1
|
Lin G, Lin J, Wang H, Wang L, Zhan F, Wu L, Xue L, Dong Y, Wei W, Liu L. Characterization of the stem cell landscape and identification of a stemness-associated prognostic signature in bladder cancer. Cancer Cell Int 2024; 24:299. [PMID: 39182054 PMCID: PMC11344935 DOI: 10.1186/s12935-024-03465-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2024] [Accepted: 07/29/2024] [Indexed: 08/27/2024] Open
Abstract
It is accepted that cancer stem cells (CSCs) are key to the occurrence, progression, drug resistance, and recurrence of bladder cancer (BLCA). Here, we aimed to characterize the landscapes of CSCs and investigate the biological and clinical signatures based on a prognostic model constructed by genes associated with CSCs. The malignant epithelial cells were discovered and sorted into six clusters through single cell analysis. C2 was identified as the CSCs. The signaling involved in the interactions between C2, cancer-associated fibroblasts (CAFs), and immune cells mainly consisted of MK, THBS, ANGPTL, VISFATIN, JAM, and ncWNT pathways. The CSC-like prognostic index (CSCLPI) constructed by the random survival forest was a reliable risk factor for BLCA and had a stable and powerful effect on predicting the overall survival of patients with BLCA. The level of CAFs was higher among patients with higher CSCLPI scores, suggesting that CAFs play a significant role in regulating biological characteristics. The CSCLPI-developed survival prediction nomogram has the potential to be applied clinically to predict the 1-, 2-, 3-, and 5-year overall survival of patients with BLCA. The CSCLPI can be used for prognostic prediction and drug treatment evaluation in the clinic.
Collapse
Affiliation(s)
- Gaoteng Lin
- Department of Urology, The 900th Hospital of Joint Logistic Support Force, Fuzhou, China
| | - Jiamei Lin
- Burn Plastic Surgery And Wound Repair Surgery, Affiliated Hospital of Youjiang Medical University for Nationalities, Baise, China
- Baise Key Laboratory of Molecular Pathology in Tumors, Baise, Guangxi, China
| | - Hao Wang
- Department of Urology, Xuzhou Central Hospital, Jiefang South Road, No. 199, Xuzhou, Jiangsu, China
| | - Liucheng Wang
- Department of Urology, Lianshui People's Hospital of Kangda College Affiliated to Nanjing Medical University, Nanjing, Jiangsu, 223400, China
| | - Fangfang Zhan
- Department of Rehabilitation, The First Affiliated Hospital of Fujian Medical University, Fuzhou, Fujian, 350000, China
- Department of Rehabilitation, Binhai Campus of the First Affiliated Hospital, National Regional Medical Center, Fujian Medical University, Fuzhou, Fujian, 350212, China
| | - Liqian Wu
- Department of Urology, The 900th Hospital of Joint Logistic Support Force, Fuzhou, China
| | - Liang Xue
- Department of Urology, Xuzhou Central Hospital, Jiefang South Road, No. 199, Xuzhou, Jiangsu, China
| | - Yang Dong
- Department of Urology, Xuzhou Central Hospital, Jiefang South Road, No. 199, Xuzhou, Jiangsu, China
- Xuzhou Clinical School of Xuzhou Medical University, Xuzhou, Jiangsu, 221009, China
| | - Wanqing Wei
- Department of Urology, Lianshui People's Hospital of Kangda College Affiliated to Nanjing Medical University, Nanjing, Jiangsu, 223400, China.
| | - Lin Liu
- Department of Urology, Xuzhou Central Hospital, Jiefang South Road, No. 199, Xuzhou, Jiangsu, China.
| |
Collapse
|
2
|
Yoshida J, Hayashi T, Munetsuna E, Khaledian B, Sueishi F, Mizuno M, Maeda M, Watanabe T, Ushida K, Sugihara E, Imaizumi K, Kawada K, Asai N, Shimono Y. Adipsin-dependent adipocyte maturation induces cancer cell invasion in breast cancer. Sci Rep 2024; 14:18494. [PMID: 39122742 PMCID: PMC11316094 DOI: 10.1038/s41598-024-69476-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2024] [Accepted: 08/05/2024] [Indexed: 08/12/2024] Open
Abstract
Adipocyte-cancer cell interactions promote tumor development and progression. Previously, we identified adipsin (CFD) and its downstream effector, hepatocyte growth factor (HGF), as adipokines that enhance adipocyte-breast cancer stem cell interactions. Here, we show that adipsin-dependent adipocyte maturation and the subsequent upregulation of HGF promote tumor invasion in breast cancers. Mature adipocytes, but not their precursors, significantly induced breast tumor cell migration and invasion in an adipsin expression-dependent manner. Promoters of tumor invasion, galectin 7 and matrix metalloproteinases, were significantly upregulated in cancer cells cocultured with mature adipocytes; meanwhile, their expression levels in cancer cells cocultured with adipocytes were reduced by adipsin knockout (Cfd KO) or a competitive inhibitor of CFD. Tumor growth and distant metastasis of mammary cancer cells were significantly suppressed when syngeneic mammary cancer cells were transplanted into Cfd KO mice. Histological analyses revealed reductions in capsular formation and tumor invasion at the cancer-adipocyte interface in the mammary tumors formed in Cfd KO mice. These findings indicate that adipsin-dependent adipocyte maturation may play an important role in adipocyte-cancer cell interaction and breast cancer progression.
Collapse
Affiliation(s)
- Jumpei Yoshida
- Department of Biochemistry, Fujita Health University School of Medicine, 1-98 Dengakugakubo, Kutsukake-cho, Toyoake, Aichi, 4701192, Japan
- Department of Medical Oncology, Fujita Health University School of Medicine, Toyoake, Aichi, 4701192, Japan
| | - Takanori Hayashi
- Department of Biochemistry, Fujita Health University School of Medicine, 1-98 Dengakugakubo, Kutsukake-cho, Toyoake, Aichi, 4701192, Japan
| | - Eiji Munetsuna
- Department of Biochemistry, Fujita Health University School of Medicine, 1-98 Dengakugakubo, Kutsukake-cho, Toyoake, Aichi, 4701192, Japan
| | - Behnoush Khaledian
- Department of Biochemistry, Fujita Health University School of Medicine, 1-98 Dengakugakubo, Kutsukake-cho, Toyoake, Aichi, 4701192, Japan
| | - Fujiko Sueishi
- Department of Biochemistry, Fujita Health University School of Medicine, 1-98 Dengakugakubo, Kutsukake-cho, Toyoake, Aichi, 4701192, Japan
| | - Masahiro Mizuno
- Department of Biochemistry, Fujita Health University School of Medicine, 1-98 Dengakugakubo, Kutsukake-cho, Toyoake, Aichi, 4701192, Japan
| | - Masao Maeda
- Department of Biochemistry, Fujita Health University School of Medicine, 1-98 Dengakugakubo, Kutsukake-cho, Toyoake, Aichi, 4701192, Japan
- Department of Pathology, Fujita Health University School of Medicine, Toyoake, Aichi, 4701192, Japan
| | - Takashi Watanabe
- Division of Gene Regulation, Oncology Innovation Center, Fujita Health University, Toyoake, Aichi, 4701192, Japan
| | - Kaori Ushida
- Department of Pathology, Fujita Health University School of Medicine, Toyoake, Aichi, 4701192, Japan
| | - Eiji Sugihara
- Division of Gene Regulation, Oncology Innovation Center, Fujita Health University, Toyoake, Aichi, 4701192, Japan
| | - Kazuyoshi Imaizumi
- Department of Respiratory Medicine, Fujita Health University School of Medicine, Toyoake, Aichi, 4701192, Japan
| | - Kenji Kawada
- Department of Medical Oncology, Fujita Health University School of Medicine, Toyoake, Aichi, 4701192, Japan
| | - Naoya Asai
- Department of Pathology, Fujita Health University School of Medicine, Toyoake, Aichi, 4701192, Japan
| | - Yohei Shimono
- Department of Biochemistry, Fujita Health University School of Medicine, 1-98 Dengakugakubo, Kutsukake-cho, Toyoake, Aichi, 4701192, Japan.
| |
Collapse
|
3
|
Wan R, Tan Z, Qian H, Li P, Zhang J, Zhu X, Xie P, Ren L. Prognostic Value of S100 Family mRNA Expression in Hepatocellular Carcinoma. THE TURKISH JOURNAL OF GASTROENTEROLOGY : THE OFFICIAL JOURNAL OF TURKISH SOCIETY OF GASTROENTEROLOGY 2024; 35:316-334. [PMID: 39128058 PMCID: PMC11114241 DOI: 10.5152/tjg.2024.22658] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/25/2022] [Accepted: 10/27/2023] [Indexed: 08/13/2024]
Abstract
BACKGROUND/AIMS The S100 family contains more than 20 Ca2+-binding proteins that participate in numerous cellular biological processes. However, the prognostic value of individual S100s in hepatocellular carcinoma (HCC) remains unclear. Therefore, we comprehensively assessed the prognostic value of S100s in HCC. MATERIALS AND METHODS The mRNA level of S100s in distinct types of cancer was analyzed through Oncomine. The clinical prognostic significance of each S100 was evaluated using Kaplan-Meier plotter and OncoLnc. The expression and mutation of S100s were determined through cBioPortal. Gene Ontology and Kyoto Encyclopedia of Genes and Genomes analyses were used to predict the functions and pathways of S100s. RESULTS The analyses revealed that, relative to normal tissues, liver cancer tissues showed aberrant mRNA expression of most S100s. In the survival analysis with Kaplan-Meier plotter, elevated expression levels of S100PBP, S100A2, S100A7, S100A10, and S100A13 were related to shorter overall survival (OS), whereas increased S100A5 expression was associated with longer OS. Moreover, results obtained using OncoLnc showed that increased expression levels of S100P, S100PBP, S100A13, S100A11, S100A10, and S100A2 were related to shorter OS. Thus, S100PBP, S100A13, S100A10, and S100A2 exhibited the same prognostic trend in the 2 databases. However, all S100 member gene mutational changes had no considerable prognostic value in OS and disease-free survival of HCC patients. CONCLUSION Although the findings need to be further confirmed by experiments, they provide new evidence for the prognostic significance of the S100s in HCC.
Collapse
Affiliation(s)
- Renrui Wan
- Department of Hepatobiliary Surgery, Huzhou Central Hospital, Zhejiang University Huzhou Hospital, Affiliated Central Hospital of Huzhou Teachers College, Huzhou, Zhejiang, China
| | - Zhenhua Tan
- Department of Hepatobiliary Surgery, Huzhou Central Hospital, Zhejiang University Huzhou Hospital, Affiliated Central Hospital of Huzhou Teachers College, Huzhou, Zhejiang, China
| | - Hai Qian
- Department of Hepatobiliary Surgery, Huzhou Central Hospital, Zhejiang University Huzhou Hospital, Affiliated Central Hospital of Huzhou Teachers College, Huzhou, Zhejiang, China
| | - Peng Li
- Department of Operating Room, Huzhou Central Hospital, Affiliated Central Hospital Huzhou Teachers College, Huzhou, Zhejiang, China
| | - Jian Zhang
- Department of Hepatobiliary Surgery, Huzhou Central Hospital, Zhejiang University Huzhou Hospital, Affiliated Central Hospital of Huzhou Teachers College, Huzhou, Zhejiang, China
| | - Xiaofeng Zhu
- Department of Hepatobiliary Surgery, Huzhou Central Hospital, Zhejiang University Huzhou Hospital, Affiliated Central Hospital of Huzhou Teachers College, Huzhou, Zhejiang, China
| | - Ping Xie
- Department of Hepatobiliary Surgery, Huzhou Central Hospital, Zhejiang University Huzhou Hospital, Affiliated Central Hospital of Huzhou Teachers College, Huzhou, Zhejiang, China
| | - Lingyan Ren
- Department of Nephrology, the First Affiliated Hospital of Huzhou Teachers College, the First People’s Hospital of Huzhou, Huzhou, Zhejiang, China
| |
Collapse
|
4
|
Kao TW, Chen HH, Lin J, Wang TL, Shen YA. PBX1 as a novel master regulator in cancer: Its regulation, molecular biology, and therapeutic applications. Biochim Biophys Acta Rev Cancer 2024; 1879:189085. [PMID: 38341110 DOI: 10.1016/j.bbcan.2024.189085] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2023] [Revised: 01/31/2024] [Accepted: 02/05/2024] [Indexed: 02/12/2024]
Abstract
PBX1 is a critical transcription factor at the top of various cell fate-determining pathways. In cancer, PBX1 stands at the crossroads of multiple oncogenic signaling pathways and mediates responses by recruiting a broad repertoire of downstream targets. Research thus far has corroborated the involvement of PBX1 in cancer proliferation, resisting apoptosis, tumor-associated neoangiogenesis, epithelial-mesenchymal transition (EMT) and metastasis, immune evasion, genome instability, and dysregulating cellular metabolism. Recently, our understanding of the functional regulation of the PBX1 protein has advanced, as increasing evidence has depicted a regulatory network consisting of transcriptional, post-transcriptional, and post-translational levels of control mechanisms. Furthermore, accumulating studies have supported the clinical utilization of PBX1 as a prognostic or therapeutic target in cancer. Preliminary results showed that PBX1 entails vast potential as a targetable master regulator in the treatment of cancer, particularly in those with high-risk features and resistance to other therapeutic strategies. In this review, we will explore the regulation, protein-protein interactions, molecular pathways, clinical application, and future challenges of PBX1.
Collapse
Affiliation(s)
- Ting-Wan Kao
- Department of Pathology, School of Medicine, College of Medicine, Taipei Medical University, Taipei 110301, Taiwan; Graduate Institute of Clinical Medicine, College of Medicine, Taipei Medical University, Taipei 110301, Taiwan
| | - Hsiao-Han Chen
- Department of General Medicine, National Taiwan University Hospital, Taipei 100224, Taiwan
| | - James Lin
- School of Medicine, College of Medicine, Taipei Medical University, Taipei 110301, Taiwan
| | - Tian-Li Wang
- Departments of Pathology, Oncology and Gynecology and Obstetrics, Johns Hopkins Medical Institutions, 1550 Orleans Street, CRB2, Room 306, Baltimore, MD 21231, USA; Sidney Kimmel Comprehensive Cancer Center, Johns Hopkins University School of Medicine, Baltimore, MD 21231, USA
| | - Yao-An Shen
- Department of Pathology, School of Medicine, College of Medicine, Taipei Medical University, Taipei 110301, Taiwan; Graduate Institute of Clinical Medicine, College of Medicine, Taipei Medical University, Taipei 110301, Taiwan; International Master/Ph.D. Program in Medicine, College of Medicine, Taipei Medical University, Taipei 110301, Taiwan.
| |
Collapse
|
5
|
Okura GC, Bharadwaj AG, Waisman DM. Recent Advances in Molecular and Cellular Functions of S100A10. Biomolecules 2023; 13:1450. [PMID: 37892132 PMCID: PMC10604489 DOI: 10.3390/biom13101450] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2023] [Revised: 09/21/2023] [Accepted: 09/22/2023] [Indexed: 10/29/2023] Open
Abstract
S100A10 (p11, annexin II light chain, calpactin light chain) is a multifunctional protein with a wide range of physiological activity. S100A10 is unique among the S100 family members of proteins since it does not bind to Ca2+, despite its sequence and structural similarity. This review focuses on studies highlighting the structure, regulation, and binding partners of S100A10. The binding partners of S100A10 were collated and summarized.
Collapse
Affiliation(s)
- Gillian C. Okura
- Department of Pathology, Dalhousie University, Halifax, NS B3H 1X5, Canada; (G.C.O.); (A.G.B.)
| | - Alamelu G. Bharadwaj
- Department of Pathology, Dalhousie University, Halifax, NS B3H 1X5, Canada; (G.C.O.); (A.G.B.)
- Departments of Biochemistry and Molecular Biology, Dalhousie University, Halifax, NS B3H 1X5, Canada
| | - David M. Waisman
- Department of Pathology, Dalhousie University, Halifax, NS B3H 1X5, Canada; (G.C.O.); (A.G.B.)
- Departments of Biochemistry and Molecular Biology, Dalhousie University, Halifax, NS B3H 1X5, Canada
| |
Collapse
|
6
|
Zhao YC, Wang TJ, She LZ, Cui J, Zhang CH. S100A10 Overexpression Correlates with Adverse Prognosis, Tumor Microenvironment, and Aggressive Behavior In Vitro and In Vivo of Cervical Cancer. J Cancer 2023; 14:2931-2945. [PMID: 37781076 PMCID: PMC10539568 DOI: 10.7150/jca.87689] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2023] [Accepted: 08/31/2023] [Indexed: 10/03/2023] Open
Abstract
Background: The incidence of cervical squamous cell carcinoma and endocervical adenocarcinoma (CESC) is increasing in women. S100A10 overexpression is commonly reported in various malignancies and is closely associated with tumor cell characteristics and prognosis. Methods: The expression of S100A10 and its prognostic relevance were assessed utilizing RNA-seq data from The Cancer Genome Atlas. S100A10 regulation of CESC cell growth and migration was investigated using CCK-8, colony-forming, and Transwell-based approaches. Xenograft model mice were used to examine the in vivo effects of S100A10, and differentially expressed genes (DEGs) linked to S100A10 were identified to explore its functional role in oncogenesis. Associations between S100A10 levels, chemosensitivity, and the immune microenvironment were assessed, and the mutational and methylation status of S100A10 was evaluated using the cBioPortal and MethSurv databases, respectively. Results: S100A10 was upregulated in CESC samples, and higher S100A10 mRNA levels were associated in poor prognostic outcomes. The area under the curve for S100A10 when diagnosing CESC was 0.935, and S100A10 was found to regulate tumor cell proliferation and metastasis both in vitro and in vivo. Overall, 1125 DEGs enriched in crucial CESC progression-associated signaling pathways were identified. S100A10 expression was also associated with the intratumoral immune microenvironment and immune checkpoint activity. Patients expressing elevated S100A10 levels exhibited distinct chemotherapeutic susceptibility, and methylation of the S100A10 gene was correlated with patient survival outcomes. Conclusion: In summary, this research demonstrated that S100A10 plays a crucial role in regulating CESC development, prognosis, and the intratumoral immune microenvironment. Thus, S100A10 shows potential as a prognostic or diagnostic tool and as a potential target for CESC immunotherapy.
Collapse
Affiliation(s)
- Yue-Chen Zhao
- Department of Radiation Oncology, The Second Hospital of Jilin University, Changchun, Jilin 130041, P.R. China
| | - Tie-Jun Wang
- Department of Radiation Oncology, The Second Hospital of Jilin University, Changchun, Jilin 130041, P.R. China
| | - Li-Zhen She
- Department of Radiation Oncology, The Second Hospital of Jilin University, Changchun, Jilin 130041, P.R. China
| | - Jie Cui
- Department of Radiation Oncology, The Second Hospital of Jilin University, Changchun, Jilin 130041, P.R. China
| | - Chao-He Zhang
- Department of Hematology and Oncology, The Second Hospital of Jilin University, Changchun, Jilin 130041, P.R. China
| |
Collapse
|
7
|
Qi Y, Zhang Y, Li J, Cai M, Zhang B, Yu Z, Li Y, Huang J, Chen X, Song Y, Liu S. S100A family is a group of immune markers associated with poor prognosis and immune cell infiltration in hepatocellular carcinoma. BMC Cancer 2023; 23:637. [PMID: 37420211 DOI: 10.1186/s12885-023-11127-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2022] [Accepted: 06/28/2023] [Indexed: 07/09/2023] Open
Abstract
BACKGROUND Hepatocellular carcinoma (HCC) is one of the most common human cancers with poor prognosis in the world. HCC has become the second leading cause of cancer-related death in China. It is urgent to identify novel biomarker and valid target to effectively diagnose, treat or predict the prognosis of HCC. It has been reported that S100A family is closely related to cell proliferation and migration of different cancers. However, the values of S100As in HCC remain to be further analyzed. METHODS We investigated the transcriptional and translational expression of S100As, as well as the value of this family in HCC patients from the various databases. RESULTS S100A10 was most relevant to HCC. CONCLUSIONS The results from HCC patients' tissues and different cells also confirmed the role of S100A10 in HCC. Furthermore, we proved that S100A10 could influenced the cell proliferation of HCC cells via ANXA2/Akt/mTOR pathway. However, it would appear that the relationship between S100A10 and HCC is complex and requires more research.
Collapse
Affiliation(s)
- Yuchen Qi
- Department of Hepatobiliary Surgery, Central Laboratory, Hunan Provincial People's Hospital, The First Affiliated Hospital of Hunan Normal University, Changsha, Hunan Province, 410005, China
- Department of Cardiology, Xiangdong Hospital Affiliated to Hunan Normal University, Liling, Hunan Province, 412200, China
| | - Yujing Zhang
- Central Laboratory of Hunan Provincial People's Hospital, The First Affiliated Hospital of Hunan Normal University, Changsha, Hunan Province, 410005, China
- Key Laboratory of Molecular Epidemiology of Hunan Province, School of Medicine, Hunan Normal University, Changsha, China
| | - Jianwen Li
- Department of Cardiology, Xiangdong Hospital Affiliated to Hunan Normal University, Liling, Hunan Province, 412200, China
| | - Mengting Cai
- Department of Nuclear Medicine, Hunan Provincial People's Hospital, The First Affiliated Hospital of Hunan Normal University, Changsha, Hunan Province, 410005, China
| | - Bo Zhang
- Department of Minimally Invasive Surgery, The Second People's Hospital of Hunan Province, Changsha, Hunan Province, 410005, China
| | - Zhangtao Yu
- Department of Hepatobiliary Surgery, Central Laboratory, Hunan Provincial People's Hospital, The First Affiliated Hospital of Hunan Normal University, Changsha, Hunan Province, 410005, China
| | - Yuhang Li
- Department of Hepatobiliary Surgery, Central Laboratory, Hunan Provincial People's Hospital, The First Affiliated Hospital of Hunan Normal University, Changsha, Hunan Province, 410005, China
| | - Junkai Huang
- Department of Hepatobiliary Surgery, Central Laboratory, Hunan Provincial People's Hospital, The First Affiliated Hospital of Hunan Normal University, Changsha, Hunan Province, 410005, China
| | - Xu Chen
- Department of Hepatobiliary Surgery, Central Laboratory, Hunan Provincial People's Hospital, The First Affiliated Hospital of Hunan Normal University, Changsha, Hunan Province, 410005, China
| | - Yinghui Song
- Department of Hepatobiliary Surgery, Central Laboratory, Hunan Provincial People's Hospital, The First Affiliated Hospital of Hunan Normal University, Changsha, Hunan Province, 410005, China.
- Central Laboratory of Hunan Provincial People's Hospital, The First Affiliated Hospital of Hunan Normal University, Changsha, Hunan Province, 410005, China.
| | - Sulai Liu
- Department of Hepatobiliary Surgery, Central Laboratory, Hunan Provincial People's Hospital, The First Affiliated Hospital of Hunan Normal University, Changsha, Hunan Province, 410005, China.
- Central Laboratory of Hunan Provincial People's Hospital, The First Affiliated Hospital of Hunan Normal University, Changsha, Hunan Province, 410005, China.
| |
Collapse
|
8
|
Cerón JJ, Ortín-Bustillo A, López-Martínez MJ, Martínez-Subiela S, Eckersall PD, Tecles F, Tvarijonaviciute A, Muñoz-Prieto A. S-100 Proteins: Basics and Applications as Biomarkers in Animals with Special Focus on Calgranulins (S100A8, A9, and A12). BIOLOGY 2023; 12:881. [PMID: 37372165 DOI: 10.3390/biology12060881] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/07/2023] [Revised: 06/08/2023] [Accepted: 06/13/2023] [Indexed: 06/29/2023]
Abstract
S100 proteins are a group of calcium-binding proteins which received this name because of their solubility in a 100% saturated solution of ammonium sulphate. They have a similar molecular mass of 10-12 KDa and share 25-65% similarity in their amino acid sequence. They are expressed in many tissues, and to date 25 different types of S100 proteins have been identified. This review aims to provide updated information about S100 proteins and their use as biomarkers in veterinary science, with special emphasis on the family of calgranulins that includes S100A8 (calgranulin A; myeloid-related protein 8, MRP8), S100A9 (calgranulin B; MRP14), and S100A12 (calgranulin C). The proteins SA100A8 and S100A9 can be linked, forming a heterodimer which is known as calprotectin. Calgranulins are related to the activation of inflammation and the immune system and increase in gastrointestinal diseases, inflammation and sepsis, immunomediated diseases, and obesity and endocrine disorders in different animal species. This review reflects the current knowledge about calgranulins in veterinary science, which should increase in the future to clarify their role in different diseases and potential as biomarkers and therapeutic targets, as well as the practical use of their measurement in non-invasive samples such as saliva or feces.
Collapse
Affiliation(s)
- José Joaquín Cerón
- Interdisciplinary Laboratory of Clinical Analysis (Interlab-UMU), Regional Campus of International Excellence 'Campus Mare Nostrum', University of Murcia, Campus de Espinardo s/n, 30100 Murcia, Spain
| | - Alba Ortín-Bustillo
- Interdisciplinary Laboratory of Clinical Analysis (Interlab-UMU), Regional Campus of International Excellence 'Campus Mare Nostrum', University of Murcia, Campus de Espinardo s/n, 30100 Murcia, Spain
| | - María José López-Martínez
- Interdisciplinary Laboratory of Clinical Analysis (Interlab-UMU), Regional Campus of International Excellence 'Campus Mare Nostrum', University of Murcia, Campus de Espinardo s/n, 30100 Murcia, Spain
| | - Silvia Martínez-Subiela
- Interdisciplinary Laboratory of Clinical Analysis (Interlab-UMU), Regional Campus of International Excellence 'Campus Mare Nostrum', University of Murcia, Campus de Espinardo s/n, 30100 Murcia, Spain
| | - Peter David Eckersall
- Interdisciplinary Laboratory of Clinical Analysis (Interlab-UMU), Regional Campus of International Excellence 'Campus Mare Nostrum', University of Murcia, Campus de Espinardo s/n, 30100 Murcia, Spain
- Institute of Biodiversity, Animal Health and Comparative Medicine, University of Glasgow, Garscube Estate, Glasgow G61 1QH, UK
| | - Fernando Tecles
- Interdisciplinary Laboratory of Clinical Analysis (Interlab-UMU), Regional Campus of International Excellence 'Campus Mare Nostrum', University of Murcia, Campus de Espinardo s/n, 30100 Murcia, Spain
| | - Asta Tvarijonaviciute
- Interdisciplinary Laboratory of Clinical Analysis (Interlab-UMU), Regional Campus of International Excellence 'Campus Mare Nostrum', University of Murcia, Campus de Espinardo s/n, 30100 Murcia, Spain
| | - Alberto Muñoz-Prieto
- Interdisciplinary Laboratory of Clinical Analysis (Interlab-UMU), Regional Campus of International Excellence 'Campus Mare Nostrum', University of Murcia, Campus de Espinardo s/n, 30100 Murcia, Spain
| |
Collapse
|
9
|
Dave A, Charytonowicz D, Francoeur NJ, Beaumont M, Beaumont K, Schmidt H, Zeleke T, Silva J, Sebra R. The Breast Cancer Single-Cell Atlas: Defining cellular heterogeneity within model cell lines and primary tumors to inform disease subtype, stemness, and treatment options. Cell Oncol (Dordr) 2023; 46:603-628. [PMID: 36598637 PMCID: PMC10205851 DOI: 10.1007/s13402-022-00765-7] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 12/13/2022] [Indexed: 01/05/2023] Open
Abstract
PURPOSE Breast Cancer (BC) is the most diagnosed cancer in women; however, through significant research, relative survival rates have significantly improved. Despite progress, there remains a gap in our understanding of BC subtypes and personalized treatments. This manuscript characterized cellular heterogeneity in BC cell lines through scRNAseq to resolve variability in subtyping, disease modeling potential, and therapeutic targeting predictions. METHODS We generated a Breast Cancer Single-Cell Cell Line Atlas (BSCLA) to help inform future BC research. We sequenced over 36,195 cells composed of 13 cell lines spanning the spectrum of clinical BC subtypes and leveraged publicly available data comprising 39,214 cells from 26 primary tumors. RESULTS Unsupervised clustering identified 49 subpopulations within the cell line dataset. We resolve ambiguity in subtype annotation comparing expression of Estrogen Receptor, Progesterone Receptor, and Human Epidermal Growth Factor Receptor 2 genes. Gene correlations with disease subtype highlighted S100A7 and MUCL1 overexpression in HER2 + cells as possible cell motility and localization drivers. We also present genes driving populational drifts to generate novel gene vectors characterizing each subpopulation. A global Cancer Stem Cell (CSC) scoring vector was used to identify stemness potential for subpopulations and model multi-potency. Finally, we overlay the BSCLA dataset with FDA-approved targets to identify to predict the efficacy of subpopulation-specific therapies. CONCLUSION The BSCLA defines the heterogeneity within BC cell lines, enhancing our overall understanding of BC cellular diversity to guide future BC research, including model cell line selection, unintended sample source effects, stemness factors between cell lines, and cell type-specific treatment response.
Collapse
Affiliation(s)
- Arpit Dave
- Department of Genetics & Genomic Sciences, Icahn School of Medicine at Mount Sinai, 1425 Madison Ave - Icahn (East) Building, Floor 14, Room 14-20E, New York, NY 10029 USA
| | - Daniel Charytonowicz
- Department of Genetics & Genomic Sciences, Icahn School of Medicine at Mount Sinai, 1425 Madison Ave - Icahn (East) Building, Floor 14, Room 14-20E, New York, NY 10029 USA
| | - Nancy J. Francoeur
- Department of Genetics & Genomic Sciences, Icahn School of Medicine at Mount Sinai, 1425 Madison Ave - Icahn (East) Building, Floor 14, Room 14-20E, New York, NY 10029 USA
- Pacific Biosciences, CA Menlo Park, USA
| | - Michael Beaumont
- Department of Genetics & Genomic Sciences, Icahn School of Medicine at Mount Sinai, 1425 Madison Ave - Icahn (East) Building, Floor 14, Room 14-20E, New York, NY 10029 USA
- Icahn Genomics Institute, Icahn School of Medicine at Mount Sinai, New York, NY 10029 USA
| | - Kristin Beaumont
- Department of Genetics & Genomic Sciences, Icahn School of Medicine at Mount Sinai, 1425 Madison Ave - Icahn (East) Building, Floor 14, Room 14-20E, New York, NY 10029 USA
- Icahn Genomics Institute, Icahn School of Medicine at Mount Sinai, New York, NY 10029 USA
| | | | - Tizita Zeleke
- Department of Pathology, Icahn School of Medicine at Mount Sinai Hospital, New York, NY 10029 USA
| | - Jose Silva
- Department of Pathology, Icahn School of Medicine at Mount Sinai Hospital, New York, NY 10029 USA
| | - Robert Sebra
- Department of Genetics & Genomic Sciences, Icahn School of Medicine at Mount Sinai, 1425 Madison Ave - Icahn (East) Building, Floor 14, Room 14-20E, New York, NY 10029 USA
- Icahn Genomics Institute, Icahn School of Medicine at Mount Sinai, New York, NY 10029 USA
- Black Family Stem Cell Institute, Icahn School of Medicine at Mount Sinai, New York, NY 10029 USA
- Center for Advanced Genomics Technology, Icahn School of Medicine at Mount Sinai, New York, NY 10029 USA
| |
Collapse
|
10
|
Yan CY, Zhao ML, Wei YN, Zhao XH. Mechanisms of drug resistance in breast cancer liver metastases: Dilemmas and opportunities. Mol Ther Oncolytics 2023; 28:212-229. [PMID: 36860815 PMCID: PMC9969274 DOI: 10.1016/j.omto.2023.02.001] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023] Open
Abstract
Breast cancer is the leading cause of cancer-related deaths in females worldwide, and the liver is one of the most common sites of distant metastases in breast cancer patients. Patients with breast cancer liver metastases face limited treatment options, and drug resistance is highly prevalent, leading to a poor prognosis and a short survival. Liver metastases respond extremely poorly to immunotherapy and have shown resistance to treatments such as chemotherapy and targeted therapies. Therefore, to develop and to optimize treatment strategies as well as to explore potential therapeutic approaches, it is crucial to understand the mechanisms of drug resistance in breast cancer liver metastases patients. In this review, we summarize recent advances in the research of drug resistance mechanisms in breast cancer liver metastases and discuss their therapeutic potential for improving patient prognoses and outcomes.
Collapse
Affiliation(s)
- Chun-Yan Yan
- Department of Clinical Oncology, Shengjing Hospital of China Medical University, Shenyang 110022, People’s Republic of China
| | - Meng-Lu Zhao
- Department of Clinical Oncology, Shengjing Hospital of China Medical University, Shenyang 110022, People’s Republic of China
| | - Ya-Nan Wei
- Department of Clinical Oncology, Shengjing Hospital of China Medical University, Shenyang 110022, People’s Republic of China
| | - Xi-He Zhao
- Department of Clinical Oncology, Shengjing Hospital of China Medical University, Shenyang 110022, People’s Republic of China
| |
Collapse
|
11
|
Delangre E, Oppliger E, Berkcan S, Gjorgjieva M, Correia de Sousa M, Foti M. S100 Proteins in Fatty Liver Disease and Hepatocellular Carcinoma. Int J Mol Sci 2022; 23:ijms231911030. [PMID: 36232334 PMCID: PMC9570375 DOI: 10.3390/ijms231911030] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2022] [Revised: 09/14/2022] [Accepted: 09/15/2022] [Indexed: 01/27/2023] Open
Abstract
Non-alcoholic fatty liver disease (NAFLD) is a highly prevalent and slow progressing hepatic pathology characterized by different stages of increasing severity which can ultimately give rise to the development of hepatocellular carcinoma (HCC). Besides drastic lifestyle changes, few drugs are effective to some extent alleviate NAFLD and HCC remains a poorly curable cancer. Among the deregulated molecular mechanisms promoting NAFLD and HCC, several members of the S100 proteins family appear to play an important role in the development of hepatic steatosis, non-alcoholic steatohepatitis (NASH) and HCC. Specific members of this Ca2+-binding protein family are indeed significantly overexpressed in either parenchymal or non-parenchymal liver cells, where they exert pleiotropic pathological functions driving NAFLD/NASH to severe stages and/or cancer development. The aberrant activity of S100 specific isoforms has also been reported to drive malignancy in liver cancers. Herein, we discuss the implication of several key members of this family, e.g., S100A4, S100A6, S100A8, S100A9 and S100A11, in NAFLD and HCC, with a particular focus on their intracellular versus extracellular functions in different hepatic cell types. Their clinical relevance as non-invasive diagnostic/prognostic biomarkers for the different stages of NAFLD and HCC, or their pharmacological targeting for therapeutic purpose, is further debated.
Collapse
|
12
|
Ma K, Chen S, Chen X, Yang C, Yang J. S100A10 Is a New Prognostic Biomarker Related to the Malignant Molecular Features and Immunosuppression Process of Adult Gliomas. World Neurosurg 2022; 165:e650-e663. [PMID: 35779750 DOI: 10.1016/j.wneu.2022.06.124] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2022] [Revised: 06/22/2022] [Accepted: 06/23/2022] [Indexed: 12/14/2022]
Abstract
OBJECTIVE Previous studies have demonstrated the role of S100A10 in the progression of several tumors; however, few studies have investigated its immunological characteristics in adult gliomas. In this study, we systematically explored its biological features and clinical significance in adult gliomas. METHODS Altogether, 325 glioma cases from the Chinese Glioma Genome Atlas and 699 glioma cases from The Cancer Genome Atlas were included as the training and validation cohorts. R software was used for data analysis and mapping using the RNA sequencing data from these cases. One-way analysis of variance and Student's t-test were used to assess the differences between the groups. Differences were considered statistically significant at P < 0.05. RESULTS We found that S100A10 was remarkably highly expressed in high-grade glioma, isocitrate dehydrogenase wild type, 1p19q noncodeletion type, O6-methylguanine-DNA methyltransferase promoter unmethylation type, and mesenchymal-like molecular subtype. S100A10 specifically and sensitively indicates the mesenchymal-like molecular subtype. Upregulated S100A10 levels were independently correlated with poor survival. S100A10-related biological processes in gliomas mainly concentrate on immunoreaction and inflammatory response. We then proved that S100A10 was positively related to most inflammatory metagenes, except IgG, including HCK, LCK, MHC II, STAT1, and interferon. More importantly, the levels of glioma-infiltrating immune cells were positively associated with the expression of S100A10, especially in tumor-related macrophages, regulatory T cells, and myeloid-derived suppressor cells. CONCLUSIONS S100A10 is closely related to malignant pathological subtypes, worse prognosis, and immunosuppressive immune cell infiltration in adult gliomas, making it a promising biomarker and potential target in the diagnosis, treatment, and prognostic assessment of gliomas.
Collapse
Affiliation(s)
- Kaiming Ma
- Department of Neurosurgery, Peking University Third Hospital, Beijing, China
| | - Suhua Chen
- Department of Neurosurgery, Peking University Third Hospital, Beijing, China
| | - Xin Chen
- Center for Precision Neurosurgery and Oncology of Peking University Health Science Center, Beijing, China
| | - Chenlong Yang
- Department of Neurosurgery, Peking University Third Hospital, Beijing, China
| | - Jun Yang
- Department of Neurosurgery, Peking University Third Hospital, Beijing, China; Center for Precision Neurosurgery and Oncology of Peking University Health Science Center, Beijing, China.
| |
Collapse
|
13
|
Veiga RN, de Oliveira JC, Gradia DF. PBX1: a key character of the hallmarks of cancer. J Mol Med (Berl) 2021; 99:1667-1680. [PMID: 34529123 DOI: 10.1007/s00109-021-02139-2] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2021] [Revised: 08/17/2021] [Accepted: 09/08/2021] [Indexed: 12/13/2022]
Abstract
Pre-B-cell leukemia homeobox transcription factor 1 (PBX1) was first identified as part of a fusion protein resulting from the chromosomal translocation t(1;19) in pre-B cell acute lymphoblastic leukemias. Since then, PBX1 has been associated with important developmental programs, and its expression dysregulation has been related to multifactorial disorders, including cancer. As PBX1 overexpression in many cancers is correlated to poor prognosis, we sought to understand how this transcription factor contributes to carcinogenesis, and to organize PBX1's roles in the hallmarks of cancer. There is enough evidence to associate PBX1 with at least five hallmarks: sustaining proliferative signaling, activating invasion and metastasis, inducing angiogenesis, resisting cell death, and deregulating cellular energetics. The lack of studies investigating a possible role for PBX1 on the remaining hallmarks made it impossible to defend or refute its contribution on them. However, the functions of some of the PBX1's transcription targets indicate a potential engagement of PBX1 in the avoidance of immune destruction and in the tumor-promoting inflammation hallmarks. Interestingly, PBX1 might be a player in tumor suppression by activating the transcription of some DNA damage response genes. This is the first review organizing PBX1 roles into the hallmarks of cancer. Thus, we encourage future studies to uncover the PBX1's underlying mechanisms to promote carcinogenesis, for it is a promising diagnostic and prognostic biomarker, as well as a potential target in cancer treatment.
Collapse
Affiliation(s)
- Rafaela Nasser Veiga
- Laboratory of Human Cytogenetics and Oncogenetics, Department of Genetics, Postgraduate Program in Genetics, Universidade Federal Do Paraná, Rua Coronel Francisco Heráclito Dos Santos, 100, Jardim das AméricasCuritiba, CEP, 81531-980, Brazil
| | - Jaqueline Carvalho de Oliveira
- Laboratory of Human Cytogenetics and Oncogenetics, Department of Genetics, Postgraduate Program in Genetics, Universidade Federal Do Paraná, Rua Coronel Francisco Heráclito Dos Santos, 100, Jardim das AméricasCuritiba, CEP, 81531-980, Brazil
| | - Daniela Fiori Gradia
- Laboratory of Human Cytogenetics and Oncogenetics, Department of Genetics, Postgraduate Program in Genetics, Universidade Federal Do Paraná, Rua Coronel Francisco Heráclito Dos Santos, 100, Jardim das AméricasCuritiba, CEP, 81531-980, Brazil.
| |
Collapse
|
14
|
Bharadwaj AG, Kempster E, Waisman DM. The ANXA2/S100A10 Complex—Regulation of the Oncogenic Plasminogen Receptor. Biomolecules 2021; 11:biom11121772. [PMID: 34944416 PMCID: PMC8698604 DOI: 10.3390/biom11121772] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2021] [Revised: 11/18/2021] [Accepted: 11/23/2021] [Indexed: 12/13/2022] Open
Abstract
The generation of the serine protease plasmin is initiated by the binding of its zymogenic precursor, plasminogen, to cell surface receptors. The proteolytic activity of plasmin, generated at the cell surface, plays a crucial role in several physiological processes, including fibrinolysis, angiogenesis, wound healing, and the invasion of cells through both the basement membrane and extracellular matrix. The seminal observation by Albert Fischer that cancer cells, but not normal cells in culture, produce large amounts of plasmin formed the basis of current-day observations that plasmin generation can be hijacked by cancer cells to allow tumor development, progression, and metastasis. Thus, the cell surface plasminogen-binding receptor proteins are critical to generating plasmin proteolytic activity at the cell surface. This review focuses on one of the twelve well-described plasminogen receptors, S100A10, which, when in complex with its regulatory partner, annexin A2 (ANXA2), forms the ANXA2/S100A10 heterotetrameric complex referred to as AIIt. We present the theme that AIIt is the quintessential cellular plasminogen receptor since it regulates the formation and the destruction of plasmin. We also introduce the term oncogenic plasminogen receptor to define those plasminogen receptors directly activated during cancer progression. We then discuss the research establishing AIIt as an oncogenic plasminogen receptor-regulated during EMT and activated by oncogenes such as SRC, RAS, HIF1α, and PML-RAR and epigenetically by DNA methylation. We further discuss the evidence derived from animal models supporting the role of S100A10 in tumor progression and oncogenesis. Lastly, we describe the potential of S100A10 as a biomarker for cancer diagnosis and prognosis.
Collapse
Affiliation(s)
- Alamelu G. Bharadwaj
- Departments of Pathology, Dalhousie University, Halifax, NS B3H 1X5, Canada; (A.G.B.); (E.K.)
- Departments of Biochemistry and Molecular Biology, Dalhousie University, Halifax, NS B3H 1X5, Canada
| | - Emma Kempster
- Departments of Pathology, Dalhousie University, Halifax, NS B3H 1X5, Canada; (A.G.B.); (E.K.)
| | - David M. Waisman
- Departments of Pathology, Dalhousie University, Halifax, NS B3H 1X5, Canada; (A.G.B.); (E.K.)
- Departments of Biochemistry and Molecular Biology, Dalhousie University, Halifax, NS B3H 1X5, Canada
- Correspondence: ; Tel.: +1-(902)-494-1803; Fax: +1-(902)-494-1355
| |
Collapse
|
15
|
Wang C, Xu K, Wang R, Han X, Tang J, Guan X. Heterogeneity of BCSCs contributes to the metastatic organotropism of breast cancer. J Exp Clin Cancer Res 2021; 40:370. [PMID: 34801088 PMCID: PMC8605572 DOI: 10.1186/s13046-021-02164-6] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2021] [Accepted: 10/31/2021] [Indexed: 02/07/2023] Open
Abstract
Breast cancer is one of the most-common female malignancies with a high risk of relapse and distant metastasis. The distant metastasis of breast cancer exhibits organotropism, including brain, lung, liver and bone. Breast cancer stem cells (BCSCs) are a small population of breast cancer cells with tumor-initiating ability, which participate in regulating distant metastasis in breast cancer. We investigated the heterogeneity of BCSCs according to biomarker status, epithelial or mesenchymal status and other factors. Based on the classical “seed and soil” theory, we explored the effect of BCSCs on the metastatic organotropism in breast cancer at both “seed” and “soil” levels, with BCSCs as the “seed” and BCSCs-related microenvironment as the “soil”. We also summarized current clinical trials, which assessed the safety and efficacy of BCSCs-related therapies. Understanding the role of BCSCs heterogeneity for regulating metastatic organotropism in breast cancer would provide a new insight for the diagnosis and treatment of advanced metastatic breast cancer.
Collapse
Affiliation(s)
- Cenzhu Wang
- Department of Oncology, The First Affiliated Hospital of Nanjing Medical University, 300 Guangzhou Road, Nanjing, Jiangsu, 210029, China
| | - Kun Xu
- Department of Oncology, The First Affiliated Hospital of Nanjing Medical University, 300 Guangzhou Road, Nanjing, Jiangsu, 210029, China
| | - Runtian Wang
- Department of Oncology, The First Affiliated Hospital of Nanjing Medical University, 300 Guangzhou Road, Nanjing, Jiangsu, 210029, China
| | - Xin Han
- Jiangsu Collaborative Innovation Center of Chinese Medicinal Resources Industrialization, School of Medicine & Holistic Integrative Medicine, Nanjing University of Chinese Medicine, Nanjing, Jiangsu, 210023, China.
| | - Jinhai Tang
- Department of General Surgery, The First Affiliated Hospital of Nanjing Medical University, Nanjing, Jiangsu, 210029, China.
| | - Xiaoxiang Guan
- Department of Oncology, The First Affiliated Hospital of Nanjing Medical University, 300 Guangzhou Road, Nanjing, Jiangsu, 210029, China.
| |
Collapse
|
16
|
Mizuno M, Khaledian B, Maeda M, Hayashi T, Mizuno S, Munetsuna E, Watanabe T, Kono S, Okada S, Suzuki M, Takao S, Minami H, Asai N, Sugiyama F, Takahashi S, Shimono Y. Adipsin-Dependent Secretion of Hepatocyte Growth Factor Regulates the Adipocyte-Cancer Stem Cell Interaction. Cancers (Basel) 2021; 13:cancers13164238. [PMID: 34439392 PMCID: PMC8393397 DOI: 10.3390/cancers13164238] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2021] [Revised: 08/18/2021] [Accepted: 08/19/2021] [Indexed: 01/18/2023] Open
Abstract
Simple Summary Obesity, which is characterized by the excess of adipose tissue, is associated with an increased risk of multiple cancers. We have previously reported that adipsin, a secreted factor from adipocytes, enhances cancer cell proliferation and stem cell properties. In this study, we found that adipsin affected adipocytes themselves and enhanced their secretion of hepatocyte growth factor (HGF). We found that HGF enhanced the adipocyte-cancer cell interactions as a downstream effector of adipsin. Understanding the adipocyte-cancer cell interaction will provide a novel strategy to treat cancers whose initiation, invasion, and metastatic progression are associated with adipose tissues. Abstract Adipose tissue is a component of the tumor microenvironment and is involved in tumor progression. We have previously shown that adipokine adipsin (CFD) functions as an enhancer of tumor proliferation and cancer stem cell (CSC) properties in breast cancers. We established the Cfd-knockout (KO) mice and the mammary adipose tissue-derived stem cells (mADSCs) from them. Cfd-KO in mADSCs significantly reduced their ability to enhance tumorsphere formation of breast cancer patient-derived xenograft (PDX) cells, which was restored by the addition of Cfd in the culture medium. Hepatocyte growth factor (HGF) was expressed and secreted from mADSCs in a Cfd-dependent manner. HGF rescued the reduced ability of Cfd-KO mADSCs to promote tumorsphere formation in vitro and tumor formation in vivo by breast cancer PDX cells. These results suggest that HGF is a downstream effector of Cfd in mADSCs that enhances the CSC properties in breast cancers.
Collapse
Affiliation(s)
- Masahiro Mizuno
- Department of Biochemistry, Fujita Health University School of Medicine, Toyoake 4701192, Japan or (M.M.); (B.K.); (M.M.); (T.H.); (E.M.); (T.W.)
| | - Behnoush Khaledian
- Department of Biochemistry, Fujita Health University School of Medicine, Toyoake 4701192, Japan or (M.M.); (B.K.); (M.M.); (T.H.); (E.M.); (T.W.)
| | - Masao Maeda
- Department of Biochemistry, Fujita Health University School of Medicine, Toyoake 4701192, Japan or (M.M.); (B.K.); (M.M.); (T.H.); (E.M.); (T.W.)
- Department of Pathology, Fujita Health University School of Medicine, Toyoake 4701192, Japan;
| | - Takanori Hayashi
- Department of Biochemistry, Fujita Health University School of Medicine, Toyoake 4701192, Japan or (M.M.); (B.K.); (M.M.); (T.H.); (E.M.); (T.W.)
| | - Seiya Mizuno
- Laboratory Animal Resource Center, Transborder Medical Research Center, Faculty of Medicine, University of Tsukuba, Tsukuba 3058575, Japan; (S.M.); (F.S.); (S.T.)
| | - Eiji Munetsuna
- Department of Biochemistry, Fujita Health University School of Medicine, Toyoake 4701192, Japan or (M.M.); (B.K.); (M.M.); (T.H.); (E.M.); (T.W.)
| | - Takashi Watanabe
- Department of Biochemistry, Fujita Health University School of Medicine, Toyoake 4701192, Japan or (M.M.); (B.K.); (M.M.); (T.H.); (E.M.); (T.W.)
| | - Seishi Kono
- Division of Breast and Endocrine Surgery, Kobe University Graduate School of Medicine, Kobe 6500017, Japan; (S.K.); (S.T.)
| | - Seiji Okada
- Division of Hematopoiesis, Joint Research Center for Human Retrovirus Infection, Kumamoto University, Kumamoto 8600811, Japan;
| | - Motoshi Suzuki
- Department of Molecular Oncology, Fujita Health University School of Medicine, Toyoake 4701192, Japan;
| | - Shintaro Takao
- Division of Breast and Endocrine Surgery, Kobe University Graduate School of Medicine, Kobe 6500017, Japan; (S.K.); (S.T.)
| | - Hironobu Minami
- Division of Medical Oncology/Hematology, Kobe University Graduate School of Medicine, Kobe 6500017, Japan;
| | - Naoya Asai
- Department of Pathology, Fujita Health University School of Medicine, Toyoake 4701192, Japan;
| | - Fumihiro Sugiyama
- Laboratory Animal Resource Center, Transborder Medical Research Center, Faculty of Medicine, University of Tsukuba, Tsukuba 3058575, Japan; (S.M.); (F.S.); (S.T.)
| | - Satoru Takahashi
- Laboratory Animal Resource Center, Transborder Medical Research Center, Faculty of Medicine, University of Tsukuba, Tsukuba 3058575, Japan; (S.M.); (F.S.); (S.T.)
| | - Yohei Shimono
- Department of Biochemistry, Fujita Health University School of Medicine, Toyoake 4701192, Japan or (M.M.); (B.K.); (M.M.); (T.H.); (E.M.); (T.W.)
- Correspondence: ; Tel.: +81-562-932-450
| |
Collapse
|
17
|
Plasmin and Plasminogen System in the Tumor Microenvironment: Implications for Cancer Diagnosis, Prognosis, and Therapy. Cancers (Basel) 2021; 13:cancers13081838. [PMID: 33921488 PMCID: PMC8070608 DOI: 10.3390/cancers13081838] [Citation(s) in RCA: 44] [Impact Index Per Article: 14.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/01/2021] [Revised: 03/19/2021] [Accepted: 03/24/2021] [Indexed: 12/12/2022] Open
Abstract
Simple Summary In this review, we present a detailed discussion of how the plasminogen-activation system is utilized by tumor cells in their unrelenting attack on the tissues surrounding them. Plasmin is an enzyme which is responsible for digesting several proteins that hold the tissues surrounding solid tumors together. In this process tumor cells utilize the activity of plasmin to digest tissue barriers in order to leave the tumour site and spread to other parts of the body. We specifically focus on the role of plasminogen receptor—p11 which is an important regulatory protein that facilitates the conversion of plasminogen to plasmin and by this means promotes the attack by the tumour cells on their surrounding tissues. Abstract The tumor microenvironment (TME) is now being widely accepted as the key contributor to a range of processes involved in cancer progression from tumor growth to metastasis and chemoresistance. The extracellular matrix (ECM) and the proteases that mediate the remodeling of the ECM form an integral part of the TME. Plasmin is a broad-spectrum, highly potent, serine protease whose activation from its precursor plasminogen is tightly regulated by the activators (uPA, uPAR, and tPA), the inhibitors (PAI-1, PAI-2), and plasminogen receptors. Collectively, this system is called the plasminogen activation system. The expression of the components of the plasminogen activation system by malignant cells and the surrounding stromal cells modulates the TME resulting in sustained cancer progression signals. In this review, we provide a detailed discussion of the roles of plasminogen activation system in tumor growth, invasion, metastasis, and chemoresistance with specific emphasis on their role in the TME. We particularly review the recent highlights of the plasminogen receptor S100A10 (p11), which is a pivotal component of the plasminogen activation system.
Collapse
|
18
|
Yanagi H, Watanabe T, Nishimura T, Hayashi T, Kono S, Tsuchida H, Hirata M, Kijima Y, Takao S, Okada S, Suzuki M, Imaizumi K, Kawada K, Minami H, Gotoh N, Shimono Y. Upregulation of S100A10 in metastasized breast cancer stem cells. Cancer Sci 2020; 111:4359-4370. [PMID: 32976661 PMCID: PMC7734155 DOI: 10.1111/cas.14659] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2020] [Revised: 09/12/2020] [Accepted: 09/14/2020] [Indexed: 12/24/2022] Open
Abstract
Metastatic progression remains the major cause of death in human breast cancer. Cancer cells with cancer stem cell (CSC) properties drive initiation and growth of metastases at distant sites. We have previously established the breast cancer patient‐derived tumor xenograft (PDX) mouse model in which CSC marker CD44+ cancer cells formed spontaneous microscopic metastases in the liver. In this PDX mouse, the expression levels of S100A10 and its family proteins were much higher in the CD44+ cancer cells metastasized to the liver than those at the primary site. Knockdown of S100A10 in breast cancer cells suppressed and overexpression of S100A10 in breast cancer PDX cells enhanced their invasion abilities and 3D organoid formation capacities in vitro. Mechanistically, S100A10 regulated the matrix metalloproteinase activity and the expression levels of stem cell–related genes. Finally, constitutive knockdown of S100A10 significantly reduced their metastatic ability to the liver in vivo. These findings suggest that S100A10 functions as a metastasis promoter of breast CSCs by conferring both invasion ability and CSC properties in breast cancers.
Collapse
Affiliation(s)
- Hisano Yanagi
- Department of Biochemistry, Fujita Health University School of Medicine, Toyoake, Japan.,Department of Medical Oncology, Fujita Health University School of Medicine, Toyoake, Japan
| | - Takashi Watanabe
- Department of Biochemistry, Fujita Health University School of Medicine, Toyoake, Japan
| | - Tatsunori Nishimura
- Division of Cancer Cell Biology, Cancer Research Institute, Kanazawa University, Kanazawa, Japan
| | - Takanori Hayashi
- Department of Biochemistry, Fujita Health University School of Medicine, Toyoake, Japan
| | - Seishi Kono
- Division of Breast and Endocrine Surgery, Kobe University Graduate School of Medicine, Kobe, Japan
| | - Hitomi Tsuchida
- Division of Molecular and Cellular Biology, Kobe University Graduate School of Medicine, Kobe, Japan
| | - Munetsugu Hirata
- Department of Breast Surgery, Fujita Health University School of Medicine, Toyoake, Japan
| | - Yuko Kijima
- Department of Breast Surgery, Fujita Health University School of Medicine, Toyoake, Japan
| | - Shintaro Takao
- Division of Breast and Endocrine Surgery, Kobe University Graduate School of Medicine, Kobe, Japan
| | - Seiji Okada
- Division of Hematopoiesis, Joint Research Center for Human Retrovirus Infection, Kumamoto University, Kumamoto, Japan
| | - Motoshi Suzuki
- Department of Molecular Oncology, Fujita Health University School of Medicine, Toyoake, Japan
| | - Kazuyoshi Imaizumi
- Department of Respiratory Medicine, Fujita Health University School of Medicine, Fujita Health University School of Medicine, Toyoake, Japan
| | - Kenji Kawada
- Department of Medical Oncology, Fujita Health University School of Medicine, Toyoake, Japan
| | - Hironobu Minami
- Division of Medical Oncology/Hematology, Kobe University Graduate School of Medicine, Kobe, Japan
| | - Noriko Gotoh
- Division of Cancer Cell Biology, Cancer Research Institute, Kanazawa University, Kanazawa, Japan
| | - Yohei Shimono
- Department of Biochemistry, Fujita Health University School of Medicine, Toyoake, Japan.,Division of Molecular and Cellular Biology, Kobe University Graduate School of Medicine, Kobe, Japan.,Division of Medical Oncology/Hematology, Kobe University Graduate School of Medicine, Kobe, Japan
| |
Collapse
|