like properties by acting as a sponge for miR-144-5p to upregulate STC1 expression and further activate the IL-6/JAK2/STAT3 signaling pathway. More importantly, the ability of circUBA2 to enhance CSC-like properties was inhibited by tocilizumab, a humanised Interleukin-6 receptor (IL-6R) antibody. Thus, circUBA2 knockdown and tocilizumab synergistically inhibited CSC-like properties. CONCLUSIONS Our study demonstrated the critical role of circUBA2 in regulating CSC-like properties in GC. CircUBA2 may be a promising prognostic biomarker for GC.
Collapse
Affiliation(s)
- Jia-Bin Wang
- Department of Gastric Surgery, Fujian Medical University Union Hospital, No.29 Xinquan Road, Fuzhou, 350001, Fujian Province, China
- Fujian Province Minimally Invasive Medical Center, Fuzhou, China
- Key Laboratory of Ministry of Education of Gastrointestinal Cancer, Fujian Medical University, Fuzhou, China
| | - Tong-Xing Lin
- Department of Gastric Surgery, Fujian Medical University Union Hospital, No.29 Xinquan Road, Fuzhou, 350001, Fujian Province, China
- Fujian Province Minimally Invasive Medical Center, Fuzhou, China
- Key Laboratory of Ministry of Education of Gastrointestinal Cancer, Fujian Medical University, Fuzhou, China
| | - Deng-Hui Fan
- Department of Gastric Surgery, Fujian Medical University Union Hospital, No.29 Xinquan Road, Fuzhou, 350001, Fujian Province, China
- Fujian Province Minimally Invasive Medical Center, Fuzhou, China
- Key Laboratory of Ministry of Education of Gastrointestinal Cancer, Fujian Medical University, Fuzhou, China
| | - You-Xin Gao
- Department of Gastric Surgery, Fujian Medical University Union Hospital, No.29 Xinquan Road, Fuzhou, 350001, Fujian Province, China
- Fujian Province Minimally Invasive Medical Center, Fuzhou, China
- Key Laboratory of Ministry of Education of Gastrointestinal Cancer, Fujian Medical University, Fuzhou, China
| | - Yu-Jing Chen
- Department of Gastric Surgery, Fujian Medical University Union Hospital, No.29 Xinquan Road, Fuzhou, 350001, Fujian Province, China
- Fujian Province Minimally Invasive Medical Center, Fuzhou, China
- Key Laboratory of Ministry of Education of Gastrointestinal Cancer, Fujian Medical University, Fuzhou, China
| | - Yu-Kai Wu
- Department of Gastric Surgery, Fujian Medical University Union Hospital, No.29 Xinquan Road, Fuzhou, 350001, Fujian Province, China
- Fujian Province Minimally Invasive Medical Center, Fuzhou, China
- Key Laboratory of Ministry of Education of Gastrointestinal Cancer, Fujian Medical University, Fuzhou, China
| | - Kai-Xiang Xu
- Department of Gastric Surgery, Fujian Medical University Union Hospital, No.29 Xinquan Road, Fuzhou, 350001, Fujian Province, China
- Fujian Province Minimally Invasive Medical Center, Fuzhou, China
- Key Laboratory of Ministry of Education of Gastrointestinal Cancer, Fujian Medical University, Fuzhou, China
| | - Qing-Zhu Qiu
- Department of Gastric Surgery, Fujian Medical University Union Hospital, No.29 Xinquan Road, Fuzhou, 350001, Fujian Province, China
- Fujian Province Minimally Invasive Medical Center, Fuzhou, China
- Key Laboratory of Ministry of Education of Gastrointestinal Cancer, Fujian Medical University, Fuzhou, China
| | - Ping Li
- Department of Gastric Surgery, Fujian Medical University Union Hospital, No.29 Xinquan Road, Fuzhou, 350001, Fujian Province, China
- Fujian Province Minimally Invasive Medical Center, Fuzhou, China
- Key Laboratory of Ministry of Education of Gastrointestinal Cancer, Fujian Medical University, Fuzhou, China
| | - Jian-Wei Xie
- Department of Gastric Surgery, Fujian Medical University Union Hospital, No.29 Xinquan Road, Fuzhou, 350001, Fujian Province, China
- Fujian Province Minimally Invasive Medical Center, Fuzhou, China
- Key Laboratory of Ministry of Education of Gastrointestinal Cancer, Fujian Medical University, Fuzhou, China
| | - Jian-Xian Lin
- Department of Gastric Surgery, Fujian Medical University Union Hospital, No.29 Xinquan Road, Fuzhou, 350001, Fujian Province, China
- Fujian Province Minimally Invasive Medical Center, Fuzhou, China
- Key Laboratory of Ministry of Education of Gastrointestinal Cancer, Fujian Medical University, Fuzhou, China
| | - Qi-Yue Chen
- Department of Gastric Surgery, Fujian Medical University Union Hospital, No.29 Xinquan Road, Fuzhou, 350001, Fujian Province, China
- Fujian Province Minimally Invasive Medical Center, Fuzhou, China
- Key Laboratory of Ministry of Education of Gastrointestinal Cancer, Fujian Medical University, Fuzhou, China
| | - Long-Long Cao
- Department of Gastric Surgery, Fujian Medical University Union Hospital, No.29 Xinquan Road, Fuzhou, 350001, Fujian Province, China
- Fujian Province Minimally Invasive Medical Center, Fuzhou, China
- Key Laboratory of Ministry of Education of Gastrointestinal Cancer, Fujian Medical University, Fuzhou, China
| | - Chang-Ming Huang
- Department of Gastric Surgery, Fujian Medical University Union Hospital, No.29 Xinquan Road, Fuzhou, 350001, Fujian Province, China.
- Fujian Province Minimally Invasive Medical Center, Fuzhou, China.
- Key Laboratory of Ministry of Education of Gastrointestinal Cancer, Fujian Medical University, Fuzhou, China.
| | - Chao-Hui Zheng
- Department of Gastric Surgery, Fujian Medical University Union Hospital, No.29 Xinquan Road, Fuzhou, 350001, Fujian Province, China.
- Fujian Province Minimally Invasive Medical Center, Fuzhou, China.
- Key Laboratory of Ministry of Education of Gastrointestinal Cancer, Fujian Medical University, Fuzhou, China.
| |
Collapse
|
4
|
Kumar A, Yadav RP, Chatterjee S, Das M, Pal DK. Integration of bioinformatics analysis to identify possible hub genes and important pathways associated with clear cell renal cell carcinoma. Urologia 2024; 91:261-269. [PMID: 38159064 DOI: 10.1177/03915603231220435] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2024]
Abstract
INTRODUCTION One of the most fatal urological malignancies is clear cell renal cell carcinoma (ccRCC), yet little is known about its pathophysiology or prognosis. This study is aimed at obtaining some novel biomarkers with diagnostic and prognostic meaning and may find out potential therapeutic targets for ccRCC. MATERIAL AND METHODS Using three publically accessible ccRCC gene expression profiles acquired from the Gene Expression Omnibus database, differentially expressed genes (DEG) were discovered and function enrichment analyses were carried out. Gene Ontology (GO) analysis and Kyoto Encyclopedia of Genes and Genomes (KEGG) enrichment analysis were conducted by using the DAVID tool and a protein-protein interaction (PPI) network was constructed and visualized by Cytoscape. Then we identified 10 hub genes using the cytohubba plugin of Cytoscape based on degree score. The mRNA and protein expression of hub genes was analyzed by GEPIA and Human Protein Atlas (HPA) database. Then, prognosis analysis of hub genes was conducted using GEPIA 3.0 which consists of data from The Cancer Genome Atlas (TCGA). RESULTS We discovered 293 DEG which is highly enriched in several biological processes connected to immune-regulation and pathways linked to tumors, including HIF-1, PI3K-AKT, and metabolic pathways. In particular, C1QA, C1QB, FCER1G, and TYROBP were related to advanced clinical stage, high pathological grade, and poor survival in patients with ccRCC. CONCLUSIONS Further molecular biological studies are required to confirm the role of the putative biomarkers in human ccRCC. Our work highlighted the hub genes and pathways involved in the progression of ccRCC.
Collapse
Affiliation(s)
- Anshu Kumar
- Department of Urology, West Bengal Unversity of Health Sciences, Kolkata, India
| | - Ravi Prakash Yadav
- Department of Zoology, University of Calcutta, Kolkata, West Bengal, India
| | | | - Madhusudan Das
- Department of Zoology, University of Calcutta, Kolkata, West Bengal, India
| | - Dilip Kumar Pal
- Department of Urology, West Bengal Unversity of Health Sciences, Kolkata, India
| |
Collapse
|
5
|
Liu R, Liu J, Cao Q, Chu Y, Chi H, Zhang J, Fu J, Zhang T, Fan L, Liang C, Luo X, Yang X, Li B. Identification of crucial genes through WGCNA in the progression of gastric cancer. J Cancer 2024; 15:3284-3296. [PMID: 38817876 PMCID: PMC11134444 DOI: 10.7150/jca.95757] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2024] [Accepted: 04/11/2024] [Indexed: 06/01/2024] Open
Abstract
Background: To explore the hub gene closely related to the progression of gastric cancer (GC), so as to provide a theoretical basis for revealing the therapeutic mechanism of GC. Methods: The gene expression profile and clinical data of GSE15459 in Gene Expression Omnibus (GEO) database were downloaded. The weighted gene co-expression network analysis (WGCNA) was used to screen the key modules related to GC progression. Survival analysis was used to assess the influence of hub genes on patients' outcomes. CIBERSORT analysis was used to predict the tissue infiltrating immune cells in patients. Immunohistochemical staining was conducted to further verify the expression of hub genes. Results: Through WGCNA, a total of 26 co-expression modules were constructed, in which salmon module and royalblue module had strong correlation with GC progression. The results of enrichment analysis showed that genes in the two modules were mainly involved in toll-like receptor signaling pathway, cholesterol metabolism and neuroactive ligand-receptor interaction. Six hub genes (C1QA, C1QB, C1QC, FCER1G, FPR3 and TYROBP) related to GC progression were screened. Survival analysis showed overall survival in the high expression group was significantly lower than that in the low expression group. CIBERSORT analysis revealed that immune characteristics difference between patients in early stage and advanced stage. Immunohistochemical results confirmed that C1QB, FCER1G, FPR3 and TYROBP were significantly associated with disease progression in GC. Conclusion: Our study identified that C1QB, FCER1G, FPR3 and TYROBP played important roles in the progression of GC, and their specific mechanisms are worth further study.
Collapse
Affiliation(s)
- Rui Liu
- Vascular surgery Department, The Affiliated Hospital of Southwest Medical University, Lu Zhou, China
- Department of gastrointestinal surgery, Meishan People 's Hospital, Meishan, China
| | - Jie Liu
- Department of General Surgery (Hepatopancreatobiliary Surgery), The Affiliated Hospital of Southwest Medical University, Sichuan, China
- Academician (Expert) Workstation of Sichuan Province, Metabolic Hepatobiliary and Pancreatic Diseases Key Laboratory of Luzhou City, The Affiliated Hospital of Southwest Medical University, Sichuan, China
- Department of general surgery, Dazhou Central Hospital, Dazhou, China
| | - Qiang Cao
- School of Medicine, Macau University of Science and Technology, 999078, Macau, China
| | - Yanpeng Chu
- Department of general surgery, Dazhou Central Hospital, Dazhou, China
- Medical College, Sichuan University of Arts and Science, Dazhou, China
| | - Hao Chi
- Department of General Surgery (Hepatopancreatobiliary Surgery), The Affiliated Hospital of Southwest Medical University, Sichuan, China
- Academician (Expert) Workstation of Sichuan Province, Metabolic Hepatobiliary and Pancreatic Diseases Key Laboratory of Luzhou City, The Affiliated Hospital of Southwest Medical University, Sichuan, China
| | - Jun Zhang
- Department of general surgery, Dazhou Central Hospital, Dazhou, China
| | - Jiangping Fu
- Oncology department, Dazhou Central Hospital, Dazhou, China
| | - Tianchi Zhang
- Department of general surgery, Dazhou Central Hospital, Dazhou, China
| | - Linguang Fan
- Department of general surgery, Dazhou Central Hospital, Dazhou, China
| | - Chaozhong Liang
- Department of general surgery, Dazhou Central Hospital, Dazhou, China
| | - Xiufang Luo
- Geriatric department, Dazhou Central Hospital, Dazhou, China
| | - Xiaoli Yang
- Department of General Surgery (Hepatopancreatobiliary Surgery), The Affiliated Hospital of Southwest Medical University, Sichuan, China
- Academician (Expert) Workstation of Sichuan Province, Metabolic Hepatobiliary and Pancreatic Diseases Key Laboratory of Luzhou City, The Affiliated Hospital of Southwest Medical University, Sichuan, China
| | - Bo Li
- Department of General Surgery (Hepatopancreatobiliary Surgery), The Affiliated Hospital of Southwest Medical University, Sichuan, China
- Academician (Expert) Workstation of Sichuan Province, Metabolic Hepatobiliary and Pancreatic Diseases Key Laboratory of Luzhou City, The Affiliated Hospital of Southwest Medical University, Sichuan, China
| |
Collapse
|
6
|
Zhang SY, Luo Q, Xiao LR, Yang F, Zhu J, Chen XQ, Yang S. Role and mechanism of NCAPD3 in promoting malignant behaviors in gastric cancer. Front Pharmacol 2024; 15:1341039. [PMID: 38711992 PMCID: PMC11070777 DOI: 10.3389/fphar.2024.1341039] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2023] [Accepted: 03/30/2024] [Indexed: 05/08/2024] Open
Abstract
Background Gastric cancer (GC) is one of the major malignancies threatening human lives and health. Non-SMC condensin II complex subunit D3 (NCAPD3) plays a crucial role in the occurrence of many diseases. However, its role in GC remains unexplored. Materials and Methods The Cancer Genome Atlas (TCGA) database, clinical samples, and cell lines were used to analyze NCAPD3 expression in GC. NCAPD3 was overexpressed and inhibited by lentiviral vectors and the CRISPR/Cas9 system, respectively. The biological functions of NCAPD3 were investigated in vitro and in vivo. Gene microarray, Gene set enrichment analysis (GSEA) and ingenuity pathway analysis (IPA) were performed to establish the potential mechanisms. Results NCAPD3 was highly expressed in GC and was associated with a poor prognosis. NCAPD3 upregulation significantly promoted the malignant biological behaviors of gastric cancer cell, while NCAPD3 inhibition exerted a opposite effect. NCAPD3 loss can directly inhibit CCND1 and ESR1 expression to downregulate the expression of downstream targets CDK6 and IRS1 and inhibit the proliferation of gastric cancer cells. Moreover, NCAPD3 loss activates IRF7 and DDIT3 to regulate apoptosis in gastric cancer cells. Conclusion Our study revealed that NCAPD3 silencing attenuates malignant phenotypes of GC and that it is a potential target for GC treatment.
Collapse
Affiliation(s)
- Su-Yun Zhang
- Departments of Oncology Medicine, Fujian Medical University Union Hospital, Fuzhou, Fujian, China
| | - Qiong Luo
- Departments of Oncology Medicine, Fujian Medical University Union Hospital, Fuzhou, Fujian, China
| | - Li-Rong Xiao
- Departments of Oncology Medicine, Fujian Medical University Union Hospital, Fuzhou, Fujian, China
| | - Fan Yang
- Departments of Respiratory and Critical Care Medicine, Fujian Medical University Union Hospital, Fuzhou, Fujian, China
| | - Jian Zhu
- Department of General Surgery, Shengjing Hospital of China Medical University, Shenyang, Liaoning, China
| | - Xiang-Qi Chen
- Departments of Respiratory and Critical Care Medicine, Fujian Medical University Union Hospital, Fuzhou, Fujian, China
- Fujian Key Laboratory of Translational Research in Cancer and Neurodegenerative Diseases, Fuzhou, Fujian, China
| | - Sheng Yang
- Departments of Oncology Medicine, Fujian Medical University Union Hospital, Fuzhou, Fujian, China
- Fujian Key Laboratory of Translational Research in Cancer and Neurodegenerative Diseases, Fuzhou, Fujian, China
| |
Collapse
|
7
|
Yang Y, She S, Ren L, Zhao B, Chen D, Chen H. Prognosis and therapeutic benefits prediction based on NK cell marker genes through single-cell RNA-seq with integrated bulk RNA-seq analysis for hepatocellular carcinoma. Front Oncol 2023; 13:1208165. [PMID: 37554171 PMCID: PMC10406383 DOI: 10.3389/fonc.2023.1208165] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2023] [Accepted: 07/03/2023] [Indexed: 08/10/2023] Open
Abstract
Tumor-infiltrating immune cells greatly participate in regulating tumorigenesis and metastasis of hepatocellular carcinoma (HCC). Natural killer cell, as an important role of innate immunity, plays an indispensable role in antitumor immunity and regulate tumor development. In this study, we firstly identified 251 NK cell marker genes of HCC based on single-cell RNA sequencing data. Subsequently, an NK cell marker genes-related prognostic signature (NKPS) was developed in the cancer genome atlas (TCGA) cohort for risk stratification and prognosis prediction. The predictive value of the NKPS in prognosis was well validated in different clinical subgroups and three external datasets (ICGC-LIHC cohort, GSE14520 cohort and Guilin cohort). Moreover, multivariate analysis revealed the independent prognostic value of NKPS for OS in HCC. Further functional analysis indicated the NKPS was associated with basic cellular processes, that may contribute to the development and progression of HCC. Thereafter, immune characteristics as well as the therapeutic benefits in NKPS risk score-defined subgroups were analyzed. Patients with low-risk score exhibited immune-active status, manifested as higher immune scores, more infiltration of CD8+ T cells and macrophage M1, and higher T-cell receptor (TCR) richness and diversity. Remarkably, the NKPS was negatively correlated with immunotherapy response-related signatures. In addition, the low-risk group exhibited significantly improved therapeutic benefits, either from immunotherapy or traditional chemotherapy and target therapy. Overall, the NKPS showed an excellent predictive value for prognosis and therapeutic responses for HCC, which might also provide novel insights into better HCC management strategies.
Collapse
Affiliation(s)
- Yao Yang
- Peking University Hepatology Institute, Beijing Key Laboratory of Hepatitis C and Immunotherapy for Liver Diseases, Peking University People's Hospital, Beijing, China
| | - Shaopin She
- Peking University Hepatology Institute, Beijing Key Laboratory of Hepatitis C and Immunotherapy for Liver Diseases, Peking University People's Hospital, Beijing, China
| | - Liying Ren
- Peking University Hepatology Institute, Beijing Key Laboratory of Hepatitis C and Immunotherapy for Liver Diseases, Peking University People's Hospital, Beijing, China
| | - Bigeng Zhao
- Laboratory of Hepatobiliary and Pancreatic Surgery, Affiliated Hospital of Guilin Medical University, Guilin, Guangxi, China
| | - Dongbo Chen
- Peking University Hepatology Institute, Beijing Key Laboratory of Hepatitis C and Immunotherapy for Liver Diseases, Peking University People's Hospital, Beijing, China
| | - Hongsong Chen
- Peking University Hepatology Institute, Beijing Key Laboratory of Hepatitis C and Immunotherapy for Liver Diseases, Peking University People's Hospital, Beijing, China
| |
Collapse
|
8
|
Zhao W, Chang Y, Wu Z, Jiang X, Li Y, Xie R, Fu D, Sun C, Gao J. Identification of PIMREG as a novel prognostic signature in breast cancer via integrated bioinformatics analysis and experimental validation. PeerJ 2023; 11:e15703. [PMID: 37483962 PMCID: PMC10358341 DOI: 10.7717/peerj.15703] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2023] [Accepted: 06/14/2023] [Indexed: 07/25/2023] Open
Abstract
Background Phosphatidylinositol binding clathrin assembly protein interacting mitotic regulator (PIMREG) expression is upregulated in a variety of cancers. However, its potential role in breast cancer (BC) remains uncertain. Methods The Cancer Genome Atlas (TCGA) and Gene Expression Omnibus (GEO) databases were used to gather relevant information. The expression of PIMREG and its clinical implication in BC were assessed by using Wilcoxon rank-sum test. The prognostic value of PIMREG in BC was evaluated through the Cox regression model and nomogram, and visualized by Kaplan-Meier survival curves. Genes/proteins that interact with PIMREG in BC were also identified through GeneMANIA and MaxLink. Gene set enrichment analysis (GSEA) was then performed. The correlations of the immune cell infiltration and immune checkpoints with the expression of PIMREG in BC were explored via TIMER, TISIDB, and GEPIA. Potential drugs that interact with PIMREG in BC were explored via Q-omic. The siRNA transfection, CCK-8, and transwell migration assay were conducted to explore the function of PIMREG in cell proliferation and migration. Results PIMREG expression was significantly higher in infiltrating ductal carcinoma, estrogen receptor negative BC, and progestin receptor negative BC. High expression of PIMREG was associated with poor overall survival, disease-specific survival, and progression-free interval. A nomogram based on PIMREG was developed with a satisfactory prognostic value. PIMREG also had a high diagnostic ability, with an area under the curve of 0.940. Its correlations with several immunomodulators were also observed. Immune checkpoint CTLA-4 was significantly positively associated with PIMREG. HDAC2 was found as a potentially critical link between PIMREG and BRCA1/2. In addition, PIMREG knockdown could inhibit cell proliferation and migration in BC. Conclusions The high expression of PIMREG is associated with poor prognosis and immune checkpoints in BC. HDAC2 may be a critical link between PIMREG and BRCA1/2, potentially a therapeutic target.
Collapse
Affiliation(s)
- Wenjing Zhao
- Clinical Medical College, Yangzhou University, Yangzhou, Jiangsu, China
| | - Yuanjin Chang
- School of Medicine, Jiangnan College, WuXi, JiangSu, China
| | - Zhaoye Wu
- School of Medicine, Jiangnan College, WuXi, JiangSu, China
| | - Xiaofan Jiang
- School of Medicine, Jiangnan College, WuXi, JiangSu, China
| | - Yong Li
- Clinical Medical College, Yangzhou University, Yangzhou, Jiangsu, China
| | - Ruijin Xie
- School of Medicine, Jiangnan College, WuXi, JiangSu, China
| | - Deyuan Fu
- Clinical Medical College, Yangzhou University, Yangzhou, Jiangsu, China
| | - Chenyu Sun
- Department of General Surgery, The second Affiliated Hospital of Anhui Medical University, Anhui, China
- Department of Medicine, AMITA Health Saint Joseph Hospital, Chicago, IL, USA
| | - Ju Gao
- Clinical Medical College, Yangzhou University, Yangzhou, Jiangsu, China
| |
Collapse
|
9
|
Yamaguchi M, Kashiwakura I. The Acute Radiation Syndrome-Mitigator Romiplostim and Secreted Extracellular Vesicles Improved Survival in Mice Acutely Exposed to Myelosuppressive Doses of Ionizing Radiation. Biomolecules 2023; 13:biom13050837. [PMID: 37238707 DOI: 10.3390/biom13050837] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2023] [Revised: 05/02/2023] [Accepted: 05/12/2023] [Indexed: 05/28/2023] Open
Abstract
In cases of accidental high-dose total-body irradiation (TBI), acute radiation syndrome (ARS) can cause death. We reported that the thrombopoietin receptor agonist romiplostim (RP) has the potential to completely rescue mice exposed to lethal TBI. Extracellular vesicles (EVs) are involved in cell-to-cell communication, and the mechanism of RP action may be related to EVs that reflect the radio-mitigative information. We investigated the radio-mitigative effects of EVs on mice with severe ARS. C57BL/6 mice exposed to lethal TBI were treated with RP, and the EVs were isolated from the serum and intraperitoneally injected into other mice with severe ARS. The 30-day survival rate of lethal TBI mice drastically improved by 50-100% with the administration of EVs in the sera collected weekly from the mice in which radiation damage was alleviated and mortality was avoided by the administration of RP. Four responsive miRNAs, namely, miR-144-5p, miR-3620-5p, miR-6354, and miR-7686-5p showed significant expression changes in an array analysis. In particular, miR-144-5p was expressed only in the EVs of RP-treated TBI mice. Specific EVs may exist in the circulating blood of mice that escaped mortality with an ARS mitigator, and their membrane surface and endogenous molecules may be the key to the survival of mice with severe ARS.
Collapse
Affiliation(s)
- Masaru Yamaguchi
- Graduate School of Health Sciences, Hirosaki University, 66-1 Hon-cho, Hirosaki 036-8564, Aomori, Japan
| | - Ikuo Kashiwakura
- Graduate School of Health Sciences, Hirosaki University, 66-1 Hon-cho, Hirosaki 036-8564, Aomori, Japan
| |
Collapse
|
10
|
Fan J, Zhao Z, Wu H, Fang X, Miao F, Chen X, Jiang X, Li J, Jiang P, Yu H. Syndecan-3 Coregulates Milk Fat Metabolism and Inflammatory Reactions in Bovine Mammary Epithelial Cells through AMPK/SIRT1 Signaling Pathway. Int J Mol Sci 2023; 24:6657. [PMID: 37047630 PMCID: PMC10095454 DOI: 10.3390/ijms24076657] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2023] [Revised: 03/24/2023] [Accepted: 03/27/2023] [Indexed: 04/05/2023] Open
Abstract
Transcriptome sequencing showed that syndecan-3 (SDC3) was differentially expressed in high-fat and low-fat mammary epithelial cells of Chinese Holstein cows. Previous studies found that SDC3 plays an important role in inflammatory diseases and virus infection. However, those studies did not confirm whether or not the functional gene SDC3, which plays an important role in regulating milk fat metabolism, has an effect on susceptibility to breast tissue diseases. Therefore, we studied the effects of SDC3 on milk lipid metabolism and inflammation in bovine mammary epithelial cells (BMECs) and further explored the common regulatory pathway of SDC3 in both. The overexpression of SDC3 increased the contents of triglycerides and cholesterol, reduced the content of non-esterified fatty acids, inhibited the expression of inflammatory factors (IL-6, IL-1β, TNF-α and COX-2), and reduced the production of ROS in BMECs. However, silenced SDC3 had the opposite effect. Further exploring the mechanisms of SDC3, we found that SDC3 upregulated the expression of peroxisome proliferator-activated receptor gamma (PPARG) through the AMPK/SIRT1 signal pathway to promote milk fat synthesis. It also regulated the activation of the NF-κB pathway through the AMPK/SIRT1 signal pathway, reducing the expression of inflammatory factors and ROS production, thus inhibiting the inflammatory response of BMECs. Nuclear factor kappa B subunit 1 (NF-κB p50) was an important target of SDC3 in this process. To sum up, our results showed that SDC3 coregulated milk fat metabolism and inflammation through the AMPK/SIRT1 signaling pathway. This study laid a foundation for the comprehensive evaluation of breeding value based on multi-effect functional genes in dairy cow molecular breeding.
Collapse
Affiliation(s)
- Jing Fan
- College of Coastal Agricultural Sciences, Guangdong Ocean University, Zhanjiang 524088, China; (J.F.); (Z.Z.); (H.W.); (F.M.); (X.C.); (X.J.); (J.L.)
- The Key Laboratory of Animal Resources and Breed Innovation in Western Guangdong Province, Zhanjiang 524088, China
| | - Zhihui Zhao
- College of Coastal Agricultural Sciences, Guangdong Ocean University, Zhanjiang 524088, China; (J.F.); (Z.Z.); (H.W.); (F.M.); (X.C.); (X.J.); (J.L.)
- The Key Laboratory of Animal Resources and Breed Innovation in Western Guangdong Province, Zhanjiang 524088, China
| | - Haochen Wu
- College of Coastal Agricultural Sciences, Guangdong Ocean University, Zhanjiang 524088, China; (J.F.); (Z.Z.); (H.W.); (F.M.); (X.C.); (X.J.); (J.L.)
- The Key Laboratory of Animal Resources and Breed Innovation in Western Guangdong Province, Zhanjiang 524088, China
| | - Xibi Fang
- College of Animal Science, Jilin University, Changchun 130062, China;
| | - Fengshuai Miao
- College of Coastal Agricultural Sciences, Guangdong Ocean University, Zhanjiang 524088, China; (J.F.); (Z.Z.); (H.W.); (F.M.); (X.C.); (X.J.); (J.L.)
- The Key Laboratory of Animal Resources and Breed Innovation in Western Guangdong Province, Zhanjiang 524088, China
| | - Xuanxu Chen
- College of Coastal Agricultural Sciences, Guangdong Ocean University, Zhanjiang 524088, China; (J.F.); (Z.Z.); (H.W.); (F.M.); (X.C.); (X.J.); (J.L.)
- The Key Laboratory of Animal Resources and Breed Innovation in Western Guangdong Province, Zhanjiang 524088, China
| | - Xinyi Jiang
- College of Coastal Agricultural Sciences, Guangdong Ocean University, Zhanjiang 524088, China; (J.F.); (Z.Z.); (H.W.); (F.M.); (X.C.); (X.J.); (J.L.)
- The Key Laboratory of Animal Resources and Breed Innovation in Western Guangdong Province, Zhanjiang 524088, China
| | - Jing Li
- College of Coastal Agricultural Sciences, Guangdong Ocean University, Zhanjiang 524088, China; (J.F.); (Z.Z.); (H.W.); (F.M.); (X.C.); (X.J.); (J.L.)
- The Key Laboratory of Animal Resources and Breed Innovation in Western Guangdong Province, Zhanjiang 524088, China
| | - Ping Jiang
- College of Coastal Agricultural Sciences, Guangdong Ocean University, Zhanjiang 524088, China; (J.F.); (Z.Z.); (H.W.); (F.M.); (X.C.); (X.J.); (J.L.)
- The Key Laboratory of Animal Resources and Breed Innovation in Western Guangdong Province, Zhanjiang 524088, China
| | - Haibin Yu
- College of Coastal Agricultural Sciences, Guangdong Ocean University, Zhanjiang 524088, China; (J.F.); (Z.Z.); (H.W.); (F.M.); (X.C.); (X.J.); (J.L.)
- The Key Laboratory of Animal Resources and Breed Innovation in Western Guangdong Province, Zhanjiang 524088, China
| |
Collapse
|
11
|
Zang D, Li J, Zhou C. Clinical expression of microRNA-144-5p and its regulatory effect on renal function in uremia. Ther Apher Dial 2023; 27:246-252. [PMID: 35997718 DOI: 10.1111/1744-9987.13922] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2022] [Revised: 08/18/2022] [Accepted: 08/21/2022] [Indexed: 11/27/2022]
Abstract
OBJECTIVE The study commits to probing the clinical expression of microRNA-144-5p (miR-144-5p) and its modulatory effect on the renal function of uremia. METHODS Levels of blood urea nitrogen (BUN), β2-microglobulin (β2-MG), serum creatinine (Scr), blood calcium (Ca), phosphorus (P), and intact parathyroid hormone (iPTH) and miR-144-5p expression in serum of uremia patients were detected. The correlation among miR-144-5p expression with BUN, β2-MG, Scr, Ca, P, and iPTH levels in uremic patients was analyzed. The rats were injected with miR-144-5p agomir to detect the change of BUN, Scr, β2-MG, Scr, Ca, P, and iPTH levels in uremic rats. RESULTS miR-144-5p expression in uremic patients was negatively correlated with BUN, Scr, β2-MG, P, and iPTH levels, and positively correlated with free Ca concentration in blood. miR-144-5p elevation reduced BUN, Scr, β2-MG, P, and iPTH levels, and increased free Ca concentration in blood in uremic rats. CONCLUSION miR-144-5p is lowly expressed, and miR-144-5p has a regulatory effect on renal function in uremia.
Collapse
Affiliation(s)
- Dong Zang
- Department of Clinical Laboratory, Beijing Hospital of Integrated Traditional Chinese and Western, Beijing, China
| | - Junyi Li
- Department of Clinical Laboratory, Beijing Maternal and Child Health Care Hospital Yanqing District, Beijing, China
| | - Chuanyan Zhou
- Department of Clinical Laboratory, The Third Affiliated Hospital of Chongqing Medical University, Chongqing, China
| |
Collapse
|
12
|
Zhang J, Wang Z, Liu Z, Chen Z, Jiang J, Ji Y, Zhang Y, Zhu H, Zheng B. CENPF promotes the proliferation of renal cell carcinoma in vitro. Transl Androl Urol 2023; 12:320-329. [PMID: 36915885 PMCID: PMC10006003 DOI: 10.21037/tau-22-797] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2022] [Accepted: 02/06/2023] [Indexed: 02/26/2023] Open
Abstract
Background Metastasis and drug resistance are the main causes of renal cell carcinoma (RCC) mortality. Currently, there are still a limited number of targeted therapies against advanced RCC. It is critical to develop new effective clinical biomarkers and drug targets in RCC. Several studies have shown that centromere protein F (CENPF), a microtubule binding protein, promotes cancer progression in various types of cancer. The purpose of this study was to explore the role of CENPF in RCC. Methods Peripheral blood and corresponding tissue samples of 23 RCC patients and 23 normal physical examination patients who were treated in our hospital from 2018 to 2020 were collected, and CENPF expression was detected by quantitative real-time polymerase chain reaction (qRT-PCR), western blot, and immunohistochemical (IHC) methods. The expression of CENPF was downregulated by small interfering RNA (siRNA) transfection, and the proliferation of the corresponding RCC cells and the corresponding cell cycle were detected. Results According to The Cancer Genome Atlas (TCGA) data analysis, CENPF is highly expressed in RCC, and its expression level is significantly related to the overall survival (OS) and recurrence-free survival (RFS) of RCC. In addition, high expression of CENPF was found in the tissues of RCC patients in our hospital. Knockdown of CENPF significantly reduced the proliferation of RCC cells in vitro, and knockdown of CENPF regulated the cell cycle by inhibiting the expression of cyclins such as CDK4, CDK6, and CyclinD1. Conclusions CENPF can be used as an independent prognostic factor of RCC and regulate the proliferation ability and cell cycle of RCC cells. CENPF is a potential oncogene and prognostic marker in RCC.
Collapse
Affiliation(s)
- Ji Zhang
- Department of Urology, Nantong First People's Hospital, Second Affiliated Hospital of Nantong University, Nantong, China
| | - Zhenyu Wang
- Department of Urology, Nantong First People's Hospital, Second Affiliated Hospital of Nantong University, Nantong, China
| | - Zhenmin Liu
- Department of Urology, Nantong First People's Hospital, Second Affiliated Hospital of Nantong University, Nantong, China
| | - Zhan Chen
- Department of Urology, Nantong First People's Hospital, Second Affiliated Hospital of Nantong University, Nantong, China
| | - Jie Jiang
- Department of Urology, Nantong First People's Hospital, Second Affiliated Hospital of Nantong University, Nantong, China
| | - Yuhang Ji
- Department of Urology, Nantong First People's Hospital, Second Affiliated Hospital of Nantong University, Nantong, China
| | - Yong Zhang
- Department of Urology, Nantong First People's Hospital, Second Affiliated Hospital of Nantong University, Nantong, China
| | - Hua Zhu
- Department of Urology, Nantong First People's Hospital, Second Affiliated Hospital of Nantong University, Nantong, China
| | - Bing Zheng
- Department of Urology, Nantong First People's Hospital, Second Affiliated Hospital of Nantong University, Nantong, China
| |
Collapse
|
13
|
NCAPG deregulation indicates poor patient survival and contributes to colorectal carcinogenesis. Pathol Res Pract 2023; 241:154238. [PMID: 36442414 DOI: 10.1016/j.prp.2022.154238] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/08/2022] [Revised: 11/09/2022] [Accepted: 11/20/2022] [Indexed: 11/23/2022]
Abstract
Colorectal cancer (CRC) is one of the types of cancers with a high incidence and is ranked the 3rd among men and 2nd among women worldwide. The purpose of this study was to investigate the correlation between non-SMC condensin I complex subunit G (NCAPG) and the prognosis of CRC and its function in CRC cells. The expression of NCAPG in colorectal tissues and cells was detected by immunoblotting and immunohistochemistry. Kaplan-Meier analysis was used to analyze the correlation between NCAPG and CRC prognosis. RNAi technology was used to investigate how NCAPG inhibition affected the proliferation and migration of CRC cells. Overexpression of NCAPG was positively correlated with several clinicopathologic characteristics, including T stage (P = 0.0198), M stage (P = 0.0005), and TNM stage (P < 0.0001). Kaplan-Meier analysis showed that the overexpression of NCAPG was also negatively correlated with disease-free survival and overall survival. In the culture of CRC cells, the knockdown of NCAPG inhibited the proliferation, migration, and invasion of the cells. Meanwhile, it was also found that NCAPG knockdown could interfere with G2/M-G1 transition in the cell cycle, resulting in the inhibition of cell proliferation. The overexpression of NCAPG may serve as a candidate biomarker for CRC prognosis. NCAPG is also a potential therapeutic target for CRC.
Collapse
|
14
|
Pan S, Li Z, Wang Y, Liang L, Liu F, Qiao Y, Liu D, Liu Z. A Comprehensive Weighted Gene Co-expression Network Analysis Uncovers Potential Targets in Diabetic Kidney Disease. J Transl Int Med 2022; 10:359-368. [PMID: 36860636 PMCID: PMC9969566 DOI: 10.2478/jtim-2022-0053] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/15/2023] Open
Abstract
Background and Objectives Diabetic kidney disease (DKD) is one of the most common microvascular complications of diabetes. It has always been difficult to explore novel biomarkers and therapeutic targets of DKD. We aimed to identify new biomarkers and further explore their functions in DKD. Methods The weighted gene co-expression network analysis (WGCNA) method was used to analyze the expression profile data of DKD, obtain key modules related to the clinical traits of DKD, and perform gene enrichment analysis. Quantitative real-time polymerase chain reaction (qRT-PCR) was used to verify the mRNA expression of the hub genes in DKD. Spearman's correlation coefficients were used to determine the relationship between gene expression and clinical indicators. Results Fifteen gene modules were obtained via WGCNA analysis, among which the green module had the most significant correlation with DKD. Gene enrichment analysis revealed that the genes in this module were mainly involved in sugar and lipid metabolism, regulation of small guanosine triphosphatase (GTPase) mediated signal transduction, G protein-coupled receptor signaling pathway, peroxisome proliferator-activated receptor (PPAR) molecular signaling pathway, Rho protein signal transduction, and oxidoreductase activity. The qRT-PCR results showed that the relative expression of nuclear pore complex-interacting protein family member A2 (NPIPA2) and ankyrin repeat domain 36 (ANKRD36) was notably increased in DKD compared to the control. NPIPA2 was positively correlated with the urine albumin/creatinine ratio (ACR) and serum creatinine (Scr) but negatively correlated with albumin (ALB) and hemoglobin (Hb) levels. ANKRD36 was positively correlated with the triglyceride (TG) level and white blood cell (WBC) count. Conclusion NPIPA2 expression is closely related to the disease condition of DKD, whereas ANKRD36 may be involved in the progression of DKD through lipid metabolism and inflammation, providing an experimental basis to further explore the pathogenesis of DKD.
Collapse
Affiliation(s)
- Shaokang Pan
- Department of TCM-Integrated Department of Nephrology, the First Affiliated Hospital of Zhengzhou University; Research Institute of Nephrology, Zhengzhou University; Research Center for Kidney Disease, Henan Province; Key Laboratory of Precision Diagnosis and Treatment for Chronic Kidney Disease in Henan Province; Core Unit of National Clinical Medical Research Center of Kidney Disease, Zhengzhou 450052, Henan Province, China
| | - Zhengyong Li
- Department of TCM-Integrated Department of Nephrology, the First Affiliated Hospital of Zhengzhou University; Research Institute of Nephrology, Zhengzhou University; Research Center for Kidney Disease, Henan Province; Key Laboratory of Precision Diagnosis and Treatment for Chronic Kidney Disease in Henan Province; Core Unit of National Clinical Medical Research Center of Kidney Disease, Zhengzhou 450052, Henan Province, China
| | - Yixue Wang
- Department of TCM-Integrated Department of Nephrology, the First Affiliated Hospital of Zhengzhou University; Research Institute of Nephrology, Zhengzhou University; Research Center for Kidney Disease, Henan Province; Key Laboratory of Precision Diagnosis and Treatment for Chronic Kidney Disease in Henan Province; Core Unit of National Clinical Medical Research Center of Kidney Disease, Zhengzhou 450052, Henan Province, China
| | - Lulu Liang
- Department of TCM-Integrated Department of Nephrology, the First Affiliated Hospital of Zhengzhou University; Research Institute of Nephrology, Zhengzhou University; Research Center for Kidney Disease, Henan Province; Key Laboratory of Precision Diagnosis and Treatment for Chronic Kidney Disease in Henan Province; Core Unit of National Clinical Medical Research Center of Kidney Disease, Zhengzhou 450052, Henan Province, China
| | - Fengxun Liu
- Department of TCM-Integrated Department of Nephrology, the First Affiliated Hospital of Zhengzhou University; Research Institute of Nephrology, Zhengzhou University; Research Center for Kidney Disease, Henan Province; Key Laboratory of Precision Diagnosis and Treatment for Chronic Kidney Disease in Henan Province; Core Unit of National Clinical Medical Research Center of Kidney Disease, Zhengzhou 450052, Henan Province, China
| | - Yingjin Qiao
- Department of TCM-Integrated Department of Nephrology, the First Affiliated Hospital of Zhengzhou University; Research Institute of Nephrology, Zhengzhou University; Research Center for Kidney Disease, Henan Province; Key Laboratory of Precision Diagnosis and Treatment for Chronic Kidney Disease in Henan Province; Core Unit of National Clinical Medical Research Center of Kidney Disease, Zhengzhou 450052, Henan Province, China
| | - Dongwei Liu
- Department of TCM-Integrated Department of Nephrology, the First Affiliated Hospital of Zhengzhou University; Research Institute of Nephrology, Zhengzhou University; Research Center for Kidney Disease, Henan Province; Key Laboratory of Precision Diagnosis and Treatment for Chronic Kidney Disease in Henan Province; Core Unit of National Clinical Medical Research Center of Kidney Disease, Zhengzhou 450052, Henan Province, China
| | - Zhangsuo Liu
- Department of TCM-Integrated Department of Nephrology, the First Affiliated Hospital of Zhengzhou University; Research Institute of Nephrology, Zhengzhou University; Research Center for Kidney Disease, Henan Province; Key Laboratory of Precision Diagnosis and Treatment for Chronic Kidney Disease in Henan Province; Core Unit of National Clinical Medical Research Center of Kidney Disease, Zhengzhou 450052, Henan Province, China
| |
Collapse
|
15
|
A comprehensive weighted gene co-expression network analysis uncovers potential targets in diabetic kidney disease. J Transl Int Med 2022. [DOI: 10.2478/jtim-2022-0058] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022] Open
Abstract
Abstract
Background and Objectives
Diabetic kidney disease (DKD) is one of the most common microvascular complications of diabetes. It has always been difficult to explore novel biomarkers and therapeutic targets of DKD. We aimed to identify new biomarkers and further explore their functions in DKD.
Methods
The weighted gene co-expression network analysis (WGCNA) method was used to analyze the expression profile data of DKD, obtain key modules related to the clinical traits of DKD, and perform gene enrichment analysis. Quantitative real-time polymerase chain reaction (qRT-PCR) was used to verify the mRNA expression of the hub genes in DKD. Spearman’s correlation coefficients were used to determine the relationship between gene expression and clinical indicators.
Results
Fifteen gene modules were obtained via WGCNA analysis, among which the green module had the most significant correlation with DKD. Gene enrichment analysis revealed that the genes in this module were mainly involved in sugar and lipid metabolism, regulation of small guanosine triphosphatase (GTPase) mediated signal transduction, G protein-coupled receptor signaling pathway, peroxisome proliferator-activated receptor (PPAR) molecular signaling pathway, Rho protein signal transduction, and oxidoreductase activity. The qRT-PCR results showed that the relative expression of nuclear pore complex-interacting protein family member A2 (NPIPA2) and ankyrin repeat domain 36 (ANKRD36) was notably increased in DKD compared to the control. NPIPA2 was positively correlated with the urine albumin/creatinine ratio (ACR) and serum creatinine (Scr) but negatively correlated with albumin (ALB) and hemoglobin (Hb) levels. ANKRD36 was positively correlated with the triglyceride (TG) level and white blood cell (WBC) count.
Conclusion
NPIPA2 expression is closely related to the disease condition of DKD, whereas ANKRD36 may be involved in the progression of DKD through lipid metabolism and inflammation, providing an experimental basis to further explore the pathogenesis of DKD.
Collapse
|
16
|
Yang G, Jiang J, Yin R, Li Z, Li L, Gao F, Liu C, Zhan X. Two novel predictive biomarkers for osteosarcoma and glycolysis pathways: A profiling study on HS2ST1 and SDC3. Medicine (Baltimore) 2022; 101:e30192. [PMID: 36086752 PMCID: PMC10980373 DOI: 10.1097/md.0000000000030192] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/06/2021] [Accepted: 07/08/2022] [Indexed: 10/14/2022] Open
Abstract
INTRODUCTION Prognostic biomarkers for osteosarcoma (OS) are still very few, and this study aims to examine 2 novel prognostic biomarkers for OS through combined bioinformatics and experimental approach. MATERIALS AND METHODS Expression profile data of OS and paraneoplastic tissues were downloaded from several online databases, and prognostic genes were screened by differential expression analysis, Univariate Cox analysis, least absolute shrinkage and selection operator regression analysis, and multivariate Cox regression analysis to construct prognostic models. The accuracy of the model was validated using principal component analysis, constructing calibration plots, and column line plots. We also analyzed the relationship between genes and drug sensitivity. Gene expression profiles were analyzed by immunocytotyping. Also, protein expressions of the constructed biomarkers in OS and paraneoplastic tissues were verified by immunohistochemistry. RESULTS Heparan sulfate 2-O-sulfotransferase 1 (HS2ST1) and Syndecan 3 (SDC3, met all our requirements after screening. The constructed prognostic model indicated that patients in the high-risk group had a much lower patient survival rate than in the low-risk group. Moreover, these genes were closely related to immune cells (P < .05). Drug sensitivity analysis showed that the 2 genes modeled were strongly correlated with multiple drugs. Immunohistochemical analysis showed significantly higher protein expression of both genes in OS than in paraneoplastic tissues. CONCLUSIONS HS2ST1 and SDC3 are significantly dysregulated in OS, and the prognostic models constructed based on these 2 genes have much lower survival rates in the high-risk group than in the low-risk group. HS2ST1 and SDC3 can be used as glycolytic and immune-related prognostic biomarkers in OS.
Collapse
Affiliation(s)
- Guozhi Yang
- Department of Spine Osteopathic Surgery, the First Affiliated Hospital of Guangxi Medical University, Nanning, P. R. China
- Department of Orthopedic, Nanyang Central Hospital, Nanyang, China
| | - Jie Jiang
- Guangxi Medical University, Nanning, P. R. China
| | - Ruifeng Yin
- Department of Orthopedic, Nanyang Central Hospital, Nanyang, China
| | - Zhian Li
- Department of Orthopedic, Nanyang Central Hospital, Nanyang, China
| | - Lei Li
- Department of Orthopedic, Nanyang Central Hospital, Nanyang, China
| | - Feng Gao
- Department of Orthopedic, Nanyang Central Hospital, Nanyang, China
| | - Chong Liu
- Department of Spine Osteopathic Surgery, the First Affiliated Hospital of Guangxi Medical University, Nanning, P. R. China
| | - Xinli Zhan
- Department of Spine Osteopathic Surgery, the First Affiliated Hospital of Guangxi Medical University, Nanning, P. R. China
| |
Collapse
|
17
|
Kattner AA. An area of greatest vulnerability - recent advances in kidney injury. Biomed J 2022; 45:567-572. [PMID: 35944870 PMCID: PMC9356640 DOI: 10.1016/j.bj.2022.07.006] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2022] [Accepted: 07/23/2022] [Indexed: 11/16/2022] Open
Abstract
In this issue of the Biomedical Journal the reader is provided with an insight into the latest observations and advances in acute kidney injury as well as chronic kidney disease. The current SARS-CoV-2 variants are reviewed, and the role of long non-coding RNA in HIV therapy is explored. Furthermore, the potential of metabolomics as means to diagnose multiple sclerosis as well as tuberculosis is presented. Other topics of this issue include the restoration of the spermatogonial stem cell niche; atherosclerosis and the use of improved ultrasound images; and the effect of transcranial magnetic stimulation in patients with autism spectrum disorder. Finally, it is shown how continuous passive motion can be used as supportive therapeutic approach in children with cerebral palsy, and minimally invasive surgery is presented as valid alternative in cases of spine metastasis.
Collapse
|
18
|
Lee EC, Ha TW, Lee DH, Hong DY, Park SW, Lee JY, Lee MR, Oh JS. Utility of Exosomes in Ischemic and Hemorrhagic Stroke Diagnosis and Treatment. Int J Mol Sci 2022; 23:ijms23158367. [PMID: 35955498 PMCID: PMC9368737 DOI: 10.3390/ijms23158367] [Citation(s) in RCA: 27] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2022] [Revised: 07/23/2022] [Accepted: 07/26/2022] [Indexed: 11/23/2022] Open
Abstract
Stroke is the leading cause of death and neurological disorders worldwide. However, diagnostic techniques and treatments for stroke patients are still limited for certain types of stroke. Intensive research has been conducted so far to find suitable diagnostic techniques and treatments, but so far there has been no success. In recent years, various studies have drawn much attention to the clinical value of utilizing the mechanism of exosomes, low toxicity, biodegradability, and the ability to cross the blood–brain barrier. Recent studies have been reported on the use of biomarkers and protective and recovery effects of exosomes derived from stem cells or various cells in the diagnostic stage after stroke. This review focuses on publications describing changes in diagnostic biomarkers of exosomes following various strokes and processes for various potential applications as therapeutics.
Collapse
Affiliation(s)
- Eun Chae Lee
- Department of Neurosurgery, College of Medicine, Cheonan Hospital, Soonchunhyang University, Cheonan 31151, Korea; (E.C.L.); (D.-H.L.); (D.-Y.H.); (S.-W.P.); (J.Y.L.)
- Soonchunhyang Institute of Medi-Bio Science (SIMS), Soon Chun Hyang University, Cheonan 31151, Korea;
| | - Tae Won Ha
- Soonchunhyang Institute of Medi-Bio Science (SIMS), Soon Chun Hyang University, Cheonan 31151, Korea;
| | - Dong-Hun Lee
- Department of Neurosurgery, College of Medicine, Cheonan Hospital, Soonchunhyang University, Cheonan 31151, Korea; (E.C.L.); (D.-H.L.); (D.-Y.H.); (S.-W.P.); (J.Y.L.)
- Soonchunhyang Institute of Medi-Bio Science (SIMS), Soon Chun Hyang University, Cheonan 31151, Korea;
| | - Dong-Yong Hong
- Department of Neurosurgery, College of Medicine, Cheonan Hospital, Soonchunhyang University, Cheonan 31151, Korea; (E.C.L.); (D.-H.L.); (D.-Y.H.); (S.-W.P.); (J.Y.L.)
- Soonchunhyang Institute of Medi-Bio Science (SIMS), Soon Chun Hyang University, Cheonan 31151, Korea;
| | - Sang-Won Park
- Department of Neurosurgery, College of Medicine, Cheonan Hospital, Soonchunhyang University, Cheonan 31151, Korea; (E.C.L.); (D.-H.L.); (D.-Y.H.); (S.-W.P.); (J.Y.L.)
- Soonchunhyang Institute of Medi-Bio Science (SIMS), Soon Chun Hyang University, Cheonan 31151, Korea;
| | - Ji Young Lee
- Department of Neurosurgery, College of Medicine, Cheonan Hospital, Soonchunhyang University, Cheonan 31151, Korea; (E.C.L.); (D.-H.L.); (D.-Y.H.); (S.-W.P.); (J.Y.L.)
| | - Man Ryul Lee
- Soonchunhyang Institute of Medi-Bio Science (SIMS), Soon Chun Hyang University, Cheonan 31151, Korea;
- Correspondence: (M.R.L.); (J.S.O.)
| | - Jae Sang Oh
- Department of Neurosurgery, College of Medicine, Cheonan Hospital, Soonchunhyang University, Cheonan 31151, Korea; (E.C.L.); (D.-H.L.); (D.-Y.H.); (S.-W.P.); (J.Y.L.)
- Correspondence: (M.R.L.); (J.S.O.)
| |
Collapse
|
19
|
Zhang R, Ai J, Wang J, Sun C, Lu H, He A, Li M, Liao Y, Lei J, Zhou F, Wu L, Liao W. NCAPG promotes the proliferation of hepatocellular carcinoma through the CKII-dependent regulation of PTEN. J Transl Med 2022; 20:325. [PMID: 35864529 PMCID: PMC9301831 DOI: 10.1186/s12967-022-03519-z] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2022] [Accepted: 07/07/2022] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND NCAPG, non-SMC subunit in the concentrate I complex, might promote the proliferation of hepatocellular carcinoma (HCC), but the mechanism is unclear. The aim of this study was to explore how NCAPG affects PTEN to influence the proliferation of HCC. METHODS Western blotting, qRT-PCR and immunohistochemistry were used to detect NCAPG expression in HCC tissues. The effect of NCAPG on the proliferation of HCC cell lines was evaluated using an EdU incorporation assay, a Cell Counting Kit-8 assay and Fluorescence in situ hybridization (FISH). BALB/c-nu/nu mice were used for the in vivo proliferation experiment. Transcriptome sequencing was used to determine the relationship between NCAPG and PTEN. Immunocoprecipitation-mass spectrometry (IP-MS), proteomic sequencing and Co-immunoprecipitation (CO-IP) were used to identify and examine the interaction between the NCAPG and CKII proteins. RESULTS We confirmed that NCAPG was abnormally overexpressed in HCC and promoted the proliferation of HCC cells. Transcriptome sequencing revealed that NCAPG inhibited the transcription of PTEN and promoted the activation of the PI3K-AKT pathway. We found a close association between NCAPG and CKII through proteomic sequencing; their interaction was confirmed by Co-IP. There was a positive correlation between NCAPG and CKII that promoted the phosphorylation of PTEN and thus inhibited its transcription and functions. We also proved that CKII was the key factor in the induction of proliferation by NCAPG. CONCLUSION We revealed the mechanism by which NCAPG regulates the proliferation of HCC: NCAPG inhibits PTEN through its interaction with CKII, and then activates the PI3K-AKT pathway to promote the proliferation of HCC.
Collapse
Affiliation(s)
- Rongguiyi Zhang
- Department of General Surgery, The Second Affiliated Hospital of Nanchang University, No. 1, Minde Road, Nanchang, 330006, China
| | - Jiyuan Ai
- Department of General Surgery, The Third Hospital of Nanchang City, No. 2, Xiangshan South Road, Nanchang, 330006, China
| | - Jiakun Wang
- Department of General Surgery, The Second Affiliated Hospital of Nanchang University, No. 1, Minde Road, Nanchang, 330006, China
| | - Chi Sun
- Department of General Surgery, The Second Affiliated Hospital of Nanchang University, No. 1, Minde Road, Nanchang, 330006, China
| | - Hongcheng Lu
- Department of General Surgery, The Second Affiliated Hospital of Nanchang University, No. 1, Minde Road, Nanchang, 330006, China
| | - Aoxiao He
- Department of General Surgery, The Second Affiliated Hospital of Nanchang University, No. 1, Minde Road, Nanchang, 330006, China
| | - Min Li
- Department of General Surgery, The Second Affiliated Hospital of Nanchang University, No. 1, Minde Road, Nanchang, 330006, China
| | - Yuting Liao
- Department of Nursing, Gannan Medical College, No. 1, Medical Road, Ganzhou, 341000, China
| | - Jun Lei
- Department of General Surgery, The Second Affiliated Hospital of Nanchang University, No. 1, Minde Road, Nanchang, 330006, China
| | - Fan Zhou
- Department of General Surgery, The Second Affiliated Hospital of Nanchang University, No. 1, Minde Road, Nanchang, 330006, China
| | - Linquan Wu
- Department of General Surgery, The Second Affiliated Hospital of Nanchang University, No. 1, Minde Road, Nanchang, 330006, China.
| | - Wenjun Liao
- Department of General Surgery, The Second Affiliated Hospital of Nanchang University, No. 1, Minde Road, Nanchang, 330006, China.
| |
Collapse
|
20
|
Tang F, Yu H, Wang X, Shi J, Chen Z, Wang H, Wan Z, Fu Q, Hu X, Zuhaer Y, Liu T, Yang Z, Peng J. NCAPG promotes tumorigenesis of bladder cancer through NF-κB signaling pathway. Biochem Biophys Res Commun 2022; 622:101-107. [PMID: 35843088 DOI: 10.1016/j.bbrc.2022.07.007] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2022] [Revised: 06/29/2022] [Accepted: 07/03/2022] [Indexed: 11/02/2022]
Abstract
The non-SMC condensin I complex subunit G (NCAPG) is a subunit of the condensin complex, many studies have shown that NCAPG is aberrantly expressed in different tumors and closely associated with poor prognosis, but its role in bladder cancer is unclear. In this paper, we found that NCAPG expression was upregulated in bladder cancer in tumor-related databases, and further verified the expression of NCAPG in bladder cancer tissues as well as bladder cancer cell lines by tissue microarray, qPCR, and WB. Next, we explored the changes in bladder cancer cell proliferation as well as migration after NCAPG knockdown by cell growth curve, colony formation, soft agar assay, and xenograft model. Finally, we examined the changes in downstream signaling pathways after NCAPG knockdown using RNA-Seq, and we found that the NF-κB signaling pathway was inhibited with NCAPG gene knockdown, which was verified by luciferase reporter assay as well as WB. In conclusion, our results illustrate that NCAPG knockdown can inhibit the proliferation of bladder cancer cells through the NF-κB signaling pathway. This finding demonstrates that NCAPG could be a potential target for the treatment of bladder cancer.
Collapse
Affiliation(s)
- Feng Tang
- Department of Urology, Zhongnan Hospital of Wuhan University, Wuhan, China; Medical Science Research Center, Zhongnan Hospital of Wuhan University, Wuhan, China
| | - Hua Yu
- Department of Urology, Zhongnan Hospital of Wuhan University, Wuhan, China; Medical Science Research Center, Zhongnan Hospital of Wuhan University, Wuhan, China
| | - Xia Wang
- Medical Science Research Center, Zhongnan Hospital of Wuhan University, Wuhan, China; Departmentof Public Health, Wuhan University Hospital, Wuhan University, Wuhan, China
| | - Jiageng Shi
- Department of Urology, Zhongnan Hospital of Wuhan University, Wuhan, China; Medical Science Research Center, Zhongnan Hospital of Wuhan University, Wuhan, China
| | - Zhizhuang Chen
- Department of Urology, Zhongnan Hospital of Wuhan University, Wuhan, China; Medical Science Research Center, Zhongnan Hospital of Wuhan University, Wuhan, China
| | - Hao Wang
- Department of Urology, Zhongnan Hospital of Wuhan University, Wuhan, China; Medical Science Research Center, Zhongnan Hospital of Wuhan University, Wuhan, China
| | - Ziyu Wan
- Department of Urology, Zhongnan Hospital of Wuhan University, Wuhan, China; Medical Science Research Center, Zhongnan Hospital of Wuhan University, Wuhan, China
| | - Qiqi Fu
- Department of Urology, Zhongnan Hospital of Wuhan University, Wuhan, China; Medical Science Research Center, Zhongnan Hospital of Wuhan University, Wuhan, China
| | - Xuan Hu
- Department of Urology, Zhongnan Hospital of Wuhan University, Wuhan, China; Medical Science Research Center, Zhongnan Hospital of Wuhan University, Wuhan, China
| | - Yisha Zuhaer
- Department of Urology, Zhongnan Hospital of Wuhan University, Wuhan, China; Medical Science Research Center, Zhongnan Hospital of Wuhan University, Wuhan, China
| | - Tao Liu
- Department of Urology, Zhongnan Hospital of Wuhan University, Wuhan, China; Medical Science Research Center, Zhongnan Hospital of Wuhan University, Wuhan, China
| | - Zhonghua Yang
- Department of Urology, Zhongnan Hospital of Wuhan University, Wuhan, China; Medical Science Research Center, Zhongnan Hospital of Wuhan University, Wuhan, China
| | - Jianping Peng
- Department of Urology, Zhongnan Hospital of Wuhan University, Wuhan, China; Medical Science Research Center, Zhongnan Hospital of Wuhan University, Wuhan, China.
| |
Collapse
|
21
|
Luo J, Xia L, Zhang L, Zhao K, Li C. MiRNA-144-5p down-modulates CDCA3 to regulate proliferation and apoptosis of lung adenocarcinoma cells. Mutat Res 2022; 825:111798. [PMID: 36087462 DOI: 10.1016/j.mrfmmm.2022.111798] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2022] [Revised: 08/24/2022] [Accepted: 08/28/2022] [Indexed: 06/15/2023]
Abstract
BACKGROUND Lung adenocarcinoma (LUAD) belongs to non-small cell lung cancer. In addition to surgical resection, chemotherapy and radiotherapy cause great side effects and low 5-year survival rates. MiRNAs are closely related to cancer development. This study aimed to analyze the molecular mechanism of miRNA-144-5p targeting CDCA3 to inhibit LUAD proliferation. METHODS MiRNA and mRNA data were downloaded from TCGA-LUAD dataset for differential expression analysis. TargetScan and miRTarBase databases were adopted to predict the target genes of miRNA, and the signaling pathways involved were analyzed by gene set enrichment analysis. The functions of LUAD cells were analyzed by CCK-8, colony formation assay, stem cell spheroidization assay, and flow cytometry. The expression levels of CDCA3, p53, and cell cycle-associated proteins were evaluated by Western blot. RESULTS The expression of miRNA-144-5p was significantly down-regulated in LUAD, but overexpression of it repressed proliferation and spheroidization, and promoted apoptosis of LUAD cells. By bioinformatics prediction and dual-luciferase reporter assay, miRNA-144-5p was validated to target CDCA3, thereby regulating proliferation of LUAD cells. Besides, the results of cell experiments showed that miRNA-144-5p targeting CDCA3 affected cell proliferation and apoptosis in LUAD by regulating cell cycles, and miRNA-144-5p/CDCA3 mediated the p53 signaling pathway to affect the growth of LUAD cells. SIGNIFICANCE Through the study of the pathogenesis of miRNA-144-5p regulating LUAD, we can better understand the molecular mechanism underlying LUAD development.
Collapse
Affiliation(s)
- Jing Luo
- Thoracic Surgery, Zhejiang Hospital, Hangzhou, Zhejiang Province 310000, China
| | - Lilong Xia
- Thoracic Surgery, Zhejiang Hospital, Hangzhou, Zhejiang Province 310000, China
| | - Lei Zhang
- Thoracic Surgery, Zhejiang Hospital, Hangzhou, Zhejiang Province 310000, China
| | - Kaixiang Zhao
- Thoracic Surgery, Zhejiang Hospital, Hangzhou, Zhejiang Province 310000, China
| | - Chuanchuan Li
- Thoracic Surgery, Zhejiang Hospital, Hangzhou, Zhejiang Province 310000, China.
| |
Collapse
|
22
|
Absar M, Alanazi N, Siyal A, Shammas M, Mahmood A, Basit S, AlMukhaylid S, Iqbal Z. CLINICAL VALIDATION OF ANKRD36 MUTATIONS AS A NOVEL BIOMARKER FOR MONITORING EARLY PROGRESSION AND TIMELY CLINICAL INTERVENTIONS IN BLAST CRISIS CML. JOURNAL OF POPULATION THERAPEUTICS AND CLINICAL PHARMACOLOGY = JOURNAL DE LA THERAPEUTIQUE DES POPULATIONS ET DE LA PHARMACOLOGIE CLINIQUE 2022; 29:311-320. [PMID: 38465242 PMCID: PMC10923263 DOI: 10.53555/jptcp.v29i02.4161] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 03/12/2024]
Abstract
Background Chronic Myeloid Leukemia (CML) is initiated in the bone marrow due to the chromosomal translocation t(9;22), resulting in the fusion oncogene BCR-ABL. Tyrosine kinase inhibitors (TKIs) targeting BCR-ABL have transformed fatal CML into an almost curable disease. However, TKIs lose efficacy during disease progression, and the mechanism of CML progression remains to be fully understood. Additionally, common molecular biomarkers for CML progression are lacking. Our studies previously detected ANKRD36 (c.1183_1184 delGC and c.1187_1188 dupTT) associated exclusively with advanced phase CML. However, clinical validation of this finding was pending. Therefore, this study aimed to clinically validate mutated ANKRD36 as a novel biomarker of CML progression. Materials and Methods The study enrolled 124 patients in all phases of CML, recruited from Mayo Hospital and Hameed Latif Hospital in Lahore, Punjab, between January 2019 and August 2021. All response criteria were adopted from the European LeukemiaNet guideline 2020. Informed consent was obtained from all study subjects. The study was approved by scientific and ethical review committees of all participating centers.Sanger sequencing was employed to detect ANKRD36 mutations in CML patients in accelerated phase (AP) (n=11) and blast crisis (BC) (n=10), with chronic-phase CML (CP-CML) patients as controls (n=103). Samples were processed using Big Dye Terminator Cycle Sequencing Ready Reaction kits and sequenced using ABI Prism 3730 Genetic Analyzer, and sequencing using forward and reverse primers for ANKRD36. Results During our study, 17% of CML patients progressed to advanced phases AP-CML n=11 (8.9%) and BC-CML n=10 (8.1%). The chronic- and advanced-phase patients showed significant difference with respect to male-to-female ratio, hemoglobin level, WBC count, and platelet count. Sanger sequencing detected ANKRD36 mutations c. 1183 1184 delGC and c. 1187 1185 dupTT exclusively in all AP- and BC-CML patients but in none of the CP-CML patients. Nevertheless, mutations status was not associated with male-to-female ratio, hemoglobin level, WBC count, and platelet count, which makes ANKRD32 as an independent predictor of early and terminal disease progression in CML. Conclusions The study confirms ANKRD36 as a novel genomic biomarker for early and late CML progression. Further prospective studies should be carried out in this regard. ANKRD36, although fully uncharacterized in humans, shows the highest expression in bone marrow, particularly myeloid cells. Functional integrated genomic studies are recommended to further explore the role of ANKRD36 in the biology and pathogenesis of CML.
Collapse
Affiliation(s)
- Muhammad Absar
- Department of Pathology & Laboratory Medicine, King Abdulaziz Hospital National Guard, AlAhsa - Saudi Arabia
| | - Nawaf Alanazi
- Department of Pediatrics, King Abdulaziz Hospital, Al-Ahsa - Saudi Arabia
| | - Abdulaziz Siyal
- Stem Cell Unit, Department of Anatomy, College of Medicine, King Saud University, Riyadh, Saudi Arabia
| | - Masood Shammas
- Dana Farbar Cancer Institute, University of Harvard, Boston - USA
| | - Amer Mahmood
- Department of Pediatrics, King Abdulaziz Hospital, Al-Ahsa - Saudi Arabia
| | - Sulman Basit
- Centre for Genetics and Inherited Diseases, Taibah University Madinah - Kingdom of Saudi Arabia
| | - Sarah AlMukhaylid
- Genomic Medicine & Oncology/Hematology Group, Quality Assurance & Accreditation Unit (QAAA Unit), CoAMS-A/CLSP, King Saud Bin Abdulaziz University for Health Sciences & King Abdullah International Medical Research Centre (KAIMRC) / SSBMT, King Abdulaziz Medical City, National Guard Health Affairs, Al-Ahsa - Saudi Arabia; Hematology, Oncology & Pharmacogenetic Engineering Sciences (HOPES) Group, Department of Zoology, Univ. of Punjab, Pakistan (King Saud Bin Abdulaziz Univ.), Lahore - Pakistan
| | - Zafar Iqbal
- Pakistan Society for Molecular and Clinical Hematology, Lahore - Pakistan; Centre for Applied Molecular Biology (CAMB), University of the Punjab, Lahore - Pakistan
| |
Collapse
|
23
|
Jiang J, Lu Y, Zhang F, Pan T, Zhang Z, Wan Y, Ren X, Zhang R. Semaphorin 4B promotes tumor progression and associates with immune infiltrates in lung adenocarcinoma. BMC Cancer 2022; 22:632. [PMID: 35676688 PMCID: PMC9178879 DOI: 10.1186/s12885-022-09696-w] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2022] [Accepted: 05/25/2022] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND Semaphorins have been found to play important roles in multiple malignancy-related processes. However, the role of Semaphorin 4B (SEMA4B) in lung cancer remains unclear. Here, we aimed to explore the biological functions of SEMA4B in through bioinformatic analysis, in vitro and in vivo assays. In the present study, the possible mechanism by which SEMA4B affected the tumor growth and microenvironment of lung adenocarcinoma (LUAD) were investigated. METHODS The expression of SEMA4B in LUAD was analyzed by bioinformatic analysis and verified by the immunohistochemistry staining. The prognostic value of SEMA4B in LUAD was investigated using the Kaplan-Meier survival and Cox's regression model. After silencing SEMA4B expression, the functions of SEMA4B in LUAD cells were investigated by in vitro experiments, including CCK-8 and plate clone formation. And the effect of SEMA4B on tumor growth and immune infiltration was explored in C57BL/6 mice tumor-bearing models. RESULTS SEMA4B expression was upregulated in LUAD tissues and correlated with later pathological stages and poor prognosis of LUAD patients. Further study found that SEMA4B silencing suppressed the proliferation of lung cancer cells both in vitro and in vivo. Bioinformatic analysis showed that SEMA4B expression was correlated with the increased infiltration of myeloid-derived suppressor cells (MDSCs), T-regs and the decreased infiltration of CD8+ T cell in LUAD. Importantly, in vivo study verified that the infiltration of T-regs and MDSCs in tumor microenvironment (TME) of Xenograft tissues was decreased after SEMA4B silencing. CONCLUSIONS These findings demonstrated SEMA4B might play an oncogenic role in LUAD progression, and be a promising therapeutic target for lung cancer.
Collapse
Affiliation(s)
- Jun Jiang
- Department of Health Service, Base of Health Service, Fourth Military Medical University, Xi'an, China
| | - Yuan Lu
- Department of Respiratory and Critical Care Medicine, Zhongda Hospital, Southeast University, Nanjing, China
| | - Fang Zhang
- Department of Respiratory and Critical Care Medicine, Xijing Hospital, Fourth Military Medical University, Xi'an, China
| | - Tao Pan
- Department of Respiratory and Critical Care Medicine, Xijing Hospital, Fourth Military Medical University, Xi'an, China.,Translational Medicine Center, The Second Affiliated Hospital of Guangzhou Medical University, Guangzhou, China
| | - Zhipei Zhang
- Department of Thoracic Surgery, Tangdu Hospital, Fourth Military Medical University, Xi'an, China
| | - Yi Wan
- Department of Health Service, Base of Health Service, Fourth Military Medical University, Xi'an, China
| | - Xinling Ren
- Department of Respiratory and Critical Care Medicine, Xijing Hospital, Fourth Military Medical University, Xi'an, China. .,Department of Pulmonary Medicine, Shenzhen General Hospital, Shenzhen University, Shenzhen, 518055, Guangdong, China.
| | - Rui Zhang
- State Key Laboratory of Cancer Biology, Department of Immunology, Fourth Military Medical University, Xi'an, 710032, Shaanxi, China.
| |
Collapse
|
24
|
Hashimoto K, Kodama A, Ohira M, Kimoto M, Nakagawa R, Usui Y, Ujihara Y, Hanashima A, Mohri S. Postnatal expression of cell cycle promoter Fam64a causes heart dysfunction by inhibiting cardiomyocyte differentiation through repression of Klf15. iScience 2022; 25:104337. [PMID: 35602953 PMCID: PMC9118685 DOI: 10.1016/j.isci.2022.104337] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2021] [Revised: 04/07/2022] [Accepted: 04/26/2022] [Indexed: 12/03/2022] Open
Abstract
Introduction of fetal cell cycle genes into damaged adult hearts has emerged as a promising strategy for stimulating proliferation and regeneration of postmitotic adult cardiomyocytes. We have recently identified Fam64a as a fetal-specific cell cycle promoter in cardiomyocytes. Here, we analyzed transgenic mice maintaining cardiomyocyte-specific postnatal expression of Fam64a when endogenous expression was abolished. Despite an enhancement of cardiomyocyte proliferation, these mice showed impaired cardiomyocyte differentiation during postnatal development, resulting in cardiac dysfunction in later life. Mechanistically, Fam64a inhibited cardiomyocyte differentiation by repressing Klf15, leading to the accumulation of undifferentiated cardiomyocytes. In contrast, introduction of Fam64a in differentiated adult wildtype hearts improved functional recovery upon injury with augmented cell cycle and no dedifferentiation in cardiomyocytes. These data demonstrate that Fam64a inhibits cardiomyocyte differentiation during early development, but does not induce de-differentiation in once differentiated cardiomyocytes, illustrating a promising potential of Fam64a as a cell cycle promoter to attain heart regeneration. Overexpression of cell cycle promoter Fam64a in cardiomyocytes causes heart failure Fam64a inhibits cardiomyocyte differentiation during development by repressing Klf15 Transient and local induction of Fam64a in adult hearts improves recovery upon injury Fam64a activates cardiomyocyte cell cycle without dedifferentiation upon injury
Collapse
Affiliation(s)
- Ken Hashimoto
- First Department of Physiology, Kawasaki Medical School, Kurashiki 701-0192, Japan
| | - Aya Kodama
- First Department of Physiology, Kawasaki Medical School, Kurashiki 701-0192, Japan
| | - Momoko Ohira
- First Department of Physiology, Kawasaki Medical School, Kurashiki 701-0192, Japan
| | - Misaki Kimoto
- First Department of Physiology, Kawasaki Medical School, Kurashiki 701-0192, Japan
| | - Reiko Nakagawa
- Laboratory for Phyloinformatics, RIKEN Center for Biosystems Dynamics Research (BDR), Kobe 650-0047, Japan
| | - Yuu Usui
- First Department of Physiology, Kawasaki Medical School, Kurashiki 701-0192, Japan
| | - Yoshihiro Ujihara
- Department of Electrical and Mechanical Engineering, Nagoya Institute of Technology, Nagoya 466-8555, Japan
| | - Akira Hanashima
- First Department of Physiology, Kawasaki Medical School, Kurashiki 701-0192, Japan
| | - Satoshi Mohri
- First Department of Physiology, Kawasaki Medical School, Kurashiki 701-0192, Japan
| |
Collapse
|
25
|
Piperigkou Z, Tzaferi K, Makrokanis G, Cheli K, Karamanos NK. The microRNA-cell surface proteoglycan axis in cancer progression. Am J Physiol Cell Physiol 2022; 322:C825-C832. [PMID: 35294845 DOI: 10.1152/ajpcell.00041.2022] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
Proteoglycans consist one of the major extracellular matrix class of biomolecules that demonstrate nodal roles in cancer progression. Μodern diagnostic and therapeutic approaches include proteoglycan detection and pharmacological targeting in various cancers. Proteoglycans orchestrate critical signaling pathways for cancer development and progression through dynamic interactions with matrix components. It is well established that the epigenetic signatures of cancer cells play critical role in guiding their functional properties and metastatic potential. Secreted microRNAs (miRNAs) reside in a complex network with matrix proteoglycans, thus affecting cell-cell and cell-matrix communication. This mini-review aims to highlight current knowledge on the proteoglycan-mediated signaling cascades that regulate miRNA biogenesis in cancer. Moreover, the miRNA-mediated proteoglycan regulation during cancer progression and mechanistic aspects on the way that proteoglycans affect miRNA expression are presented. Recent advances on the role of cell surface proteoglycans in exosome biogenesis and miRNA packaging and expression are also discussed.
Collapse
Affiliation(s)
- Zoi Piperigkou
- Biochemical Analysis and Matrix Pathobiology Research Group, Laboratory of Biochemistry, Department of Chemistry, University of Patras, Patras, Greece.,Foundation for Research and Technology-Hellas (FORTH)/Institute of Chemical Engineering Sciences (ICE-HT), Patras, Greece
| | - Kyriaki Tzaferi
- Biochemical Analysis and Matrix Pathobiology Research Group, Laboratory of Biochemistry, Department of Chemistry, University of Patras, Patras, Greece
| | - George Makrokanis
- Biochemical Analysis and Matrix Pathobiology Research Group, Laboratory of Biochemistry, Department of Chemistry, University of Patras, Patras, Greece
| | - Konsatntina Cheli
- Biochemical Analysis and Matrix Pathobiology Research Group, Laboratory of Biochemistry, Department of Chemistry, University of Patras, Patras, Greece
| | - Nikos K Karamanos
- Biochemical Analysis and Matrix Pathobiology Research Group, Laboratory of Biochemistry, Department of Chemistry, University of Patras, Patras, Greece.,Foundation for Research and Technology-Hellas (FORTH)/Institute of Chemical Engineering Sciences (ICE-HT), Patras, Greece
| |
Collapse
|
26
|
Shi Y, Ge C, Fang D, Wei W, Li L, Wei Q, Yu H. NCAPG facilitates colorectal cancer cell proliferation, migration, invasion and epithelial-mesenchymal transition by activating the Wnt/β-catenin signaling pathway. Cancer Cell Int 2022; 22:119. [PMID: 35292013 PMCID: PMC8922890 DOI: 10.1186/s12935-022-02538-6] [Citation(s) in RCA: 21] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2021] [Accepted: 03/01/2022] [Indexed: 01/10/2023] Open
Abstract
BACKGROUND The condensation complex gene non-SMC condensin I complex subunit G(NCAPG), a cell cycle-associated condensin, is over-expressed in various cancers. However, its biological function in colorectal cancer (CRC) has yet to be deciphered. In this study, we investigated the role of NCAPG in CRC progression. METHODS Tissues and cells were used to measure NCAPG expression levels and their association with clinicopathological characteristics. NCAPG silencing and overexpression in CRC cells were used to measure its effect on proliferation, migration, invasion, and epithelial-mesenchymal transition (EMT) progression. In addition, mRNA, and protein expression levels of key EMT biomarkers were measured. The underlying mechanism of NCAPG modulating CRC progression was further explored using western blotting, co-immunoprecipitation (CO-IP), and immunofluorescence (IF) assays. RESULTS NCAPG was over-expressed in CRC tissues and cell lines. High expression levels were associated with differentiation levels, lymph metastasis, and vascular invasion in patients. NCAPG silencing suppressed, while NCAPG overexpression promoted the proliferative, migration, and invasive capacity of HCT116 and SW480 cells. Mechanistically, we discovered that NCAPG participated in regulating the EMT process and the Wnt/β-catenin signaling pathway to facilitate CRC invasion and metastasis. Additional experiments demonstrated that NCAPG activated the Wnt/β-catenin signaling pathway by binding to β-catenin in CRC cells. CONCLUSION NCAPG acts as an oncogene involved in the development and progression of CRC by binding to β-catenin to activate the Wnt/β-catenin signaling pathway.
Collapse
Affiliation(s)
- Yanlong Shi
- Department of General Surgery, Fuyang Hospital Affiliated to Anhui Medical University, Fuyang, 236000, Anhui, China
| | - Chang Ge
- Department of General Surgery, Fuyang Hospital Affiliated to Anhui Medical University, Fuyang, 236000, Anhui, China
| | - Debao Fang
- School of Life Sciences and Medical Center, University of Science & Technology of China, Hefei, 230000, Anhui, China
| | - Wei Wei
- Department of General Surgery, Fuyang Hospital Affiliated to Anhui Medical University, Fuyang, 236000, Anhui, China
| | - Li Li
- Department of General Surgery, Fuyang Hospital Affiliated to Anhui Medical University, Fuyang, 236000, Anhui, China
| | - Qian Wei
- School of Nursing, Anhui Medical University, HeFei, 230000, Anhui, China
| | - Hongzhu Yu
- Department of General Surgery, Fuyang Hospital Affiliated to Anhui Medical University, Fuyang, 236000, Anhui, China.
| |
Collapse
|
27
|
Zheng G, Han T, Hu X, Yang Z, Wang J, Wen Z, Li H, Wang H. NCAPG Promotes Tumor Progression and Modulates Immune Cell Infiltration in Glioma. Front Oncol 2022; 12:770628. [PMID: 35372056 PMCID: PMC8964493 DOI: 10.3389/fonc.2022.770628] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2021] [Accepted: 02/14/2022] [Indexed: 12/27/2022] Open
Abstract
Glioma is one of the most deadly types of brain cancer. As it is highly invasive, the prognosis for glioma patients remains dismal, with median survival rarely exceeding 16 months. Thus, developing a new prognostic biomarker for glioma and investigating its molecular mechanisms is necessary for the development of an efficient treatment strategy. In this study, we analyzed a cohort of 1,131 glioma patients using RNA-seq data from The Cancer Genome Atlas (TCGA project) and Gene Expression Omnibus (GSE4290 and GSE16011 datasets), and validated the results using the RNA-seq data of 1,018 gliomas from the Chinese Glioma Genome Atlas (CGGA project). We used the R language as the main tool for statistical analysis and data visualization. We found that NCAPG, a mitosis-associated chromosomal condensing protein, is highly expressed in glioma tissues. Furthermore, the expression of NCAPG increased significantly with the increase in tumor grade, and high NCAPG expression was found to be a predictor of poor overall survival in glioma patients (P < 0.001). This result shows that NCAPG expression could be an independent prognostic factor. Importantly, when the expression of NCAPG was knocked down, the CCK-8 assay revealed that the proliferation of glioma cells (LN-229 and T98G cell lines) decreased significantly compared with the control group. In addition, the healing rates of these cells were significantly lower in the si-NCAPG group than in the control group (P < 0.001). We then used the CIBERSORT algorithm to analyze the expression levels of 22 subpopulations of immune cells and found that NCAPG was significantly negatively correlated with natural killer cell activation. In addition, it was positively correlated with MHC-I molecules and ADAM17. Our study is first in comprehensively describing the high expression of NCAPG in glioma. It also shows that NCAPG can function as an independent prognostic predictor of glioma, and that targeting NCAPG can be a new strategy for the treatment of glioma patients.
Collapse
Affiliation(s)
- Guangrong Zheng
- Department of Neurology, The Second Hospital of Dalian Medical University, Dalian, China
- Department of Radiology, Changhai Hospital, Navy Medical University, Shanghai, China
| | - Tao Han
- Department of Oncology, The First Affiliated Hospital of China Medical University, Shenyang, China
| | - Xiaomu Hu
- Department of Pathology, Huashan Hospital, FuDan University, Shanghai, China
| | - Zhou Yang
- Department of General Surgery, The Second Hospital of Dalian Medical University, Dalian, China
| | - Jin Wang
- Department of Pathology, Changhai Hospital, Navy Medical University, Shanghai, China
| | - Zhenyi Wen
- Department of Neurology, The Second Hospital of Dalian Medical University, Dalian, China
| | - Hengyu Li
- Department of Breast and Thyroid Surgery, Changhai Hospital, Navy Medical University, Shanghai, China
| | - Hongjin Wang
- Department of Neurology, The Second Hospital of Dalian Medical University, Dalian, China
| |
Collapse
|
28
|
Serafim RB, Cardoso C, Arfelli VC, Valente V, Archangelo LF. PIMREG expression level predicts glioblastoma patient survival and affects temozolomide resistance and DNA damage response. Biochim Biophys Acta Mol Basis Dis 2022; 1868:166382. [DOI: 10.1016/j.bbadis.2022.166382] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2021] [Revised: 03/04/2022] [Accepted: 03/07/2022] [Indexed: 11/16/2022]
|
29
|
Zhou Q, Zhang ZY, Ang XJ, Hu C, Ouyang J. Construction of five microRNAs prognostic markers and a prognostic model for clear cell renal cell carcinoma. Transl Cancer Res 2022; 10:2337-2353. [PMID: 35116550 PMCID: PMC8797919 DOI: 10.21037/tcr-21-37] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2021] [Accepted: 03/12/2021] [Indexed: 12/22/2022]
Abstract
Background To determine the role of miRNA in the progression and outcome of renal clear cell carcinoma (ccRCC), establish a model for predicting outcome in patients with ccRCC and verify it using a Cox regression model. The miRNA target genes were predicted to understand their biological functions. Methods The microRNAs of 71 normal tissues and 545 tumor tissues were downloaded from TCGA (https://tcga-data.nci.nih.gov/tcga/). We also downloaded 537 clinical materials from this website. The miRNA difference analysis was carried out. A prognostic model was constructed using differential miRNA. The model was verified using Cox survival analysis, receiver operator characteristic (ROC), and independent predictive analysis. Results MiR-130b-3p, miR-365b-3p, miR-149-5p, miR-155-5p, and miR-144-5p can be used as independent prognostic indicators. We also analyzed the related functions of the target gene and found that target genes of miRNAs are involved in the signal pathways of some tumors, including cholesterol metabolism, HIF-1 signal pathway, focus adhesion, the Rap1 signal pathway, and hepatitis C. Conclusions The prognostic model constructed using five miRNAs is an independent and accurate factor. These miRNAs target genes are involved in regulating a variety of tumorigenesis and signal pathways. Therefore, we have reason to believe that the regulation of signal pathways by miRNA may play a critical role in the occurrence, development, and outcome of ccRCC, provide a new therapeutic target for ccRCC, and improve outcomes.
Collapse
Affiliation(s)
- Qi Zhou
- Department of Urology, the First Affiliated Hospital of Soochow University, Suzhou, China
| | - Zhi-Yu Zhang
- Department of Urology, the First Affiliated Hospital of Soochow University, Suzhou, China
| | - Xiao-Jie Ang
- Department of Urology, the First Affiliated Hospital of Soochow University, Suzhou, China
| | - Can Hu
- Department of Urology, the First Affiliated Hospital of Soochow University, Suzhou, China
| | - Jun Ouyang
- Department of Urology, the First Affiliated Hospital of Soochow University, Suzhou, China
| |
Collapse
|
30
|
Zheng Y, Zhou W, Li M, Xu R, Zhang S, Liu Y, Cen Y. IRF4-activated TEX41 promotes the malignant behaviors of melanoma cells by targeting miR-103a-3p/C1QB axis. BMC Cancer 2021; 21:1339. [PMID: 34915882 PMCID: PMC8680380 DOI: 10.1186/s12885-021-09039-1] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2020] [Accepted: 10/12/2021] [Indexed: 02/08/2023] Open
Abstract
BACKGROUND Malignant melanoma is an aggressive skin cancer and a tumor of melanocytic origin. Recent studies have suggested that long non-coding RNAs (lncRNAs) play crucial regulatory roles in multiple malignancies, including melanoma. Testis expressed 41 (TEX41) is a relatively new lncRNA whose mechanism in melanoma remains vague. AIMS This study aimed to explore the role and specific mechanism of TEX41 in melanoma. METHODS The expression of genes involved in this study was determined by qRT-PCR. Functional assays were conducted to analyze the role of relevant genes in melanoma cells. The interaction between TEX41 promoter and IRF4 as well as the relationship among TEX41, miR-103a-3p and C1QB was verified by mechanism assays. RESULTS IRF4 up-regulated TEX41 at the transcriptional level in melanoma cells. TEX41 knockdown hindered melanoma cell proliferation, migration and invasion while promoting cell apoptosis. TEX41 bound to miR-103a-3p and regulated C1QB. The suppressive impact of TEX41 depletion on melanoma cell malignant behaviors could be counteracted by miR-103a-3p inhibition or C1QB overexpression. Moreover, IRF4 could facilitate melanoma cell growth via up-regulating C1QB. CONCLUSIONS IRF4-activated TEX41 sequestered miR-103a-3p and modulated C1QB to promote melanoma cell malignant behaviors, for which TEX41 might be regarded as a potential therapeutic target for melanoma.
Collapse
Affiliation(s)
- Yingna Zheng
- Department of Dermatology, Henan Provincial People's Hospital, People's Hospital of Zhengzhou University, People's Hospital of Henan University, 450003, Zhengzhou, Henan, China
| | - Wu Zhou
- Department of Dermatology, Henan Provincial People's Hospital, People's Hospital of Zhengzhou University, People's Hospital of Henan University, 450003, Zhengzhou, Henan, China
| | - Min Li
- Department of Dermatology, Henan Provincial People's Hospital, People's Hospital of Zhengzhou University, People's Hospital of Henan University, 450003, Zhengzhou, Henan, China
| | - Ruixue Xu
- Department of Dermatology, Henan Provincial People's Hospital, People's Hospital of Zhengzhou University, People's Hospital of Henan University, 450003, Zhengzhou, Henan, China
| | - Shuai Zhang
- Department of Dermatology, Henan Provincial People's Hospital, People's Hospital of Zhengzhou University, People's Hospital of Henan University, 450003, Zhengzhou, Henan, China
| | - Ying Liu
- Department of Dermatology, Xianyang Central Hospital, No.78, Renmin Road, 712000, Xianyang, Shaanxi, China.
| | - Ying Cen
- Department of Plastic and Burn Surgery, West China Hospital, West China School of Medicine, Sichuan University, 610041, Chengdu, Sichuan, China
| |
Collapse
|
31
|
Integrated Genomic Analysis Identifies ANKRD36 Gene as a Novel and Common Biomarker of Disease Progression in Chronic Myeloid Leukemia. BIOLOGY 2021; 10:biology10111182. [PMID: 34827175 PMCID: PMC8615070 DOI: 10.3390/biology10111182] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/01/2021] [Revised: 09/01/2021] [Accepted: 09/03/2021] [Indexed: 02/05/2023]
Abstract
Simple Summary Chronic myeloid leukemia is a type of blood cancer that is regarded as a success story in determining the exact biological origin, pathogenesis and development of a molecularly targeted (mutation-specific) therapy that has led to successful treatment of this fatal cancer. It is caused by the BCR-ABL fusion gene, which is formed from the translocation between chromosomes 9 and 22. Anti-BCR-ABL drugs, known as tyrosine kinase inhibitors (TKIs), have led to long-term remissions in more than 80% of CML patients and even cure in about one-third of patients. Nevertheless, many patients face drug resistance, and disease progression occurs in about 30% of CML patients, leading to morbidities and mortality. Unfortunately, no biomarkers of CML progression are available due to a poor understanding of the mechanism of progression. Therefore, finding reliable molecular biomarkers of CML progression is one of the most attractive research areas in 21st-century cancer research. In this study, we report novel genomic variants exclusively found in all our advanced-phase CML patients. This study will help in identifying CML patients at risk of disease progression and timely therapeutic interventions to avoid or at least delay fatal disease progression in this cancer. Abstract Background: Chronic myeloid leukemia (CML) is initiated in bone marrow due to chromosomal translocation t(9;22) leading to fusion oncogene BCR-ABL. Targeting BCR-ABL by tyrosine kinase inhibitors (TKIs) has changed fatal CML into an almost curable disease. Despite that, TKIs lose their effectiveness due to disease progression. Unfortunately, the mechanism of CML progression is poorly understood and common biomarkers for CML progression are unavailable. This study was conducted to find novel biomarkers of CML progression by employing whole-exome sequencing (WES). Materials and Methods: WES of accelerated phase (AP) and blast crisis (BC) CML patients was carried out, with chronic-phase CML (CP-CML) patients as control. After DNA library preparation and exome enrichment, clustering and sequencing were carried out using Illumina platforms. Statistical analysis was carried out using SAS/STAT software version 9.4, and R package was employed to find mutations shared exclusively by all AP-/BC-CML patients. Confirmation of mutations was carried out using Sanger sequencing and protein structure modeling using I-TASSER followed by mutant generation and visualization using PyMOL. Results: Three novel genes (ANKRD36, ANKRD36B and PRSS3) were mutated exclusively in all AP-/BC-CML patients. Only ANKRD36 gene mutations (c.1183_1184 delGC and c.1187_1185 dupTT) were confirmed by Sanger sequencing. Protein modeling studies showed that mutations induce structural changes in ANKRD36 protein. Conclusions: Our studies show that ANKRD36 is a potential common biomarker and drug target of early CML progression. ANKRD36 is yet uncharacterized in humans. It has the highest expression in bone marrow, specifically myeloid cells. We recommend carrying out further studies to explore the role of ANKRD36 in the biology and progression of CML.
Collapse
|
32
|
Yan Y, Wang J, Yu L, Cui B, Wang H, Xiao X, Zhang Y, Zheng J, Wang J, Hui R, Wang Y. ANKRD36 Is Involved in Hypertension by Altering Expression of ENaC Genes. Circ Res 2021; 129:1067-1081. [PMID: 34615377 DOI: 10.1161/circresaha.121.319883] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
[Figure: see text].
Collapse
Affiliation(s)
- Yupeng Yan
- State Key Laboratory of Cardiovascular Disease, Fuwai Hospital, National Center for Cardiovascular Diseases, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing (Y.Y., Jin'e Wang, L.Y., B.C., H.W., X.X., Y.Z., R.H., Y.W.)
| | - Jin'e Wang
- State Key Laboratory of Cardiovascular Disease, Fuwai Hospital, National Center for Cardiovascular Diseases, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing (Y.Y., Jin'e Wang, L.Y., B.C., H.W., X.X., Y.Z., R.H., Y.W.)
| | - Liang Yu
- State Key Laboratory of Cardiovascular Disease, Fuwai Hospital, National Center for Cardiovascular Diseases, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing (Y.Y., Jin'e Wang, L.Y., B.C., H.W., X.X., Y.Z., R.H., Y.W.)
| | - Bing Cui
- State Key Laboratory of Cardiovascular Disease, Fuwai Hospital, National Center for Cardiovascular Diseases, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing (Y.Y., Jin'e Wang, L.Y., B.C., H.W., X.X., Y.Z., R.H., Y.W.)
| | - Hongrui Wang
- State Key Laboratory of Cardiovascular Disease, Fuwai Hospital, National Center for Cardiovascular Diseases, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing (Y.Y., Jin'e Wang, L.Y., B.C., H.W., X.X., Y.Z., R.H., Y.W.)
| | - Xiao Xiao
- State Key Laboratory of Cardiovascular Disease, Fuwai Hospital, National Center for Cardiovascular Diseases, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing (Y.Y., Jin'e Wang, L.Y., B.C., H.W., X.X., Y.Z., R.H., Y.W.)
| | - Yu Zhang
- State Key Laboratory of Cardiovascular Disease, Fuwai Hospital, National Center for Cardiovascular Diseases, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing (Y.Y., Jin'e Wang, L.Y., B.C., H.W., X.X., Y.Z., R.H., Y.W.)
| | - Jun Zheng
- Rizhao Port Hospital, Shandong, China (J.Z., Jingjun Wang)
| | - Jingjun Wang
- Rizhao Port Hospital, Shandong, China (J.Z., Jingjun Wang)
| | - Rutai Hui
- State Key Laboratory of Cardiovascular Disease, Fuwai Hospital, National Center for Cardiovascular Diseases, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing (Y.Y., Jin'e Wang, L.Y., B.C., H.W., X.X., Y.Z., R.H., Y.W.)
| | - Yibo Wang
- State Key Laboratory of Cardiovascular Disease, Fuwai Hospital, National Center for Cardiovascular Diseases, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing (Y.Y., Jin'e Wang, L.Y., B.C., H.W., X.X., Y.Z., R.H., Y.W.)
| |
Collapse
|
33
|
Xu D, Wang Y, Wu J, Zhang Y, Liu Z, Chen Y, Zheng J. Systematic Characterization of Novel Immune Gene Signatures Predicts Prognostic Factors in Hepatocellular Carcinoma. Front Cell Dev Biol 2021; 9:686664. [PMID: 34631695 PMCID: PMC8494981 DOI: 10.3389/fcell.2021.686664] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2021] [Accepted: 08/20/2021] [Indexed: 01/08/2023] Open
Abstract
Background: The prognosis of patients with hepatocellular carcinoma (HCC) is negatively affected by the lack of effective prognostic indicators. The change of tumor immune microenvironment promotes the development of HCC. This study explored new markers and predicted the prognosis of HCC patients by systematically analyzing immune characteristic genes. Methods: Immune-related genes were obtained, and the differentially expressed immune genes (DEIGs) between tumor and para-cancer samples were identified and analyzed using gene expression profiles from TCGA, HCCDB, and GEO databases. An immune prognosis model was also constructed to evaluate the predictive performance in different cohorts. The high and low groups were divided based on the risk score of the model, and different algorithms were used to evaluate the tumor immune infiltration cell (TIIC). The expression and prognosis of core genes in pan-cancer cohorts were analyzed, and gene enrichment analysis was performed using clusterProfiler. Finally, the expression of the hub genes of the model was validated by clinical samples. Results: Based on the analysis of 730 immune-related genes, we identified 64 common DEIGs. These genes were enriched in the tumor immunologic related signaling pathways. The first 15 genes were selected using RankAggreg analysis, and all the genes showed a consistent expression trend across multi-cohorts. Based on lasso cox regression analysis, a 5-gene signature risk model (ATG10, IL18RAP, PRKCD, SLC11A1, and SPP1) was constructed. The signature has strong robustness and can stabilize different cohorts (TCGA-LIHC, HCCDB18, and GSE14520). Compared with other existing models, our model has better performance. CIBERSORT was used to assess the landscape maps of 22 types of immune cells in TCGA, GSE14520, and HCCDB18 cohorts, and found a consistent trend in the distribution of TIIC. In the high-risk score group, scores of Macrophages M1, Mast cell resting, and T cells CD8 were significantly lower than those of the low-risk score group. Different immune expression characteristics, lead to the different prognosis. Western blot demonstrated that ATG10, PRKCD, and SPP1 were highly expressed in cancer tissues, while IL18RAP and SLC11A1 expression in cancer tissues was lower. In addition, IL18RAP has a highly positive correlation with B cell, macrophage, Neutrophil, Dendritic cell, CD8 cell, and CD4 cell. The SPP1, PRKCD, and SLC11A1 genes have the strongest correlation with macrophages. The expression of ATG10, IL18RAP, PRKCD, SLC11A1, and SPP1 genes varies among different immune subtypes and between different T stages. Conclusion: The 5-immu-gene signature constructed in this study could be utilized as a new prognostic marker for patients with HCC.
Collapse
Affiliation(s)
- Dafeng Xu
- Department of Hepatobiliary and Pancreatic Surgery, Hainan General Hospital, Hainan Affiliated Hospital of Hainan Medical University, Haikou, China
| | - Yu Wang
- Geriatric Medicine Center, Hainan General Hospital, Hainan Affiliated Hospital of Hainan Medical University, Haikou, China
| | - Jincai Wu
- Department of Hepatobiliary and Pancreatic Surgery, Hainan General Hospital, Hainan Affiliated Hospital of Hainan Medical University, Haikou, China
| | - Yuliang Zhang
- Department of Otolaryngology-Head and Neck Surgery, Hainan General Hospital, Hainan Affiliated Hospital of Hainan Medical University, Haikou, China
| | - Zhehao Liu
- Department of Hepatobiliary and Pancreatic Surgery, Hainan General Hospital, Hainan Affiliated Hospital of Hainan Medical University, Haikou, China
| | - Yonghai Chen
- Department of Hepatobiliary and Pancreatic Surgery, Hainan General Hospital, Hainan Affiliated Hospital of Hainan Medical University, Haikou, China
| | - Jinfang Zheng
- Department of Hepatobiliary and Pancreatic Surgery, Hainan General Hospital, Hainan Affiliated Hospital of Hainan Medical University, Haikou, China
| |
Collapse
|
34
|
Impact of Oncogenic Targets by Tumor-Suppressive miR-139-5p and miR-139-3p Regulation in Head and Neck Squamous Cell Carcinoma. Int J Mol Sci 2021; 22:ijms22189947. [PMID: 34576110 PMCID: PMC8469660 DOI: 10.3390/ijms22189947] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2021] [Revised: 09/11/2021] [Accepted: 09/12/2021] [Indexed: 12/13/2022] Open
Abstract
We newly generated an RNA-sequencing-based microRNA (miRNA) expression signature of head and neck squamous cell carcinoma (HNSCC). Analysis of the signature revealed that both strands of some miRNAs, including miR-139-5p (the guide strand) and miR-139-3p (the passenger strand) of miR-139, were downregulated in HNSCC tissues. Analysis of The Cancer Genome Atlas confirmed the low expression levels of miR-139 in HNSCC. Ectopic expression of these miRNAs attenuated the characteristics of cancer cell aggressiveness (e.g., cell proliferation, migration, and invasion). Our in silico analyses revealed a total of 28 putative targets regulated by pre-miR-139 (miR-139-5p and miR-139-3p) in HNSCC cells. Of these, the GNA12 (guanine nucleotide-binding protein subunit alpha-12) and OLR1 (oxidized low-density lipoprotein receptor 1) expression levels were identified as independent factors that predicted patient survival according to multivariate Cox regression analyses (p = 0.0018 and p = 0.0104, respectively). Direct regulation of GNA12 and OLR1 by miR-139-3p in HNSCC cells was confirmed through luciferase reporter assays. Moreover, overexpression of GNA12 and OLR1 was detected in clinical specimens of HNSCC through immunostaining. The involvement of miR-139-3p (the passenger strand) in the oncogenesis of HNSCC is a new concept in cancer biology. Our miRNA-based strategy will increase knowledge on the molecular pathogenesis of HNSCC.
Collapse
|
35
|
Ton TVT, Kovi RC, Peddada TN, Chhabria RM, Shockley KR, Flagler ND, Gerrish KE, Herbert RA, Behl M, Hoenerhoff MJ, Sills RC, Pandiri AR. Cobalt-induced oxidative stress contributes to alveolar/bronchiolar carcinogenesis in B6C3F1/N mice. Arch Toxicol 2021; 95:3171-3190. [PMID: 34468815 DOI: 10.1007/s00204-021-03146-5] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2020] [Accepted: 08/19/2021] [Indexed: 12/19/2022]
Abstract
Rodent alveolar/bronchiolar carcinomas (ABC) that arise either spontaneously or due to chemical exposure are similar to a subtype of lung adenocarcinomas in humans. B6C3F1/N mice and F344/NTac rats exposed to cobalt metal dust (CMD) by inhalation developed ABCs in a dose dependent manner. In CMD-exposed mice, the incidence of Kras mutations in ABCs was 67% with 80% of those being G to T transversions on codon 12 suggesting a role of oxidative stress in the pathogenesis. In vitro studies, such as DMPO (5,5-dimethyl-1-pyrroline N-oxide) immune-spin trapping assay, and dihydroethidium (DHE) fluorescence assay on A549 and BEAS-2B cells demonstrated increased oxidative stress due to cobalt exposure. In addition, significantly increased 8-oxo-dG adducts were demonstrated by immunohistochemistry in lungs from mice exposed to CMD for 90 days. Furthermore, transcriptomic analysis on ABCs arising spontaneously or due to chronic CMD-exposure demonstrated significant alterations in canonical pathways related to MAPK signaling (IL-8, ErbB, Integrin, and PAK pathway) and oxidative stress (PI3K/AKT and Melatonin pathway) in ABCs from CMD-exposed mice. Oxidative stress can stimulate PI3K/AKT and MAPK signaling pathways. Nox4 was significantly upregulated only in CMD-exposed ABCs and NOX4 activation of PI3K/AKT can lead to increased ROS levels in human cancer cells. The gene encoding Ereg was markedly up-regulated in CMD-exposed mice. Oncogenic KRAS mutations have been shown to induce EREG overexpression. Collectively, all these data suggest that oxidative stress plays a significant role in CMD-induced pulmonary carcinogenesis in rodents and these findings may also be relevant in the context of human lung cancers.
Collapse
Affiliation(s)
- Thai-Vu T Ton
- Comparative and Molecular Pathogenesis Branch, DNTP, NIEHS, 111 T.W. Alexander Drive, Research Triangle Park, NC, 27709, USA
| | - Ramesh C Kovi
- Comparative and Molecular Pathogenesis Branch, DNTP, NIEHS, 111 T.W. Alexander Drive, Research Triangle Park, NC, 27709, USA.,Experimental Pathology Laboratories Inc., Research Triangle Park, NC, 27709, USA.,Drug Safety Research and Development, Pfizer Inc., Cambridge, MA, USA
| | - Teja N Peddada
- Comparative and Molecular Pathogenesis Branch, DNTP, NIEHS, 111 T.W. Alexander Drive, Research Triangle Park, NC, 27709, USA.,National Institute of Mental Health, Bethesda, MD, 20892, USA
| | - Raveena M Chhabria
- Comparative and Molecular Pathogenesis Branch, DNTP, NIEHS, 111 T.W. Alexander Drive, Research Triangle Park, NC, 27709, USA.,Wake Forest University School of Medicine, Winston-Salem, NC, 27157, USA
| | - Keith R Shockley
- Biostatistics and Computational Biology Branch, NIEHS, Research Triangle Park, NC, 27709, USA
| | - Norris D Flagler
- Comparative and Molecular Pathogenesis Branch, DNTP, NIEHS, 111 T.W. Alexander Drive, Research Triangle Park, NC, 27709, USA
| | - Kevin E Gerrish
- Molecular Genomics Core Laboratory, NIEHS, Research Triangle Park, NC, 27709, USA
| | - Ronald A Herbert
- Comparative and Molecular Pathogenesis Branch, DNTP, NIEHS, 111 T.W. Alexander Drive, Research Triangle Park, NC, 27709, USA
| | - Mamta Behl
- Toxicology Branch, DNTP, NIEHS, Research Triangle Park, NC, 27709, USA
| | - Mark J Hoenerhoff
- Comparative and Molecular Pathogenesis Branch, DNTP, NIEHS, 111 T.W. Alexander Drive, Research Triangle Park, NC, 27709, USA.,In Vivo Animal Core, Unit for Laboratory Animal Medicine, University of Michigan Medical School, Ann Arbor, MI, USA
| | - Robert C Sills
- Comparative and Molecular Pathogenesis Branch, DNTP, NIEHS, 111 T.W. Alexander Drive, Research Triangle Park, NC, 27709, USA
| | - Arun R Pandiri
- Comparative and Molecular Pathogenesis Branch, DNTP, NIEHS, 111 T.W. Alexander Drive, Research Triangle Park, NC, 27709, USA.
| |
Collapse
|
36
|
Kim MS, Ha SE, Wu M, Zogg H, Ronkon CF, Lee MY, Ro S. Extracellular Matrix Biomarkers in Colorectal Cancer. Int J Mol Sci 2021; 22:ijms22179185. [PMID: 34502094 PMCID: PMC8430714 DOI: 10.3390/ijms22179185] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2021] [Revised: 08/12/2021] [Accepted: 08/18/2021] [Indexed: 12/12/2022] Open
Abstract
The cellular microenvironment composition and changes therein play an extremely important role in cancer development. Changes in the extracellular matrix (ECM), which constitutes a majority of the tumor stroma, significantly contribute to the development of the tumor microenvironment. These alterations within the ECM and formation of the tumor microenvironment ultimately lead to tumor development, invasion, and metastasis. The ECM is composed of various molecules such as collagen, elastin, laminin, fibronectin, and the MMPs that cleave these protein fibers and play a central role in tissue remodeling. When healthy cells undergo an insult like DNA damage and become cancerous, if the ECM does not support these neoplastic cells, further development, invasion, and metastasis fail to occur. Therefore, ECM-related cancer research is indispensable, and ECM components can be useful biomarkers as well as therapeutic targets. Colorectal cancer specifically, is also affected by the ECM and many studies have been conducted to unravel the complex association between the two. Here we summarize the importance of several ECM components in colorectal cancer as well as their potential roles as biomarkers.
Collapse
Affiliation(s)
- Min-Seob Kim
- Department of Physiology, Digestive Disease Research Institute and Institute of Wonkwang Medical Science, School of Medicine, Wonkwang University, Iksan 54538, Korea; (M.-S.K.); (M.W.)
| | - Se-Eun Ha
- Department of Physiology and Cell Biology, Reno School of Medicine, University of Nevada, Reno, NV 89557, USA; (S.-E.H.); (H.Z.); (C.F.R.)
| | - Moxin Wu
- Department of Physiology, Digestive Disease Research Institute and Institute of Wonkwang Medical Science, School of Medicine, Wonkwang University, Iksan 54538, Korea; (M.-S.K.); (M.W.)
- Department of Medical Laboratory, Affiliated Hospital of Jiujiang University, Jiujiang 332000, China
| | - Hannah Zogg
- Department of Physiology and Cell Biology, Reno School of Medicine, University of Nevada, Reno, NV 89557, USA; (S.-E.H.); (H.Z.); (C.F.R.)
| | - Charles F. Ronkon
- Department of Physiology and Cell Biology, Reno School of Medicine, University of Nevada, Reno, NV 89557, USA; (S.-E.H.); (H.Z.); (C.F.R.)
| | - Moon-Young Lee
- Department of Physiology, Digestive Disease Research Institute and Institute of Wonkwang Medical Science, School of Medicine, Wonkwang University, Iksan 54538, Korea; (M.-S.K.); (M.W.)
- Correspondence: (M.-Y.L.); (S.R.)
| | - Seungil Ro
- Department of Physiology and Cell Biology, Reno School of Medicine, University of Nevada, Reno, NV 89557, USA; (S.-E.H.); (H.Z.); (C.F.R.)
- Correspondence: (M.-Y.L.); (S.R.)
| |
Collapse
|
37
|
Wang K, Li M, Zhang T, Xu C, Yu F, Duan H. LncRNA LINC01116 facilitates melanoma 1 progression via sequestering miR-3612 and up-regulating GDF11 and SDC3. Arch Med Res 2021; 53:44-50. [PMID: 34266696 DOI: 10.1016/j.arcmed.2021.06.008] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2020] [Revised: 05/21/2021] [Accepted: 06/24/2021] [Indexed: 12/29/2022]
Abstract
BACKGROUND Melanoma is the deadliest cutaneous malignant tumor with high risks. Though increasing evidence has widely referred to the involvement of long non-coding RNAs (lncRNAs) in the mechanism of tumor development, including melanoma, the functional roles of most lncRNAs in melanoma remain to be explored. In this study, we focus on disclosing the role of long intergenic non-protein coding RNA 1116 (LINC01116) in melanoma. METHODS Firstly, we detected LINC01116 expression through RT-qPCR. Functional analysis and animal experiments were carried out to assess the role of LINC01116 in vivo and in vitro. Western blot analysis was employed for detection of important markers regarding epithelial mesenchymal transition (EMT). In addition, RNA pulls down, RIP and luciferase reporter assays were performed to probe into the regulatory mechanism of LINC01116. RESULTS LINC01116 was significantly up regulated in melanoma cells. LINC01116 deficiency abrogated cell proliferation, migration, invasion and EMT in melanoma. Moreover, LINC01116 enhanced growth differentiation factor 11 (GDF11) and syndecan 3 (SDC3) expression through sponging microRNA-3612 (miR-3612). The oncogenic role of the LINC01116/miR-3612/GDF11/SDC3 axis in melanoma was finally demonstrated. CONCLUSION Conclusively, LINC01116 sequestered miR-3612 and targeted GDF11 and SDC3 to contribute to the progression of melanoma.
Collapse
Affiliation(s)
- Kai Wang
- Henan Provincial People's Hospital, International Medical Center, Zhengzhou University People's Hospital, Henan University People's Hospital, No.7 Weiwu Road, Zhengzhou, Henan, 450003, China
| | - Min Li
- Department of Dermatology, Henan Provincial People's Hospital; Zhengzhou University People's Hospital, Henan University People's Hospital, No.7 Weiwu Road, Zhengzhou, Henan, 450003, China
| | - Tong Zhang
- Henan Provincial People's Hospital, International Medical Center, Zhengzhou University People's Hospital, Henan University People's Hospital, No.7 Weiwu Road, Zhengzhou, Henan, 450003, China
| | - Chengyang Xu
- Henan Provincial People's Hospital, International Medical Center, Zhengzhou University People's Hospital, Henan University People's Hospital, No.7 Weiwu Road, Zhengzhou, Henan, 450003, China
| | - Feifei Yu
- Henan Provincial People's Hospital, International Medical Center, Zhengzhou University People's Hospital, Henan University People's Hospital, No.7 Weiwu Road, Zhengzhou, Henan, 450003, China
| | - Hongyan Duan
- Henan Provincial People's Hospital, International Medical Center, Zhengzhou University People's Hospital, Henan University People's Hospital, No.7 Weiwu Road, Zhengzhou, Henan, 450003, China.
| |
Collapse
|
38
|
Jiang F, Liang M, Huang X, Shi W, Wang Y. High expression of PIMREG predicts poor survival outcomes and is correlated with immune infiltrates in lung adenocarcinoma. PeerJ 2021; 9:e11697. [PMID: 34268011 PMCID: PMC8269662 DOI: 10.7717/peerj.11697] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2021] [Accepted: 06/08/2021] [Indexed: 12/25/2022] Open
Abstract
Background PIMREG is upregulated in multiple cancer types. However, the potential role of PIMREG in lung adenocarcinoma (LUAD) remains unclear. The present study aimed to explore its clinical significance in LUAD. Methods Using the Cancer Genome Atlas (TCGA) databases, we obtained 513 samples of LUAD and 59 normal samples from the Cancer Genome Atlas (TCGA) databases to analyze the relationship between PIMREG and LUAD. We used t and Chi-square tests to evaluate the level of expression of PIMREG and its clinical implication in LUAD. The prognostic value of PIMREG in LUAD was identified through the Kaplan–Meier method, Cox regression analysis, and nomogram. Gene set enrichment analysis (GSEA) and single-sample gene set enrichment analysis (ssGSEA) were performed to screen biological pathways and analyze the correlation of the immune infiltrating level with the expression of PIMREG in LUAD. Results PIMREG was highly expressed in patients with LUAD. Specifically, the level of PIMREG gradually increased from pathological stage I to IV. Further, we validated the higher expression of PIMREG expressed in LUAD cell lines. Moreover, PIMREG had a high diagnostic value, with an -AUC of 0.955. Kaplan–Meier survival and Cox regression analyses revealed that the high expression of PIMREG was independently associated with poor clinical outcomes. In our prognostic nomogram, the expression of PIMREG implied a significant prognostic value. Gene set enrichment analysis (GSEA) identified that the high expression PIMREG phenotype was involved in the mitotic cell cycle, mRNA splicing, DNA repair, Rho GTPase signaling, TP53 transcriptional regulation, and translation pathways. Next, we also explored the correlation of PIMREG and tumor-immune interactions and found a negative correlation between PIMREG and the immune infiltrating level of T cells, macrophages, B cells, dendritic cells (DCs) , and CD8+ T cells in LUAD. Conclusions High levels of PIMREG correlated with poor prognosis and immune infiltrates in LUAD.
Collapse
Affiliation(s)
- Feng Jiang
- Department of Laboratory Medicine, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, Zhejiang, China
| | - Min Liang
- Department of Laboratory Medicine, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, Zhejiang, China
| | - Xiaolu Huang
- Department of Laboratory Medicine, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, Zhejiang, China
| | - Wenjing Shi
- Department of Laboratory Medicine, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, Zhejiang, China
| | - Yumin Wang
- Department of Laboratory Medicine, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, Zhejiang, China
| |
Collapse
|
39
|
Lin B, Wang S, Yao Y, Shen Y, Yang H. Comprehensive co-expression analysis reveals TMC8 as a prognostic immune-associated gene in head and neck squamous cancer. Oncol Lett 2021; 22:498. [PMID: 33981360 PMCID: PMC8108259 DOI: 10.3892/ol.2021.12759] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2020] [Accepted: 02/17/2021] [Indexed: 12/13/2022] Open
Abstract
The occurrence and prognosis of head and neck squamous cell cancer (HNSC) is closely associated with human papillomavirus (HPV) infection. Transmembrane channel-like 8 (TMC8) is a key gene affecting the susceptibility of HPV and that plays an important role in T cell regulation. However, the mechanism by which TMC8 affects T cells and whether it further affects the prognosis of patients with HNSC remains unclear. In the present study, oral cancer cell lines and independent tumor specimens were used to detect TMC8 expression in HNSC. Differential expression of TMC8, methylation status, function and associated signaling pathways were further analyzed. Then, multiple databases were cross-analyzed for the relationship of TMC8 with immune cell infiltration and its impact on the prognosis of numerous types of cancer. The results showed that TMC8 was upregulated in HNSC and high expression was predictive of an improved prognosis. Furthermore, TMC8 was concentrated in multiple immune-associated signaling pathways and the expression of TMC8 was associated with the infiltration of CD4+ T cells and their subsets, including CD8+ T cells, B cells and macrophages, suggesting that TMC8 may play an anti-HPV role by regulating CD4+ T cells. Thus, TMC8 plays an anti-HPV role by regulating the infiltration level of CD4+ T cells, and could therefore be used as a potential prognostic marker for patients with HNSC.
Collapse
Affiliation(s)
- Bo Lin
- Department of Oral and Maxillofacial Surgery, Stomatological Center, Peking University Shenzhen Hospital, Shenzhen, Guangdong 518036, P.R. China
- Department of Oral and Maxillofacial Surgery, Guangdong Provincial High-Level Clinical Key Specialty, Shenzhen, Guangdong 518036, P.R. China
- Department of Oral and Maxillofacial Surgery, Guangdong Province Engineering Research Center of Oral Disease Diagnosis and Treatment, Shenzhen, Guangdong 518036, P.R. China
| | - Shunji Wang
- Department of Oral and Maxillofacial Surgery, Stomatological Center, Peking University Shenzhen Hospital, Shenzhen, Guangdong 518036, P.R. China
- Department of Oral and Maxillofacial Surgery, Guangdong Provincial High-Level Clinical Key Specialty, Shenzhen, Guangdong 518036, P.R. China
- Department of Oral and Maxillofacial Surgery, Guangdong Province Engineering Research Center of Oral Disease Diagnosis and Treatment, Shenzhen, Guangdong 518036, P.R. China
| | - Youdan Yao
- Department of Oral and Maxillofacial Surgery, Stomatological Center, Peking University Shenzhen Hospital, Shenzhen, Guangdong 518036, P.R. China
- Department of Oral and Maxillofacial Surgery, Guangdong Provincial High-Level Clinical Key Specialty, Shenzhen, Guangdong 518036, P.R. China
- Department of Oral and Maxillofacial Surgery, Guangdong Province Engineering Research Center of Oral Disease Diagnosis and Treatment, Shenzhen, Guangdong 518036, P.R. China
| | - Yuehong Shen
- Department of Oral and Maxillofacial Surgery, Stomatological Center, Peking University Shenzhen Hospital, Shenzhen, Guangdong 518036, P.R. China
- Department of Oral and Maxillofacial Surgery, Guangdong Provincial High-Level Clinical Key Specialty, Shenzhen, Guangdong 518036, P.R. China
- Department of Oral and Maxillofacial Surgery, Guangdong Province Engineering Research Center of Oral Disease Diagnosis and Treatment, Shenzhen, Guangdong 518036, P.R. China
| | - Hongyu Yang
- Department of Oral and Maxillofacial Surgery, Stomatological Center, Peking University Shenzhen Hospital, Shenzhen, Guangdong 518036, P.R. China
- Department of Oral and Maxillofacial Surgery, Guangdong Provincial High-Level Clinical Key Specialty, Shenzhen, Guangdong 518036, P.R. China
- Department of Oral and Maxillofacial Surgery, Guangdong Province Engineering Research Center of Oral Disease Diagnosis and Treatment, Shenzhen, Guangdong 518036, P.R. China
| |
Collapse
|
40
|
Yang L, Zou X, Zou J, Zhang G. A Review of Recent Research on the Role of MicroRNAs in Renal Cancer. Med Sci Monit 2021; 27:e930639. [PMID: 33963171 PMCID: PMC8114846 DOI: 10.12659/msm.930639] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022] Open
Abstract
Renal cell carcinoma (RCC) is a most common type of urologic neoplasms; it accounts for 3% of malignant tumors, with high rates of relapse and mortality. The most common types of renal cancer are clear cell carcinoma (ccRCC), papillary renal cell carcinoma (pRCC), and chromophobe renal carcinoma (chRCC), which account for 90%, 6–15%, and 2–5%, respectively, of all renal malignancies. Although surgical resection, chemotherapy, and radiotherapy are the most common treatment method for those diseases, their effects remain dissatisfactory. Furthermore, recent research shows that the treatment efficacy of checkpoint inhibitors in advanced RCC patients is widely variable. Hence, patients urgently need a new molecular biomarker for early diagnosis and evaluating the prognosis of RCC. MicroRNAs (miRNAs) belong to a family of short, non-coding RNAs that are highly conserved, have long half-life evolution, and post-transcriptionally regulate gene expression; they have been predicted to play crucial roles in tumor metastasis, invasion, angiogenesis, proliferation, apoptosis, epithelial-mesenchymal transition, differentiation, metabolism, cancer occurrence, and treatment resistance. Although some previous papers demonstrated that miRNAs play vital roles in renal cancer, such as pathogenesis, diagnosis, and prognosis, the roles of miRNAs in kidney cancer are still unclear. Therefore, we reviewed studies indexed in PubMed from 2017 to 2020, and found several studies suggesting that there are more than 82 miRNAs involved in renal cancers. The present review describes the current status of miRNAs in RCC and their roles in progression, diagnosis, therapy targeting, and prognosis of RCC.
Collapse
Affiliation(s)
- Longfei Yang
- First Clinical Medical College, Gannan Medical University, Ganzhou, Jiangxi, China (mainland)
| | - Xiaofeng Zou
- Department of Urology, First Affiliated Hospital of Gannan Medical University, Ganzhou, Jiangxi, China (mainland)
| | - Junrong Zou
- Institute of Urology, First Affiliated Hospital of Gannan Medical University, Ganzhou, Jiangxi, China (mainland)
| | - Guoxi Zhang
- Department of Urology, First Affiliated Hospital of Gannan Medical University, Ganzhou, Jiangxi, China (mainland)
| |
Collapse
|
41
|
Morais M, Dias F, Nogueira I, Leão A, Gonçalves N, Araújo L, Granja S, Baltazar F, Teixeira AL, Medeiros R. Cancer Cells' Metabolism Dynamics in Renal Cell Carcinoma Patients' Outcome: Influence of GLUT-1-Related hsa-miR-144 and hsa-miR-186. Cancers (Basel) 2021; 13:cancers13071733. [PMID: 33917405 PMCID: PMC8038683 DOI: 10.3390/cancers13071733] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2021] [Accepted: 04/01/2021] [Indexed: 12/23/2022] Open
Abstract
Simple Summary Renal cell carcinoma (RCC) is a metabolic associated cancer and the most common and lethal neoplasia in the adult kidney. This study aimed to understand the potential role of hsa-miR-144-5p and hsa-miR-186-3p (which target Glucose Transporter 1—GLUT-1) in clear cell RCC (ccRCC) glycolysis status, as well as their potential as biomarkers. A decrease of intracellular levels of these miRNAs and increase of their excretion was associated with an increase of GLUT-1’s levels and glycolysis’ markers. RCC patients presented higher plasmatic levels of hsa-miR-186-3p than healthy individuals and hsa-miR144-5p’s higher levels were associated with early clinical stages of RCC. Additionally, patients with low plasmatic levels of hsa-miR-144-5p and high plasmatic levels of hsa-miR-186-3p (high-risk group) showed a worse overall survival. Overall, these results indicate that circulating hsa-miR-144-5p and hsa-miR-186-3p may be potential biomarkers of ccRCC prognosis. Abstract The cancer cells’ metabolism is altered due to deregulation of key proteins, including glucose transporter 1 (GLUT-1), whose mRNA levels are influenced by microRNAs (miRNAs). Renal cell carcinoma (RCC) is the most common and lethal neoplasia in the adult kidney, mostly due to the lack of accurate diagnosis and follow-up biomarkers. Being a metabolic associated cancer, this study aimed to understand the hsa-miR-144-5p and hsa-miR-186-3p’s potential as biomarkers of clear cell RCC (ccRCC), establishing their role in its glycolysis status. Using three ccRCC lines, the intra- and extracellular levels of both miRNAs, GLUT-1’s mRNA expression and protein levels were assessed. Glucose consumption and lactate production were evaluated as glycolysis markers. A decrease of intracellular levels of these miRNAs and increase of their excretion was observed, associated with an increase of GLUT-1’s levels and glycolysis’ markers. Through a liquid biopsy approach, we found that RCC patients present higher plasmatic levels of hsa-miR-186-3p than healthy individuals. The Hsa-miR144-5p’s higher levels were associated with early clinical stages. When patients were stratified according to miRNAs plasmatic levels, low plasmatic levels of hsa-miR-144-5p and high plasmatic levels of hsa-miR-186-3p (high-risk group) showed the worst overall survival. Thus, circulating levels of these miRNAs may be potential biomarkers of ccRCC prognosis.
Collapse
Affiliation(s)
- Mariana Morais
- Molecular Oncology and Viral Pathology Group, IPO-Porto Research Center (CI-IPOP), Portuguese Oncology Institute of Porto (IPO-Porto), Research Center-LAB2, E Bdg 1st Floor, Rua Dr António Bernardino de Almeida, 4200-072 Porto, Portugal; (M.M.); (F.D.); (I.N.); (R.M.)
- ICBAS, Abel Salazar Institute for the Biomedical Sciences, University of Porto, Rua Jorge Viterbo Ferreira 228, 4050-513 Porto, Portugal
- Research Department of the Portuguese League against Cancer Regional Nucleus of the North (LPCC—NRNorte), Estrada da Circunvalação 6657, 4200-177 Porto, Portugal
| | - Francisca Dias
- Molecular Oncology and Viral Pathology Group, IPO-Porto Research Center (CI-IPOP), Portuguese Oncology Institute of Porto (IPO-Porto), Research Center-LAB2, E Bdg 1st Floor, Rua Dr António Bernardino de Almeida, 4200-072 Porto, Portugal; (M.M.); (F.D.); (I.N.); (R.M.)
- ICBAS, Abel Salazar Institute for the Biomedical Sciences, University of Porto, Rua Jorge Viterbo Ferreira 228, 4050-513 Porto, Portugal
| | - Inês Nogueira
- Molecular Oncology and Viral Pathology Group, IPO-Porto Research Center (CI-IPOP), Portuguese Oncology Institute of Porto (IPO-Porto), Research Center-LAB2, E Bdg 1st Floor, Rua Dr António Bernardino de Almeida, 4200-072 Porto, Portugal; (M.M.); (F.D.); (I.N.); (R.M.)
- ICBAS, Abel Salazar Institute for the Biomedical Sciences, University of Porto, Rua Jorge Viterbo Ferreira 228, 4050-513 Porto, Portugal
- Research Department of the Portuguese League against Cancer Regional Nucleus of the North (LPCC—NRNorte), Estrada da Circunvalação 6657, 4200-177 Porto, Portugal
| | - Anabela Leão
- Clinical Chemistry Department, Portuguese Oncology Institute of Porto (IPO-Porto), Rua Dr António Bernardino de Almeida, 4200-072 Porto, Portugal; (A.L.); (N.G.); (L.A.)
| | - Nuno Gonçalves
- Clinical Chemistry Department, Portuguese Oncology Institute of Porto (IPO-Porto), Rua Dr António Bernardino de Almeida, 4200-072 Porto, Portugal; (A.L.); (N.G.); (L.A.)
| | - Luís Araújo
- Clinical Chemistry Department, Portuguese Oncology Institute of Porto (IPO-Porto), Rua Dr António Bernardino de Almeida, 4200-072 Porto, Portugal; (A.L.); (N.G.); (L.A.)
| | - Sara Granja
- Life and Health Sciences Research Institute (ICVS), School of Medicine, Campos de Gualtar, University of Minho, 4710-057 Braga, Portugal; (S.G.); (F.B.)
- ICVS/3B’s—PT Government Associate Laboratory, 4710-057 Braga, Portugal
- ICVS/3B’s—PT Government Associate Laboratory, 4835-258 Guimarães, Portugal
| | - Fátima Baltazar
- Life and Health Sciences Research Institute (ICVS), School of Medicine, Campos de Gualtar, University of Minho, 4710-057 Braga, Portugal; (S.G.); (F.B.)
- ICVS/3B’s—PT Government Associate Laboratory, 4710-057 Braga, Portugal
- ICVS/3B’s—PT Government Associate Laboratory, 4835-258 Guimarães, Portugal
| | - Ana L Teixeira
- Molecular Oncology and Viral Pathology Group, IPO-Porto Research Center (CI-IPOP), Portuguese Oncology Institute of Porto (IPO-Porto), Research Center-LAB2, E Bdg 1st Floor, Rua Dr António Bernardino de Almeida, 4200-072 Porto, Portugal; (M.M.); (F.D.); (I.N.); (R.M.)
- Correspondence: ; Tel.:+351-225-084-000
| | - Rui Medeiros
- Molecular Oncology and Viral Pathology Group, IPO-Porto Research Center (CI-IPOP), Portuguese Oncology Institute of Porto (IPO-Porto), Research Center-LAB2, E Bdg 1st Floor, Rua Dr António Bernardino de Almeida, 4200-072 Porto, Portugal; (M.M.); (F.D.); (I.N.); (R.M.)
- Research Department of the Portuguese League against Cancer Regional Nucleus of the North (LPCC—NRNorte), Estrada da Circunvalação 6657, 4200-177 Porto, Portugal
- Biomedical Reasearch Center (CEBIMED, Faculty of Health Sciences, Fernando Pessoa University (UFP), Praça 9 de Abril 349, 4249-004 Porto, Portugal
- Faculty of Medicine (FMUP), University of Porto, 4200-319 Porto, Portugal
| |
Collapse
|
42
|
Wang L, Lin Y, Yuan Y, Liu F, Sun K. Identification of TYROBP and FCER1G as Key Genes with Prognostic Value in Clear Cell Renal Cell Carcinoma by Bioinformatics Analysis. Biochem Genet 2021; 59:1278-1294. [PMID: 33786672 DOI: 10.1007/s10528-021-10061-y] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2020] [Accepted: 03/16/2021] [Indexed: 12/22/2022]
Abstract
The involvement of aberrantly expressed genes in the pathogenesis and progression of various human malignancies has been widely reported, including clear cell renal cell carcinoma (ccRCC). This study aimed to identify potential crucial genes in ccRCC and further investigate the role of these genes in ccRCC prognosis. Three gene expression profiles (GSE3, GSE6344 and GSE53000) were downloaded from GEO database. GEO2R was performed to identify the differentially expressed genes (DEGs) between ccRCC and normal samples. GO analysis and KEGG pathway enrichment analysis were applied for the function analysis. The DEGs were mapped into the PPI network, then the hub genes were identified and verified using the ONCOMINE database. Kaplan-Meier plotter was used to evaluate of the prognostic value of the identified hub genes. A total of 113 DEGs were identified from the three gene expression profiles, including 64 up-regulated genes and 69 down-regulated genes. DEGs were observed to be enriched in biological processes related to the progress and pathogenesis of human cancers. According to PPI network, 5 hub genes were collected, including TYROBP, C1QB, ITGB2, CD53 and FCER1G. Among them, CD53 was newly identified, and Kaplan-Meier survival curves suggested that high expression of CD53 was significantly associated with poor survival in ccRCC patients (log-rank P < 0.01). The present results may provide new insight into the understanding of molecular mechanisms and the clinical prognosis of ccRCC.
Collapse
Affiliation(s)
- Licheng Wang
- Department of Urology, The First Affiliated Hospital of Shandong First Medical University, Shandong, 250014, China.,Department of Urology, Tongji Hospital, Tongji University School of Medicine, Shanghai, 200065, China
| | - Yun Lin
- Department of Urology, The First Affiliated Hospital of Shandong First Medical University, Shandong, 250014, China
| | - Yi Yuan
- Department of Urology, The First Affiliated Hospital of Shandong First Medical University, Shandong, 250014, China
| | - Fei Liu
- Department of General Surgery, The First Affiliated Hospital of Shandong First Medical University, 16766 Jingshi Road, Jinan, 250014, Shandong, China.
| | - Kai Sun
- Department of General Surgery, The First Affiliated Hospital of Shandong First Medical University, 16766 Jingshi Road, Jinan, 250014, Shandong, China.
| |
Collapse
|
43
|
Ding Y, Tan X, Abasi A, Dai Y, Wu R, Zhang T, Li K, Yan M, Huang X. LncRNA TRPM2-AS promotes ovarian cancer progression and cisplatin resistance by sponging miR-138-5p to release SDC3 mRNA. Aging (Albany NY) 2021; 13:6832-6848. [PMID: 33621194 PMCID: PMC7993682 DOI: 10.18632/aging.202541] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2020] [Accepted: 11/30/2020] [Indexed: 12/11/2022]
Abstract
The role of TRPM2-AS lncRNA in OvC has not been explored. This study aimed to investigate whether and how TRPM2-AS contributes to the progression of OvC. First, qRT-PCR was employed to measure the expression of TRPM2-AS, miR-138-5p and SDC3 in OvC samples. A xenograft formation assay was subsequently performed to detect the tumor growth in vivo. The cell viability, colony formation, cell migration, cell invasion and cell apoptosis were later evaluated using a series of experiments. The western blot assay was utilized to detect the SDC3 protein expression and cell-apoptosis markers. Luciferase reporter gene assay, RIP, and RNA pull-down assays were performed to identify the association between TRPM2-AS, miR-138-5p and SDC3. Findings indicated that the expression of TRPM2-AS and SDC3 was significantly upregulated in OvC tissues and cells, while miR-138-5p expression was significantly downregulated in OvC samples. Unlike miR-138-5p, TRPM2-AS and SDC3 were found to promote OvC development. It was also found that TRPM2-AS could sponge miR-138-5p to release SDC3, thus promoting OvC progression. Apart from that, we discovered that both sh-TRPM2-AS and cisplatin could enhance the apoptosis of OvC cells. Overall, our findings suggested that the TRPM2-AS/miR-138-5p/SDC3 axis was closely associated with OvC tumorigenesis and cisplatin resistance.
Collapse
Affiliation(s)
- Yi Ding
- Department of Obstetrics and Gynecology, Cancer Biology Research Center, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, Hubei, P.R. China
| | - Xiangyu Tan
- Department of Obstetrics and Gynecology, Cancer Biology Research Center, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, Hubei, P.R. China
| | - Abuduyilimu Abasi
- Department of Obstetrics and Gynecology, Cancer Biology Research Center, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, Hubei, P.R. China
| | - Yun Dai
- Department of Obstetrics and Gynecology, Cancer Biology Research Center, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, Hubei, P.R. China
| | - Ruxing Wu
- Department of Obstetrics and Gynecology, Cancer Biology Research Center, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, Hubei, P.R. China
| | - Tao Zhang
- Department of Obstetrics and Gynecology, Cancer Biology Research Center, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, Hubei, P.R. China
| | - Kexin Li
- Department of Obstetrics and Gynecology, Cancer Biology Research Center, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, Hubei, P.R. China
| | - Miao Yan
- Department of Obstetrics and Gynecology, Cancer Biology Research Center, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, Hubei, P.R. China
| | - Xiaoyuan Huang
- Department of Obstetrics and Gynecology, Cancer Biology Research Center, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, Hubei, P.R. China
| |
Collapse
|
44
|
Li Y, Wang N, Pan J, Wang X, Zhao Y, Guo Z. Hippocampal miRNA-144 Modulates Depressive-Like Behaviors in Rats by Targeting PTP1B. Neuropsychiatr Dis Treat 2021; 17:389-399. [PMID: 33603377 PMCID: PMC7883630 DOI: 10.2147/ndt.s263079] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/03/2020] [Accepted: 11/16/2020] [Indexed: 12/13/2022] Open
Abstract
BACKGROUND Depression is the common mental disorder in the world. However, the pathophysiology mechanism underlying depression remains elusive. It has been reported that aberrant expression of miR-144 is closely related to depression. This study was to investigate whether and how miR-144 involves in depressive-like behaviors in a chronic unpredictable mild stress (CUMS) animal model. METHODS A rat model of CUMS was established, and qRT-PCR was performed to detect the expression of miR-144 in the hippocampus of a depressed rat. The lentiviral vector carried miR-144 (LV-miR-144) was injected into the hippocampus of the CUMS rat to investigate the effects of miR-144 on the behaviors and PTP1B/TrkB/BDNF signal transduction in the hippocampus of the rat. The interaction between miR-144 and PTP1B was investigated by biological analyses and dual-luciferase reporter assay. RESULTS The results showed that CUMS rats had typical depressive behaviors, and the expression of miR-144 in the hippocampus of CUMS rats was significantly lower than that of the control group. In addition, PTP1B protein expression was significantly up-regulated, while the expression of pTrkB and BDNF protein was significantly down-regulated in the hippocampus of CUMS rats. Moreover, PTP1B was a direct target of miR-144, and miR-144 could activate the downstream TrkB/BDNF signaling pathway by inhibiting the expression of PTP1B in primary hippocampus neurons. CONCLUSION MiR-144 played an anti-depressive role in hippocampus dysfunction by inhibiting PTP1B and activating the TrkB/BDNF signaling pathway in the hippocampus of CUMS rats.
Collapse
Affiliation(s)
- Yuhuan Li
- Department of Psychology, Qingdao Mental Health Center, Qingdao City, Shandong Province, 266000, People’s Republic of China
| | - Nina Wang
- Department of Pharmacy, Qingdao Mental Health Center, Qingdao City, Shandong Province, 266000, People’s Republic of China
| | - Jie Pan
- Department of Pharmacy, Qingdao Mental Health Center, Qingdao City, Shandong Province, 266000, People’s Republic of China
| | - Xinrui Wang
- Department of Psychology, Qingdao Mental Health Center, Qingdao City, Shandong Province, 266000, People’s Republic of China
| | - Yanling Zhao
- Department of Methadone Clinic, Qingdao Mental Health Center, Qingdao City, Shandong Province, 266000, People’s Republic of China
| | - Zongjun Guo
- Department of Geriatric Internal Medicine, The Affiliated Hospital of Qingdao University, Qingdao City, Shandong Province, 266000, People’s Republic of China
| |
Collapse
|
45
|
Chen J, Li X, Yang L, Zhang J. Long Non-coding RNA LINC01969 Promotes Ovarian Cancer by Regulating the miR-144-5p/LARP1 Axis as a Competing Endogenous RNA. Front Cell Dev Biol 2021; 8:625730. [PMID: 33614632 PMCID: PMC7889973 DOI: 10.3389/fcell.2020.625730] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2020] [Accepted: 12/28/2020] [Indexed: 12/19/2022] Open
Abstract
Accumulating evidence has shown that long non-coding RNAs (lncRNAs) can be used as biological markers and treatment targets in cancer and play various roles in cancer-related biological processes. However, the lncRNA expression profiles and their roles and action mechanisms in ovarian cancer (OC) are largely unknown. Here, we assessed the lncRNA expression profiles in OC tissues from The Cancer Genome Atlas (TCGA) database, and one upregulated lncRNA, LINC01969, was selected for further study. LINC01969 expression levels in 41 patients were verified using quantitative real-time polymerase chain reaction (qRT-PCR). The in vitro effects of LINC01969 on OC cell migration, invasion, and proliferation were determined by the CCK-8, ethynyl-2-deoxyuridine (EdU), wound healing, and Transwell assays. Epithelial–mesenchymal transition (EMT) was evaluated using qRT-PCR and Western blotting. The molecular mechanisms of LINC01969 in OC were assessed through bioinformatics analysis, RNA-binding protein immunoprecipitation (RIP), dual luciferase reporter gene assays, and a rescue experiment. Finally, in vivo experiments were conducted to evaluate the functions of LINC01969. The results of the current study showed that LINC01969 was dramatically upregulated in OC, and patients with lower LINC01969 expression levels tended to have better overall survival. Further experiments demonstrated that LINC01969 promoted the migration, invasion, and proliferation of OC cells in vitro and sped up tumor growth in vivo. Additionally, LINC01969, which primarily exists in the cytoplasm, boosted LARP1 expression by sponging miR-144-5p and promoted the malignant phenotypes of OC cells. In conclusion, the LINC01969/miR-144-5p/LARP1 axis is a newly identified regulatory signaling pathway involved in OC progression.
Collapse
Affiliation(s)
- Jinxin Chen
- Department of Gynecology, Liaoning Cancer Hospital and Institute, Cancer Hospital of China Medical University, Shenyang, China
| | - Xiaocen Li
- Department of Graduate School, Dalian Medical University, Dalian, China
| | - Lu Yang
- Medical Oncology Department of Gastrointestinal Cancer, Liaoning Cancer Hospital and Institute, Cancer Hospital of China Medical University, Shenyang, China
| | - Jingru Zhang
- Department of Gynecology, Liaoning Cancer Hospital and Institute, Cancer Hospital of China Medical University, Shenyang, China
| |
Collapse
|
46
|
Identifying breast cancer subtypes associated modules and biomarkers by integrated bioinformatics analysis. Biosci Rep 2021; 41:227295. [PMID: 33313822 PMCID: PMC7796196 DOI: 10.1042/bsr20203200] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2020] [Revised: 12/07/2020] [Accepted: 12/09/2020] [Indexed: 12/13/2022] Open
Abstract
Breast cancer is the most common form of cancer afflicting women worldwide. Patients with breast cancer of different molecular classifications need varied treatments. Since it is known that the development of breast cancer involves multiple genes and functions, identification of functional gene modules (clusters of the functionally related genes) is indispensable as opposed to isolated genes, in order to investigate their relationship derived from the gene co-expression analysis. In total, 6315 differentially expressed genes (DEGs) were recognized and subjected to the co-expression analysis. Seven modules were screened out. The blue and turquoise modules have been selected from the module trait association analysis since the genes in these two modules are significantly correlated with the breast cancer subtypes. Gene Ontology (GO) and Kyoto Encyclopedia of Genes and Genomes (KEGG) pathway enrichment show that the blue module genes engaged in cell cycle, DNA replication, p53 signaling pathway, and pathway in cancer. According to the connectivity analysis and survival analysis, 8 out of 96 hub genes were filtered and have shown the highest expression in basal-like breast cancer. Furthermore, the hub genes were validated by the external datasets and quantitative real-time PCR (qRT-PCR). In summary, hub genes of Cyclin E1 (CCNE1), Centromere Protein N (CENPN), Checkpoint kinase 1 (CHEK1), Polo-like kinase 1 (PLK1), DNA replication and sister chromatid cohesion 1 (DSCC1), Family with sequence similarity 64, member A (FAM64A), Ubiquitin Conjugating Enzyme E2 C (UBE2C) and Ubiquitin Conjugating Enzyme E2 T (UBE2T) may serve as the prognostic markers for different subtypes of breast cancer.
Collapse
|
47
|
Salinas-Marín R, Villanueva-Cabello TM, Martínez-Duncker I. Biology of Proteoglycans and Associated Glycosaminoglycans. COMPREHENSIVE GLYCOSCIENCE 2021:63-102. [DOI: 10.1016/b978-0-12-819475-1.00065-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/04/2025]
|
48
|
Progressive and Prognostic Performance of an Extracellular Matrix-Receptor Interaction Signature in Gastric Cancer. DISEASE MARKERS 2020; 2020:8816070. [PMID: 33178362 PMCID: PMC7647771 DOI: 10.1155/2020/8816070] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/25/2020] [Revised: 07/15/2020] [Accepted: 09/22/2020] [Indexed: 12/18/2022]
Abstract
The role of an extracellular matrix- (ECM-) receptor interaction signature has not been fully clarified in gastric cancer. This study performed comprehensive analyses on the differentially expressed ECM-related genes, clinicopathologic features, and prognostic application in gastric cancer. The differentially expressed genes between tumorous and matched normal tissues in The Cancer Genome Atlas (TCGA) and validation cohorts were identified by a paired t-test. Consensus clusters were built to find the correlation between clinicopathologic features and subclusters. Then, the least absolute shrinkage and selection operator (lasso) method was used to construct a risk score model. Correlation analyses were made to reveal the relation between risk score-stratified subgroups and clinicopathologic features or significant signatures. In TCGA (26 pairs) and validation cohort (134 pairs), 25 ECM-related genes were significantly highly expressed and 11 genes were downexpressed in gastric cancer. ECM-based subclusters were slightly related to clinicopathologic features. We constructed a risk score model = 0.081∗log2 (CD36) + 0.043∗log2 (COL5A2) + 0.001∗log2 (ITGB5) + 0.039∗log2 (SDC2) + 0.135∗log2 (SV2B) + 0.012∗log2 (THBS1) + 0.068∗log2 (VTN) + 0.023∗log2 (VWF). The risk score model could well predict the outcome of patients with gastric cancer in both training (n = 351, HR: 1.807, 95% CI: 1.292-2.528, P = 0.00046) and validation (n = 300, HR: 1.866, 95% CI: 1.347-2.584, P = 0.00014) cohorts. Besides, risk score-based subgroups were associated with angiogenesis, cell adhesion molecules, complement and coagulation cascades, TGF-beta signaling, and mismatch repair-relevant signatures (P < 0.0001). By univariate (1.845, 95% CI: 1.382-2.462, P < 0.001) and multivariate (1.756, 95% CI: 1.284-2.402, P < 0.001) analyses, we regarded the risk score as an independent risk factor in gastric cancer. Our findings revealed that ECM compositions became accomplices in the tumorigenesis, progression, and poor survival of gastric cancer.
Collapse
|
49
|
Prieto-Fernández E, Egia-Mendikute L, Bosch A, García Del Río A, Jimenez-Lasheras B, Antoñana-Vildosola A, Lee SY, Palazon A. Hypoxia Promotes Syndecan-3 Expression in the Tumor Microenvironment. Front Immunol 2020; 11:586977. [PMID: 33117401 PMCID: PMC7561406 DOI: 10.3389/fimmu.2020.586977] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2020] [Accepted: 09/10/2020] [Indexed: 12/12/2022] Open
Abstract
The syndecan (Sdc) family is comprised of four members of cell surface molecules (Sdc-1 to 4) with different biological functions. Syndecan-3 (Sdc-3) is known to be mainly expressed in the brain and nervous tissue and plays a key role in development, cell adhesion, and migration. Recent studies point to important roles for Sdc-3 in inflammatory disease, but the patterns of expression and significance of Sdc-3 in cancer remains unexplored. Here we show that Sdc-3 expression is upregulated on several cancer types, especially in solid tumors that are known to be hypoxic. The Cancer Genome Atlas program (TCGA) data demonstrated that Sdc-3 expression in the tumor microenvironment positively correlates with a hypoxia gene signature. To confirm a potential cause-effect, we performed experiments with tumor cell lines showing increased expression upon in vitro exposure to 1% oxygen or dimethyloxalylglycine, an inhibitor of prolyl hydroxylases, indicating that Sdc-3 expression is promoted by hypoxia inducible factors (HIFs). HIF-1α was responsible for this upregulation as confirmed by CRISPR-engineered tumor cells. Using single-cell RNA sequencing data of melanoma patients, we show that Sdc-3 is expressed on tumor associated macrophages, cancer cells, and endothelial cells. Syndecan-3 expression positively correlated with a macrophage gene signature across several TCGA cancer types. In vitro experiments demonstrated that hypoxia (1% oxygen) or treatment with IFN-γ stimulate Sdc-3 expression on RAW-264.7 derived macrophages, linking Sdc-3 expression to a proinflammatory response. Syndecan-3 expression correlates with a better patient overall survival in hypoxic melanoma tumors.
Collapse
Affiliation(s)
- Endika Prieto-Fernández
- Cancer Immunology and Immunotherapy Lab, Centre for Cooperative Research in Biosciences CIC bioGUNE, Basque Research and Technology Alliance, Derio, Spain
| | - Leire Egia-Mendikute
- Cancer Immunology and Immunotherapy Lab, Centre for Cooperative Research in Biosciences CIC bioGUNE, Basque Research and Technology Alliance, Derio, Spain
| | - Alexandre Bosch
- Cancer Immunology and Immunotherapy Lab, Centre for Cooperative Research in Biosciences CIC bioGUNE, Basque Research and Technology Alliance, Derio, Spain
| | - Ana García Del Río
- Cancer Immunology and Immunotherapy Lab, Centre for Cooperative Research in Biosciences CIC bioGUNE, Basque Research and Technology Alliance, Derio, Spain
| | - Borja Jimenez-Lasheras
- Cancer Immunology and Immunotherapy Lab, Centre for Cooperative Research in Biosciences CIC bioGUNE, Basque Research and Technology Alliance, Derio, Spain
| | - Asier Antoñana-Vildosola
- Cancer Immunology and Immunotherapy Lab, Centre for Cooperative Research in Biosciences CIC bioGUNE, Basque Research and Technology Alliance, Derio, Spain
| | - So Young Lee
- Cancer Immunology and Immunotherapy Lab, Centre for Cooperative Research in Biosciences CIC bioGUNE, Basque Research and Technology Alliance, Derio, Spain
| | - Asis Palazon
- Cancer Immunology and Immunotherapy Lab, Centre for Cooperative Research in Biosciences CIC bioGUNE, Basque Research and Technology Alliance, Derio, Spain.,Ikerbasque, Basque Foundation for Science, Bilbao, Spain
| |
Collapse
|
50
|
Zhou M, Wu Y, Li H, Zha X. MicroRNA-144: A novel biological marker and potential therapeutic target in human solid cancers. J Cancer 2020; 11:6716-6726. [PMID: 33046994 PMCID: PMC7545670 DOI: 10.7150/jca.46293] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2020] [Accepted: 09/11/2020] [Indexed: 12/13/2022] Open
Abstract
MicroRNAs (miRNAs) are a class of small non-coding RNAs that negatively regulate gene expression at the post-transcriptional level. It has been reported that microRNA-144 (miR-144) is highly conserved and can combine complementarily with the 3'-UTRs of target gene mRNAs to inhibit mRNA translation or promote targeted mRNA degradation. MiR-144 is abnormally expressed and has been identified as a tumor suppressor in many types of solid tumors. Increasing evidence supports a crucial role for miR-144 in modulating physiopathologic processes, such as proliferation, apoptosis, invasion, migration and angiogenesis in different tumor cells. Apart from these functions, miR-144 can also affect drug sensitivity, cancer treatment and patient prognosis. In this review, we summarize the biological functions of miR-144, its direct targets and the important signal pathways through which it acts in relation to various tumors. We also discuss the role of miR-144 in tumor biology and its clinical significance in detail and offer novel insights into molecular targeting therapy for human cancers.
Collapse
Affiliation(s)
- Meng Zhou
- Department of Biochemistry & Molecular Biology, School of Basic Medicine, Anhui Medical University, Hefei 230032, China
| | - Yuncui Wu
- Department of Biochemistry & Molecular Biology, School of Basic Medicine, Anhui Medical University, Hefei 230032, China
| | - Hongwu Li
- Department of Otorhinolaryngology, Head & Neck Surgery, The Fourth Affiliated Hospital of Anhui Medical University, Hefei 230000, China
| | - Xiaojun Zha
- Department of Biochemistry & Molecular Biology, School of Basic Medicine, Anhui Medical University, Hefei 230032, China
| |
Collapse
|