1
|
Xie Y, Wang X, Wang W, Pu N, Liu L. Epithelial-mesenchymal transition orchestrates tumor microenvironment: current perceptions and challenges. J Transl Med 2025; 23:386. [PMID: 40176117 DOI: 10.1186/s12967-025-06422-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/24/2024] [Accepted: 03/25/2025] [Indexed: 04/04/2025] Open
Abstract
The epithelial-mesenchymal transition (EMT) is a critical process in cancer progression, facilitating tumor cells to develop invasive traits and augmenting their migratory capabilities. EMT is primed by tumor microenvironment (TME)-derived signals, whereupon cancer cells undergoing EMT in turn remodel the TME, thereby modulating tumor progression and therapeutic response. This review discusses the mechanisms by which EMT coordinates TME dynamics, including secretion of soluble factors, direct cell contact, release of exosomes and enzymes, as well as metabolic reprogramming. Recent evidence also indicates that cells undergoing EMT may differentiate into cancer-associated fibroblasts, thereby establishing themselves as functional constituents of the TME. Elucidating the relationship between EMT and the TME offers novel perspectives for therapeutic strategies to enhance cancer treatment efficacy. Although EMT-directed therapies present significant therapeutic potential, the current lack of effective targeting approaches-attributable to EMT complexity and its microenvironmental context dependency-underscores the necessity for mechanistic investigations and translational clinical validation.
Collapse
Affiliation(s)
- Yuqi Xie
- Department of Pancreatic Surgery, Zhongshan Hospital, Fudan University, 180 Fenglin Road, Shanghai, 200032, People's Republic of China
| | - Xuan Wang
- Department of Pancreatic Surgery, Zhongshan Hospital, Fudan University, 180 Fenglin Road, Shanghai, 200032, People's Republic of China
- Cancer Center, Zhongshan Hospital, Fudan University, Shanghai, 200032, China
| | - Wenquan Wang
- Department of Pancreatic Surgery, Zhongshan Hospital, Fudan University, 180 Fenglin Road, Shanghai, 200032, People's Republic of China
- Cancer Center, Zhongshan Hospital, Fudan University, Shanghai, 200032, China
| | - Ning Pu
- Department of Pancreatic Surgery, Zhongshan Hospital, Fudan University, 180 Fenglin Road, Shanghai, 200032, People's Republic of China
- Cancer Center, Zhongshan Hospital, Fudan University, Shanghai, 200032, China
| | - Liang Liu
- Department of Pancreatic Surgery, Zhongshan Hospital, Fudan University, 180 Fenglin Road, Shanghai, 200032, People's Republic of China.
- Cancer Center, Zhongshan Hospital, Fudan University, Shanghai, 200032, China.
| |
Collapse
|
2
|
Mizote Y, Inoue T, Akazawa T, Kunimasa K, Tamiya M, Kumamoto Y, Tsuda A, Yoshida S, Tatsumi K, Ekawa T, Honma K, Nishino K, Tahara H. Potent CTLs can be induced against tumor cells in an environment of lower levels of systemic MFG-E8. Cancer Sci 2024; 115:1114-1128. [PMID: 38332689 PMCID: PMC11007000 DOI: 10.1111/cas.16099] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2023] [Revised: 12/19/2023] [Accepted: 01/22/2024] [Indexed: 02/10/2024] Open
Abstract
The direction and magnitude of immune responses are critically affected when dead cells are disposed of. Milk fat globule-epidermal growth factor-factor 8 (MFG-E8) promotes the engulfment of apoptotic normal and cancerous cells without inducing inflammation. We have previously reported that a certain proportion of the cancer cells express abundant MFG-E8, and that such expression is associated with the shorter survival of patients with esophageal cancer who had received chemotherapy before surgery. However, the influence of tumor-derived and systemically existing MFG-E8 on antitumor immune responses has not yet been fully investigated. Herein, we showed that CTL-dependent antitumor immune responses were observed in mice with no or decreased levels of systemic MFG-E8, and that such responses were enhanced further with the administration of anti-PD-1 antibody. In mice with decreased levels of systemic MFG-E8, the dominance of regulatory T cells in tumor-infiltrating lymphocytes was inverted to CD8+ T cell dominance. MFG-E8 expression by tumor cells appears to affect antitumor immune responses only when the level of systemic MFG-E8 is lower than the physiological status. We have also demonstrated in the clinical setting that lower levels of plasma MFG-E8, but not MFG-E8 expression in tumor cells, before the treatment was associated with objective responses to anti-PD-1 therapy in patients with non-small cell lung cancer. These results suggest that systemic MFG-E8 plays a critical role during the immunological initiation process of antigen-presenting cells to increase tumor-specific CTLs. Regulation of the systemic level of MFG-E8 might induce efficient antitumor immune responses and enhance the potency of anti-PD-1 therapy.
Collapse
Affiliation(s)
- Yu Mizote
- Department of Cancer Drug Discovery and Development, Research CenterOsaka International Cancer InstituteOsakaJapan
| | - Takako Inoue
- Department of Thoracic OncologyOsaka International Cancer InstituteOsakaJapan
| | - Takashi Akazawa
- Department of Cancer Drug Discovery and Development, Research CenterOsaka International Cancer InstituteOsakaJapan
| | - Kei Kunimasa
- Department of Thoracic OncologyOsaka International Cancer InstituteOsakaJapan
| | - Motohiro Tamiya
- Department of Thoracic OncologyOsaka International Cancer InstituteOsakaJapan
| | - Yachiyo Kumamoto
- Department of Cancer Drug Discovery and Development, Research CenterOsaka International Cancer InstituteOsakaJapan
| | - Arisa Tsuda
- Department of Thoracic OncologyOsaka International Cancer InstituteOsakaJapan
| | - Satomi Yoshida
- Department of Cancer Drug Discovery and Development, Research CenterOsaka International Cancer InstituteOsakaJapan
| | - Kumiko Tatsumi
- Department of Cancer Drug Discovery and Development, Research CenterOsaka International Cancer InstituteOsakaJapan
| | - Tomoya Ekawa
- Department of Cancer Drug Discovery and Development, Research CenterOsaka International Cancer InstituteOsakaJapan
| | - Keiichiro Honma
- Department of Diagnostic Pathology and CytologyOsaka International Cancer InstituteOsakaJapan
| | - Kazumi Nishino
- Department of Thoracic OncologyOsaka International Cancer InstituteOsakaJapan
| | - Hideaki Tahara
- Department of Cancer Drug Discovery and Development, Research CenterOsaka International Cancer InstituteOsakaJapan
- Project Division of Cancer Biomolecular Therapy, The Institute of Medical ScienceThe University of TokyoTokyoJapan
| |
Collapse
|
3
|
Li N, Wang Y, Liu L, Wang P, Wu X. Effects of MFG-E8 expression on the biological characteristics of ovarian cancer cells via the AKT/mTOR/S6K signalling pathway. J OBSTET GYNAECOL 2023; 43:2151354. [PMID: 36484512 DOI: 10.1080/01443615.2022.2151354] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
In this study, we assessed the effects of MFG-E8 on the biological characteristics of ovarian cancer cells and explored the underlying mechanisms. Human ovarian cancer SKOV3 cells were transfected with MFG-E8 siRNA or NC siRNA. CCK-8, cell adhesion, scratch-wound, and Transwell assays were used to detect changes in cell metastatic processes. Effects of MFG-E8 silencing on the proteins involved in AKT/mTOR/S6K signalling pathway were assessed using qRT-PCR and Western blotting. Transient silencing of MFG-E8 in SKOV3 cells decreased cell proliferation and downregulated the expression of CDK4, cyclin D1, and caspase-3 proteins. Cell adhesion, migration, and invasion were also suppressed. p-AKT, p-mTORC1, and p-p70S6K levels decreased following MFG-E8 knockdown. Hence, MFG-E8 enhances carcinogenesis and affects the AKT/mTOR/S6K signalling pathway in ovarian cancer cells. In conclusion, our results suggested that MFG-E8 could promote ovarian cancer via AKT/mTOR/S6K signalling pathway which improved our understanding of the molecular mechanisms involved in ovarian cancer.IMPACT STATEMENTWhat is already known on this subject? Milk fat globule-epidermal growth factor 8 (MFG-E8) is expressed in several types of cancers such as oesophageal, breast, and liver. However, the mechanism of MFG-E8 involving in EOC remains unknown. We previously found that MFG-E8 expression was related to pathological staging, tissue differentiation, platinum sensitivity, ascites state, and other clinicopathological characteristics.What the results of this study add? Due to a series of in vitro studies, we confirmed that MFG-E8 is involved in the process of proliferation, invasion and metastasis. Our results show that silencing MFG-E8 can significantly inhibit the expression of cyclin D1 and CDK4 in EOC SKOV3 cells. MFG-E8 enhances carcinogenesis and affects the AKT/mTOR/S6K signaling pathway in ovarian cancer.What the implications are of these findings for clinical practice and/or further research? Taken together, our findings suggest that MFG-E8 may be an oncogene in EOC and provide new insights into the mechanism of MFG-E8 in the progression of EOC.
Collapse
Affiliation(s)
- Na Li
- Department of Oncology, Hebei General Hospital, Shijiazhuang, People's Republic of China
| | - Yazhuo Wang
- Department of Gynaecology, Hebei General Hospital, Shijiazhuang, People's Republic of China
| | - Lin Liu
- Department of Biochemistry and Molecular Biology, Hebei University of Chinese Medicine, Shijiazhuang, People's Republic of China
| | - Pei Wang
- Department of Gynaecology, Hebei General Hospital, Shijiazhuang, People's Republic of China
| | - Xiaohua Wu
- Teaching and Research Section of Obstetrics and Gynaecology, Hebei Medical University, Shijiazhuang, People's Republic of China
| |
Collapse
|
4
|
Gu Y, Zhang Z, Camps MG, Ossendorp F, Wijdeven RH, ten Dijke P. Genome-wide CRISPR screens define determinants of epithelial-mesenchymal transition mediated immune evasion by pancreatic cancer cells. SCIENCE ADVANCES 2023; 9:eadf9915. [PMID: 37450593 PMCID: PMC10348683 DOI: 10.1126/sciadv.adf9915] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/25/2022] [Accepted: 06/12/2023] [Indexed: 07/18/2023]
Abstract
The genetic circuits that allow cancer cells to evade immune killing via epithelial mesenchymal plasticity remain poorly understood. Here, we showed that mesenchymal-like (Mes) KPC3 pancreatic cancer cells were more resistant to cytotoxic T lymphocyte (CTL)-mediated killing than the parental epithelial-like (Epi) cells and used parallel genome-wide CRISPR screens to assess the molecular underpinnings of this difference. Core CTL-evasion genes (such as IFN-γ pathway components) were clearly evident in both types. Moreover, we identified and validated multiple Mes-specific regulators of cytotoxicity, such as Egfr and Mfge8. Both genes were significantly higher expressed in Mes cancer cells, and their depletion sensitized Mes cancer cells to CTL-mediated killing. Notably, Mes cancer cells secreted more Mfge8 to inhibit proliferation of CD8+ T cells and production of IFN-γ and TNFα. Clinically, increased Egfr and Mfge8 expression was correlated with a worse prognosis. Thus, Mes cancer cells use Egfr-mediated intrinsic and Mfge8-mediated extrinsic mechanisms to facilitate immune escape from CD8+ T cells.
Collapse
Affiliation(s)
- Yuanzhuo Gu
- Oncode Institute and Department of Cell and Chemical Biology, Leiden University Medical Center, Einthovenweg 20, 2333 ZC Leiden, Netherlands
| | - Zhengkui Zhang
- Institutes of Biology and Medical Science, Soochow University, Suzhou 215123, China
| | - Marcel G. M. Camps
- Department of Immunology, Leiden University Medical Center, Leiden, Netherlands
| | - Ferry Ossendorp
- Department of Immunology, Leiden University Medical Center, Leiden, Netherlands
| | - Ruud H. Wijdeven
- Oncode Institute and Department of Cell and Chemical Biology, Leiden University Medical Center, Einthovenweg 20, 2333 ZC Leiden, Netherlands
| | - Peter ten Dijke
- Oncode Institute and Department of Cell and Chemical Biology, Leiden University Medical Center, Einthovenweg 20, 2333 ZC Leiden, Netherlands
| |
Collapse
|
5
|
Cheng L, Weng B, Jia C, Zhang L, Hu B, Deng L, Mou N, Sun F, Hu J. The expression and significance of efferocytosis and immune checkpoint related molecules in pancancer samples and the correlation of their expression with anticancer drug sensitivity. Front Pharmacol 2022; 13:977025. [PMID: 36059952 PMCID: PMC9437300 DOI: 10.3389/fphar.2022.977025] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2022] [Accepted: 07/27/2022] [Indexed: 11/13/2022] Open
Abstract
Background: The efferocytosis-related molecules have been considered to be correlated with the resistance to cancer chemotherapy. The aim of this study was to investigate the expression and significance of efferocytosis-related molecules in cancers and the correlation of their expression with anticancer drug sensitivity, and provide new potential targets and treatment options for cancers.Methods: We investigated the differential expression of 15 efferocytosis-related molecules (Axl, Tyro3, MerTK, CX3CL1, Tim-4, BAI1, Stab2, Gas6, IDO1, Rac1, MFGE8, ICAM-1, CD47, CD31, and PD-L1) and other 12 common immune checkpoint-related molecules in tumor and normal tissues, the correlation between their expression and various clinicopathological features in 16 types of cancers using publicly available pancancer datasets in The Cancer Genome Atlas. We also analyzed the correlation of the expression of efferocytosis and immune checkpoint related molecules with 126 types of anticancer drugs sensitivity using drug-RNA-seq data.Results: There is a panel of circulating molecules among the 27 molecules. Based on the results of differential expression and correlation with various clinicopathological features of efferocytosis-related molecules in cancers, we identified new potential therapeutic targets for anticancer therapy, such as Axl for kidney renal clear cell carcinoma, Tyro3 for liver hepatocellular carcinoma, and IDO1 for renal papillary cell carcinoma. Except for BAI1, CD31, and MerTK, the enhanced expressions of Axl, Tyro3, Gas6, MFGE8, Stab2, Tim-4, CX3CL1, IDO1, Rac1, and PD-L1 were associated with decreased sensitivity of the cancer cells to many anti-cancer drugs; however, for other common immune checkpoint-related molecules, only enhanced expressions of PD-1, CD28, CTLA4, and HVEM were associated with decreased sensitivity of the cancer cells to a few drugs.Conclusion: The efferocytosis-related molecules were significantly associated with clinical outcomes in many types of cancers and played important roles in resistance to chemotherapy. Combination therapy targeting efferocytosis-related molecules and other immune checkpoint-related molecules is necessary to reduce resistance to chemotherapy.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | | | - Jing Hu
- *Correspondence: Fengjun Sun, ; Jing Hu,
| |
Collapse
|
6
|
Ruotsalainen SE, Surakka I, Mars N, Karjalainen J, Kurki M, Kanai M, Krebs K, Graham S, Mishra PP, Mishra BH, Sinisalo J, Palta P, Lehtimäki T, Raitakari O, Milani L, Okada Y, Palotie A, Widen E, Daly MJ, Ripatti S. Inframe insertion and splice site variants in MFGE8 associate with protection against coronary atherosclerosis. Commun Biol 2022; 5:802. [PMID: 35978133 PMCID: PMC9385630 DOI: 10.1038/s42003-022-03552-0] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2021] [Accepted: 06/06/2022] [Indexed: 11/29/2022] Open
Abstract
Cardiovascular diseases are the leading cause of premature death and disability worldwide, with both genetic and environmental determinants. While genome-wide association studies have identified multiple genetic loci associated with cardiovascular diseases, exact genes driving these associations remain mostly uncovered. Due to Finland's population history, many deleterious and high-impact variants are enriched in the Finnish population giving a possibility to find genetic associations for protein-truncating variants that likely tie the association to a gene and that would not be detected elsewhere. In a large Finnish biobank study FinnGen, we identified an association between an inframe insertion rs534125149 in MFGE8 (encoding lactadherin) and protection against coronary atherosclerosis. This variant is highly enriched in Finland, and the protective association was replicated in meta-analysis of BioBank Japan and Estonian biobank. Additionally, we identified a protective association between splice acceptor variant rs201988637 in MFGE8 and coronary atherosclerosis, independent of the rs534125149, with no significant risk-increasing associations. This variant was also associated with lower pulse pressure, pointing towards a function of MFGE8 in arterial aging also in humans in addition to previous evidence in mice. In conclusion, our results suggest that inhibiting the production of lactadherin could lower the risk for coronary heart disease substantially.
Collapse
Affiliation(s)
- Sanni E Ruotsalainen
- Institute for Molecular Medicine Finland (FIMM), HiLIFE, University of Helsinki, Helsinki, Finland
| | - Ida Surakka
- Department of Internal Medicine, University of Michigan, Ann Arbor, MI, USA
| | - Nina Mars
- Institute for Molecular Medicine Finland (FIMM), HiLIFE, University of Helsinki, Helsinki, Finland
| | | | - Mitja Kurki
- The Broad Institute of MIT and Harvard, Cambridge, MA, USA
| | - Masahiro Kanai
- The Broad Institute of MIT and Harvard, Cambridge, MA, USA
- Analytic and Translational Genetics Unit, Masfsachusetts General Hospital, Harvard Medical School, Boston, MA, USA
- Department of Statistical Genetics, Osaka University Graduate School of Medicine, Suita, Japan
| | - Kristi Krebs
- Estonian Genome Centre, Institute of Genomics, University of Tartu, Tartu, Estonia
| | - Sarah Graham
- Department of Internal Medicine, University of Michigan, Ann Arbor, MI, USA
| | - Pashupati P Mishra
- Department of Clinical Chemistry, Faculty of Medicine and Health Technology, Tampere University, Tampere, Finland
- Finnish Cardiovascular Research Centre, Faculty of Medicine and Health Technology, Tampere University, Tampere, Finland
- Department of Clinical Chemistry, Fimlab Laboratories, Tampere, Finland
| | - Binisha H Mishra
- Department of Clinical Chemistry, Faculty of Medicine and Health Technology, Tampere University, Tampere, Finland
- Finnish Cardiovascular Research Centre, Faculty of Medicine and Health Technology, Tampere University, Tampere, Finland
- Department of Clinical Chemistry, Fimlab Laboratories, Tampere, Finland
| | - Juha Sinisalo
- Heart and Lung Center, Helsinki University Hospital and Helsinki University, Helsinki, Finland
| | - Priit Palta
- Institute for Molecular Medicine Finland (FIMM), HiLIFE, University of Helsinki, Helsinki, Finland
- Estonian Genome Centre, Institute of Genomics, University of Tartu, Tartu, Estonia
| | - Terho Lehtimäki
- Department of Clinical Chemistry, Faculty of Medicine and Health Technology, Tampere University, Tampere, Finland
- Finnish Cardiovascular Research Centre, Faculty of Medicine and Health Technology, Tampere University, Tampere, Finland
- Department of Clinical Chemistry, Fimlab Laboratories, Tampere, Finland
| | - Olli Raitakari
- Research Centre of Applied and Preventive Cardiovascular Medicine, University of Turku, Turku, Finland
- Centre for Population Health Research, University of Turku, Turku University Hospital, Turku, Finland
- Department of Clinical Physiology and Nuclear Medicine, University of Turku, Turku, Finland
| | - Lili Milani
- Estonian Genome Centre, Institute of Genomics, University of Tartu, Tartu, Estonia
| | - Yukinori Okada
- Department of Statistical Genetics, Osaka University Graduate School of Medicine, Suita, Japan
- Laboratory for Statistical Analysis, RIKEN Center for Integrative Medical Sciences, Yokohama, Japan
| | - Aarno Palotie
- Institute for Molecular Medicine Finland (FIMM), HiLIFE, University of Helsinki, Helsinki, Finland
- The Broad Institute of MIT and Harvard, Cambridge, MA, USA
| | - Elisabeth Widen
- Institute for Molecular Medicine Finland (FIMM), HiLIFE, University of Helsinki, Helsinki, Finland
| | - Mark J Daly
- Institute for Molecular Medicine Finland (FIMM), HiLIFE, University of Helsinki, Helsinki, Finland
- The Broad Institute of MIT and Harvard, Cambridge, MA, USA
- Analytic and Translational Genetics Unit, Masfsachusetts General Hospital, Harvard Medical School, Boston, MA, USA
| | - Samuli Ripatti
- Institute for Molecular Medicine Finland (FIMM), HiLIFE, University of Helsinki, Helsinki, Finland.
- The Broad Institute of MIT and Harvard, Cambridge, MA, USA.
- Department of Public Health, Clinicum, Faculty of Medicine, University of Helsinki, Helsinki, Finland.
| |
Collapse
|
7
|
Geoffroy K, Laplante P, Clairefond S, Azzi F, Trudel D, Lattouf JB, Stagg J, Saad F, Mes-Masson AM, Bourgeois-Daigneault MC, Cailhier JF. High Levels of MFG-E8 Confer a Good Prognosis in Prostate and Renal Cancer Patients. Cancers (Basel) 2022; 14:cancers14112790. [PMID: 35681775 PMCID: PMC9179566 DOI: 10.3390/cancers14112790] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2022] [Revised: 05/19/2022] [Accepted: 06/02/2022] [Indexed: 11/23/2022] Open
Abstract
Simple Summary In the present study, we analyzed the distribution and prognostic impact of milk fat globule-epidermal growth factor-8 (MFG-E8) protein expression in patients with prostate and renal cancers. Our data highlighted MFG-E8 expression by tumor cells in the epithelium. Our results also showed that low levels of MFG-E8 in prostate and renal cancers were associated with worse clinical outcomes. Furthermore, higher numbers of CD206+ cells were found in the peripheral regions of renal clear cell carcinoma that expressed lower MFG-E8 levels. Globally, our results suggest that MFG-E8 expression could potentially be used as a prognostic marker in prostate and renal cancers. Abstract Milk fat globule-epidermal growth factor-8 (MFG-E8) is a glycoprotein secreted by different cell types, including apoptotic cells and activated macrophages. MFG-E8 is highly expressed in a variety of cancers and is classically associated with tumor growth and poor patient prognosis through reprogramming of macrophages into the pro-tumoral/pro-angiogenic M2 phenotype. To date, correlations between levels of MFG-E8 and patient survival in prostate and renal cancers remain unclear. Here, we quantified MFG-E8 and CD68/CD206 expression by immunofluorescence staining in tissue microarrays constructed from renal (n = 190) and prostate (n = 274) cancer patient specimens. Percentages of MFG-E8-positive surface area were assessed in each patient core and Kaplan–Meier analyses were performed accordingly. We found that MFG-E8 was expressed more abundantly in malignant regions of prostate tissue and papillary renal cell carcinoma but was also increased in the normal adjacent regions in clear cell renal carcinoma. In addition, M2 tumor-associated macrophage staining was increased in the normal adjacent tissues compared to the malignant areas in renal cancer patients. Overall, high tissue expression of MFG-E8 was associated with less disease progression and better survival in prostate and renal cancer patients. Our observations provide new insights into tumoral MFG-E8 content and macrophage reprogramming in cancer.
Collapse
Affiliation(s)
- Karen Geoffroy
- Institut du Cancer de Montréal (ICM), Centre de Recherche du Centre Hospitalier de l’Université de Montréal (CRCHUM), Montreal, QC H2X 0A9, Canada; (K.G.); (P.L.); (S.C.); (F.A.); (D.T.); (J.-B.L.); (J.S.); (F.S.); (A.-M.M.-M.); (M.-C.B.-D.)
| | - Patrick Laplante
- Institut du Cancer de Montréal (ICM), Centre de Recherche du Centre Hospitalier de l’Université de Montréal (CRCHUM), Montreal, QC H2X 0A9, Canada; (K.G.); (P.L.); (S.C.); (F.A.); (D.T.); (J.-B.L.); (J.S.); (F.S.); (A.-M.M.-M.); (M.-C.B.-D.)
| | - Sylvie Clairefond
- Institut du Cancer de Montréal (ICM), Centre de Recherche du Centre Hospitalier de l’Université de Montréal (CRCHUM), Montreal, QC H2X 0A9, Canada; (K.G.); (P.L.); (S.C.); (F.A.); (D.T.); (J.-B.L.); (J.S.); (F.S.); (A.-M.M.-M.); (M.-C.B.-D.)
| | - Feryel Azzi
- Institut du Cancer de Montréal (ICM), Centre de Recherche du Centre Hospitalier de l’Université de Montréal (CRCHUM), Montreal, QC H2X 0A9, Canada; (K.G.); (P.L.); (S.C.); (F.A.); (D.T.); (J.-B.L.); (J.S.); (F.S.); (A.-M.M.-M.); (M.-C.B.-D.)
- Division of Pathology and Cellular Biology, Université de Montréal, Montreal, QC H3C 3J7, Canada
| | - Dominique Trudel
- Institut du Cancer de Montréal (ICM), Centre de Recherche du Centre Hospitalier de l’Université de Montréal (CRCHUM), Montreal, QC H2X 0A9, Canada; (K.G.); (P.L.); (S.C.); (F.A.); (D.T.); (J.-B.L.); (J.S.); (F.S.); (A.-M.M.-M.); (M.-C.B.-D.)
- Division of Pathology and Cellular Biology, Université de Montréal, Montreal, QC H3C 3J7, Canada
| | - Jean-Baptiste Lattouf
- Institut du Cancer de Montréal (ICM), Centre de Recherche du Centre Hospitalier de l’Université de Montréal (CRCHUM), Montreal, QC H2X 0A9, Canada; (K.G.); (P.L.); (S.C.); (F.A.); (D.T.); (J.-B.L.); (J.S.); (F.S.); (A.-M.M.-M.); (M.-C.B.-D.)
- Division of Urology, Department of Surgery, Université de Montréal, Montreal, QC H3C 3J7, Canada
| | - John Stagg
- Institut du Cancer de Montréal (ICM), Centre de Recherche du Centre Hospitalier de l’Université de Montréal (CRCHUM), Montreal, QC H2X 0A9, Canada; (K.G.); (P.L.); (S.C.); (F.A.); (D.T.); (J.-B.L.); (J.S.); (F.S.); (A.-M.M.-M.); (M.-C.B.-D.)
- Faculté de Pharmacie, Université de Montréal, Montreal, QC H3C 3J7, Canada
| | - Fred Saad
- Institut du Cancer de Montréal (ICM), Centre de Recherche du Centre Hospitalier de l’Université de Montréal (CRCHUM), Montreal, QC H2X 0A9, Canada; (K.G.); (P.L.); (S.C.); (F.A.); (D.T.); (J.-B.L.); (J.S.); (F.S.); (A.-M.M.-M.); (M.-C.B.-D.)
- Division of Urology, Department of Surgery, Université de Montréal, Montreal, QC H3C 3J7, Canada
| | - Anne-Marie Mes-Masson
- Institut du Cancer de Montréal (ICM), Centre de Recherche du Centre Hospitalier de l’Université de Montréal (CRCHUM), Montreal, QC H2X 0A9, Canada; (K.G.); (P.L.); (S.C.); (F.A.); (D.T.); (J.-B.L.); (J.S.); (F.S.); (A.-M.M.-M.); (M.-C.B.-D.)
- Department of Medicine, Faculté de Médecine, Université de Montréal, Montreal, QC H3C 3J7, Canada
| | - Marie-Claude Bourgeois-Daigneault
- Institut du Cancer de Montréal (ICM), Centre de Recherche du Centre Hospitalier de l’Université de Montréal (CRCHUM), Montreal, QC H2X 0A9, Canada; (K.G.); (P.L.); (S.C.); (F.A.); (D.T.); (J.-B.L.); (J.S.); (F.S.); (A.-M.M.-M.); (M.-C.B.-D.)
- Department de Microbiologie, Infectiologie et Immunologie, Faculté de Médecine, Université de Montréal, Montreal, QC H3C 3J7, Canada
| | - Jean-François Cailhier
- Institut du Cancer de Montréal (ICM), Centre de Recherche du Centre Hospitalier de l’Université de Montréal (CRCHUM), Montreal, QC H2X 0A9, Canada; (K.G.); (P.L.); (S.C.); (F.A.); (D.T.); (J.-B.L.); (J.S.); (F.S.); (A.-M.M.-M.); (M.-C.B.-D.)
- Department of Medicine, Faculté de Médecine, Université de Montréal, Montreal, QC H3C 3J7, Canada
- Division of Nephrology, Department of Medicine, Université de Montréal, Montreal, QC H3C 3J7, Canada
- Correspondence: ; Tel.: +1-514-890-8000-x25971; Fax: +1-514-412-7938
| |
Collapse
|
8
|
Durán-Jara E, Vera-Tobar T, Lobos-González LDL. Lactadherin: From a Well-Known Breast Tumor Marker to a Possible Player in Extracellular Vesicle-Mediated Cancer Progression. Int J Mol Sci 2022; 23:3855. [PMID: 35409215 PMCID: PMC8998968 DOI: 10.3390/ijms23073855] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2022] [Revised: 03/25/2022] [Accepted: 03/26/2022] [Indexed: 02/04/2023] Open
Abstract
Lactadherin is a secreted glycoprotein associated with the milk fat globule membrane, which is highly present in the blood and in the mammary tissue of lactating women. Several biological functions have been associated with this protein, mainly attributable to its immunomodulatory role promoting phagocyte-mediated clearance of apoptotic cells. It has been shown that lactadherin also plays important roles in cell adhesion, the promotion of angiogenesis, and tissue regeneration. On the other hand, this protein has been used as a marker of breast cancer and tumor progression. Recently, high levels of lactadherin has been associated with poor prognosis and decreased survival, not only in breast cancer, but also in melanoma, ovarian, colorectal, and other types of cancer. Although the mechanisms responsible for the tumor-promoting effects attributed to lactadherin have not been fully elucidated, a growing body of literature indicates that lactadherin could be a promising therapeutic target and/or biomarker for breast and other tumors. Moreover, recent studies have shown its presence in extracellular vesicles derived from cancer cell lines and cancer patients, which was associated with cancer aggressiveness and worse prognosis. Thus, this review will focus on the link between lactadherin and cancer development and progression, its possible use as a cancer biomarker and/or therapeutic target, concluding with a possible role of this protein in cellular communication mediated by extracellular vesicles.
Collapse
Affiliation(s)
- Eduardo Durán-Jara
- Centro de Medicina Regenerativa, Instituto de Ciencias e Innovación en Medicina, Facultad de Medicina Clínica Alemana, Universidad del Desarrollo, Santiago 7710162, Chile; (E.D.-J.); (T.V.-T.)
| | - Tamara Vera-Tobar
- Centro de Medicina Regenerativa, Instituto de Ciencias e Innovación en Medicina, Facultad de Medicina Clínica Alemana, Universidad del Desarrollo, Santiago 7710162, Chile; (E.D.-J.); (T.V.-T.)
| | - Lorena De Lourdes Lobos-González
- Centro de Medicina Regenerativa, Instituto de Ciencias e Innovación en Medicina, Facultad de Medicina Clínica Alemana, Universidad del Desarrollo, Santiago 7710162, Chile; (E.D.-J.); (T.V.-T.)
- Advanced Center for Chronic Diseases (ACCDiS), Independencia, Santiago 8380000, Chile
| |
Collapse
|
9
|
Wirawan A, Tajima K, Takahashi F, Mitsuishi Y, Winardi W, Hidayat M, Hayakawa D, Matsumoto N, Izumi K, Asao T, Ko R, Shimada N, Takamochi K, Suzuki K, Abe M, Hino O, Sekido Y, Takahashi K. A Novel Therapeutic Strategy Targeting the Mesenchymal Phenotype of Malignant Pleural Mesothelioma By Suppressing LSD1. Mol Cancer Res 2021; 20:127-138. [PMID: 34593606 DOI: 10.1158/1541-7786.mcr-21-0230] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2021] [Revised: 08/16/2021] [Accepted: 09/20/2021] [Indexed: 11/16/2022]
Abstract
Malignant pleural mesothelioma (MPM) is a highly aggressive tumor that has a low overall survival; however, no significant treatment advances have been made in the past 15 years. Large-scale molecular studies have identified a poor prognostic subset of MPM linked to the epithelial-mesenchymal transition (EMT) that may contribute toward resistance to chemotherapy, suggesting that EMT could be targeted to treat patients with MPM. Previously, we reported that histone modifiers regulating EMT could be therapeutic targets; therefore, in this study, we investigated whether targeting lysine-specific demethylase 1 (LSD1/KDM1), a histone-modifying enzyme responsible for demethylating histone H3 lysine 4 and lysine 9, could represent a novel therapeutic strategy for MPM. We suppressed LSD1 and investigated the EMT phenotype using EMT marker expression and wound-healing assay; and chemosensitivity using apoptosis assay. We found that suppressing LSD1 induces an epithelial phenotype in sarcomatoid MPM cells, while attenuating the mesenchymal phenotype sensitized MPM cells to cisplatin-induced apoptosis. Subsequent genome-wide identification, comprehensive microarray analysis, and Assay for Transposase-Accessible Chromatin using sequencing (ATAC-seq) to assess genome-wide changes in chromatin accessibility suggested that LSD1 directly regulates milk fat globulin protein E8 (MFGE8), an integrin ligand that is involved in the FAK pathway. Furthermore, we found that LSD1 regulates the mesenchymal phenotype and apoptosis by activating the FAK-AKT-GSK3β pathway via a positive feedback loop involving MFGE8 and Snail expression, thereby leading to cisplatin resistance. IMPLICATIONS: This study suggests that LSD1 regulates the mesenchymal phenotype and apoptosis, and that LSD1 inhibitors could be combined with the cisplatin as a novel therapy for patients with MPM.
Collapse
Affiliation(s)
- Aditya Wirawan
- Department of Respiratory Medicine, Juntendo University Faculty of Medicine, Tokyo, Japan.,Research Institute for Diseases of Old Age, Juntendo University School of Medicine, Tokyo, Japan
| | - Ken Tajima
- Department of Respiratory Medicine, Juntendo University Faculty of Medicine, Tokyo, Japan. .,Research Institute for Diseases of Old Age, Juntendo University School of Medicine, Tokyo, Japan
| | - Fumiyuki Takahashi
- Department of Respiratory Medicine, Juntendo University Faculty of Medicine, Tokyo, Japan.,Research Institute for Diseases of Old Age, Juntendo University School of Medicine, Tokyo, Japan
| | - Yoichiro Mitsuishi
- Department of Respiratory Medicine, Juntendo University Faculty of Medicine, Tokyo, Japan.,Research Institute for Diseases of Old Age, Juntendo University School of Medicine, Tokyo, Japan
| | - Wira Winardi
- Department of Respiratory Medicine, Juntendo University Faculty of Medicine, Tokyo, Japan.,Research Institute for Diseases of Old Age, Juntendo University School of Medicine, Tokyo, Japan
| | - Moulid Hidayat
- Department of Respiratory Medicine, Juntendo University Faculty of Medicine, Tokyo, Japan.,Research Institute for Diseases of Old Age, Juntendo University School of Medicine, Tokyo, Japan
| | - Daisuke Hayakawa
- Department of Respiratory Medicine, Juntendo University Faculty of Medicine, Tokyo, Japan.,Research Institute for Diseases of Old Age, Juntendo University School of Medicine, Tokyo, Japan
| | - Naohisa Matsumoto
- Department of Respiratory Medicine, Juntendo University Faculty of Medicine, Tokyo, Japan.,Research Institute for Diseases of Old Age, Juntendo University School of Medicine, Tokyo, Japan
| | - Kenta Izumi
- Department of Respiratory Medicine, Juntendo University Faculty of Medicine, Tokyo, Japan.,Research Institute for Diseases of Old Age, Juntendo University School of Medicine, Tokyo, Japan
| | - Tetsuhiko Asao
- Department of Respiratory Medicine, Juntendo University Faculty of Medicine, Tokyo, Japan.,Research Institute for Diseases of Old Age, Juntendo University School of Medicine, Tokyo, Japan
| | - Ryo Ko
- Department of Respiratory Medicine, Juntendo University Faculty of Medicine, Tokyo, Japan.,Research Institute for Diseases of Old Age, Juntendo University School of Medicine, Tokyo, Japan
| | - Naoko Shimada
- Department of Respiratory Medicine, Juntendo University Faculty of Medicine, Tokyo, Japan.,Research Institute for Diseases of Old Age, Juntendo University School of Medicine, Tokyo, Japan
| | - Kazuya Takamochi
- Department of General Thoracic Surgery, Juntendo University Graduate School of Medicine, Tokyo, Japan
| | - Kenji Suzuki
- Department of General Thoracic Surgery, Juntendo University Graduate School of Medicine, Tokyo, Japan
| | - Masaaki Abe
- Department of Molecular Pathogenesis, Juntendo University School of Medicine, Tokyo, Japan
| | - Okio Hino
- Department of Molecular Pathogenesis, Juntendo University School of Medicine, Tokyo, Japan
| | - Yoshitaka Sekido
- Division of Cancer Biology, Aichi Cancer Center Research Institute, Nagoya, Aichi, Japan.,Division of Molecular and Cellular Oncology, Nagoya University Graduate School of Medicine, Nagoya, Aichi, Japan
| | - Kazuhisa Takahashi
- Department of Respiratory Medicine, Juntendo University Faculty of Medicine, Tokyo, Japan.,Research Institute for Diseases of Old Age, Juntendo University School of Medicine, Tokyo, Japan
| |
Collapse
|
10
|
Harada Y, Kazama S, Morikawa T, Sonoda H, Ishi H, Emoto S, Murono K, Kaneko M, Sasaki K, Shuno Y, Nishikawa T, Tanaka T, Kawai K, Hata K, Nozawa H, Ushiku T, Tahara H, Ishihara S. Clinical significance of CD8 + and FoxP3 + tumor-infiltrating lymphocytes and MFG-E8 expression in lower rectal cancer with preoperative chemoradiotherapy. Mol Clin Oncol 2021; 14:87. [PMID: 33767856 DOI: 10.3892/mco.2021.2249] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2019] [Accepted: 02/04/2021] [Indexed: 12/14/2022] Open
Abstract
Preoperative chemoradiotherapy (CRT) for rectal cancer contributes to tumor down-staging and decreases locoregional recurrence. However, each patient shows a significantly different response to CRT. Therefore, the identification of predictive factors to CRT response would be beneficial to avoid unnecessary treatment. Cancer immunity in patients has been suggested to play an important role in the eradication of the tumor by CRT. In the present study, the utility of CD8+ and forkhead box P3 (FoxP3)+ tumor-infiltrating lymphocytes (TILs) and the expression of a novel immuno-regulatory factor, lactadherin (MFG-E8), in predicting CRT effectiveness in patients with rectal cancer was examined. A total of 61 patients with rectal cancer, who underwent curative resection following CRT were included in the study. The numbers of CD8+ and FoxP3+ TILs in a biopsy taken before CRT and MFG-E8 expression level in the specimens obtained at the time of the surgery after CRT were examined using immunohistochemical staining, and their association with clinicopathological characteristics, including patient survival, was determined. The tumors with more CD8+ TILs in the biopsy samples before CRT showed a significantly more favorable CRT response. The patients with tumors and a higher number of CD8+ TILs before CRT also exhibited significantly longer disease-free and overall survival times. Higher MFG-E8 expression level in post-CRT specimens was significantly associated with favorable CRT response; however, no significant association was found with any other clinicopathological characteristics, including survival time. The number of CD8+ TILs before CRT was a valuable predictor for CRT response and was associated with favorable prognosis in patients with lower rectal cancer and who were treated with CRT. High MFG-E8 expression level after CRT was also associated with a favorable CRT response.
Collapse
Affiliation(s)
- Yuzo Harada
- Division of Surgical Oncology, Department of Surgery, Faculty of Medicine, The University of Tokyo, Tokyo 113-8655, Japan
| | - Shinsuke Kazama
- Division of Surgical Oncology, Department of Surgery, Faculty of Medicine, The University of Tokyo, Tokyo 113-8655, Japan.,Department of Gastroenterological Surgery, Saitama Cancer Center, Saitama 362-0806, Japan
| | - Teppei Morikawa
- Department of Pathology, NTT Medical Center Tokyo, Tokyo 141-8625, Japan
| | - Hirofumi Sonoda
- Division of Surgical Oncology, Department of Surgery, Faculty of Medicine, The University of Tokyo, Tokyo 113-8655, Japan
| | - Hiroaki Ishi
- Division of Surgical Oncology, Department of Surgery, Faculty of Medicine, The University of Tokyo, Tokyo 113-8655, Japan
| | - Shigenobu Emoto
- Division of Surgical Oncology, Department of Surgery, Faculty of Medicine, The University of Tokyo, Tokyo 113-8655, Japan
| | - Koji Murono
- Division of Surgical Oncology, Department of Surgery, Faculty of Medicine, The University of Tokyo, Tokyo 113-8655, Japan
| | - Manabu Kaneko
- Division of Surgical Oncology, Department of Surgery, Faculty of Medicine, The University of Tokyo, Tokyo 113-8655, Japan
| | - Kazuhito Sasaki
- Division of Surgical Oncology, Department of Surgery, Faculty of Medicine, The University of Tokyo, Tokyo 113-8655, Japan
| | - Yasutaka Shuno
- Division of Surgical Oncology, Department of Surgery, Faculty of Medicine, The University of Tokyo, Tokyo 113-8655, Japan
| | - Takeshi Nishikawa
- Division of Surgical Oncology, Department of Surgery, Faculty of Medicine, The University of Tokyo, Tokyo 113-8655, Japan
| | - Toshiaki Tanaka
- Division of Surgical Oncology, Department of Surgery, Faculty of Medicine, The University of Tokyo, Tokyo 113-8655, Japan
| | - Kazushige Kawai
- Division of Surgical Oncology, Department of Surgery, Faculty of Medicine, The University of Tokyo, Tokyo 113-8655, Japan
| | - Keisuke Hata
- Division of Surgical Oncology, Department of Surgery, Faculty of Medicine, The University of Tokyo, Tokyo 113-8655, Japan
| | - Hiroaki Nozawa
- Division of Surgical Oncology, Department of Surgery, Faculty of Medicine, The University of Tokyo, Tokyo 113-8655, Japan
| | - Tetsuo Ushiku
- Department of Pathology, The University of Tokyo, Tokyo 113-8655, Japan
| | - Hideaki Tahara
- Project Division of Cancer Biomolecular Therapy, Institute of Medical Science, The University of Tokyo, Tokyo 108-8639, Japan.,Department of Cancer Drug Discovery and Development Project, Osaka International Cancer Institute, Osaka 541-8567, Japan
| | - Soichiro Ishihara
- Division of Surgical Oncology, Department of Surgery, Faculty of Medicine, The University of Tokyo, Tokyo 113-8655, Japan
| |
Collapse
|
11
|
Li N, Dai C, Yang Y, Wu X, Wang L, Wang P. The expression levels and clinical significance of MFG-E8 and CD133 in epithelial ovarian cancer. Gynecol Endocrinol 2020; 36:803-807. [PMID: 31899997 DOI: 10.1080/09513590.2019.1708892] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/22/2023] Open
Abstract
The aim of our study was to test whether there is an association between high expression of milk fat globule EGF factor 8 (MFG-E8) and CD133 presence or clinical outcomes of patients with epithelial ovarian cancer (EOC). MFG-E8 and CD133 expression levels were analyzed by immunohistochemistry in 88 EOC tumor specimens. High expression of MFG-E8 directly and significantly correlated with the presence of CD133 immunostaining (R = 0.353, p=.001), whereas immunostaining of MFG-E8 and CD133 significantly correlated with FIGO stage, tumor grade, debulking status, the dualistic model, ascites status, and nonresponse to chemotherapy (p<.05). It was also found that high expression of MFG-E8 and CD133 presence is a potent predictor of poor clinical outcomes among patients with EOC. Our study is the first to show that high expression of MFG-E8 in EOCs positively correlates with CD133 presence. Further research on MFG-E8 in EOC is needed to determine whether MFG-E8 is a new tumor marker of ovarian cancer and a new target for anticancer therapy as well as whether it can interact with cancer stem cell inhibitors for the treatment of refractory tumors.
Collapse
Affiliation(s)
- Na Li
- Teaching and Research Section of Obstetrics and Gynecology, Hebei Medical University, Shijiazhuang, People's Republic of China
- Department of Oncology, Hebei General Hospital, Shijiazhuang, People's Republic of China
| | - Congwei Dai
- Department of Obstetrics and Gynecology, Hebei Medical University, Shijiazhuang, People's Republic of China
| | - Yanyan Yang
- Department of Obstetrics and Gynecology, Hebei Medical University, Shijiazhuang, People's Republic of China
| | - Xiaohua Wu
- Teaching and Research Section of Obstetrics and Gynecology, Hebei Medical University, Shijiazhuang, People's Republic of China
- Department of Obstetrics and Gynecology, Shijiazhuang Fourth Hospital, Shijiazhuang, People's Republic of China
| | - Li Wang
- Department of Obstetrics and Gynecology, Hebei Medical University, Shijiazhuang, People's Republic of China
| | - Pei Wang
- Department of Obstetrics and Gynecology, Hebei Medical University, Shijiazhuang, People's Republic of China
| |
Collapse
|
12
|
Shi Z, Wang Q, Zhang Y, Jiang D. Extracellular vesicles produced by bone marrow mesenchymal stem cells attenuate renal fibrosis, in part by inhibiting the RhoA/ROCK pathway, in a UUO rat model. Stem Cell Res Ther 2020; 11:253. [PMID: 32586368 PMCID: PMC7318505 DOI: 10.1186/s13287-020-01767-8] [Citation(s) in RCA: 53] [Impact Index Per Article: 10.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2020] [Revised: 05/21/2020] [Accepted: 06/10/2020] [Indexed: 02/08/2023] Open
Abstract
Background Extracellular vesicles produced by bone marrow mesenchymal stem cells (BMSC-EVs) can play important roles in the repair of injured tissues. Though numerous studies have reported the effect of EVs on renal fibrosis, the underlying mechanisms remain unclear. We hypothesized that BMSC-EVs containing milk fat globule–epidermal growth factor–factor 8 (MFG-E8) could attenuate renal fibrosis by inhibiting the RhoA/ROCK pathway. Methods We investigated whether BMSC-EVs have anti-fibrotic effects in a rat model of renal fibrosis, in which rats were subjected to unilateral ureteral obstruction (UUO), as well as in cultured HK2 cells. Extracellular vesicles from BMSCs were collected and co-cultured with HK2 cells during transforming growth factor-β1 (TGF-β1) treatment. HK2 cells co-cultured with TGF-β1 were also treated with the ROCK inhibitor, Y-27632. Results Compared with the Sham group, UUO rats displayed fibrotic abnormalities, accompanied by an increased expression of α-smooth muscle actin and Fibronectin and reduced expression of E-cadherin. These molecular and pathological changes suggested increased inflammation in damaged kidneys. Oxidative stress, as evidenced by an increased level of MDA and decreased levels of SOD1 and Catalase, was also observed in UUO kidneys. Additionally, activation of cleaved caspase-3 and PARP1 and increased apoptosis in the proximal tubules confirmed tubular cell apoptosis in the UUO group. All of these phenotypes exhibited by UUO rats were suppressed by treatment with BMSC-EVs. However, the protective effect of BMSC-EVs was completely abolished by the inhibition of MFG-E8. Consistent with the in vivo results, treatment with BMSC-EVs reduced inflammation, oxidative stress, apoptosis, and fibrosis in HK-2 cells stimulated with TGF-β1 in vitro. Interestingly, treatment with Y-27632 protected HK-2 cells against inflammation and fibrosis, although oxidative stress and apoptosis were unchanged. Conclusions Our results show that BMSC-EVs containing MFG-E8 attenuate renal fibrosis in a rat model of renal fibrosis, partly through RhoA/ROCK pathway inhibition.
Collapse
Affiliation(s)
- Zhengzhou Shi
- Department of Urology, Shanghai Children's Medical Center, Shanghai Jiao Tong University School of Medicine, 1678 Dongfang Road, Shanghai, 200127, China
| | - Qi Wang
- Department of Urology, Shanghai Children's Medical Center, Shanghai Jiao Tong University School of Medicine, 1678 Dongfang Road, Shanghai, 200127, China
| | - Youbo Zhang
- Department of Pediatric Surgery, Nantong Maternal and Child Health Hospital, Nantong, Jiangsu, China
| | - Dapeng Jiang
- Department of Urology, Shanghai Children's Medical Center, Shanghai Jiao Tong University School of Medicine, 1678 Dongfang Road, Shanghai, 200127, China.
| |
Collapse
|
13
|
Zhou Y, Yao Y, Deng Y, Shao A. Regulation of efferocytosis as a novel cancer therapy. Cell Commun Signal 2020; 18:71. [PMID: 32370748 PMCID: PMC7199874 DOI: 10.1186/s12964-020-00542-9] [Citation(s) in RCA: 49] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2019] [Accepted: 02/27/2020] [Indexed: 12/11/2022] Open
Abstract
Efferocytosis is a physiologic phagocytic clearance of apoptotic cells, which modulates inflammatory responses and the immune environment and subsequently facilitates immune escape of cancer cells, thus promoting tumor development and progression. Efferocytosis is an equilibrium formed by perfect coordination among “find-me”, “eat-me” and “don’t-eat-me” signals. These signaling pathways not only affect the proliferation, invasion, metastasis, and angiogenesis of tumor cells but also regulate adaptive responses and drug resistance to antitumor therapies. Therefore, efferocytosis-related molecules and pathways are potential targets for antitumor therapy. Besides, supplementing conventional chemotherapy, radiotherapy and other immunotherapies with efferocytosis-targeted therapy could enhance the therapeutic efficacy, reduce off-target toxicity, and promote patient outcome. Video abstract
Collapse
Affiliation(s)
- Yunxiang Zhou
- Department of Surgical Oncology, The Second Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, China
| | - Yihan Yao
- Department of Surgical Oncology, The Second Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, China
| | - Yongchuan Deng
- Department of Surgical Oncology, The Second Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, China.
| | - Anwen Shao
- Department of Neurosurgery, The Second Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, China.
| |
Collapse
|
14
|
Milk Fat Globule-EGF Factor 8 Contributes to Progression of Hepatocellular Carcinoma. Cancers (Basel) 2020; 12:cancers12020403. [PMID: 32050643 PMCID: PMC7072366 DOI: 10.3390/cancers12020403] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2020] [Revised: 02/05/2020] [Accepted: 02/08/2020] [Indexed: 12/13/2022] Open
Abstract
Milk fat globule-EGF factor 8 (MFG-E8) is an anti-inflammatory glycoprotein that mediates a wide spectrum of pathophysiological processes. MFG-E8 has been studied as a key regulator of cancer cell invasion, migration, and proliferation in different tissues and organs. However, potential roles of MFG-E8 in the growth and progression of liver cancer have not been investigated to date. Here, we analyzed 33 human hepatocellular carcinoma (HCC) samples and found that levels of MFG-E8 expression were significantly higher in HCC cells than in normal liver tissues. In addition, our in vitro gain-of-function study in three different HCC cell lines revealed that overexpression of MFG-E8 promoted the proliferation and migration of HCC cells, as determined by RT-qPCR, MTT assays, and wound healing analyses. Conversely, an MFG-E8 loss-of function study showed that proliferation capacity was significantly reduced by MFG-E8 knockdown in HCC cells. Additionally, MFG-E8 activity-neutralizing antibodies profoundly inhibited both migration and proliferation of HCC cells, attenuating their tumorigenic properties. These reductions in migration and proliferation were rescued by treatment of HCC cells with recombinant MFG-E8 protein. Furthermore, an in vivo HCC xenograft study showed that the number of proliferating HCC cells and tumor volume/weight were all significantly increased by MFG-E8 overexpression, compared to control mice. These results clearly show that MFG-E8 plays an important role in HCC progression and may provide a basis for future mechanistic studies and new strategies for the treatment of liver cancer.
Collapse
|
15
|
Fujiwara C, Motegi SI, Ohira A, Yamaguchi S, Sekiguchi A, Yasuda M, Nakamura H, Makiguchi T, Yokoo S, Hoshina D, Abe R, Takahashi K, Ishikawa O. The significance of tumor cells-derived MFG-E8 in tumor growth of angiosarcoma. J Dermatol Sci 2019; 96:18-25. [PMID: 31447183 DOI: 10.1016/j.jdermsci.2019.08.005] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2019] [Revised: 07/19/2019] [Accepted: 08/14/2019] [Indexed: 10/26/2022]
Abstract
BACKGROUND Previous studies have indicated that MFG-E8 enhances tumor cell survival, invasion and angiogenesis. However, the role of MFG-E8 in angiosarcoma (AS) has not been clarified. OBJECTIVE Objective was to elucidate the mechanism of the regulation by MFG-E8 in AS and the association between MFG-E8 and clinicopathological features of AS. METHODS The effects of the depletion of MFG-E8 by siRNA on tube formation, migration and proliferation in murine AS cells were examined. The effect of administration of anti-MFG-E8 antibody (Ab) on tumor growth of AS in mice was examined. The associations of MFG-E8 expression and clinicopathological features of human AS were assessed. RESULTS The expressions of MFG-E8 in murine and human AS cells were significantly higher than those in melanoma cells, macrophages and endothelial cells. Depletion of MFG-E8 in murine AS cells by siRNA significantly inhibited the formation of capillary-like structures and migration, but not proliferation. Administration of anti-MFG-E8 Ab significantly inhibited tumor growth and decreased the number of tumor-associated macrophages (TAMs) in AS tumors. Tumor size and the number of TAMs in human AS with high expression of MFG-E8 were significantly increased compared to those of AS with low expression of MFG-E8. Progression-free survival and overall survival time of the patients of AS with high expression of MFG-E8 were significantly shorter than those of AS with low expression of MFG-E8. CONCLUSIONS AS-derived MFG-E8 might enhance tumor growth via angiogenesis and the induction of TAMs in autocrine/paracrine manner, and administration of anti-MFG-E8 Ab could be a therapeutic potential for AS.
Collapse
Affiliation(s)
- Chisako Fujiwara
- Department of Dermatology, Gunma University Graduate School of Medicine, Maebashi, Japan
| | - Sei-Ichiro Motegi
- Department of Dermatology, Gunma University Graduate School of Medicine, Maebashi, Japan.
| | - Aoi Ohira
- Department of Dermatology, University of the Ryukyus Graduate School of Medicine, Nishihara, Japan
| | - Sayaka Yamaguchi
- Department of Dermatology, University of the Ryukyus Graduate School of Medicine, Nishihara, Japan
| | - Akiko Sekiguchi
- Department of Dermatology, Gunma University Graduate School of Medicine, Maebashi, Japan
| | - Masahito Yasuda
- Department of Dermatology, Gunma University Graduate School of Medicine, Maebashi, Japan
| | - Hideharu Nakamura
- Department of Oral and Maxillofacial Surgery, and Plastic Surgery, Gunma University Graduate School of Medicine, Maebashi, Japan
| | - Takaya Makiguchi
- Department of Oral and Maxillofacial Surgery, and Plastic Surgery, Gunma University Graduate School of Medicine, Maebashi, Japan
| | - Satoshi Yokoo
- Department of Oral and Maxillofacial Surgery, and Plastic Surgery, Gunma University Graduate School of Medicine, Maebashi, Japan
| | - Daichi Hoshina
- Department of Dermatology, Hokkaido University Graduate School of Medicine, Sapporo, Japan
| | - Riichiro Abe
- Niigata University Graduate School of Medicine and Dental Science, Division of Dermatology, Niigata, Japan
| | - Kenzo Takahashi
- Department of Dermatology, University of the Ryukyus Graduate School of Medicine, Nishihara, Japan
| | - Osamu Ishikawa
- Department of Dermatology, Gunma University Graduate School of Medicine, Maebashi, Japan
| |
Collapse
|
16
|
Kanemura T, Miyata H, Makino T, Tanaka K, Sugimura K, Hamada-Uematsu M, Mizote Y, Uchida H, Miyazaki Y, Takahashi T, Kurokawa Y, Yamasaki M, Wada H, Nakajima K, Takiguchi S, Mori M, Doki Y, Tahara H. Immunoregulatory influence of abundant MFG-E8 expression by esophageal cancer treated with chemotherapy. Cancer Sci 2018; 109:3393-3402. [PMID: 30156356 PMCID: PMC6215892 DOI: 10.1111/cas.13785] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2018] [Revised: 07/26/2018] [Accepted: 08/14/2018] [Indexed: 12/16/2022] Open
Abstract
Milk fat globule‐epidermal growth factor factor 8 (MFG‐E8) is secreted from macrophages and is known to induce immunological tolerance mediated by regulatory T cells. However, the roles of the MFG‐E8 that is expressed by cancer cells have not yet been fully examined. Expression of MFG‐E8 was examined using immunohistochemistry in surgical samples from 134 patients with esophageal squamous cell carcinoma. The relationships between MFG‐E8 expression levels and clinicopathological factors, including tumor‐infiltrating lymphocytes, were evaluated. High MFG‐E8 expression was observed in 23.9% of the patients. The patients with tumors highly expressing MFG‐E8 had a significantly higher percentage of neoadjuvant chemotherapy (NAC) history (P < .0001) and shorter relapse‐free survival (P = 0.012) and overall survival (OS; P = .0047). On subgroup analysis, according to NAC history, patients with high MFG‐E8 expression had significantly shorter relapse‐free survival (P = .027) and OS (P = .0039) only when they had been treated with NAC. Furthermore, tumors with high MFG‐E8 expression had a significantly lower ratio of CD8+ T cells/regulatory T cells in tumor‐infiltrating lymphocytes (P = .042) only in the patients treated with NAC, and those with a lower ratio had a shorter OS (P = .026). High MFG‐E8 expression was also found to be an independent prognostic factor in multivariate analysis. The abundant MFG‐E8 expression in esophageal squamous cell carcinoma might have a negative influence on the long‐term survival of patients after chemotherapy by affecting T‐cell regulation in the tumor microenvironment.
Collapse
Affiliation(s)
- Takashi Kanemura
- Department of Gastroenterological Surgery, Graduate School of Medicine, Osaka University, Suita, Japan
| | - Hiroshi Miyata
- Department of Gastroenterological Surgery, Graduate School of Medicine, Osaka University, Suita, Japan.,Department of Digestive Surgery, Osaka International Cancer Institute, Osaka, Japan
| | - Tomoki Makino
- Department of Gastroenterological Surgery, Graduate School of Medicine, Osaka University, Suita, Japan
| | - Koji Tanaka
- Department of Gastroenterological Surgery, Graduate School of Medicine, Osaka University, Suita, Japan
| | - Keijiro Sugimura
- Department of Gastroenterological Surgery, Graduate School of Medicine, Osaka University, Suita, Japan.,Department of Digestive Surgery, Osaka International Cancer Institute, Osaka, Japan
| | - Mika Hamada-Uematsu
- Department of Surgery and Bioengineering, Advanced Clinical Research Center, Institute of Medical Science, University of Tokyo, Tokyo, Japan.,Project Division of Cancer Biomolecular Therapy, Institute of Medical Science, University of Tokyo, Tokyo, Japan
| | - Yu Mizote
- Department of Surgery and Bioengineering, Advanced Clinical Research Center, Institute of Medical Science, University of Tokyo, Tokyo, Japan.,Project Division of Cancer Biomolecular Therapy, Institute of Medical Science, University of Tokyo, Tokyo, Japan
| | - Hiroaki Uchida
- Department of Surgery and Bioengineering, Advanced Clinical Research Center, Institute of Medical Science, University of Tokyo, Tokyo, Japan.,Project Division of Cancer Biomolecular Therapy, Institute of Medical Science, University of Tokyo, Tokyo, Japan
| | - Yasuhiro Miyazaki
- Department of Gastroenterological Surgery, Graduate School of Medicine, Osaka University, Suita, Japan
| | - Tsuyoshi Takahashi
- Department of Gastroenterological Surgery, Graduate School of Medicine, Osaka University, Suita, Japan
| | - Yukinori Kurokawa
- Department of Gastroenterological Surgery, Graduate School of Medicine, Osaka University, Suita, Japan
| | - Makoto Yamasaki
- Department of Gastroenterological Surgery, Graduate School of Medicine, Osaka University, Suita, Japan
| | - Hisashi Wada
- Department of Gastroenterological Surgery, Graduate School of Medicine, Osaka University, Suita, Japan
| | - Kiyokazu Nakajima
- Department of Gastroenterological Surgery, Graduate School of Medicine, Osaka University, Suita, Japan
| | - Shuji Takiguchi
- Department of Gastroenterological Surgery, Graduate School of Medicine, Nagoya City University, Nagoya, Japan
| | - Masaki Mori
- Department of Gastroenterological Surgery, Graduate School of Medicine, Osaka University, Suita, Japan
| | - Yuichiro Doki
- Department of Gastroenterological Surgery, Graduate School of Medicine, Osaka University, Suita, Japan
| | - Hideaki Tahara
- Department of Surgery and Bioengineering, Advanced Clinical Research Center, Institute of Medical Science, University of Tokyo, Tokyo, Japan.,Project Division of Cancer Biomolecular Therapy, Institute of Medical Science, University of Tokyo, Tokyo, Japan.,Department of Cancer Drug Discovery and Development, Research Center, Osaka International Cancer Institute, Osaka, Japan
| |
Collapse
|