1
|
Qin X, Han X, Sun Y. Discovery of small molecule inhibitors of neddylation catalyzing enzymes for anticancer therapy. Biomed Pharmacother 2024; 179:117356. [PMID: 39214012 DOI: 10.1016/j.biopha.2024.117356] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2024] [Revised: 08/08/2024] [Accepted: 08/21/2024] [Indexed: 09/04/2024] Open
Abstract
Protein neddylation, a type of post-translational modifications, involves the transfer of the ubiquitin-like protein NEDD8 to the lysine residues of a target substrate, which is catalyzed by the NEDD8 activating enzyme (E1), NEDD8 conjugating enzyme (E2), and NEDD8 ligase (E3). Cullin family proteins, core components of Cullin-RING E3 ubiquitin ligases (CRLs), are the most well-known physiological substrates of neddylation. CRLs, activated upon cullin neddylation, promote the ubiquitination of a variety of key signaling proteins for proteasome degradation, thereby regulating many critical biological functions. Abnormal activation of neddylation enzymes as well as CRLs has been frequently observed in various human cancers and is associated with poor prognosis for cancer patients. Consequently, targeting neddylation has emerged as a promising strategy for the development of novel anticancer therapeutics. This review first briefly introduces the properties of protein neddylation and its role in cancer, and then systematically summarizes all reported chemical inhibitors of the three neddylation enzymes, providing a focused, up to date, and comprehensive resource in the discovery and development of these small molecule inhibitors.
Collapse
Affiliation(s)
- Xiangshuo Qin
- Cancer Institute (Key Laboratory of Cancer Prevention and Intervention, China National Ministry of Education) of the Second Affiliated Hospital and Institute of Translational Medicine, Zhejiang University School of Medicine, Hangzhou 310029, China; Cancer Center of Zhejiang University, Hangzhou 310029, China
| | - Xin Han
- Cancer Institute (Key Laboratory of Cancer Prevention and Intervention, China National Ministry of Education) of the Second Affiliated Hospital and Institute of Translational Medicine, Zhejiang University School of Medicine, Hangzhou 310029, China; Cancer Center of Zhejiang University, Hangzhou 310029, China.
| | - Yi Sun
- Cancer Institute (Key Laboratory of Cancer Prevention and Intervention, China National Ministry of Education) of the Second Affiliated Hospital and Institute of Translational Medicine, Zhejiang University School of Medicine, Hangzhou 310029, China; Cancer Center of Zhejiang University, Hangzhou 310029, China; Research Center for Life Science and Human Health, Binjiang Institute of Zhejiang University, Hangzhou 310053, China.
| |
Collapse
|
2
|
Dumitru CA, Walter N, Siebert CLR, Schäfer FTA, Rashidi A, Neyazi B, Stein KP, Mawrin C, Sandalcioglu IE. The Roles of AGTRAP, ALKBH3, DIVERSIN, NEDD8 and RRM1 in Glioblastoma Pathophysiology and Prognosis. Biomedicines 2024; 12:926. [PMID: 38672281 PMCID: PMC11048029 DOI: 10.3390/biomedicines12040926] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2024] [Revised: 04/15/2024] [Accepted: 04/19/2024] [Indexed: 04/28/2024] Open
Abstract
This study determined the expression of five novel biomarker candidates in IDH wild-type glioblastoma (GBM) tissues compared to non-malign brain parenchyma, as well as their prognostic relevance for the GBM patients' outcomes. The markers were analysed by immunohistochemistry in tumour tissues (n = 186) and healthy brain tissues (n = 54). The association with the patients' overall survival (OS) and progression-free survival (PFS) was assessed by Kaplan-Meier and log-rank test. The prognostic value of the markers was determined using multivariate Cox proportional hazard models. AGTRAP, DIVERSIN, cytoplasmic NEDD8 (NEDD8c) and RRM1 were significantly overexpressed in tumour tissues compared to the healthy brain, while the opposite was observed for ALKBH3. AGTRAP, ALKBH3, NEDD8c and RRM1 were significantly associated with OS in univariate analysis. AGTRAP and RRM1 were also independent prognostic factors for OS in multivariate analysis. For PFS, only AGTRAP and NEDD8c reached significance in univariate analysis. Additionally, AGTRAP was an independent prognostic factor for PFS in multivariate models. Finally, combined analysis of the markers enhanced their prognostic accuracy. The combination AGTRAP/ALKBH3 had the strongest prognostic value for the OS of GBM patients. These findings contribute to a better understanding of the GBM pathophysiology and may help identify novel therapeutic targets in this type of cancer.
Collapse
Affiliation(s)
| | - Nikolas Walter
- Department of Neurosurgery, Otto-von-Guericke University, 39120 Magdeburg, Germany (I.E.S.)
| | | | | | - Ali Rashidi
- Department of Neurosurgery, Otto-von-Guericke University, 39120 Magdeburg, Germany (I.E.S.)
| | - Belal Neyazi
- Department of Neurosurgery, Otto-von-Guericke University, 39120 Magdeburg, Germany (I.E.S.)
| | - Klaus-Peter Stein
- Department of Neurosurgery, Otto-von-Guericke University, 39120 Magdeburg, Germany (I.E.S.)
| | - Christian Mawrin
- Department of Neuropathology, Otto-von-Guericke University, 39120 Magdeburg, Germany
| | | |
Collapse
|
3
|
Wu Z, Wang D, Zhang Y, Zhang Z, Shen C, Xin Z, Feng Y, Hu H. SPP1 mRNA determination based on molecular beacon for the recurrence prognosis of bladder cancer. Transl Androl Urol 2023; 12:1834-1844. [PMID: 38196702 PMCID: PMC10772645 DOI: 10.21037/tau-23-432] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2023] [Accepted: 11/29/2023] [Indexed: 01/11/2024] Open
Abstract
Background Bladder cancer (BC) has attracted significant attention on account of its recurrence as well as mortality. Tumor recurrence plays a significant role in cancer patients' individual treatment. Secreted phosphoprotein 1 (SPP1) has been recognized as a potential target for treating BC and served as a useful biomarker for prognosis; it is commonly tested by immunohistochemistry (IHC). However, this conventional method has the disadvantage of being time-consuming and costly. This study aimed to develop a molecular beacon (MB) for the detection of SPP1 messenger RNA (mRNA) for the recurrence prognosis of BC. Methods An MB was constructed and applied to image SPP1 mRNA level at both molecular and cellular level. The fluorescence spectra were recorded with a fluorescence spectrophotometer. The effect of SPP1 MB toward the cell viability was performed by Cell Counting Kit-8 (CCK-8) assays. The SPP1 mRNA expression level was measured by quantitative real-time polymerase chain reaction (qRT-PCR). Cancer cells and tissues were analyzed with confocal fluorescence imaging. Correlation, sensitivity, and specificity parameters were calculated. Results It was demonstrated that both cancer cells and BC tissues expressed high signal which reflected the expression of SPP1. In addition, 42 cases were detected by MB and divided into two groups according to the fluorescence intensity. The results further suggested that highly expressed SPP1 could predict early tumor recurrence in BC. Conclusions The SPP1 MB could be applied as an appropriate approach to predict BC recurrence and patients' prognosis.
Collapse
Affiliation(s)
- Zhouliang Wu
- Department of Urology, The Second Hospital of Tianjin Medical University, Tianjin, China
- Tianjin Key Laboratory of Urology, Tianjin Institute of Urology, The Second Hospital of Tianjin Medical University, Tianjin, China
| | - Donghuai Wang
- Department of Urology, The Second Hospital of Tianjin Medical University, Tianjin, China
- Tianjin Key Laboratory of Urology, Tianjin Institute of Urology, The Second Hospital of Tianjin Medical University, Tianjin, China
| | - Yu Zhang
- Department of Urology, The Second Hospital of Tianjin Medical University, Tianjin, China
- Tianjin Key Laboratory of Urology, Tianjin Institute of Urology, The Second Hospital of Tianjin Medical University, Tianjin, China
| | - Zhe Zhang
- Department of Urology, The Second Hospital of Tianjin Medical University, Tianjin, China
- Tianjin Key Laboratory of Urology, Tianjin Institute of Urology, The Second Hospital of Tianjin Medical University, Tianjin, China
| | - Chong Shen
- Department of Urology, The Second Hospital of Tianjin Medical University, Tianjin, China
- Tianjin Key Laboratory of Urology, Tianjin Institute of Urology, The Second Hospital of Tianjin Medical University, Tianjin, China
| | - Zhongcheng Xin
- Department of Urology, The Second Hospital of Tianjin Medical University, Tianjin, China
- Tianjin Key Laboratory of Urology, Tianjin Institute of Urology, The Second Hospital of Tianjin Medical University, Tianjin, China
| | - Yuhong Feng
- Department of Urology, The Second Hospital of Tianjin Medical University, Tianjin, China
- Tianjin Key Laboratory of Urology, Tianjin Institute of Urology, The Second Hospital of Tianjin Medical University, Tianjin, China
| | - Hailong Hu
- Department of Urology, The Second Hospital of Tianjin Medical University, Tianjin, China
- Tianjin Key Laboratory of Urology, Tianjin Institute of Urology, The Second Hospital of Tianjin Medical University, Tianjin, China
| |
Collapse
|
4
|
He ZX, Yang WG, Zengyangzong D, Gao G, Zhang Q, Liu HM, Zhao W, Ma LY. Targeting cullin neddylation for cancer and fibrotic diseases. Theranostics 2023; 13:5017-5056. [PMID: 37771770 PMCID: PMC10526667 DOI: 10.7150/thno.78876] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2022] [Accepted: 04/12/2023] [Indexed: 09/30/2023] Open
Abstract
Protein neddylation is a post-translational modification, and its best recognized substrates are cullin family proteins, which are the core component of Cullin-RING ligases (CRLs). Given that most neddylation pathway proteins are overactivated in different cancers and fibrotic diseases, targeting neddylation becomes an emerging approach for the treatment of these diseases. To date, numerous neddylation inhibitors have been developed, of which MLN4924 has entered phase I/II/III clinical trials for cancer treatment, such as acute myeloid leukemia, melanoma, lymphoma and solid tumors. Here, we systematically describe the structures and biological functions of the critical enzymes in neddylation, highlight the medicinal chemistry advances in the development of neddylation inhibitors and propose the perspectives concerning targeting neddylation for cancer and fibrotic diseases.
Collapse
Affiliation(s)
- Zhang-Xu He
- Pharmacy College, Henan University of Chinese Medicine, 450046, Zhengzhou, China
- State Key Laboratory of Esophageal Cancer Prevention and Treatment; Key Laboratory of Advanced Pharmaceutical Technology, Ministry of Education of China; School of Pharmaceutical Sciences, Zhengzhou University, Zhengzhou, Henan 450001, China
| | - Wei-guang Yang
- Children's hospital affiliated of Zhengzhou university; Henan children's hospital; Zhengzhou children's hospital, Henan Zhengzhou 450000, China
| | - Dan Zengyangzong
- State Key Laboratory of Esophageal Cancer Prevention and Treatment; Key Laboratory of Advanced Pharmaceutical Technology, Ministry of Education of China; School of Pharmaceutical Sciences, Zhengzhou University, Zhengzhou, Henan 450001, China
| | - Ge Gao
- State Key Laboratory of Esophageal Cancer Prevention and Treatment; Key Laboratory of Advanced Pharmaceutical Technology, Ministry of Education of China; School of Pharmaceutical Sciences, Zhengzhou University, Zhengzhou, Henan 450001, China
| | - Qian Zhang
- State Key Laboratory of Esophageal Cancer Prevention and Treatment; Key Laboratory of Advanced Pharmaceutical Technology, Ministry of Education of China; School of Pharmaceutical Sciences, Zhengzhou University, Zhengzhou, Henan 450001, China
| | - Hong-Min Liu
- State Key Laboratory of Esophageal Cancer Prevention and Treatment; Key Laboratory of Advanced Pharmaceutical Technology, Ministry of Education of China; School of Pharmaceutical Sciences, Zhengzhou University, Zhengzhou, Henan 450001, China
| | - Wen Zhao
- State Key Laboratory of Esophageal Cancer Prevention and Treatment; Key Laboratory of Advanced Pharmaceutical Technology, Ministry of Education of China; School of Pharmaceutical Sciences, Zhengzhou University, Zhengzhou, Henan 450001, China
| | - Li-Ying Ma
- State Key Laboratory of Esophageal Cancer Prevention and Treatment; Key Laboratory of Advanced Pharmaceutical Technology, Ministry of Education of China; School of Pharmaceutical Sciences, Zhengzhou University, Zhengzhou, Henan 450001, China
- China Meheco Topfond Pharmaceutical Co., Zhumadian 463000, China
- Key Laboratory of Cardio-cerebrovascular Drug, Henan Province, Zhumadian 463000, China
| |
Collapse
|
5
|
Jiang X, Xia Y, Meng H, Liu Y, Cui J, Huang H, Yin G, Shi B. Identification of a Nuclear Mitochondrial-Related Multi-Genes Signature to Predict the Prognosis of Bladder Cancer. Front Oncol 2021; 11:746029. [PMID: 34692528 PMCID: PMC8528313 DOI: 10.3389/fonc.2021.746029] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2021] [Accepted: 09/13/2021] [Indexed: 12/14/2022] Open
Abstract
INTRODUCTION Bladder cancer (BC) is one of the most prevalent urinary cancers, and its management is still a problem causing recurrence and progression, elevating mortality. MATERIALS AND METHODS We aimed at the nuclear mitochondria-related genes (MTRGs), collected from the MITOMAP: A Human Mitochondrial Genome Database. Meanwhile, the expression profiles and clinical information of BC were downloaded from the Cancer Genome Atlas (TCGA) as a training group. The univariate, multivariate, and the least absolute shrinkage and selection operator (LASSO) Cox regression analyses were used to construct a nuclear mitochondrial-related multi-genes signature and the prognostic nomogram. RESULTS A total of 17 nuclear MTRGs were identified to be correlated with the overall survival (OS) of BC patients, and a nuclear MTRGs signature based on 16 genes expression was further determined by the LASSO Cox regression analysis. Based on a nuclear MTRGs scoring system, BC patients from the TCGA cohort were divided into high- and low- nuclear MTRGs score groups. Patients with a high nuclear MTRGs score exhibited a significantly poorer outcome (median OS: 92.90 vs 20.20 months, p<0.0001). The nuclear MTRGs signature was further verified in three independent datasets, namely, GSE13507, GSE31684, and GSE32548, from the Gene Expression Omnibus (GEO). The BC patients with a high nuclear MTRGs score had significantly worse survival (median OS in GSE13507: 31.52 vs 98.00 months, p<0.05; GSE31684: 32.85 months vs unreached, p<0.05; GSE32548: unreached vs unreached, p<0.05). Furthermore, muscle-invasive bladder cancer (MIBC) patients had a significantly higher nuclear MTRGs score (p<0.05) than non-muscle-invasive bladder cancer (NMIBC) patients. The integrated signature outperformed each involved MTRG. In addition, a nuclear MTRGs-based nomogram was constructed as a novel prediction prognosis model, whose AUC values for OS at 1, 3, 5 years were 0.76, 0.75, and 0.75, respectively, showing the prognostic nomogram had good and stable predicting ability. Enrichment analyses of the hallmark gene set and KEGG pathway revealed that the E2F targets, G2M checkpoint pathways, and cell cycle had influences on the survival of BC patients. Furthermore, the analysis of tumor microenvironment indicated more CD8+ T cells and higher immune score in patients with high nuclear MTRGs score, which might confer sensitivity to immune checkpoint inhibitors. CONCLUSIONS Not only could the signature and prognostic nomogram predict the prognosis of BC, but it also had potential therapeutic guidance.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | - Benkang Shi
- Department of Urology, Qilu Hospital, Cheeloo College of Medicine, Shandong University, Ji’nan, China
| |
Collapse
|
6
|
Vijayasimha K, Dolan BP. The Many Potential Fates of Non-Canonical Protein Substrates Subject to NEDDylation. Cells 2021; 10:2660. [PMID: 34685640 PMCID: PMC8534235 DOI: 10.3390/cells10102660] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2021] [Revised: 09/28/2021] [Accepted: 09/30/2021] [Indexed: 02/06/2023] Open
Abstract
Neuronal precursor cell-expressed developmentally down-regulated protein 8 (NEDD8) is a ubiquitin-like protein (UBL) whose canonical function involves binding to, and thus, activating Cullin-Ring finger Ligases (CRLs), one of the largest family of ubiquitin ligases in the eukaryotic cell. However, in recent years, several non-canonical protein substrates of NEDD8 have been identified. Here we attempt to review the recent literature regarding non-canonical NEDDylation of substrates with a particular focus on how the covalent modification of NEDD8 alters the protein substrate. Like much in the study of ubiquitin and UBLs, there are no clear and all-encompassing explanations to satisfy the textbooks. In some instances, NEDD8 modification appears to alter the substrates localization, particularly during times of stress. NEDDylation may also have conflicting impacts upon a protein's stability: some reports indicate NEDDylation may protect against degradation whereas others show NEDDylation can promote degradation. We also examine how many of the in vitro studies measuring non-canonical NEDDylation were conducted and compare those conditions to those which may occur in vivo, such as cancer progression. It is likely that the conditions used to study non-canonical NEDDylation are similar to some types of cancers, such as glioblastoma, colon and rectal cancers, and lung adenocarcinomas. Although the full outcomes of non-canonical NEDDylation remain unknown, our review of the literature suggests that researchers keep an open mind to the situations where this modification occurs and determine the functional impacts of NEDD8-modification to the specific substrates which they study.
Collapse
Affiliation(s)
| | - Brian P. Dolan
- Department of Biomedical Sciences, Carlson College of Veterinary Medicine, Oregon State University, Corvallis, OR 97331, USA;
| |
Collapse
|
7
|
Hua S, Feng T, Yin L, Wang Q, Shao X. NEDD9 overexpression: Prognostic and guidance value in acute myeloid leukaemia. J Cell Mol Med 2021; 25:9331-9339. [PMID: 34432355 PMCID: PMC8500976 DOI: 10.1111/jcmm.16870] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2021] [Revised: 07/22/2021] [Accepted: 08/02/2021] [Indexed: 12/11/2022] Open
Abstract
It has been demonstrated that neural precursor cell expressed developmentally downregulated protein (NEDD) plays crucial roles in tumorigenesis and may serve as potential biomarkers in cancer diagnosis and prognosis. However, few studies systematically investigated the expression of NEDD family members in acute myeloid leukaemia (AML). We systemically determined the expression of NEDD family members in AML and determined their clinical significance. We identified that NEDD9 expression was the only member among NEDD family which was significantly increased in AML. NEDD9 overexpression was more frequently classified as FAB‐M4/M5 (p = 0.008 and 0.013, respectively), hardly as FAB‐M2/M3. Moreover, NEDD9 overexpression was significantly associated with complex karyotype and TP53 mutation. The significant association between NEDD9 overexpression and survival was also observed in whole‐cohort AML and non‐M3 AML patients. Notably, AML patients with NEDD9 overexpression may benefit from hematopoietic stem cell transplantation (HSCT), whereas those cases without NEDD9 overexpression did not. Finally, a total of 822 mRNAs and 31 microRNAs were found to be differentially expressed between two groups. Among the microRNAs, miR‐381 was also identified as a microRNA that could direct target NEDD9. Taken together, our findings demonstrated that NEDD9 overexpression is associated with genetic abnormalities as well as prognosis and might act as a potential biomarker guiding the choice between HSCT and chemotherapy in patients with AML after achieving complete remission.
Collapse
Affiliation(s)
- Shenghao Hua
- Department of Clinical Laboratory, Children's Hospital of Soochow University, Suzhou, China
| | - Tao Feng
- Department of Clinical Laboratory, Children's Hospital of Soochow University, Suzhou, China
| | - Lei Yin
- Department of Clinical Laboratory, Children's Hospital of Soochow University, Suzhou, China
| | - Qi Wang
- Department of Clinical Laboratory, Children's Hospital of Soochow University, Suzhou, China
| | - Xuejun Shao
- Department of Clinical Laboratory, Children's Hospital of Soochow University, Suzhou, China
| |
Collapse
|
8
|
Jiang Y, Li L, Li Y, Liu G, Hoffman RM, Jia L. Neddylation Regulates Macrophages and Implications for Cancer Therapy. Front Cell Dev Biol 2021; 9:681186. [PMID: 34164400 PMCID: PMC8215544 DOI: 10.3389/fcell.2021.681186] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2021] [Accepted: 05/05/2021] [Indexed: 12/24/2022] Open
Abstract
Tumor-associated macrophages (TAMs) promote cancer progression via stimulating angiogenesis, invasion/metastasis, and suppressing anti-cancer immunity. Targeting TAMs is a potential promising cancer therapeutic strategy. Neddylation adds the ubiquitin-like protein NEDD8 to substrates, and thereby regulates diverse biological processes in multiple cell types, including macrophages. By controlling cellular responses, the neddylation pathway regulates the function, migration, survival, and polarization of macrophages. In the present review we summarized how the neddylation pathway modulates Macrophages and its implications for cancer therapy.
Collapse
Affiliation(s)
- Yanyu Jiang
- Longhua Hospital, Cancer Institute, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Lihui Li
- Longhua Hospital, Cancer Institute, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Yan Li
- College of Life Sciences, Beijing Normal University, Beijing, China
| | - Guangwei Liu
- College of Life Sciences, Beijing Normal University, Beijing, China
| | - Robert M Hoffman
- Department of Surgery, University of California, San Diego, San Diego, CA, United States.,AntiCancer Inc., San Diego, CA, United States
| | - Lijun Jia
- Longhua Hospital, Cancer Institute, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| |
Collapse
|
9
|
Zheng YC, Guo YJ, Wang B, Wang C, Mamun MAA, Gao Y, Liu HM. Targeting neddylation E2s: a novel therapeutic strategy in cancer. J Hematol Oncol 2021; 14:57. [PMID: 33827629 PMCID: PMC8028724 DOI: 10.1186/s13045-021-01070-w] [Citation(s) in RCA: 25] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2020] [Accepted: 03/29/2021] [Indexed: 12/22/2022] Open
Abstract
Ubiquitin-conjugating enzyme E2 M (UBE2M) and ubiquitin-conjugating enzyme E2 F (UBE2F) are the two NEDD8-conjugating enzymes of the neddylation pathway that take part in posttranslational modification and change the activity of target proteins. The activity of E2 enzymes requires both a 26-residue N-terminal docking peptide and a conserved E2 catalytic core domain, which is the basis for the transfer of neural precursor cell-expressed developmentally downregulated 8 (NEDD8). By recruiting E3 ligases and targeting cullin and non-cullin substrates, UBE2M and UBE2F play diverse biological roles. Currently, there are several inhibitors that target the UBE2M-defective in cullin neddylation protein 1 (DCN1) interaction to treat cancer. As described above, this review provides insights into the mechanism of UBE2M and UBE2F and emphasizes these two E2 enzymes as appealing therapeutic targets for the treatment of cancers.
Collapse
Affiliation(s)
- Yi-Chao Zheng
- State Key Laboratory of Esophageal Cancer Prevention and Treatment, Key Laboratory of Advanced Drug Preparation Technologies, Ministry of Education of China, Key Laboratory of Henan Province for Drug Quality and Evaluation, Institute of Drug Discovery and Development, School of Pharmaceutical Sciences, Zhengzhou University, 100 Kexue Avenue, Zhengzhou, 450001, Henan, China
| | - Yan-Jia Guo
- State Key Laboratory of Esophageal Cancer Prevention and Treatment, Key Laboratory of Advanced Drug Preparation Technologies, Ministry of Education of China, Key Laboratory of Henan Province for Drug Quality and Evaluation, Institute of Drug Discovery and Development, School of Pharmaceutical Sciences, Zhengzhou University, 100 Kexue Avenue, Zhengzhou, 450001, Henan, China
| | - Bo Wang
- State Key Laboratory of Esophageal Cancer Prevention and Treatment, Key Laboratory of Advanced Drug Preparation Technologies, Ministry of Education of China, Key Laboratory of Henan Province for Drug Quality and Evaluation, Institute of Drug Discovery and Development, School of Pharmaceutical Sciences, Zhengzhou University, 100 Kexue Avenue, Zhengzhou, 450001, Henan, China
| | - Chong Wang
- Department of Hematology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - M A A Mamun
- State Key Laboratory of Esophageal Cancer Prevention and Treatment, Key Laboratory of Advanced Drug Preparation Technologies, Ministry of Education of China, Key Laboratory of Henan Province for Drug Quality and Evaluation, Institute of Drug Discovery and Development, School of Pharmaceutical Sciences, Zhengzhou University, 100 Kexue Avenue, Zhengzhou, 450001, Henan, China
| | - Ya Gao
- State Key Laboratory of Esophageal Cancer Prevention and Treatment, Key Laboratory of Advanced Drug Preparation Technologies, Ministry of Education of China, Key Laboratory of Henan Province for Drug Quality and Evaluation, Institute of Drug Discovery and Development, School of Pharmaceutical Sciences, Zhengzhou University, 100 Kexue Avenue, Zhengzhou, 450001, Henan, China.
| | - Hong-Min Liu
- State Key Laboratory of Esophageal Cancer Prevention and Treatment, Key Laboratory of Advanced Drug Preparation Technologies, Ministry of Education of China, Key Laboratory of Henan Province for Drug Quality and Evaluation, Institute of Drug Discovery and Development, School of Pharmaceutical Sciences, Zhengzhou University, 100 Kexue Avenue, Zhengzhou, 450001, Henan, China.
| |
Collapse
|
10
|
Silva TA, Azevedo H. Comparative bioinformatics analysis of prognostic and differentially expressed genes in non-muscle and muscle invasive bladder cancer. J Proteomics 2020; 229:103951. [PMID: 32860965 DOI: 10.1016/j.jprot.2020.103951] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2020] [Revised: 06/29/2020] [Accepted: 08/24/2020] [Indexed: 12/19/2022]
Abstract
Bladder cancer (BC) is classified into non-muscle (NMIBC) and muscle invasive (MIBC) diseases. Several molecular alterations were previously associated with NMIBC and MIBC, but few studies have systematically compared the molecular differences between these subtypes. Here, we analyzed prognostic and differentially expressed genes in NMIBC and MIBC, using an integrative bioinformatics approach. These genes were used in functional enrichment and co-expression protein interaction (COPI) network analyses to reveal common and exclusive biological functions involved in NMIBC and MIBC. In NMIBC, the enriched functions were related to oxidative stress response, cell cycle, glutathione metabolism, ubiquitination and protein translation. Conversely, enriched functions in MIBC were extracellular matrix organization, cell migration and actin cytoskeleton. Several genes in NMIBC did not overlap with those reported to MIBC, suggesting these subtypes may have distinct underlying mechanisms. Particularly, MIBC genes were enriched for functions involved in cell migration and invasion, which could help to molecularly differentiate NMIBC and MIBC. The analysis of COPI networks disclosed high centrality nodes that may be essential for NMIBC and MIBC. Further research will determine to which extent NMIBC and MIBC share common biological functions and identify potential candidates for the differential diagnosis, prognosis and treatment of NMIBC and MIBC. SIGNIFICANCE: This study has systematically compared prognostic and differentially expressed genes between non-muscle (NMIBC) and muscle invasive (MIBC) bladder cancer, using an integrative bioinformatics approach. Many genes and biological functions were exclusively associated with either NMIBC or MIBC, suggesting that these disease subtypes could be driven by distinct molecular mechanisms. Particularly, prognostic and differentially expressed genes in MIBC were involved in cell migration and invasion, which can help to molecularly differentiate the NMIBC and MIBC subtypes. Moreover, the analysis of co-expression protein interaction networks identified high centrality nodes that could be potential candidates for the prognosis and treatment of NMIBC and MIBC.
Collapse
Affiliation(s)
- Tiago Aparecido Silva
- Department of Surgery, Division of Urology, Federal University of São Paulo, São Paulo, SP, Brazil
| | - Hatylas Azevedo
- Department of Surgery, Division of Urology, Federal University of São Paulo, São Paulo, SP, Brazil.
| |
Collapse
|
11
|
NEDDylation negatively regulates ERRβ expression to promote breast cancer tumorigenesis and progression. Cell Death Dis 2020; 11:703. [PMID: 32839427 PMCID: PMC7445179 DOI: 10.1038/s41419-020-02838-7] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2019] [Revised: 07/06/2020] [Accepted: 07/09/2020] [Indexed: 02/07/2023]
Abstract
Estrogen-related receptor beta (ERRβ) is downregulated in breast cancer cells and its overexpression in breast cancer patients is positively correlated with an improved prognosis and prolonged relapse-free survival. Here, we unravelled a molecular mechanism for ERRβ downregulation in breast cancer. We found that ERRβ is a key substrate of the SCF complex and that NEDDylation can activate the Cullin subunits of the SCF complex to target ERRβ for degradation in breast cancer. Consistently, using in vitro and in vivo models, we demonstrated that MLN4924, a specific small molecule inhibitor of NEDDylation, can restore ERRβ expression and culminate in a reduction in cell proliferation and migration of breast cancer cells. We also showed that increased ERRβ expression promotes the upregulation of its target genes, including the tumour suppressors p21Cip1/Waf1 and E-cadherin, involved in cell proliferation and migration arrest at the gene promoter level. Interestingly, this tumour suppressive role of ERRβ does not depend on the expression of ERα in breast cancer. Moreover, our data revealed that the ERRβ recruits the transcription co-activator p300 to its targeted gene promoters to upregulate their expression. Collectively, our work revealed that restoration of ERRβ expression using the NEDDylation inhibitor MLN4924 can be a novel and effective strategy for breast cancer treatment.
Collapse
|
12
|
Wu J, Zhang L, Song Q, Yu L, Wang S, Zhang B, Wang W, Xia P, Chen X, Xiao Y, Xu C. Systematical identification of cell-specificity of CTCF-gene binding based on epigenetic modifications. Brief Bioinform 2020; 22:589-600. [PMID: 32022856 DOI: 10.1093/bib/bbaa004] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2019] [Revised: 12/20/2019] [Accepted: 01/09/2020] [Indexed: 12/22/2022] Open
Abstract
The CCCTC-binding factor (CTCF) mediates transcriptional regulation and implicates epigenetic modifications in cancers. However, the systematically unveiling inverse regulatory relationship between CTCF and epigenetic modifications still remains unclear, especially the mechanism by which histone modification mediates CTCF binding. Here, we developed a systematic approach to investigate how epigenetic changes affect CTCF binding. Through integration analysis of CTCF binding in 30 cell lines, we concluded that CTCF generally binds with higher intensity in normal cell lines than that in cancers, and higher intensity in genome regions closed to transcription start sites. To facilitate the better understanding of their associations, we constructed linear mixed-effect models to analyze the effects of the epigenetic modifications on CTCF binding in four cancer cell lines and six normal cell lines, and identified seven epigenetic modifications as potential epigenetic patterns that influence CTCF binding intensity in promoter regions and six epigenetic modifications in enhancer regions. Further analysis of the effects in different locations revealed that the epigenetic regulation of CTCF binding was location-specific and cancer cell line-specific. Moreover, H3K4me2 and H3K9ac showed the potential association with immune regulation of disease. Taken together, our method can contribute to improve the understanding of the epigenetic regulation of CTCF binding and provide potential therapeutic targets for treating tumors associated with CTCF.
Collapse
Affiliation(s)
- Jie Wu
- Bioinformatics at Harbin Medical University, China
| | - Li Zhang
- Bioinformatics at Harbin Medical University, China
| | - Qian Song
- Bioinformatics at Harbin Medical University, China
| | - Lei Yu
- Bioinformatics at Harbin Medical University, China
| | - Shuyuan Wang
- Bioinformatics at Harbin Medical University, China
| | - Bo Zhang
- Bioinformatics at Harbin Medical University, China
| | - Weida Wang
- Bioinformatics at Harbin Medical University, China
| | - Peng Xia
- Bioinformatics at Harbin Medical University, China
| | - Xiaowen Chen
- Bioinformatics at Harbin Medical University, China
| | - Yun Xiao
- Bioinformatics at Harbin Medical University, China
| | - Chaohan Xu
- Bioinformatics at Harbin Medical University, China
| |
Collapse
|
13
|
Zhang L, Yang L, Xia ZW, Yang SC, Li WH, Liu B, Yu ZQ, Gong PF, Yang YL, Sun WZ, Mo J, Li GS, Wang TY, Wang K. The role of fibroblast activation protein in progression and development of osteosarcoma cells. Clin Exp Med 2020; 20:121-130. [PMID: 31745677 DOI: 10.1007/s10238-019-00591-6] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2019] [Accepted: 10/28/2019] [Indexed: 12/11/2022]
Abstract
To investigate the expression levels of fibroblast activation protein (FAP) in human osteosarcoma tissues and its possible correlations with clinical pathological characteristics of patients with osteosarcoma, and to explore the potential effects of FAP on progression and development of osteosarcoma. Immunohistochemistry (IHC) assay was initially performed to detect the expression levels of FAP in 66 tumor tissues and adjacent non-tumor tissues. Patients were sequentially divided into two groups based on different expression levels of FAP. The correlations between the expression levels of FAP and the clinical pathological characteristics were investigated, and the role of FAP in proliferation, migration, and invasion of osteosarcoma cells was assessed via colony formation, MTT, wound healing, and transwell assays, respectively. The possible effects of FAP on tumor growth and metastasis were evaluated in vivo. We further attempted to reveal the underlying mechanism of FAP involved in tumor growth through bioinformatics and IHC assays. High expression levels of FAP were noted in human osteosarcoma tissues. It also was unveiled that FAP was significantly associated with the tumor size (P = 0.005*) and clinical stage (P = 0.017*). Our data further confirmed that knockdown of FAP remarkably blocked proliferation, migration, and invasion of osteosarcoma cells in vitro, and suppressed tumor growth and metastasis in mice via AKT signaling pathway. The possible role of FAP in progression and development of osteosarcoma could be figured out. Our data may be helpful to develop a novel therapeutic target for the treatment of osteosarcoma.
Collapse
Affiliation(s)
- Liang Zhang
- Department of Orthopedics, The Second Hospital of Tianjin Medical University, Tianjin, 300211, China
| | - Li Yang
- Department of Orthopedics, The Second Hospital of Tianjin Medical University, Tianjin, 300211, China
| | - Zi-Wei Xia
- Department of Orthopedics, The Second Hospital of Tianjin Medical University, Tianjin, 300211, China
| | - Shi-Chang Yang
- Department of Orthopedics, The Second Hospital of Tianjin Medical University, Tianjin, 300211, China
| | - Wen-Hui Li
- Department of Orthopedics, The Second Hospital of Tianjin Medical University, Tianjin, 300211, China
| | - Bin Liu
- Department of Gastrointestinal Surgery, The Second Hospital of Tianjin Medical University, Tianjin, 300211, China
| | - Zi-Qi Yu
- Department of Orthopedics, The Second Hospital of Tianjin Medical University, Tianjin, 300211, China
| | - Peng-Fei Gong
- Department of Orthopedics, The Second Hospital of Tianjin Medical University, Tianjin, 300211, China
| | - Ya-Lin Yang
- Department of Orthopedics, The Second Hospital of Tianjin Medical University, Tianjin, 300211, China
| | - Wei-Zong Sun
- Department of Orthopedics, The Second Hospital of Tianjin Medical University, Tianjin, 300211, China
| | - Jing Mo
- Department of Pathology, Tianjin Medical University, Tianjin, 300070, China
| | - Gui-Shi Li
- Department of Joint Orthopedics, Yantai Yuhuangding Hospital, Yantai, 264000, Shandong Province, China
| | - Tian-Yi Wang
- Department of Orthopedics, The 981st Hospital of the Chinese People's Liberation Army, Chengde, 067000, Hebei Province, China.
| | - Kai Wang
- Department of Orthopedics, The Second Hospital of Tianjin Medical University, Tianjin, 300211, China.
| |
Collapse
|
14
|
Zhou L, Jia L. Targeting Protein Neddylation for Cancer Therapy. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2020; 1217:297-315. [PMID: 31898235 DOI: 10.1007/978-981-15-1025-0_18] [Citation(s) in RCA: 37] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/12/2023]
Abstract
Neddylation is a posttranslational modification that conjugates a ubiquitin-like protein NEDD8 to substrate proteins. The best-characterized substrates of neddylation are the cullin subunits of cullin-RING E3 ubiquitin ligase complexes (CRLs). CRLs as the largest family of E3 ubiquitin ligases control many important biological processes, including tumorigenesis, through promoting ubiquitylation and subsequent degradation of a variety of key regulatory proteins. The process of protein neddylation is overactivated in multiple types of human cancers, providing a sound rationale as an attractive anticancer therapeutic strategy, evidenced by the development of the NEDD8-activating enzyme (NAE) inhibitor MLN4924 (also known as pevonedistat). Recently, increasing evidence strongly indicates that neddylation inhibition by MLN4924 exerts anticancer effects mainly by triggering cell apoptosis, senescence, and autophagy and causing angiogenesis suppression, inflammatory responses, and chemo-/radiosensitization in a context-dependent manner. Here, we briefly summarize the latest progresses in this field, focusing on the preclinical studies to validate neddylation modification as a promising anticancer target.
Collapse
Affiliation(s)
- Lisha Zhou
- Department of Biochemistry, Medical College, Taizhou University, Taizhou, China.
| | - Lijun Jia
- Cancer Institute, Longhua Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai, China.
| |
Collapse
|
15
|
Huang S, Yang J, Fong S, Zhao Q. Artificial intelligence in cancer diagnosis and prognosis: Opportunities and challenges. Cancer Lett 2019; 471:61-71. [PMID: 31830558 DOI: 10.1016/j.canlet.2019.12.007] [Citation(s) in RCA: 257] [Impact Index Per Article: 42.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2019] [Revised: 12/04/2019] [Accepted: 12/06/2019] [Indexed: 02/06/2023]
Abstract
Cancer is an aggressive disease with a low median survival rate. Ironically, the treatment process is long and very costly due to its high recurrence and mortality rates. Accurate early diagnosis and prognosis prediction of cancer are essential to enhance the patient's survival rate. Developments in statistics and computer engineering over the years have encouraged many scientists to apply computational methods such as multivariate statistical analysis to analyze the prognosis of the disease, and the accuracy of such analyses is significantly higher than that of empirical predictions. Furthermore, as artificial intelligence (AI), especially machine learning and deep learning, has found popular applications in clinical cancer research in recent years, cancer prediction performance has reached new heights. This article reviews the literature on the application of AI to cancer diagnosis and prognosis, and summarizes its advantages. We explore how AI assists cancer diagnosis and prognosis, specifically with regard to its unprecedented accuracy, which is even higher than that of general statistical applications in oncology. We also demonstrate ways in which these methods are advancing the field. Finally, opportunities and challenges in the clinical implementation of AI are discussed. Hence, this article provides a new perspective on how AI technology can help improve cancer diagnosis and prognosis, and continue improving human health in the future.
Collapse
Affiliation(s)
- Shigao Huang
- Cancer Center, Institute of Translational Medicine, Faculty of Health Sciences, University of Macau, Taipa, Macao, China
| | - Jie Yang
- Department of Computer and Information Science, University of Macau, Taipa, Macau, China; Chongqing Industry&Trade Polytechnic, Chongqing, China
| | - Simon Fong
- Department of Computer and Information Science, University of Macau, Taipa, Macau, China; Zhuhai Institute of Advanced Technology Chinese Academy of Sciences, Zhuhai, China.
| | - Qi Zhao
- Cancer Center, Institute of Translational Medicine, Faculty of Health Sciences, University of Macau, Taipa, Macao, China.
| |
Collapse
|
16
|
Proteomics identifies neddylation as a potential therapy target in small intestinal neuroendocrine tumors. Oncogene 2019; 38:6881-6897. [PMID: 31406256 DOI: 10.1038/s41388-019-0938-8] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2018] [Revised: 04/30/2019] [Accepted: 05/15/2019] [Indexed: 02/08/2023]
Abstract
Patients with small intestinal neuroendocrine tumors (SI-NETs) frequently develop spread disease; however, the underlying molecular mechanisms of disease progression are not known and effective preventive treatment strategies are lacking. Here, protein expression profiling was performed by HiRIEF-LC-MS in 14 primary SI-NETs from patients with and without liver metastases detected at the time of surgery and initial treatment. Among differentially expressed proteins, overexpression of the ubiquitin-like protein NEDD8 was identified in samples from patients with liver metastasis. Further, NEDD8 correlation analysis indicated co-expression with RBX1, a key component in cullin-RING ubiquitin ligases (CRLs). In vitro inhibition of neddylation with the therapeutic agent pevonedistat (MLN4924) resulted in a dramatic decrease of proliferation in SI-NET cell lines. Subsequent mass spectrometry-based proteomics analysis of pevonedistat effects and effects of the proteasome inhibitor bortezomib revealed stabilization of multiple targets of CRLs including p27, an established tumor suppressor in SI-NET. Silencing of NEDD8 and RBX1 using siRNA resulted in a stabilization of p27, suggesting that the cellular levels of NEDD8 and RBX1 affect CRL activity. Inhibition of CRL activity, by either NEDD8/RBX1 silencing or pevonedistat treatment of cells resulted in induction of apoptosis that could be partially rescued by siRNA-based silencing of p27. Differential expression of both p27 and NEDD8 was confirmed in a second cohort of SI-NET using immunohistochemistry. Collectively, these findings suggest a role for CRLs and the ubiquitin proteasome system in suppression of p27 in SI-NET, and inhibition of neddylation as a putative therapeutic strategy in SI-NET.
Collapse
|
17
|
Tian DW, Wu ZL, Jiang LM, Gao J, Wu CL, Hu HL. Neural precursor cell expressed, developmentally downregulated 8 promotes tumor progression and predicts poor prognosis of patients with bladder cancer. Cancer Sci 2018; 110:458-467. [PMID: 30407690 PMCID: PMC6317957 DOI: 10.1111/cas.13865] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2018] [Revised: 10/31/2018] [Accepted: 11/05/2018] [Indexed: 12/15/2022] Open
Abstract
Neddylation has been researched in many different human carcinomas. However, the roles of neural precursor cell expressed, developmentally downregulated 8 (NEDD8) in bladder cancer are still unknown. Our study was the first study which systematically investigated the possible functions of NEDD8 in bladder cancer (BC) progression. We carried out immunohistochemistry to explore associations between the expression of NEDD8 in tumor tissues and clinical outcomes of patients. RT‐qPCR and western blot were used to detect the expressional levels of genes. The biological abilities of cell proliferation, migration and invasion were researched by in vitro and in vivo experiments. Results were as follows: Data from The Cancer Genome Atlas (TCGA) database showed that NEDD8 was overexpressed in BC tissues and was associated with poor patient survival. Results of immunohistochemistry found that NEDD8 was significantly associated with poor clinical outcomes of BC patients. Suppression of NEDD8 could inhibit the proliferation, migration and invasion of tumor cells. Knocking down NEDD8 could induce apoptosis and G2 phase arrest of cell cycle progression. In vivo, suppression of NEDD8 restricted growth and metastasis of tumors in mice. In conclusion, NEDD8 has important roles in regulating the progression of BC cells and was associated with poor prognosis of patients; hence, it may become a potential therapeutic target of BC.
Collapse
Affiliation(s)
- Da-Wei Tian
- Department of Urology, The Second Hospital of Tianjin Medical University, Tianjin, China.,Sino-Singapore Eco-City Hospital of Tianjin Medical University, Tianjin, China.,Tianjin Key Laboratory of Urology, Tianjin Institute of Urology, Tianjin, China
| | - Zhou-Liang Wu
- Department of Urology, The Second Hospital of Tianjin Medical University, Tianjin, China.,Sino-Singapore Eco-City Hospital of Tianjin Medical University, Tianjin, China.,Tianjin Key Laboratory of Urology, Tianjin Institute of Urology, Tianjin, China
| | - Li-Ming Jiang
- Department of Urology, The Second Hospital of Tianjin Medical University, Tianjin, China.,Sino-Singapore Eco-City Hospital of Tianjin Medical University, Tianjin, China.,Tianjin Key Laboratory of Urology, Tianjin Institute of Urology, Tianjin, China
| | - Jie Gao
- Department of Urology, The Second Hospital of Tianjin Medical University, Tianjin, China.,Sino-Singapore Eco-City Hospital of Tianjin Medical University, Tianjin, China.,Tianjin Key Laboratory of Urology, Tianjin Institute of Urology, Tianjin, China
| | - Chang-Li Wu
- Department of Urology, The Second Hospital of Tianjin Medical University, Tianjin, China.,Sino-Singapore Eco-City Hospital of Tianjin Medical University, Tianjin, China.,Tianjin Key Laboratory of Urology, Tianjin Institute of Urology, Tianjin, China
| | - Hai-Long Hu
- Department of Urology, The Second Hospital of Tianjin Medical University, Tianjin, China.,Sino-Singapore Eco-City Hospital of Tianjin Medical University, Tianjin, China.,Tianjin Key Laboratory of Urology, Tianjin Institute of Urology, Tianjin, China
| |
Collapse
|