1
|
Cheng HY, Su GL, Wu YX, Chen G, Yu ZL. Extracellular vesicles in anti-tumor drug resistance: Mechanisms and therapeutic prospects. J Pharm Anal 2024; 14:100920. [PMID: 39104866 PMCID: PMC11298875 DOI: 10.1016/j.jpha.2023.12.010] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2023] [Revised: 12/07/2023] [Accepted: 12/13/2023] [Indexed: 08/07/2024] Open
Abstract
Drug resistance presents a significant challenge to achieving positive clinical outcomes in anti-tumor therapy. Prior research has illuminated reasons behind drug resistance, including increased drug efflux, alterations in drug targets, and abnormal activation of oncogenic pathways. However, there's a need for deeper investigation into the impact of drug-resistant cells on parental tumor cells and intricate crosstalk between tumor cells and the malignant tumor microenvironment (TME). Recent studies on extracellular vesicles (EVs) have provided valuable insights. EVs are membrane-bound particles secreted by all cells, mediating cell-to-cell communication. They contain functional cargoes like DNA, RNA, lipids, proteins, and metabolites from mother cells, delivered to other cells. Notably, EVs are increasingly recognized as regulators in the resistance to anti-cancer drugs. This review aims to summarize the mechanisms of EV-mediated anti-tumor drug resistance, covering therapeutic approaches like chemotherapy, targeted therapy, immunotherapy and even radiotherapy. Detecting EV-based biomarkers to predict drug resistance assists in bypassing anti-tumor drug resistance. Additionally, targeted inhibition of EV biogenesis and secretion emerges as a promising approach to counter drug resistance. We highlight the importance of conducting in-depth mechanistic research on EVs, their cargoes, and functional approaches specifically focusing on EV subpopulations. These efforts will significantly advance the development of strategies to overcome drug resistance in anti-tumor therapy.
Collapse
Affiliation(s)
- Hao-Yang Cheng
- State Key Laboratory of Oral & Maxillofacial Reconstruction and Regeneration, Key Laboratory of Oral Biomedicine Ministry of Education, Hubei Key Laboratory of Stomatology, School & Hospital of Stomatology, Wuhan University, Wuhan, 430079, China
| | - Guang-Liang Su
- State Key Laboratory of Oral & Maxillofacial Reconstruction and Regeneration, Key Laboratory of Oral Biomedicine Ministry of Education, Hubei Key Laboratory of Stomatology, School & Hospital of Stomatology, Wuhan University, Wuhan, 430079, China
| | - Yu-Xuan Wu
- State Key Laboratory of Oral & Maxillofacial Reconstruction and Regeneration, Key Laboratory of Oral Biomedicine Ministry of Education, Hubei Key Laboratory of Stomatology, School & Hospital of Stomatology, Wuhan University, Wuhan, 430079, China
| | - Gang Chen
- State Key Laboratory of Oral & Maxillofacial Reconstruction and Regeneration, Key Laboratory of Oral Biomedicine Ministry of Education, Hubei Key Laboratory of Stomatology, School & Hospital of Stomatology, Wuhan University, Wuhan, 430079, China
- Department of Oral and Maxillofacial Surgery, School and Hospital of Stomatology, Wuhan University, Wuhan, 430079, China
- TaiKang Center for Life and Medical Sciences, Wuhan University, Wuhan, 430071, China
- Frontier Science Center for Immunology and Metabolism, Wuhan University, Wuhan, 430071, China
| | - Zi-Li Yu
- State Key Laboratory of Oral & Maxillofacial Reconstruction and Regeneration, Key Laboratory of Oral Biomedicine Ministry of Education, Hubei Key Laboratory of Stomatology, School & Hospital of Stomatology, Wuhan University, Wuhan, 430079, China
- Department of Oral and Maxillofacial Surgery, School and Hospital of Stomatology, Wuhan University, Wuhan, 430079, China
| |
Collapse
|
2
|
Inyang KE, Evans CM, Heussner M, Petroff M, Reimers M, Vermeer PD, Tykocki N, Folger JK, Laumet G. HPV+ head and neck cancer-derived small extracellular vesicles communicate with TRPV1+ neurons to mediate cancer pain. Pain 2024; 165:608-620. [PMID: 37678566 PMCID: PMC10915104 DOI: 10.1097/j.pain.0000000000003045] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2022] [Accepted: 06/15/2023] [Indexed: 09/09/2023]
Abstract
ABSTRACT Severe pain is often experienced by patients with head and neck cancer and is associated with a poor prognosis. Despite its frequency and severity, current treatments fail to adequately control cancer-associated pain because of our lack of mechanistic understanding. Although recent works have shed some light of the biology underlying pain in HPV-negative oral cancers, the mechanisms mediating pain in HPV+ cancers remain unknown. Cancer-derived small extracellular vesicles (cancer-sEVs) are well positioned to function as mediators of communication between cancer cells and neurons. Inhibition of cancer-sEV release attenuated pain in tumor-bearing mice. Injection of purified cancer-sEVs is sufficient to induce pain hypersensitivity in naive mice that is prevented by QX-314 treatment and in Trpv1-/- mice. Cancer-sEVs triggered calcium influx in nociceptors, and inhibition or ablation of nociceptors protects against cancer pain. Interrogation of published sequencing data of human sensory neurons exposed to human cancer-sEVs suggested a stimulation of protein translation in neurons. Induction of translation by cancer-sEVs was validated in our mouse model, and its inhibition alleviated cancer pain in mice. In summary, our work reveals that HPV+ head and neck squamous cell carcinoma-derived sEVs alter TRPV1+ neurons by promoting nascent translation to mediate cancer pain and identified several promising therapeutic targets to interfere with this pathway.
Collapse
Affiliation(s)
| | - Christine M. Evans
- Department of Physiology, Michigan State University, East Lansing, MI, USA
| | - Matthew Heussner
- Department of Physiology, Michigan State University, East Lansing, MI, USA
- College of Osteopathic Medicine, Michigan State University, East Lansing, MI
| | - Margaret Petroff
- Department of Pathology Michigan State University College of Veterinary Medicine, East Lansing, MI
| | - Mark Reimers
- Department of Physiology, Michigan State University, East Lansing, MI, USA
| | - Paola D. Vermeer
- Cancer Biology and Immunotherapies Group, Sanford Research, Sioux Falls, South Dakota
| | - Nathan Tykocki
- Department of Pharmacology and Toxicology, Michigan State University, East Lansing, MI
| | - Joseph K. Folger
- Department of Physiology, Michigan State University, East Lansing, MI, USA
| | - Geoffroy Laumet
- Department of Physiology, Michigan State University, East Lansing, MI, USA
| |
Collapse
|
3
|
Zhai X, Chen K, Wei X, Zhang H, Yang H, Jiao K, Liu C, Fan Z, Wu J, Zhou T, Wang H, Li J, Li M, Bai Y, Li B. Microneedle/CD-MOF-mediated transdural controlled release of methylprednisolone sodium succinate after spinal cord injury. J Control Release 2023; 360:236-248. [PMID: 37355211 DOI: 10.1016/j.jconrel.2023.06.028] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2023] [Revised: 06/18/2023] [Accepted: 06/19/2023] [Indexed: 06/26/2023]
Abstract
A new method of transdural delivering drugs to the spinal cord has been developed, involving the use of microneedles (MNs) and a β-cyclodextrin metal-organic framework (CD-MOF). This epidural microneedle array, dubbed MNs@CD-MOF@MPSS, can be utilized to deliver methylprednisolone sodium succinate (MPSS) to the site of spinal cord injury (SCI) in a controlled manner. MNs allows to generate micropores in the dura for direct drug delivery to the spinal cord, overcoming tissue barriers and targeting damaged regions. Additionally, the CD-MOF provides a secondary extended release after separating from the MNs. In in vitro study, inward MNs increased cellular absorption of MPSS and then reduced LPS-induced M1 polarization of microglia. And animal studies have shown that this method of drug delivery results in improved BMS scores and a reduction in M1 phenotype microphage and glial scar formation. Furthermore, the downregulation of the NLRP3-positive inflammasome and related pro-inflammatory cytokines was observed. In conclusion, this new drug platform has potential for clinical application in spinal cord diseases and is a valuable composite for minimally transdural controlled drug delivery. STATEMENT OF SIGNIFICANCE: This research presents a new epidural microneedle patch made up of microneedles (MNs) and a β-cyclodextrin metal-organic framework (CD-MOF). The epidural microneedle patch boasts high drug loading capacity, the ability to penetrate the dura, and controlled release. When loaded with methylprednisolone sodium succinate (MPSS), it effectively reduces inflammation and improves neurological function after spinal cord injury. Therefore, it is a novel and promising drug platform for the treatment of spinal cord diseases in a clinical setting.
Collapse
Affiliation(s)
- Xiao Zhai
- Department of Orthopedics, Shanghai Changhai Hospital, Naval Medical University, Shanghai 200433, China
| | - Kai Chen
- Department of Orthopedics, Shanghai Changhai Hospital, Naval Medical University, Shanghai 200433, China
| | - Xianzhao Wei
- Department of Orthopedics, Shanghai Changhai Hospital, Naval Medical University, Shanghai 200433, China
| | - Hailing Zhang
- Department of Neurology, Shanghai Changhai Hospital, Naval Medical University, Shanghai 200433, China
| | - Huan Yang
- Department of Orthopedics, Shanghai Changhai Hospital, Naval Medical University, Shanghai 200433, China
| | - Kun Jiao
- Department of Orthopedics, Shanghai Changhai Hospital, Naval Medical University, Shanghai 200433, China
| | - Chen Liu
- Department of Orthopedics, Shanghai Changhai Hospital, Naval Medical University, Shanghai 200433, China
| | - Zhiguo Fan
- Department of Orthopedics, Shanghai Changhai Hospital, Naval Medical University, Shanghai 200433, China
| | - Ji Wu
- Department of Orthopedics, Shanghai Changhai Hospital, Naval Medical University, Shanghai 200433, China
| | - Tianjunke Zhou
- Basic Medicine College, Naval Medical University, Shanghai 200433, China
| | - Haojue Wang
- Basic Medicine College, Naval Medical University, Shanghai 200433, China
| | - Jingfeng Li
- Department of Orthopedics, Shanghai Changhai Hospital, Naval Medical University, Shanghai 200433, China.
| | - Ming Li
- Department of Orthopedics, Shanghai Changhai Hospital, Naval Medical University, Shanghai 200433, China.
| | - Yushu Bai
- Department of Orthopedics, Shanghai Changhai Hospital, Naval Medical University, Shanghai 200433, China.
| | - Bo Li
- Department of Orthopedics, Shanghai Changhai Hospital, Naval Medical University, Shanghai 200433, China.
| |
Collapse
|
4
|
Qiao Z, Kong Y, Zhang Y, Qian L, Wang Z, Guan X, Lu H, Xiao H. Phosphoproteomics of extracellular vesicles integrated with multiomics analysis reveals novel kinase networks for lung cancer. Mol Carcinog 2022; 61:1116-1127. [PMID: 36148632 DOI: 10.1002/mc.23462] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2022] [Revised: 08/18/2022] [Accepted: 08/29/2022] [Indexed: 11/07/2022]
Abstract
Phosphorylation regulates the functions of proteins and aberrant phosphorylation often leads to a variety of diseases, including cancers. Extracellular vesicles (EVs) are important messengers in the microenvironment and their proteome contributes to cancer genesis and metastasis, while the kinases that driving EVs proteins' phosphorylation are less known. Clinical tissue samples from 13 patients with non-small-cell lung cancer (NSCLC) were utilized to isolate cancer EVs and adjacent normal EVs. Through quantitative phosphoproteomics analysis, 2473 phosphorylation sites on 1567 proteins were successfully identified and quantified. Accordingly, 152 kinases were identified, and 25 of them were differentially expressed. Based on Tied Diffusion through Interacting Events (TieDIE) algorithm, we integrated genomic and transcriptomic data sets of NSCLC from TCGA with our phosphoproteome data set to construct signaling networks. Through database integration and multiomics enrichment analysis, a compact network of 234 nodes with 1599 edges was constructed, which consisted of 34 transcription factors, 33 kinases, 63 aberrant genes, and 172 linking proteins. Rarely studied phosphorylation sites were specifically enriched. Key phosphoproteins of network nodes were validated in patients' EVs, including MAPK6S189 , IKBKES172 , SRCY530 , CDK7S164 , and CDK1T14 . These networks depict intrinsic signal-regulation derived from EVs' phosphoproteins, providing a comprehensive and pathway-based strategy for in-depth lung cancer research.
Collapse
Affiliation(s)
- Zhi Qiao
- State Key Laboratory of Microbial Metabolism, Joint International Research Laboratory of Metabolic & Developmental Sciences, School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, Shanghai, China
| | - Yan Kong
- State Key Laboratory of Microbial Metabolism, Joint International Research Laboratory of Metabolic & Developmental Sciences, School of Life Sciences and Biotechnology, SJTU-Yale Joint Center for Biostatistics and Data Science, Shanghai Jiao Tong University, Shanghai, China
| | - Yan Zhang
- School of Pharmacy, Shanghai Jiao Tong University, Shanghai, China
| | - Liqiang Qian
- Department of Shanghai Lung Cancer Center, Shanghai Chest Hospital, Shanghai Jiao Tong University, Shanghai, China
| | - Zeyuan Wang
- State Key Laboratory of Microbial Metabolism, Joint International Research Laboratory of Metabolic & Developmental Sciences, School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, Shanghai, China
| | - Xin Guan
- Department of Thoracic Surgery, Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Hui Lu
- State Key Laboratory of Microbial Metabolism, Joint International Research Laboratory of Metabolic & Developmental Sciences, School of Life Sciences and Biotechnology, SJTU-Yale Joint Center for Biostatistics and Data Science, Shanghai Jiao Tong University, Shanghai, China
| | - Hua Xiao
- State Key Laboratory of Microbial Metabolism, Joint International Research Laboratory of Metabolic & Developmental Sciences, School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, Shanghai, China
| |
Collapse
|
5
|
Zhai X, Chen K, Yang H, Li B, Zhou T, Wang H, Zhou H, Chen S, Zhou X, Wei X, Bai Y, Li M. Extracellular vesicles derived from CD73 modified human umbilical cord mesenchymal stem cells ameliorate inflammation after spinal cord injury. J Nanobiotechnology 2021; 19:274. [PMID: 34496892 PMCID: PMC8425042 DOI: 10.1186/s12951-021-01022-z] [Citation(s) in RCA: 49] [Impact Index Per Article: 12.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2021] [Accepted: 09/01/2021] [Indexed: 02/06/2023] Open
Abstract
BACKGROUND Spinal cord injury (SCI) is an inflammatory condition, and excessive adenosine triphosphate (ATP) is released into the extracellular space, which can be catabolized into adenosine by CD73. Extracellular vesicles have been designed as nano drug carriers in many diseases. However, their impacts on delivery of CD73 after SCI are not yet known. We aimed to construct CD73 modified extracellular vesicles and explore the anti-inflammatory effects after SCI. METHODS CD73 engineered extracellular vesicles (CD73+ hucMSC-EVs) were firstly established, which were derived from human umbilical cord mesenchymal stem cells (hucMSCs) transduced by lentiviral vectors to upregulate the expression of CD73. Effects of CD73+ hucMSC-EVs on hydrolyzing ATP into adenosine were detected. The polarization of M2/M1 was verified by immunofluorescence. Furthermore, A2aR and A2bR inhibitors and A2bR knockdown cells were used to investigate the activated adenosine receptor. Biomarkers of microglia and levels of cAMP/PKA were also detected. Repetitively in vivo study, morphology staining, flow cytometry, cytokine analysis, and ELISA assay, were also applied for verifications. RESULTS CD73+ hucMSC-EVs reduced concentration of ATP and promoted the level of adenosine. In vitro experiments, CD73+ hucMSC-EVs increased macrophages/microglia M2:M1 polarization, activated adenosine 2b receptor (A2bR), and then promoted cAMP/PKA signaling pathway. In mice using model of thoracic spinal cord contusion injury, CD73+ hucMSC-EVs improved the functional recovery after SCI through decreasing the content of ATP in cerebrospinal fluid and improving the polarization from M1 to M2 phenotype. Thus, the cascaded pro-inflammatory cytokines were downregulated, such as TNF-α, IL-1β, and IL-6, while the anti-inflammatory cytokines were upregulated, such as IL-10 and IL-4. CONCLUSIONS CD73+ hucMSC-EVs ameliorated inflammation after spinal cord injury by reducing extracellular ATP, promoting A2bR/cAMP/PKA pathway and M2/M1 polarization. CD73+ hucMSC-EVs might be promising nano drugs for clinical application in SCI therapy.
Collapse
Affiliation(s)
- Xiao Zhai
- Department of Orthopedics, Shanghai Changhai Hospital, Naval Medical University, Shanghai, 200433, China
| | - Kai Chen
- Department of Orthopedics, Shanghai Changhai Hospital, Naval Medical University, Shanghai, 200433, China
| | - Huan Yang
- Department of Orthopedics, Shanghai Changhai Hospital, Naval Medical University, Shanghai, 200433, China
| | - Bo Li
- Department of Orthopedics, Shanghai Changhai Hospital, Naval Medical University, Shanghai, 200433, China
| | - Tianjunke Zhou
- Basic Medicine College, Naval Medical University, Shanghai, 200433, China
| | - Haojue Wang
- Basic Medicine College, Naval Medical University, Shanghai, 200433, China
| | - Huipeng Zhou
- Department of Orthopedics, Shanghai Changhai Hospital, Naval Medical University, Shanghai, 200433, China
| | - Shaofeng Chen
- Department of Orthopedics, Shanghai Changhai Hospital, Naval Medical University, Shanghai, 200433, China
| | - Xiaoyi Zhou
- Department of Orthopedics, Shanghai Changhai Hospital, Naval Medical University, Shanghai, 200433, China
| | - Xiaozhao Wei
- Department of Orthopedics, Shanghai Changhai Hospital, Naval Medical University, Shanghai, 200433, China.
| | - Yushu Bai
- Department of Orthopedics, Shanghai Changhai Hospital, Naval Medical University, Shanghai, 200433, China.
| | - Ming Li
- Department of Orthopedics, Shanghai Changhai Hospital, Naval Medical University, Shanghai, 200433, China.
| |
Collapse
|
6
|
Yarza R, Bover M, Agulló-Ortuño MT, Iglesias-Docampo LC. Current approach and novel perspectives in nasopharyngeal carcinoma: the role of targeting proteasome dysregulation as a molecular landmark in nasopharyngeal cancer. JOURNAL OF EXPERIMENTAL & CLINICAL CANCER RESEARCH : CR 2021; 40:202. [PMID: 34154654 PMCID: PMC8215824 DOI: 10.1186/s13046-021-02010-9] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/16/2021] [Accepted: 06/07/2021] [Indexed: 12/15/2022]
Abstract
Nasopharyngeal carcinoma (NPC) represents a molecularly paradigmatic tumor given the complex diversity of environmental as well as host dependent factors that are closely implicated in tissue transformation and carcinogenesis. Epstein Barr Virus (EBV) plays a key role in tissue invasion, hyperplasia and malignant transformation. Therefore, EBV related oncoviral proteins such as Latent Membrane Protein family (LMP1, LMP2), Epstein Barr Nuclear Antigen 1 (EBNA1) and EBV related glycoprotein B (gB) are responsible for inducing intracellular signalling aberrations leading to sustained proliferation and further acquisition of NPC related invasive nature and metastatic potential.Dysregulation of proteasome signaling seems to be centrally implicated in oncoviral protein stabilization as well as in modulating tumor microenvironment. Different studies in vitro and in vivo suggest a potential role of proteasome inhibitors in the therapeutic setting of NPC. Furthermore, alterations affecting proteasome signalling in NPC have been associated to tumor growth and invasion, distant metastasis, immune exclusion and resistance as well as to clinical poor prognosis. So on, recent studies have shown the efficacy of immunotherapy as a suitable therapeutic approach to NPC. Nevertheless, novel strategies seem to look for combinatorial regimens aiming to potentiate immune recognition as well as to restore both primary and acquired immune resistance.In this work, our goal is to thoroughly review the molecular implications of proteasome dysregulation in the molecular pathogenesis of NPC, together with their direct relationship with EBV related oncoviral proteins and their role in promoting immune evasion and resistance. We also aim to hypothesize about the feasibility of the use of proteasome inhibitors as part of immunotherapy-including combinatorial regimens for their potential role in reversing immune resistance and favouring tumor recognition and eventual tumor death.
Collapse
Affiliation(s)
- Ramon Yarza
- Medical Oncology Division, Hospital Universitarioss 12 de Octubre, Avda. Córdoba s/n, E-28041, Madrid, Spain. .,Clinical and Translational Laboratory, Instituto de Investigación Hospital 12 de Octubre (I+12), Madrid, Spain.
| | - Mateo Bover
- Medical Oncology Division, Hospital Universitarioss 12 de Octubre, Avda. Córdoba s/n, E-28041, Madrid, Spain.,Clinical and Translational Laboratory, Instituto de Investigación Hospital 12 de Octubre (I+12), Madrid, Spain
| | - Maria Teresa Agulló-Ortuño
- Clinical and Translational Laboratory, Instituto de Investigación Hospital 12 de Octubre (I+12), Madrid, Spain. .,Lung Cancer Group, Clinical Research Program (H12O-CNIO), Centro Nacional de Investigaciones Oncológicas (CNIO), Madrid, Spain. .,Biomedical Research Networking Centre: Oncology (CIBERONC), Instituto de Salud Carlos III, Madrid, Spain. .,Facultad de Fisioterapia y Enfermería, Universidad de Castilla La Mancha (UCLM), Toledo, Spain.
| | - Lara Carmen Iglesias-Docampo
- Medical Oncology Division, Hospital Universitarioss 12 de Octubre, Avda. Córdoba s/n, E-28041, Madrid, Spain.,Clinical and Translational Laboratory, Instituto de Investigación Hospital 12 de Octubre (I+12), Madrid, Spain.,Lung Cancer Group, Clinical Research Program (H12O-CNIO), Centro Nacional de Investigaciones Oncológicas (CNIO), Madrid, Spain
| |
Collapse
|
7
|
Chen X, Dou QP, Liu J, Tang D. Targeting Ubiquitin-Proteasome System With Copper Complexes for Cancer Therapy. Front Mol Biosci 2021; 8:649151. [PMID: 33928122 PMCID: PMC8076789 DOI: 10.3389/fmolb.2021.649151] [Citation(s) in RCA: 28] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2021] [Accepted: 02/12/2021] [Indexed: 02/06/2023] Open
Abstract
Characterizing mechanisms of protein homeostasis, a process of balancing between protein synthesis and protein degradation, is important for understanding the potential causes of human diseases. The ubiquitin–proteasome system (UPS) is a well-studied mechanism of protein catabolism, which is responsible for eliminating misfolded, damaged, or aging proteins, thereby maintaining quality and quantity of cellular proteins. The UPS is composed of multiple components, including a series of enzymes (E1, E2, E3, and deubiquitinase [DUB]) and 26S proteasome (19S regulatory particles + 20S core particle). An impaired UPS pathway is involved in multiple diseases, including cancer. Several proteasome inhibitors, such as bortezomib, carfilzomib, and ixazomib, are approved to treat patients with certain cancers. However, their applications are limited by side effects, drug resistance, and drug–drug interactions observed in their clinical processes. To overcome these shortcomings, alternative UPS inhibitors have been searched for in many fields. Copper complexes (e.g., CuET, CuHQ, CuCQ, CuPDTC, CuPT, and CuHK) are found to be able to inhibit a core component of the UPS machinery, such as 20S proteasome, 19S DUBs, and NPLOC4/NPL4 complex, and are proposed to be one class of metal-based anticancer drugs. In this review, we will summarize functions and applications of copper complexes in a concise perspective, with a focus on connections between the UPS and cancer.
Collapse
Affiliation(s)
- Xin Chen
- Guangzhou Municipal and Guangdong Provincial Key Laboratory of Protein Modification and Degradation, Affiliated Cancer Hospital & Institute of Guangzhou Medical University, School of Basic Medical Sciences, Guangzhou Medical University, Guangzhou, China
| | - Q Ping Dou
- Guangzhou Municipal and Guangdong Provincial Key Laboratory of Protein Modification and Degradation, Affiliated Cancer Hospital & Institute of Guangzhou Medical University, School of Basic Medical Sciences, Guangzhou Medical University, Guangzhou, China.,Department of Oncology, School of Medicine, Barbara Ann Karmanos Cancer Institute, Wayne State University, Detroit, MI, United States.,Departments of Pharmacology & Pathology, School of Medicine, Wayne State University, Detroit, MI, United States
| | - Jinbao Liu
- Guangzhou Municipal and Guangdong Provincial Key Laboratory of Protein Modification and Degradation, Affiliated Cancer Hospital & Institute of Guangzhou Medical University, School of Basic Medical Sciences, Guangzhou Medical University, Guangzhou, China
| | - Daolin Tang
- Department of Surgery, UT Southwestern Medical Center, Dallas, TX, United States
| |
Collapse
|
8
|
Ge M, Xu Q, Kang T, Li D, Wang R, Chen Z, Xie S, Wang W, Liu H. Deubiquitinating enzyme inhibitor alleviates cyclin A1-mediated proteasome inhibitor tolerance in mixed-lineage leukemia. Cancer Sci 2021; 112:2287-2298. [PMID: 33738896 PMCID: PMC8177811 DOI: 10.1111/cas.14892] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2020] [Revised: 03/12/2021] [Accepted: 03/16/2021] [Indexed: 12/16/2022] Open
Abstract
Drug resistance is a significant obstacle to effective cancer treatment. Drug resistance develops from initially reversible drug-tolerant cancer cells, which offer therapeutic opportunities to impede cancer relapse. The mechanisms of resistance to proteasome inhibitor (PI) therapy have been investigated intensively, however the ways by which drug-tolerant cancer cells orchestrate their adaptive responses to drug challenges remain largely unknown. Here, we demonstrated that cyclin A1 suppression elicited the development of transient PI tolerance in mixed-lineage leukemia (MLL) cells. This adaptive process involved reversible downregulation of cyclin A1, which promoted PI resistance through cell-cycle arrest. PI-tolerant MLL cells acquired cyclin A1 dependency, regulated directly by MLL protein. Loss of cyclin A1 function resulted in the emergence of drug tolerance, which was associated with patient relapse and reduced survival. Combination treatment with PI and deubiquitinating enzyme (DUB) inhibitors overcame this drug resistance by restoring cyclin A1 expression through chromatin crosstalk between histone H2B monoubiquitination and MLL-mediated histone H3 lysine 4 methylation. These results reveal the importance of cyclin A1-engaged cell-cycle regulation in PI resistance in MLL cells, and suggest that cell-cycle re-entry by DUB inhibitors may represent a promising epigenetic therapeutic strategy to prevent acquired drug resistance.
Collapse
Affiliation(s)
- Maolin Ge
- Shanghai Institute of Hematology, State Key Laboratory of Medical Genomics, National Research Center for Translational Medicine at Shanghai, Ruijin Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Qiongyu Xu
- Shanghai Institute of Hematology, State Key Laboratory of Medical Genomics, National Research Center for Translational Medicine at Shanghai, Ruijin Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Ting Kang
- Department of Oncology, Xin Hua Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Dan Li
- Shanghai Institute of Hematology, State Key Laboratory of Medical Genomics, National Research Center for Translational Medicine at Shanghai, Ruijin Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Ruiheng Wang
- Shanghai Institute of Hematology, State Key Laboratory of Medical Genomics, National Research Center for Translational Medicine at Shanghai, Ruijin Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Zhihong Chen
- Shanghai Institute of Hematology, State Key Laboratory of Medical Genomics, National Research Center for Translational Medicine at Shanghai, Ruijin Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Shufeng Xie
- Shanghai Institute of Hematology, State Key Laboratory of Medical Genomics, National Research Center for Translational Medicine at Shanghai, Ruijin Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Wenbin Wang
- Shanghai Institute of Hematology, State Key Laboratory of Medical Genomics, National Research Center for Translational Medicine at Shanghai, Ruijin Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Han Liu
- Shanghai Institute of Hematology, State Key Laboratory of Medical Genomics, National Research Center for Translational Medicine at Shanghai, Ruijin Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, China
| |
Collapse
|
9
|
Human Plasma Extracellular Vesicle Isolation and Proteomic Characterization for the Optimization of Liquid Biopsy in Multiple Myeloma. Methods Mol Biol 2021; 2261:151-191. [PMID: 33420989 DOI: 10.1007/978-1-0716-1186-9_10] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
Cancer cells secrete membranous extracellular vesicles (EVs) which contain specific oncogenic molecular cargo (including oncoproteins, oncopeptides, and RNA) into their microenvironment and the circulation. As such, EVs including exosomes (small EVs) and microvesicles (large EVs) represent important circulating biomarkers for various diseases, including cancer and its progression. These circulating biomarkers offer a potentially minimally invasive and repeatable targets for analysis (liquid biopsy) that could aid in the diagnosis, risk stratification, and monitoring of cancer. Although their potential as cancer biomarkers has been promising, the identification and quantification of EVs in clinical samples remain challenging. Like EVs, other types of circulating biomarkers (including cell-free nucleic acids, cf-NAs; or circulating tumor cells, CTCs) may represent a complementary or alternative approach to cancer diagnosis. In the context of multiple myeloma (MM), a systemic cancer type that causes cancer cells to accumulate in the bone marrow, the specific role for EVs as biomarkers for diagnosis and monitoring remains undefined. Tumor heterogeneity along with the various subtypes of MM (such as non-secretory MM) that cannot be monitored using conventional testing (e.g. sequential serological testing and bone marrow biopsies) render liquid biopsy and circulating tumor-derived EVs a promising approach. In this protocol, we describe the isolation and purification of EVs from peripheral blood plasma (PBPL) collected from healthy donors and patients with MM for a biomarker discovery strategy. Our results demonstrate detection of circulating EVs from as little as 1 mL of MM patients' PBPL. High-resolution mass spectrometry (MS)-based proteomics promises to provide new avenues in identifying novel markers for detection, monitoring, and therapeutic intervention of disease. We describe biophysical characterization and quantitative proteomic profiling of disease-specific circulating EVs which may provide important implications for the development of cancer diagnostics in MM.
Collapse
|
10
|
Reale A, Carmichael I, Xu R, Mithraprabhu S, Khong T, Chen M, Fang H, Savvidou I, Ramachandran M, Bingham N, Simpson RJ, Greening DW, Spencer A. Human myeloma cell- and plasma-derived extracellular vesicles contribute to functional regulation of stromal cells. Proteomics 2021; 21:e2000119. [PMID: 33580572 DOI: 10.1002/pmic.202000119] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2020] [Revised: 02/04/2021] [Accepted: 02/08/2021] [Indexed: 02/06/2023]
Abstract
Circulating small extracellular vesicles (sEV) represent promising non-invasive biomarkers that may aid in the diagnosis and risk-stratification of multiple myeloma (MM), an incurable blood cancer. Here, we comprehensively isolated and characterized sEV from human MM cell lines (HMCL) and patient-derived plasma (psEV) by specific EV-marker enrichment and morphology. Importantly, we demonstrate that HMCL-sEV are readily internalised by stromal cells to functionally modulate proliferation. psEV were isolated using various commercial approaches and pre-analytical conditions (collection tube types, storage conditions) assessed for sEV yield and marker enrichment. Functionally, MM-psEV was shown to regulate stromal cell proliferation and migration. In turn, pre-educated stromal cells favour HMCL adhesion. psEV isolated from patients with both pre-malignant plasma cell disorders (monoclonal gammopathy of undetermined significance [MGUS]; smouldering MM [SMM]) and MM have a similar ability to promote cell migration and adhesion, suggesting a role for both malignant and pre-malignant sEV in disease progression. Proteomic profiling of MM-psEV (305 proteins) revealed enrichment of oncogenic factors implicated in cell migration and adhesion, in comparison to non-disease psEV. This study describes a protocol to generate morphologically-intact and biologically functional sEV capable of mediating the regulation of stromal cells, and a model for the characterization of tumour-stromal cross-talk by sEV in MM.
Collapse
Affiliation(s)
- Antonia Reale
- Myeloma Research Group, Australian Centre for Blood Diseases, Monash University/Alfred Health, Melbourne, Victoria, Australia.,Central Clinical School, Monash University, Melbourne, Victoria, Australia
| | - Irena Carmichael
- Monash Micro Imaging-AMREP, Monash University, Melbourne, Victoria, Australia
| | - Rong Xu
- Central Clinical School, Monash University, Melbourne, Victoria, Australia.,Nanobiotechnology Laboratory, Australian Centre for Blood Diseases, Monash University/Alfred Health, Melbourne, Victoria, Australia.,Department of Biochemistry and Genetics, La Trobe Institute for Molecular Science, La Trobe University, Melbourne, Victoria, Australia
| | - Sridurga Mithraprabhu
- Myeloma Research Group, Australian Centre for Blood Diseases, Monash University/Alfred Health, Melbourne, Victoria, Australia.,Central Clinical School, Monash University, Melbourne, Victoria, Australia
| | - Tiffany Khong
- Myeloma Research Group, Australian Centre for Blood Diseases, Monash University/Alfred Health, Melbourne, Victoria, Australia.,Central Clinical School, Monash University, Melbourne, Victoria, Australia
| | - Maoshan Chen
- Myeloma Research Group, Australian Centre for Blood Diseases, Monash University/Alfred Health, Melbourne, Victoria, Australia
| | - Haoyun Fang
- Molecular Proteomics, Baker Heart and Diabetes Institute, Melbourne, Victoria, Australia
| | - Ioanna Savvidou
- Myeloma Research Group, Australian Centre for Blood Diseases, Monash University/Alfred Health, Melbourne, Victoria, Australia.,Central Clinical School, Monash University, Melbourne, Victoria, Australia
| | - Malarmathy Ramachandran
- Myeloma Research Group, Australian Centre for Blood Diseases, Monash University/Alfred Health, Melbourne, Victoria, Australia.,Central Clinical School, Monash University, Melbourne, Victoria, Australia
| | - Nicholas Bingham
- Myeloma Research Group, Australian Centre for Blood Diseases, Monash University/Alfred Health, Melbourne, Victoria, Australia.,Central Clinical School, Monash University, Melbourne, Victoria, Australia
| | - Richard J Simpson
- Department of Biochemistry and Genetics, La Trobe Institute for Molecular Science, La Trobe University, Melbourne, Victoria, Australia
| | - David W Greening
- Central Clinical School, Monash University, Melbourne, Victoria, Australia.,Department of Biochemistry and Genetics, La Trobe Institute for Molecular Science, La Trobe University, Melbourne, Victoria, Australia.,Molecular Proteomics, Baker Heart and Diabetes Institute, Melbourne, Victoria, Australia
| | - Andrew Spencer
- Myeloma Research Group, Australian Centre for Blood Diseases, Monash University/Alfred Health, Melbourne, Victoria, Australia.,Central Clinical School, Monash University, Melbourne, Victoria, Australia.,Malignant Haematology and Stem Cell Transplantation, The Alfred Hospital, and Department of Clinical Haematology, Monash University, Melbourne, Victoria, Australia
| |
Collapse
|
11
|
Fontana F, Carollo E, Melling GE, Carter DRF. Extracellular Vesicles: Emerging Modulators of Cancer Drug Resistance. Cancers (Basel) 2021; 13:749. [PMID: 33670185 PMCID: PMC7916933 DOI: 10.3390/cancers13040749] [Citation(s) in RCA: 37] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2021] [Revised: 02/03/2021] [Accepted: 02/08/2021] [Indexed: 02/06/2023] Open
Abstract
Extracellular vesicles (EVs) have recently emerged as crucial modulators of cancer drug resistance. Indeed, it has been shown that they can directly sequester anti-tumor drugs, decreasing their effective concentration at target sites. Moreover, they facilitate the horizontal transfer of specific bioactive cargoes able to regulate proliferative, apoptotic, and stemness programs in recipient cells, potentially conferring a resistant phenotype to drug-sensitive cancer cells. Finally, EVs can mediate the communication between the tumor and both stromal and immune cells within the microenvironment, promoting treatment escape. In this context, clarifying the EV-driven resistance mechanisms might improve not only tumor diagnosis and prognosis but also therapeutic outcomes. Detailed cellular and molecular events occurring during the development of EV-mediated cancer drug resistance are described in this review article.
Collapse
Affiliation(s)
- Fabrizio Fontana
- Department of Pharmacological and Biomolecular Sciences, Università degli Studi di Milano, via Balzaretti 9, 20133 Milan, Italy
| | - Emanuela Carollo
- Department of Biological and Medical Sciences, Oxford Brookes University, Gipsy Lane, Oxford OX3 0BP, UK; (E.C.); (G.E.M.)
| | - Genevieve E. Melling
- Department of Biological and Medical Sciences, Oxford Brookes University, Gipsy Lane, Oxford OX3 0BP, UK; (E.C.); (G.E.M.)
- Institute of Clinical Sciences, College of Medical and Dental Sciences, University of Birmingham, Birmingham B15 2TT, UK
| | - David R. F. Carter
- Department of Biological and Medical Sciences, Oxford Brookes University, Gipsy Lane, Oxford OX3 0BP, UK; (E.C.); (G.E.M.)
| |
Collapse
|
12
|
Cheng X, Ge M, Zhu S, Li D, Wang R, Xu Q, Chen Z, Xie S, Liu H. mTORC1-mediated amino acid signaling is critical for cell fate determination under transplant-induced stress. FEBS Lett 2020; 595:462-475. [PMID: 33249578 DOI: 10.1002/1873-3468.14008] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2020] [Revised: 10/17/2020] [Accepted: 11/21/2020] [Indexed: 01/05/2023]
Abstract
Transplantation of in vitro-manipulated cells is widely used in hematology. While transplantation is well recognized to impose severe stress on transplanted cells, the nature of transplant-induced stress remains elusive. Here, we propose that the lack of amino acids in serum is the major cause of transplant-induced stress. Mechanistically, amino acid deficiency decreases protein synthesis and nutrient consummation. However, in cells with overactive AKT and ERK, mTORC1 is not inhibited and protein synthesis remains relatively high. This impaired signaling causes nutrient depletion, cell cycle block, and eventually autophagy and cell death, which can be inhibited by cycloheximide or mTORC1 inhibitors. Thus, mTORC1-mediated amino acid signaling is critical in cell fate determination under transplant-induced stress, and protein synthesis inhibition can improve transplantation efficiency.
Collapse
Affiliation(s)
- Xiaoyan Cheng
- Shanghai Institute of Hematology, State Key Laboratory of Medical Genomics, National Research Center for Translational Medicine at Shanghai, Ruijin Hospital affiliated to Shanghai Jiao Tong University School of Medicine, China
| | - Maolin Ge
- Shanghai Institute of Hematology, State Key Laboratory of Medical Genomics, National Research Center for Translational Medicine at Shanghai, Ruijin Hospital affiliated to Shanghai Jiao Tong University School of Medicine, China
| | - Shouhai Zhu
- Shanghai Institute of Hematology, State Key Laboratory of Medical Genomics, National Research Center for Translational Medicine at Shanghai, Ruijin Hospital affiliated to Shanghai Jiao Tong University School of Medicine, China
| | - Dan Li
- Shanghai Institute of Hematology, State Key Laboratory of Medical Genomics, National Research Center for Translational Medicine at Shanghai, Ruijin Hospital affiliated to Shanghai Jiao Tong University School of Medicine, China
| | - Ruiheng Wang
- Shanghai Institute of Hematology, State Key Laboratory of Medical Genomics, National Research Center for Translational Medicine at Shanghai, Ruijin Hospital affiliated to Shanghai Jiao Tong University School of Medicine, China
| | - Qiongyu Xu
- Shanghai Institute of Hematology, State Key Laboratory of Medical Genomics, National Research Center for Translational Medicine at Shanghai, Ruijin Hospital affiliated to Shanghai Jiao Tong University School of Medicine, China
| | - Zhihong Chen
- Shanghai Institute of Hematology, State Key Laboratory of Medical Genomics, National Research Center for Translational Medicine at Shanghai, Ruijin Hospital affiliated to Shanghai Jiao Tong University School of Medicine, China
| | - Shufeng Xie
- Shanghai Institute of Hematology, State Key Laboratory of Medical Genomics, National Research Center for Translational Medicine at Shanghai, Ruijin Hospital affiliated to Shanghai Jiao Tong University School of Medicine, China
| | - Han Liu
- Shanghai Institute of Hematology, State Key Laboratory of Medical Genomics, National Research Center for Translational Medicine at Shanghai, Ruijin Hospital affiliated to Shanghai Jiao Tong University School of Medicine, China
| |
Collapse
|
13
|
Ge M, Qiao Z, Kong Y, Liang H, Sun Y, Lu H, Xu Z, Liu H. Modulating proteasome inhibitor tolerance in multiple myeloma: an alternative strategy to reverse inevitable resistance. Br J Cancer 2020; 124:770-776. [PMID: 33250513 PMCID: PMC7884794 DOI: 10.1038/s41416-020-01191-y] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2020] [Revised: 09/29/2020] [Accepted: 11/05/2020] [Indexed: 12/11/2022] Open
Abstract
Background Resistance to proteasome inhibitors (PIs) is a major obstacle to the successful treatment of multiple myeloma (MM). Many mechanisms have been proposed for PI resistance; however, our mechanistic understanding of how PI resistance is inevitably acquired and reversed remains incomplete. Methods MM patients after bortezomib relapse, MM cell lines and mouse models were used to generate matched resistant and reversed cells. RNA sequencing and bioinformatics analyses were employed to assess dysregulated epigenetic regulators. In vitro and in vivo procedures were used to characterise PI-tolerant cells and therapeutic efficacy. Results Upon PI treatment, MM cells enter a slow-cycling and reversible drug-tolerant state. This reversible phenotype is associated with epigenetic plasticity, which involves tolerance rather than persistence in patients with relapsed MM. Combination treatment with histone deacetylase inhibitors and high-dosage intermittent therapy, as opposed to sustained PI monotherapy, can be more effective in treating MM by preventing the emergence of PI-tolerant cells. The therapeutic basis is the reversal of dysregulated epigenetic regulators in MM patients. Conclusions We propose an alternative non-mutational PI resistance mechanism that explains why PI relapse is inevitable and why patients regain sensitivity after a ‘drug holiday’. Our study also suggests strategies for epigenetic elimination of drug-tolerant cells.
Collapse
Affiliation(s)
- Maolin Ge
- Shanghai Institute of Hematology, State Key Laboratory of Medical Genomics, National Research Center for Translational Medicine at Shanghai, Ruijin Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, 200025, Shanghai, China.
| | - Zhi Qiao
- State Key Laboratory of Microbial Metabolism, School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, 200240, Shanghai, China
| | - Yan Kong
- SJTU-Yale Joint Center of Biostatistics and Data Science, Shanghai Jiao Tong University, 200240, Shanghai, China
| | - Hongyu Liang
- Fujian Institute of Hematology, Fujian Provincial Key Laboratory of Hematology, Fujian Medical University Union Hospital, 350001, Fuzhou, China
| | - Yan Sun
- Shanghai Institute of Hematology, State Key Laboratory of Medical Genomics, National Research Center for Translational Medicine at Shanghai, Ruijin Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, 200025, Shanghai, China
| | - Hui Lu
- SJTU-Yale Joint Center of Biostatistics and Data Science, Shanghai Jiao Tong University, 200240, Shanghai, China
| | - Zhenshu Xu
- Fujian Institute of Hematology, Fujian Provincial Key Laboratory of Hematology, Fujian Medical University Union Hospital, 350001, Fuzhou, China.
| | - Han Liu
- Shanghai Institute of Hematology, State Key Laboratory of Medical Genomics, National Research Center for Translational Medicine at Shanghai, Ruijin Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, 200025, Shanghai, China.
| |
Collapse
|
14
|
Zhu L, Sun HT, Wang S, Huang SL, Zheng Y, Wang CQ, Hu BY, Qin W, Zou TT, Fu Y, Shen XT, Zhu WW, Geng Y, Lu L, Jia HL, Qin LX, Dong QZ. Isolation and characterization of exosomes for cancer research. J Hematol Oncol 2020; 13:152. [PMID: 33168028 PMCID: PMC7652679 DOI: 10.1186/s13045-020-00987-y] [Citation(s) in RCA: 274] [Impact Index Per Article: 54.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2020] [Accepted: 10/28/2020] [Indexed: 02/06/2023] Open
Abstract
Exosomes are a subset of extracellular vesicles that carry specific combinations of proteins, nucleic acids, metabolites, and lipids. Mounting evidence suggests that exosomes participate in intercellular communication and act as important molecular vehicles in the regulation of numerous physiological and pathological processes, including cancer development. Exosomes are released by various cell types under both normal and pathological conditions, and they can be found in multiple bodily fluids. Moreover, exosomes carrying a wide variety of important macromolecules provide a window into altered cellular or tissue states. Their presence in biological fluids renders them an attractive, minimally invasive approach for liquid biopsies with potential biomarkers for cancer diagnosis, prediction, and surveillance. Due to their biocompatibility and low immunogenicity and cytotoxicity, exosomes have potential clinical applications in the development of innovative therapeutic approaches. Here, we summarize recent advances in various technologies for exosome isolation for cancer research. We outline the functions of exosomes in regulating tumor metastasis, drug resistance, and immune modulation in the context of cancer development. Finally, we discuss prospects and challenges for the clinical development of exosome-based liquid biopsies and therapeutics.
Collapse
Affiliation(s)
- Le Zhu
- Department of General Surgery, Huashan Hospital, Cancer Metastasis Institute, Fudan University, 12 Urumqi Road (M), Shanghai, 200040, China
| | - Hao-Ting Sun
- Department of General Surgery, Huashan Hospital, Cancer Metastasis Institute, Fudan University, 12 Urumqi Road (M), Shanghai, 200040, China
| | - Shun Wang
- Department of General Surgery, Huashan Hospital, Cancer Metastasis Institute, Fudan University, 12 Urumqi Road (M), Shanghai, 200040, China
| | - Sheng-Lin Huang
- Institutes of Biomedical Sciences, Fudan University, 131 Dong An Road, Shanghai, 200032, China
- Fudan University Shanghai Cancer Center, Shanghai Medical College, Fudan University, Shanghai, 200032, China
| | - Yan Zheng
- Department of General Surgery, Huashan Hospital, Cancer Metastasis Institute, Fudan University, 12 Urumqi Road (M), Shanghai, 200040, China
| | - Chao-Qun Wang
- Department of General Surgery, Huashan Hospital, Cancer Metastasis Institute, Fudan University, 12 Urumqi Road (M), Shanghai, 200040, China
| | - Bei-Yuan Hu
- Department of General Surgery, Huashan Hospital, Cancer Metastasis Institute, Fudan University, 12 Urumqi Road (M), Shanghai, 200040, China
| | - Wei Qin
- Department of General Surgery, Huashan Hospital, Cancer Metastasis Institute, Fudan University, 12 Urumqi Road (M), Shanghai, 200040, China
| | - Tian-Tian Zou
- Department of General Surgery, Huashan Hospital, Cancer Metastasis Institute, Fudan University, 12 Urumqi Road (M), Shanghai, 200040, China
| | - Yan Fu
- Department of General Surgery, Huashan Hospital, Cancer Metastasis Institute, Fudan University, 12 Urumqi Road (M), Shanghai, 200040, China
| | - Xiao-Tian Shen
- Department of General Surgery, Huashan Hospital, Cancer Metastasis Institute, Fudan University, 12 Urumqi Road (M), Shanghai, 200040, China
| | - Wen-Wei Zhu
- Department of General Surgery, Huashan Hospital, Cancer Metastasis Institute, Fudan University, 12 Urumqi Road (M), Shanghai, 200040, China
| | - Yan Geng
- Department of General Surgery, Huashan Hospital, Cancer Metastasis Institute, Fudan University, 12 Urumqi Road (M), Shanghai, 200040, China
| | - Lu Lu
- Department of General Surgery, Huashan Hospital, Cancer Metastasis Institute, Fudan University, 12 Urumqi Road (M), Shanghai, 200040, China
| | - Hu-Liang Jia
- Department of General Surgery, Huashan Hospital, Cancer Metastasis Institute, Fudan University, 12 Urumqi Road (M), Shanghai, 200040, China
| | - Lun-Xiu Qin
- Department of General Surgery, Huashan Hospital, Cancer Metastasis Institute, Fudan University, 12 Urumqi Road (M), Shanghai, 200040, China.
- Institutes of Biomedical Sciences, Fudan University, 131 Dong An Road, Shanghai, 200032, China.
| | - Qiong-Zhu Dong
- Department of General Surgery, Huashan Hospital, Cancer Metastasis Institute, Fudan University, 12 Urumqi Road (M), Shanghai, 200040, China.
- Institutes of Biomedical Sciences, Fudan University, 131 Dong An Road, Shanghai, 200032, China.
| |
Collapse
|
15
|
Kong Y, Qiao Z, Ren Y, Genchev GZ, Ge M, Xiao H, Zhao H, Lu H. Integrative Analysis of Membrane Proteome and MicroRNA Reveals Novel Lung Cancer Metastasis Biomarkers. Front Genet 2020; 11:1023. [PMID: 33005184 PMCID: PMC7483668 DOI: 10.3389/fgene.2020.01023] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2020] [Accepted: 08/11/2020] [Indexed: 12/12/2022] Open
Abstract
Lung cancer is one of the most common human cancers both in incidence and mortality, with prognosis particularly poor in metastatic cases. Metastasis in lung cancer is a multifarious process driven by a complex regulatory landscape involving many mechanisms, genes, and proteins. Membrane proteins play a crucial role in the metastatic journey both inside tumor cells and the extra-cellular matrix and are a viable area of research focus with the potential to uncover biomarkers and drug targets. In this work we performed membrane proteome analysis of highly and poorly metastatic lung cells which integrated genomic, proteomic, and transcriptional data. A total of 1,762 membrane proteins were identified, and within this set, there were 163 proteins with significant changes between the two cell lines. We applied the Tied Diffusion through Interacting Events method to integrate the differentially expressed disease-related microRNAs and functionally dys-regulated membrane protein information to further explore the role of key membrane proteins and microRNAs in multi-omics context. Has-miR-137 was revealed as a key gene involved in the activity of membrane proteins by targeting MET and PXN, affecting membrane proteins through protein-protein interaction mechanism. Furthermore, we found that the membrane proteins CDH2, EGFR, ITGA3, ITGA5, ITGB1, and CALR may have significant effect on cancer prognosis and outcomes, which were further validated in vitro. Our study provides multi-omics-based network method of integrating microRNAs and membrane proteome information, and uncovers a differential molecular signatures of highly and poorly metastatic lung cancer cells; these molecules may serve as potential targets for giant-cell lung metastasis treatment and prognosis.
Collapse
Affiliation(s)
- Yan Kong
- SJTU-Yale Joint Center for Biostatistics and Data Science, Department of Bioinformatics and Biostatistics, School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, Shanghai, China
| | - Zhi Qiao
- State Key Laboratory of Microbial Metabolism, Joint International Research Laboratory of Metabolic and Developmental Sciences, School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, Shanghai, China
| | - Yongyong Ren
- SJTU-Yale Joint Center for Biostatistics and Data Science, Department of Bioinformatics and Biostatistics, School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, Shanghai, China
| | - Georgi Z Genchev
- SJTU-Yale Joint Center for Biostatistics and Data Science, Department of Bioinformatics and Biostatistics, School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, Shanghai, China.,Center for Biomedical Informatics, Shanghai Engineering Research Center for Big Data in Pediatric Precision Medicine, Shanghai Children's Hospital, Shanghai, China.,Bulgarian Institute for Genomics and Precision Medicine, Sofia, Bulgaria
| | - Maolin Ge
- State Key Laboratory of Medical Genomics, Shanghai Institute of Hematology, Rui Jin Hospital, School of Medicine and School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, Shanghai, China
| | - Hua Xiao
- State Key Laboratory of Microbial Metabolism, Joint International Research Laboratory of Metabolic and Developmental Sciences, School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, Shanghai, China
| | - Hongyu Zhao
- Department of Biostatistics, Yale University, New Haven, CT, United States
| | - Hui Lu
- SJTU-Yale Joint Center for Biostatistics and Data Science, Department of Bioinformatics and Biostatistics, School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, Shanghai, China.,State Key Laboratory of Microbial Metabolism, Joint International Research Laboratory of Metabolic and Developmental Sciences, School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, Shanghai, China.,Center for Biomedical Informatics, Shanghai Engineering Research Center for Big Data in Pediatric Precision Medicine, Shanghai Children's Hospital, Shanghai, China
| |
Collapse
|
16
|
Ge M, Qiao Z, Kong Y, Lu H, Liu H. Exosomes mediate intercellular transfer of non-autonomous tolerance to proteasome inhibitors in mixed-lineage leukemia. Cancer Sci 2020; 111:1279-1290. [PMID: 32058648 PMCID: PMC7156829 DOI: 10.1111/cas.14351] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2019] [Revised: 01/28/2020] [Accepted: 02/05/2020] [Indexed: 12/13/2022] Open
Abstract
Proteasome inhibitors significantly improve cancer outcomes, but their use is eventually followed by proteasome inhibitor resistance and relapse. Current understanding of proteasome inhibitor resistance is limited to cell‐autonomous mechanisms; whether non–autonomous mechanisms can be implicated in the development of proteasome inhibitor resistance is unclear. Here, we show that proteasome inhibitor tolerance can be transmitted non–autonomously through exosome‐mediated intercellular interactions. We revealed that reversible proteasome inhibitor resistance can be transmitted from cells under therapy stress to naïve sensitive cells through exosome‐mediated cell cycle arrest and enhanced stemness in mixed‐lineage leukemia cells. Integrated multi‐omics analysis using the Tied Diffusion through Interacting Events algorithm identified several candidate exosomal proteins that may serve as predictors for proteasome inhibitor resistance and potential therapeutic targets for treating refractory mixed‐lineage leukemia. Furthermore, inhibiting the secretion of exosomes is a promising strategy for reversing proteasome inhibitor resistance in vivo, which provides a novel proof of principle for the treatment of other refractory or relapsed cancers.
Collapse
Affiliation(s)
- Maolin Ge
- State Key Laboratory of Medical Genomics, Shanghai Institute of Hematology, Rui Jin Hospital, School of Medicine and School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, Shanghai, China
| | - Zhi Qiao
- State Key Laboratory of Microbial Metabolism, School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, Shanghai, China
| | - Yan Kong
- SJTU-Yale Joint Center for Biostatistics, Shanghai Jiao Tong University, Shanghai, China
| | - Hui Lu
- SJTU-Yale Joint Center for Biostatistics, Shanghai Jiao Tong University, Shanghai, China
| | - Han Liu
- State Key Laboratory of Medical Genomics, Shanghai Institute of Hematology, Rui Jin Hospital, School of Medicine and School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, Shanghai, China
| |
Collapse
|