1
|
Maruyama D, Jacobsen E, Porcu P, Allen P, Ishitsuka K, Kusumoto S, Narita T, Tobinai K, Foss F, Tsukasaki K, Feldman T, Imaizumi Y, Izutsu K, Morishima S, Yamauchi N, Yuda J, Brammer JE, Kawamata T, Ruan J, Nosaka K, Utsunomiya A, Wang J, Zain J, Kakurai Y, Yamauchi H, Hizukuri Y, Biserna N, Tachibana M, Inoue A, Horwitz SM. Valemetostat monotherapy in patients with relapsed or refractory non-Hodgkin lymphoma: a first-in-human, multicentre, open-label, single-arm, phase 1 study. Lancet Oncol 2024; 25:1589-1601. [PMID: 39486432 DOI: 10.1016/s1470-2045(24)00502-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/29/2024] [Revised: 08/30/2024] [Accepted: 09/05/2024] [Indexed: 11/04/2024]
Abstract
BACKGROUND Few treatment options exist for patients with non-Hodgkin lymphoma, and outcomes remain poor for relapsed or refractory disease. We evaluated the safety and preliminary clinical activity of valemetostat, a novel inhibitor of EZH2 and EZH1, in patients with relapsed or refractory non-Hodgkin lymphomas. METHODS This first-in-human, multicentre, open-label, single-arm, phase 1, dose-escalation and dose-expansion trial was done in 19 hospitals across Japan and the USA. Patients were included if they were aged 18 years or older in the USA or 20 years or older in Japan with a primary diagnosis of relapsed or refractory non-Hodgkin lymphoma and an Eastern Cooperative Oncology Group performance status of 0 or 1. In the dose-escalation part, patients received oral valemetostat at doses of 150 mg per day, 200 mg per day, 250 mg per day, and 300 mg per day continuously in 28-day cycles until progressive disease or unacceptable toxicities. All patients received 200 mg per day in the dose-expansion part. The primary endpoints were safety, pharmacokinetics, and the recommended phase 2 dose; the secondary endpoints were the maximum tolerated dose and the antitumour activity of valemetostat. Responses were assessed in patients who received at least one dose, with measurable lesions at baseline according to the International Working Group 2007 revised criteria for malignant lymphoma (peripheral T-cell lymphoma and B-cell non-Hodgkin lymphoma) and the modified 2009 criteria for adult T-cell leukaemia/lymphoma. The trial is registered with ClinicalTrials.gov, NCT02732275, and is currently active, but not recruiting. FINDINGS Between April 7, 2016, and June 10, 2021, 90 patients (53 [59%] males and 37 [41%] females; 49 [54%] Asian, 33 [37%] White, and eight [9%] Black) were enrolled and treated with valemetostat and included in the safety analysis set. 57 (63%) patients had peripheral T-cell lymphoma, 14 (16%) had adult T-cell leukaemia/lymphoma, and 19 (21%) had B-cell non-Hodgkin lymphoma. Seven (8%) patients received valemetostat 150 mg per day, 74 (82%) received 200 mg per day, seven received 250 mg per day, and two received 300 mg per day. Median follow-up was 7·4 months (IQR 3·4-17·6). All patients had at least one treatment-emergent adverse event; the most common treatment-emergent adverse events of any grade were decreased platelet count (52 [58%] of 90 patients), dysgeusia (45 [50%]), and anaemia (38 [42%]). The most common grade 3-4 adverse events were decreased neutrophil count (21 [23%]), decreased platelet count (18 [20%]), and decreased lymphocyte count (17 [19%]). The most common serious adverse event of any grade was Pneumocystis jirovecii pneumonia (four [4%]). No treatment-related deaths occurred. The overall response rate was 54·5% (48 of 88; 95% CI 43·6-65·2) for patients in the efficacy analysis set. The maximum tolerated dose was not reached; the recommended phase 2 dose of 200 mg per day was determined. Valemetostat exposure was variable between patients and was overlapped over the dose range of 150-250 mg per day. INTERPRETATION The safety profile of valemetostat monotherapy was acceptable in these patients with relapsed or refractory non-Hodgkin lymphoma. Favourable clinical activity was observed. These findings support a new indication for valemetostat in this setting. FUNDING Daiichi Sankyo.
Collapse
Affiliation(s)
- Dai Maruyama
- Department of Hematology, National Cancer Center Hospital, Tokyo, Japan; Cancer Institute Hospital, Japanese Foundation for Cancer Research, Tokyo, Japan.
| | - Eric Jacobsen
- Department of Medical Oncology, Dana-Farber Cancer Institute, Boston, MA, USA
| | - Pierluigi Porcu
- Department of Medical Oncology, Thomas Jefferson University, Philadelphia, PA, USA
| | - Pamela Allen
- Department of Hematology and Medical Oncology, Emory University, Atlanta, GA, USA
| | - Kenji Ishitsuka
- Department of Hematology and Rheumatology, Kagoshima University Hospital, Kagoshima, Japan
| | - Shigeru Kusumoto
- Department of Hematology and Oncology, Nagoya City University Graduate School of Medical Sciences, Nagoya, Japan
| | - Tomoko Narita
- Department of Hematology and Oncology, Nagoya City University Graduate School of Medical Sciences, Nagoya, Japan
| | - Kensei Tobinai
- Department of Hematology, National Cancer Center Hospital, Tokyo, Japan
| | - Francine Foss
- Department of Internal Medicine, Section of Medical Oncology, Yale University School of Medicine, New Haven, CT, USA
| | - Kunihiro Tsukasaki
- Department of Hematology, International Medical Center, Saitama Medical University, Saitama, Japan
| | - Tatyana Feldman
- John Theurer Cancer Center at Hackensack Meridian Health School of Medicine, Hackensack, NJ, USA
| | - Yoshitaka Imaizumi
- Department of Hematology, Nagasaki University Hospital, Nagasaki, Japan; Department of Hematology, National Hospital Organization Nagasaki Medical Center, Nagasaki, Japan
| | - Koji Izutsu
- Department of Hematology, National Cancer Center Hospital, Tokyo, Japan
| | - Satoko Morishima
- Graduate School of Medicine, University of the Ryukyus Hospital, Okinawa, Japan
| | - Nobuhiko Yamauchi
- Department of Hematology, National Cancer Center Hospital East, Chiba, Japan
| | - Junichiro Yuda
- Department of Hematology, National Cancer Center Hospital East, Chiba, Japan
| | - Jonathan E Brammer
- Division of Hematology, Department of Internal Medicine, The Ohio State University James Comprehensive Cancer Center, Columbus, OH, USA
| | - Toyotaka Kawamata
- Department of Hematology/Oncology, The Institute of Medical Science, University of Tokyo, Tokyo, Japan; Department of Hematology, Tokyo Metropolitan Bokutoh Hospital, Tokyo, Japan
| | - Jia Ruan
- Division of Hematology and Medical Oncology, Weill Cornell Medicine, New York, NY, USA
| | - Kisato Nosaka
- Department of Hematology, Rheumatology, and Infectious Diseases, Kumamoto University, Kumamoto, Japan
| | - Atae Utsunomiya
- Department of Hematology, Imamura General Hospital, Kagoshima, Japan
| | - Jie Wang
- Department of Medicine, Duke Cancer Institute, Durham, NC, USA
| | - Jasmine Zain
- Department of Hematology and Hematopoietic Stem Cell Transplantation, City of Hope National Medical Center, Duarte, CA, USA
| | | | | | | | | | | | - Ai Inoue
- Daiichi Sankyo, Basking Ridge, NJ, USA
| | - Steven M Horwitz
- Department of Medicine, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| |
Collapse
|
2
|
Dai W, Qiao X, Fang Y, Guo R, Bai P, Liu S, Li T, Jiang Y, Wei S, Na Z, Xiao X, Li D. Epigenetics-targeted drugs: current paradigms and future challenges. Signal Transduct Target Ther 2024; 9:332. [PMID: 39592582 PMCID: PMC11627502 DOI: 10.1038/s41392-024-02039-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2024] [Revised: 10/14/2024] [Accepted: 10/29/2024] [Indexed: 11/28/2024] Open
Abstract
Epigenetics governs a chromatin state regulatory system through five key mechanisms: DNA modification, histone modification, RNA modification, chromatin remodeling, and non-coding RNA regulation. These mechanisms and their associated enzymes convey genetic information independently of DNA base sequences, playing essential roles in organismal development and homeostasis. Conversely, disruptions in epigenetic landscapes critically influence the pathogenesis of various human diseases. This understanding has laid a robust theoretical groundwork for developing drugs that target epigenetics-modifying enzymes in pathological conditions. Over the past two decades, a growing array of small molecule drugs targeting epigenetic enzymes such as DNA methyltransferase, histone deacetylase, isocitrate dehydrogenase, and enhancer of zeste homolog 2, have been thoroughly investigated and implemented as therapeutic options, particularly in oncology. Additionally, numerous epigenetics-targeted drugs are undergoing clinical trials, offering promising prospects for clinical benefits. This review delineates the roles of epigenetics in physiological and pathological contexts and underscores pioneering studies on the discovery and clinical implementation of epigenetics-targeted drugs. These include inhibitors, agonists, degraders, and multitarget agents, aiming to identify practical challenges and promising avenues for future research. Ultimately, this review aims to deepen the understanding of epigenetics-oriented therapeutic strategies and their further application in clinical settings.
Collapse
Affiliation(s)
- Wanlin Dai
- Center of Reproductive Medicine, Department of Obstetrics and Gynecology, Shengjing Hospital of China Medical University, Shenyang, China
| | - Xinbo Qiao
- Department of Orthopedics, Shengjing Hospital of China Medical University, Shenyang, China
| | - Yuanyuan Fang
- Center of Reproductive Medicine, Department of Obstetrics and Gynecology, Shengjing Hospital of China Medical University, Shenyang, China
| | - Renhao Guo
- Center of Reproductive Medicine, Department of Obstetrics and Gynecology, Shengjing Hospital of China Medical University, Shenyang, China
| | - Peng Bai
- Department of Forensic Genetics, West China School of Basic Medical Sciences & Forensic Medicine, Sichuan University, Chengdu, China
| | - Shuang Liu
- Shenyang Maternity and Child Health Hospital, Shenyang, China
| | - Tingting Li
- Department of General Internal Medicine VIP Ward, Liaoning Cancer Hospital & Institute, Shenyang, China
| | - Yutao Jiang
- Center of Reproductive Medicine, Department of Obstetrics and Gynecology, Shengjing Hospital of China Medical University, Shenyang, China
| | - Shuang Wei
- Center of Reproductive Medicine, Department of Obstetrics and Gynecology, Shengjing Hospital of China Medical University, Shenyang, China
| | - Zhijing Na
- Center of Reproductive Medicine, Department of Obstetrics and Gynecology, Shengjing Hospital of China Medical University, Shenyang, China.
- NHC Key Laboratory of Advanced Reproductive Medicine and Fertility (China Medical University), National Health Commission, Shenyang, China.
| | - Xue Xiao
- Department of Gynecology and Obstetrics, West China Second Hospital, Sichuan University, Chengdu, China.
- Key Laboratory of Birth Defects and Related Diseases of Women and Children (Sichuan University), Ministry of Education, West China Second Hospital, Sichuan University, Chengdu, China.
| | - Da Li
- Center of Reproductive Medicine, Department of Obstetrics and Gynecology, Shengjing Hospital of China Medical University, Shenyang, China.
- NHC Key Laboratory of Advanced Reproductive Medicine and Fertility (China Medical University), National Health Commission, Shenyang, China.
- Key Laboratory of Reproductive Dysfunction Diseases and Fertility Remodeling of Liaoning Province, Shenyang, China.
| |
Collapse
|
3
|
Izutsu K, Ando K, Nishikori M, Shibayama H, Goto H, Kuroda J, Kato K, Imaizumi Y, Nosaka K, Sakai R, Abe M, Hojo S, Nakanishi T, Rai S. Tazemetostat for relapsed/refractory B-cell non-Hodgkin lymphoma with EZH2 mutation in Japan: 3-year follow-up for a phase II study. Int J Hematol 2024; 120:621-630. [PMID: 39179948 PMCID: PMC11513718 DOI: 10.1007/s12185-024-03834-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2024] [Revised: 07/24/2024] [Accepted: 08/06/2024] [Indexed: 08/26/2024]
Abstract
Previously, we reported the efficacy and safety of tazemetostat in Japanese patients with relapsed/refractory follicular lymphoma (FL) and diffuse large B-cell lymphoma (DLBCL) harboring the EZH2 mutation in a multicenter, open-label, phase II study. Here, we present a follow-up analysis of tazemetostat at a long-term median follow-up of 35.0 months. Twenty patients were enrolled: 17 in the FL cohort and three in the DLBCL cohort. In the FL cohort, the objective response rate was 70.6%, consistent with the primary analysis, and the median progression-free survival (PFS) was not reached. The 24-month and 36-month PFS rates were 72.1% (95% confidence interval [CI] 41.5%-88.6%) and 64.1% (95% CI 33.7%-83.4%), respectively. The median duration of treatment was 30.2 months. After the primary analysis at a median follow-up of 12.9 months, grade 1-2 urinary tract infection, peripheral motor neuropathy, and hypogammaglobulinemia newly emerged, but the incidence of adverse events (AEs) did not increase notably during this follow-up period. No unexpected grade ≥ 3 treatment-related AEs were reported. Long-term oral monotherapy with tazemetostat showed favorable efficacy and safety profiles, indicating that it may be a useful third-line or later treatment option for patients with relapsed/refractory FL harboring the EZH2 mutation. Trial registration: ClinicalTrials.gov: NCT03456726.
Collapse
MESH Headings
- Adult
- Aged
- Aged, 80 and over
- Female
- Humans
- Male
- Middle Aged
- Benzamides/therapeutic use
- Biphenyl Compounds/therapeutic use
- Enhancer of Zeste Homolog 2 Protein/genetics
- Follow-Up Studies
- Japan
- Lymphoma, Follicular/genetics
- Lymphoma, Follicular/drug therapy
- Lymphoma, Large B-Cell, Diffuse/genetics
- Lymphoma, Large B-Cell, Diffuse/drug therapy
- Lymphoma, Large B-Cell, Diffuse/mortality
- Morpholines/therapeutic use
- Morpholines/adverse effects
- Morpholines/administration & dosage
- Mutation
- Pyridones/therapeutic use
- Pyridones/adverse effects
- Pyridones/administration & dosage
- Recurrence
- Treatment Outcome
- Clinical Trials, Phase II as Topic
Collapse
Affiliation(s)
- Koji Izutsu
- Department of Hematology, National Cancer Center Hospital, 5-1-1 Tsukiji, Chuo-ku, Tokyo, 104-0045, Japan.
| | - Kiyoshi Ando
- Department of Hematology and Oncology, Tokai University School of Medicine, Isehara, Japan
| | - Momoko Nishikori
- Department of Hematology and Oncology, Kyoto University, Kyoto, Japan
| | - Hirohiko Shibayama
- Department of Hematology and Oncology, Osaka University Hospital, Suita, Japan
| | - Hideki Goto
- Department of Hematology, Hokkaido University Hospital, Sapporo, Japan
| | - Junya Kuroda
- Division of Hematology and Oncology, Kyoto Prefectural University of Medicine, Kyoto, Japan
| | - Koji Kato
- Department of Medicine and Biosystemic Science, Kyushu University Graduate School of Medical Sciences, Fukuoka, Japan
| | | | - Kisato Nosaka
- Department of Hematology, Rheumatology, and Infectious Diseases, Kumamoto University, Kumamoto, Japan
| | - Rika Sakai
- Department of Hematology and Medical Oncology, Kanagawa Cancer Center, Yokohama, Japan
| | | | | | | | - Shinya Rai
- Department of Hematology and Rheumatology, Faculty of Medicine, Kindai University, Osakasayama, Japan
| |
Collapse
|
4
|
Masnikosa R, Cvetković Z, Pirić D. Tumor Biology Hides Novel Therapeutic Approaches to Diffuse Large B-Cell Lymphoma: A Narrative Review. Int J Mol Sci 2024; 25:11384. [PMID: 39518937 PMCID: PMC11545713 DOI: 10.3390/ijms252111384] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2024] [Revised: 10/13/2024] [Accepted: 10/16/2024] [Indexed: 11/16/2024] Open
Abstract
Diffuse large B-cell lymphoma (DLBCL) is a malignancy of immense biological and clinical heterogeneity. Based on the transcriptomic or genomic approach, several different classification schemes have evolved over the years to subdivide DLBCL into clinically (prognostically) relevant subsets, but each leaves unclassified samples. Herein, we outline the DLBCL tumor biology behind the actual and potential drug targets and address the challenges and drawbacks coupled with their (potential) use. Therapeutic modalities are discussed, including small-molecule inhibitors, naked antibodies, antibody-drug conjugates, chimeric antigen receptors, bispecific antibodies and T-cell engagers, and immune checkpoint inhibitors. Candidate drugs explored in ongoing clinical trials are coupled with diverse toxicity issues and refractoriness to drugs. According to the literature on DLBCL, the promise for new therapeutic targets lies in epigenetic alterations, B-cell receptor and NF-κB pathways. Herein, we present putative targets hiding in lipid pathways, ferroptosis, and the gut microbiome that could be used in addition to immuno-chemotherapy to improve the general health status of DLBCL patients, thus increasing the chance of being cured. It may be time to devote more effort to exploring DLBCL metabolism to discover novel druggable targets. We also performed a bibliometric and knowledge-map analysis of the literature on DLBCL published from 2014-2023.
Collapse
Affiliation(s)
- Romana Masnikosa
- Department of Physical Chemistry, Vinca Institute of Nuclear Sciences—National Institute of the Republic of Serbia, University of Belgrade, Mike Petrovica Alasa 12-14, 11000 Belgrade, Serbia;
| | - Zorica Cvetković
- Department of Hematology, Clinical Hospital Centre Zemun, Vukova 9, 11000 Belgrade, Serbia
- Faculty of Medicine, University of Belgrade, Dr Subotića 8, 11000 Belgrade, Serbia
| | - David Pirić
- Department of Physical Chemistry, Vinca Institute of Nuclear Sciences—National Institute of the Republic of Serbia, University of Belgrade, Mike Petrovica Alasa 12-14, 11000 Belgrade, Serbia;
| |
Collapse
|
5
|
Kikuchi S, Nabe Y, Horaguchi R, Minemura T, Murakami J, Noguchi A, Takagi K, Kamihara Y, Wada A, Fujihira T, Sato T. Complete response using the EZH2 inhibitor tazemetostat against multiple relapsed follicular lymphoma in the leukemic phase. Int Cancer Conf J 2024; 13:488-492. [PMID: 39398919 PMCID: PMC11465062 DOI: 10.1007/s13691-024-00716-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2024] [Accepted: 08/11/2024] [Indexed: 10/15/2024] Open
Abstract
Though multiple relapses and serial shortening of remission is one of the characteristics of follicular lymphoma (FL), standard third- and later-line treatments with clear evidence have not yet been established. Tazemetostat, the first oral enhancer of zester homolog 2 (EZH2) inhibitor, showed a favorable clinical outcome and safety profile against relapsed mutant EZH2 FL in a clinical trial and was applied to this clinical setting. Peripheral blood involvement, known as the leukemic phase, was observed in approximately 10% of patients with FL and reported as a poor prognostic factor. However, because of the infrequency of EZH2-activating mutations, clinical data on tazemetostat against FL in the leukemic phase is lacking. Herein, we report a case of multiple relapsed FL in the leukemic phase for which tazemetostat was administered as a sixth-line treatment. Tazemetostat monotherapy showed a slow and sustained clinical efficacy in the leukemic phase as shown by nodal involvement. Circulating lymphoma cells gradually decreased and disappeared in counts after 4 months of treatment. However, circulating lymphoma cells were still detected by flow cytometry up to 6 months of treatment and finally undetected after 9 months. Extended-interval dosing of tazemetostat transformed a partial response into a complete response. Thus, tazemetostat is effective for the treatment of multiple relapsed FL in the leukemic phase.
Collapse
Affiliation(s)
- Shohei Kikuchi
- Department of Hematology, Toyama University Hospital, 2630 Sugitani, Toyama, 930-0152 Japan
| | - Yoshimi Nabe
- Department of Hematology, Toyama University Hospital, 2630 Sugitani, Toyama, 930-0152 Japan
| | - Ryusuke Horaguchi
- Department of Hematology, Toyama University Hospital, 2630 Sugitani, Toyama, 930-0152 Japan
| | - Tomoki Minemura
- Department of Hematology, Toyama University Hospital, 2630 Sugitani, Toyama, 930-0152 Japan
| | - Jun Murakami
- Division of Transfusion Medicine and Cell Therapy, Toyama University Hospital, Toyama, Japan
| | - Akira Noguchi
- Department of Diagnostic Pathology, Toyama University Hospital, Toyama, Japan
| | - Kohji Takagi
- Department of Diagnostic Pathology, Toyama University Hospital, Toyama, Japan
| | - Yusuke Kamihara
- Department of Hematology, Toyama University Hospital, 2630 Sugitani, Toyama, 930-0152 Japan
| | - Akinori Wada
- Department of Hematology, Toyama University Hospital, 2630 Sugitani, Toyama, 930-0152 Japan
| | - Takuma Fujihira
- Department of Hematology, Toyama University Hospital, 2630 Sugitani, Toyama, 930-0152 Japan
| | - Tsutomu Sato
- Department of Hematology, Toyama University Hospital, 2630 Sugitani, Toyama, 930-0152 Japan
| |
Collapse
|
6
|
Chen G, Zhang L, Wang R, Xie Z. Histone methylation in Epstein-Barr virus-associated diseases. Epigenomics 2024; 16:865-877. [PMID: 38869454 PMCID: PMC11370928 DOI: 10.1080/17501911.2024.2345040] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2023] [Accepted: 04/15/2024] [Indexed: 06/14/2024] Open
Abstract
Epstein-Barr virus (EBV) infection is linked to various human diseases, including both noncancerous conditions like infectious mononucleosis and cancerous diseases such as lymphoma and nasopharyngeal carcinoma. After the initial infection, EBV establishes a lifelong presence and remains latent in specific cells. This latent infection causes changes in the epigenetic marks known as histone methylation. Many studies have examined the role of histone methylation in different EBV-associated diseases, and understanding how EBV affects histone methylation can help us identify potential targets for epigenetic therapies. This review focuses on the research progress made in understanding histone methylation in well-studied EBV-associated diseases, intending to provide insights into potential strategies based on histone methylation to combat EBV-related ailments.
Collapse
Affiliation(s)
- Guanglian Chen
- Beijing Key Laboratory of Pediatric Respiratory Infectious Diseases, Key Laboratory of Major Diseases in Children, Ministry of Education, National Clinical Research Center for Respiratory Diseases, Beijing Pediatric Research Institute, Beijing Children's Hospital, Capital Medical University, National Center for Children's Health, Beijing, 100045, China
- Research Unit of Critical Infection in Children, 2019RU016, Chinese Academy of Medical Sciences, Beijing, 100045, China
| | - Linlin Zhang
- Beijing Key Laboratory of Pediatric Respiratory Infectious Diseases, Key Laboratory of Major Diseases in Children, Ministry of Education, National Clinical Research Center for Respiratory Diseases, Beijing Pediatric Research Institute, Beijing Children's Hospital, Capital Medical University, National Center for Children's Health, Beijing, 100045, China
- Research Unit of Critical Infection in Children, 2019RU016, Chinese Academy of Medical Sciences, Beijing, 100045, China
| | - Ran Wang
- Beijing Key Laboratory of Pediatric Respiratory Infectious Diseases, Key Laboratory of Major Diseases in Children, Ministry of Education, National Clinical Research Center for Respiratory Diseases, Beijing Pediatric Research Institute, Beijing Children's Hospital, Capital Medical University, National Center for Children's Health, Beijing, 100045, China
- Research Unit of Critical Infection in Children, 2019RU016, Chinese Academy of Medical Sciences, Beijing, 100045, China
| | - Zhengde Xie
- Beijing Key Laboratory of Pediatric Respiratory Infectious Diseases, Key Laboratory of Major Diseases in Children, Ministry of Education, National Clinical Research Center for Respiratory Diseases, Beijing Pediatric Research Institute, Beijing Children's Hospital, Capital Medical University, National Center for Children's Health, Beijing, 100045, China
- Research Unit of Critical Infection in Children, 2019RU016, Chinese Academy of Medical Sciences, Beijing, 100045, China
| |
Collapse
|
7
|
Orleni M, Beumer JH. Pharmacology and pharmacokinetics of tazemetostat. Cancer Chemother Pharmacol 2024; 93:509-517. [PMID: 38520556 PMCID: PMC11559081 DOI: 10.1007/s00280-024-04658-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/02/2024] [Accepted: 02/17/2024] [Indexed: 03/25/2024]
Abstract
Tazemetostat, a novel oral selective inhibitor of enhancer of zeste homolog 2 (EZH2), was approved by the Food and Drug Administration (FDA) in 2020 for use in patients with advanced epithelioid sarcoma or relapsed/refractory (R/R) EZH2-mutated follicular lymphoma. These indications were approved by the FDA trough accelerated approval based on objective response rate and duration of response that resulted from phase 2 clinical trials. Tazemetostat competes with S-adenosylmethionine (SAM) cofactor to inhibit EZH2, reducing the levels of trimethylated lysine 27 of histone 3 (H3K27me3), considered as pharmacodynamic marker. Tazemetostat is orally bioavailable, characterized by rapid absorption and dose-proportional exposure, which is not influenced by coadministration with food or gastric acid reducing agents. It highly distributes in tissues, but with limited access to central nervous system. Tazemetostat is metabolized by CYP3A in the liver to 3 major inactive metabolites (M1, M3, and M5), has a short half-life and is mainly excreted in feces. Drug-drug interactions were shown with moderate CYP3A inhibitors as fluconazole, leading the FDA to recommend a 50% dose reduction, while studies investigating coadministration of tazemetostat with strong inhibitors/inducers are ongoing. No dosage modifications are recommended based on renal or hepatic dysfunctions. Overall, tazemetostat is the first-in-class EZH2 inhibitor approved by the FDA for cancer treatment. Current clinical studies are evaluating combination therapies in patients with several malignancies.
Collapse
Affiliation(s)
- Marco Orleni
- Cancer Therapeutics Program, UPMC Hillman Cancer Center, Room G27E, Hillman Research Pavilion, 5117 Centre Avenue, Pittsburgh, PA, 15213-1863, USA
- Department of Pharmaceutical Sciences, School of Pharmacy, University of Pittsburgh, Pittsburgh, PA, 15261, USA
- Doctoral School in Pharmacological Sciences, University of Padua, Padua, Italy
| | - Jan H Beumer
- Cancer Therapeutics Program, UPMC Hillman Cancer Center, Room G27E, Hillman Research Pavilion, 5117 Centre Avenue, Pittsburgh, PA, 15213-1863, USA.
- Department of Pharmaceutical Sciences, School of Pharmacy, University of Pittsburgh, Pittsburgh, PA, 15261, USA.
- Division of Hematology-Oncology, Department of Medicine, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA.
| |
Collapse
|
8
|
Zhang Q, Shi Y, Liu S, Yang W, Chen H, Guo N, Sun W, Zhao Y, Ren Y, Ren Y, Jia L, Yang J, Yun Y, Chen G, Wang L, Wu C. EZH2/G9a interact to mediate drug resistance in non-small-cell lung cancer by regulating the SMAD4/ERK/c-Myc signaling axis. Cell Rep 2024; 43:113714. [PMID: 38306271 DOI: 10.1016/j.celrep.2024.113714] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2023] [Revised: 11/18/2023] [Accepted: 01/12/2024] [Indexed: 02/04/2024] Open
Abstract
Drug resistance is the leading problem in non-small-cell lung cancer (NSCLC) therapy. The contribution of histone methylation in mediating malignant phenotypes of NSCLC is well known. However, the role of histone methylation in NSCLC drug-resistance mechanisms remains unclear. Here, our data show that EZH2 and G9a, two histone methyltransferases, are involved in the drug resistance of NSCLC. Gene manipulation results indicate that the combination of EZH2 and G9a promotes tumor growth and mediates drug resistance in a complementary manner. Importantly, clinical study demonstrates that co-expression of both enzymes predicts a poor outcome in patients with NSCLC. Mechanistically, G9a and EZH2 interact and promote the silencing of the tumor-suppressor gene SMAD4, activating the ERK/c-Myc signaling pathway. Finally, SU08, a compound targeting both EZH2 and G9a, is demonstrated to sensitize resistant cells to therapeutic drugs by regulating the SMAD4/ERK/c-Myc signaling axis. These findings uncover the resistance mechanism and a strategy for reversing NSCLC drug resistance.
Collapse
Affiliation(s)
- Qiuyue Zhang
- Department of Pharmacology, School of Life Science and Biopharmaceutics, Shenyang Pharmaceutical University, Shenyang 110016, China
| | - Yajie Shi
- Key Laboratory of Structure-Based Drug Design & Discovery of Ministry of Education, School of Pharmaceutical Engineering, Shenyang Pharmaceutical University, Shenyang 110016, China
| | - Sen Liu
- Department of Pharmacology, School of Life Science and Biopharmaceutics, Shenyang Pharmaceutical University, Shenyang 110016, China
| | - Weiming Yang
- Department of Pharmacology, School of Life Science and Biopharmaceutics, Shenyang Pharmaceutical University, Shenyang 110016, China
| | - Huiping Chen
- Department of Pharmacology, School of Life Science and Biopharmaceutics, Shenyang Pharmaceutical University, Shenyang 110016, China
| | - Ning Guo
- Department of Pharmacology, School of Life Science and Biopharmaceutics, Shenyang Pharmaceutical University, Shenyang 110016, China
| | - Wanyu Sun
- Department of Pharmacology, School of Life Science and Biopharmaceutics, Shenyang Pharmaceutical University, Shenyang 110016, China
| | - Yongshan Zhao
- Department of Biochemistry and Molecular Biology, School of Life Science and Biopharmaceutics, Shenyang Pharmaceutical University, Shenyang 110016, China
| | - Yuxiang Ren
- Department of Biochemistry and Molecular Biology, School of Life Science and Biopharmaceutics, Shenyang Pharmaceutical University, Shenyang 110016, China
| | - Yong Ren
- Department of Pathology, General Hospital of Central Theater Command of People's Liberation Army, Wuhan 430070, China
| | - Lina Jia
- Department of Pharmacology, School of Life Science and Biopharmaceutics, Shenyang Pharmaceutical University, Shenyang 110016, China
| | - Jingyu Yang
- Department of Pharmacology, School of Life Science and Biopharmaceutics, Shenyang Pharmaceutical University, Shenyang 110016, China
| | - Yi Yun
- Biobank Center, The Second Affiliated Hospital of Nanchang University, Nanchang 330006, China
| | - Guoliang Chen
- Key Laboratory of Structure-Based Drug Design & Discovery of Ministry of Education, School of Pharmaceutical Engineering, Shenyang Pharmaceutical University, Shenyang 110016, China.
| | - Lihui Wang
- Department of Pharmacology, School of Life Science and Biopharmaceutics, Shenyang Pharmaceutical University, Shenyang 110016, China.
| | - Chunfu Wu
- Department of Pharmacology, School of Life Science and Biopharmaceutics, Shenyang Pharmaceutical University, Shenyang 110016, China.
| |
Collapse
|
9
|
Papadaki S, Piperi C. Impact of Histone Lysine Methyltransferase SUV4-20H2 on Cancer Onset and Progression with Therapeutic Potential. Int J Mol Sci 2024; 25:2498. [PMID: 38473745 DOI: 10.3390/ijms25052498] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2024] [Revised: 02/15/2024] [Accepted: 02/16/2024] [Indexed: 03/14/2024] Open
Abstract
Histone lysine methyltransferase SUV4-20H2, a member of the suppressor of variegation 4-20 homolog (SUV4-20) family, has a critical impact on the regulation of chromatin structure and gene expression. This methyltransferase establishes the trimethylation of histone H4 lysine 20 (H4K20me3), a repressive histone mark that affects several cellular processes. Deregulated SUV4-20H2 activity has been associated with altered chromatin dynamics, leading to the misregulation of key genes involved in cell cycle control, apoptosis and DNA repair. Emerging research evidence indicates that SUV4-20H2 acts as a potential epigenetic modifier, contributing to the development and progression of several malignancies, including breast, colon and lung cancer, as well as renal, hepatocellular and pancreatic cancer. Understanding the molecular mechanisms that underlie SUV4-20H2-mediated effects on chromatin structure and gene expression may provide valuable insights into novel therapeutic strategies for targeting epigenetic alterations in cancer. Herein, we discuss structural and functional aspects of SUV4-20H2 in cancer onset, progression and prognosis, along with current targeting options.
Collapse
Affiliation(s)
- Stela Papadaki
- Department of Biological Chemistry, Medical School, National and Kapodistrian University of Athens, 75 M. Asias Street, 11527 Athens, Greece
| | - Christina Piperi
- Department of Biological Chemistry, Medical School, National and Kapodistrian University of Athens, 75 M. Asias Street, 11527 Athens, Greece
| |
Collapse
|
10
|
Watanabe T. Gene targeted and immune therapies for nodal and gastrointestinal follicular lymphomas. World J Gastroenterol 2023; 29:6179-6197. [PMID: 38186866 PMCID: PMC10768399 DOI: 10.3748/wjg.v29.i48.6179] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/24/2023] [Revised: 11/02/2023] [Accepted: 12/18/2023] [Indexed: 12/27/2023] Open
Abstract
Follicular lymphoma (FL) is the most common indolent B-cell lymphoma (BCL) globally. Recently, its incidence has increased in Europe, the United States, and Asia, with the number of gastrointestinal FL cases expected to increase. Genetic abnormalities related to t(14;18) translocation, BCL2 overexpression, NF-κB pathway-related factors, histone acetylases, and histone methyltransferases cause FL and enhance its proliferation. Meanwhile, microRNAs are commonly used in diagnosing FL and predicting patient prognosis. Many clinical trials on novel therapeutics targeting these genetic abnormalities and immunomodulatory mechanisms have been conducted, resulting in a marked improvement in therapeutic outcomes for FL. Although developing these innovative therapeutic agents targeting specific genetic mutations and immune pathways has provided hope for curative options, FL treatment has become more complex, requiring combinatorial therapeutic regimens. However, optimal treatment combinations have not yet been achieved, highlighting the importance of a complete under-standing regarding the pathogenesis of gastrointestinal FL. Accordingly, this article reviews key research on the molecular pathogenesis of nodal FL and novel therapies targeting the causative genetic mutations. Moreover, the results of clinical trials are summarized, with a particular focus on treating nodal and gastrointestinal FLs.
Collapse
Affiliation(s)
- Takuya Watanabe
- Department of Internal Medicine and Gastroenterology, Watanabe Internal Medicine Aoyama Clinic, Niigata 9502002, Japan
| |
Collapse
|
11
|
Chen L, Zheng X, Liu W, Sun Y, Zhao S, Tian L, Tian W, Xue F, Kang C, Wang Y. Compound AC1Q3QWB upregulates CDKN1A and SOX17 by interrupting the HOTAIR-EZH2 interaction and enhances the efficacy of tazemetostat in endometrial cancer. Cancer Lett 2023; 578:216445. [PMID: 37866545 DOI: 10.1016/j.canlet.2023.216445] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2023] [Revised: 09/29/2023] [Accepted: 10/11/2023] [Indexed: 10/24/2023]
Abstract
Endometrial cancer (EC) is a common malignancy of the female reproductive system, with an escalating incidence. Recurrent/metastatic EC presents a poor prognosis. The interaction between the long non-coding RNA (lncRNA) HOTAIR and the polycomb repressive complex 2 (PRC2) induces abnormal silencing of tumor suppressor genes, exerting a pivotal role in tumorigenesis. We have previously discovered AC1Q3QWB (AQB), a small-molecule compound targeting HOTAIR-EZH2 interaction. In the present study, we unveil that AQB selectively hampers the interaction between HOTAIR and EZH2 within EC cells, thus reversing the epigenetic suppression of tumor suppressor genes. Furthermore, our findings demonstrate AQB's synergistic effect with tazemetostat (TAZ), an EZH2 inhibitor, significantly boosting the expression of CDKN1A and SOX17. This, in turn, induces cell cycle arrest and impedes EC cell proliferation, migration, and invasion. In vivo experiments further validate AQB's potential by enhancing TAZ's anti-tumor efficacy at lower doses. Our results advocate AQB, a recently discovered small-molecule inhibitor, as a promising agent against EC cells. When combined with TAZ, it offers a novel therapeutic strategy for EC treatment.
Collapse
Affiliation(s)
- Lingli Chen
- Department of Gynecology and Obstetrics, Tianjin Medical University General Hospital, Tianjin, 300052, China; Tianjin Key Laboratory of Female Reproductive Health and Eugenics, Tianjin Medical University General Hospital, Tianjin, 300052, China
| | - Xingyu Zheng
- Department of Gynecology and Obstetrics, Tianjin Medical University General Hospital, Tianjin, 300052, China; Tianjin Key Laboratory of Female Reproductive Health and Eugenics, Tianjin Medical University General Hospital, Tianjin, 300052, China
| | - Wenlu Liu
- Department of Gynecology and Obstetrics, Tianjin Medical University General Hospital, Tianjin, 300052, China; Tianjin Key Laboratory of Female Reproductive Health and Eugenics, Tianjin Medical University General Hospital, Tianjin, 300052, China
| | - Yiqing Sun
- Department of Gynecology and Obstetrics, Tianjin Medical University General Hospital, Tianjin, 300052, China; Tianjin Key Laboratory of Female Reproductive Health and Eugenics, Tianjin Medical University General Hospital, Tianjin, 300052, China
| | - Shuangshuang Zhao
- Department of Gynecology and Obstetrics, Tianjin Medical University General Hospital, Tianjin, 300052, China; Tianjin Key Laboratory of Female Reproductive Health and Eugenics, Tianjin Medical University General Hospital, Tianjin, 300052, China
| | - Lina Tian
- Department of Gynecology and Obstetrics, Tianjin Medical University General Hospital, Tianjin, 300052, China; Tianjin Key Laboratory of Female Reproductive Health and Eugenics, Tianjin Medical University General Hospital, Tianjin, 300052, China
| | - Wenyan Tian
- Department of Gynecology and Obstetrics, Tianjin Medical University General Hospital, Tianjin, 300052, China; Tianjin Key Laboratory of Female Reproductive Health and Eugenics, Tianjin Medical University General Hospital, Tianjin, 300052, China
| | - Fengxia Xue
- Department of Gynecology and Obstetrics, Tianjin Medical University General Hospital, Tianjin, 300052, China; Tianjin Key Laboratory of Female Reproductive Health and Eugenics, Tianjin Medical University General Hospital, Tianjin, 300052, China.
| | - Chunsheng Kang
- Department of Neurosurgery, Tianjin Medical University General Hospital, Lab of Neuro-oncology, Tianjin Neurological Institute, Tianjin, 300052, China.
| | - Yingmei Wang
- Department of Gynecology and Obstetrics, Tianjin Medical University General Hospital, Tianjin, 300052, China; Tianjin Key Laboratory of Female Reproductive Health and Eugenics, Tianjin Medical University General Hospital, Tianjin, 300052, China.
| |
Collapse
|
12
|
Mai Y, Su J, Yang C, Xia C, Fu L. The strategies to cure cancer patients by eradicating cancer stem-like cells. Mol Cancer 2023; 22:171. [PMID: 37853413 PMCID: PMC10583358 DOI: 10.1186/s12943-023-01867-y] [Citation(s) in RCA: 21] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2023] [Accepted: 09/21/2023] [Indexed: 10/20/2023] Open
Abstract
Cancer stem-like cells (CSCs), a subpopulation of cancer cells, possess remarkable capability in proliferation, self-renewal, and differentiation. Their presence is recognized as a crucial factor contributing to tumor progression and metastasis. CSCs have garnered significant attention as a therapeutic focus and an etiologic root of treatment-resistant cells. Increasing evidence indicated that specific biomarkers, aberrant activated pathways, immunosuppressive tumor microenvironment (TME), and immunoevasion are considered the culprits in the occurrence of CSCs and the maintenance of CSCs properties including multi-directional differentiation. Targeting CSC biomarkers, stemness-associated pathways, TME, immunoevasion and inducing CSCs differentiation improve CSCs eradication and, therefore, cancer treatment. This review comprehensively summarized these targeted therapies, along with their current status in clinical trials. By exploring and implementing strategies aimed at eradicating CSCs, researchers aim to improve cancer treatment outcomes and overcome the challenges posed by CSC-mediated therapy resistance.
Collapse
Affiliation(s)
- Yansui Mai
- Affiliated Foshan Maternity and Child Healthcare Hospital, Southern Medical University, Foshan, China; School of Pharmaceutical Sciences, Southern Medical University, Guangzhou, China
| | - Jiyan Su
- Affiliated Foshan Maternity and Child Healthcare Hospital, Southern Medical University, Foshan, China; School of Pharmaceutical Sciences, Southern Medical University, Guangzhou, China
| | - Chuan Yang
- State Key Laboratory of Oncology in South China; Collaborative Innovation Center for Cancer Medicine; Guangdong Esophageal Cancer Institute; Sun Yat-sen University Cancer Center, Guangzhou, 510060, China
| | - Chenglai Xia
- Affiliated Foshan Maternity and Child Healthcare Hospital, Southern Medical University, Foshan, China; School of Pharmaceutical Sciences, Southern Medical University, Guangzhou, China.
| | - Liwu Fu
- State Key Laboratory of Oncology in South China; Collaborative Innovation Center for Cancer Medicine; Guangdong Esophageal Cancer Institute; Sun Yat-sen University Cancer Center, Guangzhou, 510060, China.
| |
Collapse
|
13
|
He C, Zhou W, Jin X, Zhou H. Derepressing of STAT3 and USP7 contributes to resistance of DLBCL to EZH2 inhibition. Heliyon 2023; 9:e20650. [PMID: 37829803 PMCID: PMC10565777 DOI: 10.1016/j.heliyon.2023.e20650] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2022] [Revised: 09/22/2023] [Accepted: 10/03/2023] [Indexed: 10/14/2023] Open
Abstract
Diffuse large B-cell lymphoma is the most common subtype of lymphoma, representing ∼25 % of non-Hodgkin lymphoid malignancies. EZH2 is highly expressed in Diffuse large B-cell lymphoma and ∼22 % of patients contain EZH2 mutations. EZH2 have been studied as a potential therapeutic target for a decade, but efficient inhibition of EZH2 did not robustly kill lymphoma cells. Here, we found that EZH2 mediates repression of oncogenic genes STAT3 and USP7 in Diffuse large B-cell lymphoma cells. Inhibition of EZH2 leads to upregulation of STAT3 and USP7 at both RNA and protein levels. Along with USP7 upregulation, MDM2 is upregulated and its ubiquitylation substrate, Tumor suppressor P53, is downregulated. Upregulation of STAT3 and downregulation of p53 can strength cell proliferation and prevent cells from apoptosis, which suggests resistance mechanisms by which cells survive EZH2 inhibition-induced cell death. Short-course co-inhibition of USP7 and EZH2 showed increased apoptosis and cell proliferation prevention with the concentration as low as 0.08 μM. In STAT3 and USP7 depleted cells, EZH2 inhibition shows superior efficacy of apoptosis, and in EZH2 depleted cells, USP7 inhibition also shows superior efficacy of apoptosis. Thus, our findings suggest a new precision therapy by combinational inhibition of EZH2 with STAT3 or USP7 for Diffuse large B-cell lymphoma.
Collapse
Affiliation(s)
- Chenyun He
- Affililated Tumor Hospital of Nantong University, Nantong, Jiangsu, China
| | - Wenbin Zhou
- East Hospital of Shaoyang Central Hospital Medical Group, Shaoyang, Hunan, China
| | - Xiaoxia Jin
- Affililated Tumor Hospital of Nantong University, Nantong, Jiangsu, China
| | - Haining Zhou
- National Laboratory of Biomacromolecules, Institute of Biophysics, Chinese Academy of Sciences, Beijing, China
| |
Collapse
|
14
|
Younes S, Zhao S, Bharadwaj S, Mosquera AP, Libert D, Johnsrud A, Majzner RG, Miklos DB, Frank MJ, Natkunam Y. Detection of Aberrant CD58 Expression in a Wide Spectrum of Lymphoma Subtypes: Implications for Treatment Resistance. Mod Pathol 2023; 36:100256. [PMID: 37391168 DOI: 10.1016/j.modpat.2023.100256] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2023] [Revised: 05/12/2023] [Accepted: 06/14/2023] [Indexed: 07/02/2023]
Abstract
CD58 or lymphocyte function-associated antigen-3, is a ligand for CD2 receptors on T and NK cells and is required for their activation and target cell killing. We recently showed a trend toward higher frequency of CD58 aberrations in patients with diffuse large B-cell lymphoma (DLBCL) who progressed on chimeric antigen receptor-T-cell treatment compared with those who responded. Given that CD58 status may be an important measure of T-cell-mediated therapy failure, we developed a CD58 immunohistochemical assay and evaluated CD58 status in 748 lymphomas. Our results show that CD58 protein expression is downregulated in a significant proportion of all subtypes of B-, T-, and NK-cell lymphomas. CD58 loss is significantly related to poor prognostic indicators in DLBCL and to ALK and DUSP22 rearrangements in anaplastic large-cell lymphoma. However, it is not associated with overall or progression-free survival in any of the lymphoma subtypes. As eligibility for chimeric antigen receptor-T-cell therapy is being extended to a broader spectrum of lymphomas, mechanisms of resistance, such as target downregulation and CD58 loss, may limit therapeutic success. CD58 status is therefore an important biomarker in lymphoma patients who may benefit from next-generation T-cell-mediated therapies or other novel approaches that mitigate immune escape.
Collapse
Affiliation(s)
- Sheren Younes
- Department of Pathology, Stanford University School of Medicine, Stanford, California
| | - Shuchun Zhao
- Department of Pathology, Stanford University School of Medicine, Stanford, California
| | - Sushma Bharadwaj
- Department of Medicine, Stanford University School of Medicine, Stanford, California
| | | | - Diane Libert
- Department of Pathology, Stanford University School of Medicine, Stanford, California
| | - Andrew Johnsrud
- Department of Medicine, Stanford University School of Medicine, Stanford, California
| | - Robbie G Majzner
- Department of Medicine, Stanford University School of Medicine, Stanford, California
| | - David B Miklos
- Department of Medicine, Stanford University School of Medicine, Stanford, California
| | - Matthew J Frank
- Department of Medicine, Stanford University School of Medicine, Stanford, California
| | - Yasodha Natkunam
- Department of Pathology, Stanford University School of Medicine, Stanford, California.
| |
Collapse
|
15
|
Witte HM, Riedl J, Künstner A, Fähnrich A, Ketzer J, Fliedner SMJ, Reimer N, Bernard V, von Bubnoff N, Merz H, Busch H, Feller A, Gebauer N. Molecularly Stratified Treatment Options in Primary Refractory DLBCL/HGBL with MYC and BCL2 or BCL6 Rearrangements (HGBL, NOS with MYC/BCL6). Target Oncol 2023; 18:749-765. [PMID: 37488307 PMCID: PMC10517902 DOI: 10.1007/s11523-023-00983-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 06/25/2023] [Indexed: 07/26/2023]
Abstract
BACKGROUND There is growing evidence supporting multidisciplinary molecular tumor boards (MTB) in solid tumors whereas hematologic malignancies remain underrepresented in this regard. OBJECTIVE The present study aimed to assess the clinical relevance of MTBs in primary refractory diffuse large B-cell lymphomas/high-grade B-cell lymphomas with MYC and BCL2 rearrangements (prDLBCL/HGBL-MYC/BCL2) (n = 13) and HGBL, not otherwise specified (NOS), with MYC and BCL6 rearrangements (prHGBL, NOS-MYC/BCL6) (n = 6) based on our previously published whole-exome sequencing (WES) cohort. PATIENTS AND METHODS For genomic analysis, the institutional MTB WES pipeline (University Cancer Center Schleswig-Holstein: UCCSH), certified for routine clinical diagnostics, was employed and supplemented by a comprehensive immunohistochemical work-up. Consecutive database research and annotation according to established evidence levels for molecularly stratified therapies was performed (NCT-DKTK/ESCAT). RESULTS Molecularly tailored treatment options with NCT-DKTK evidence level of at least m2A were identified in each case. We classified mutations in accordance with biomarker/treatment baskets and detected a heterogeneous spectrum of targetable alterations affecting immune evasion (IE; n = 30), B-cell targets (BCT; n = 26), DNA damage repair (DDR; n = 20), tyrosine kinases (TK; n = 13), cell cycle (CC; n = 7), PI3K-MTOR-AKT pathway (PAM; n = 2), RAF-MEK-ERK cascade (RME; n = 1), and others (OTH; n = 11). CONCLUSION Our virtual MTB approach identified potential molecularly targeted treatment options alongside targetable genomic signatures for both prDLBCL/HGBL-MYC/BCL2 and prHGBL, NOS-MYC/BCL6. These results underline the potential of MTB consultations in difficult-to-treat lymphomas early in the treatment sequence.
Collapse
Affiliation(s)
- Hanno M Witte
- Department of Hematology and Oncology, University Hospital of Schleswig-Holstein, Campus Lübeck, Ratzeburger Allee 160, 23538, Lübeck, Germany.
- Department of Hematology and Oncology, Federal Armed Forces Hospital Ulm, Bundeswehrkrankenhaus Ulm, Oberer Eselsberg 40, 89081, Ulm, Germany.
- University Cancer Center Schleswig-Holstein, University Hospital of Schleswig-Holstein, Campus Lübeck, Ratzeburger Alee 160, 23538, Lübeck, Germany.
| | - Jörg Riedl
- Department of Hematology and Oncology, University Hospital of Schleswig-Holstein, Campus Lübeck, Ratzeburger Allee 160, 23538, Lübeck, Germany
- University Cancer Center Schleswig-Holstein, University Hospital of Schleswig-Holstein, Campus Lübeck, Ratzeburger Alee 160, 23538, Lübeck, Germany
| | - Axel Künstner
- University Cancer Center Schleswig-Holstein, University Hospital of Schleswig-Holstein, Campus Lübeck, Ratzeburger Alee 160, 23538, Lübeck, Germany
- Medical Systems Biology Group, University of Lübeck, Ratzeburger Allee 160, 23538, Lübeck, Germany
- Institute for Cardiogenetics, University of Lübeck, Ratzeburger Allee 160, 23538, Lübeck, Germany
| | - Anke Fähnrich
- University Cancer Center Schleswig-Holstein, University Hospital of Schleswig-Holstein, Campus Lübeck, Ratzeburger Alee 160, 23538, Lübeck, Germany
- Medical Systems Biology Group, University of Lübeck, Ratzeburger Allee 160, 23538, Lübeck, Germany
- Institute for Cardiogenetics, University of Lübeck, Ratzeburger Allee 160, 23538, Lübeck, Germany
| | - Julius Ketzer
- Department of Hematology and Oncology, University Hospital of Schleswig-Holstein, Campus Lübeck, Ratzeburger Allee 160, 23538, Lübeck, Germany
- University Cancer Center Schleswig-Holstein, University Hospital of Schleswig-Holstein, Campus Lübeck, Ratzeburger Alee 160, 23538, Lübeck, Germany
- Department of Pediatrics, University Hospital of Schleswig-Holstein, Campus Lübeck, Ratzeburger Allee 160, 23538, Lübeck, Germany
| | - Stephanie M J Fliedner
- Department of Hematology and Oncology, University Hospital of Schleswig-Holstein, Campus Lübeck, Ratzeburger Allee 160, 23538, Lübeck, Germany
- University Cancer Center Schleswig-Holstein, University Hospital of Schleswig-Holstein, Campus Lübeck, Ratzeburger Alee 160, 23538, Lübeck, Germany
- Department of Hematology and Oncology, University Hospital of Schleswig-Holstein, Campus Kiel, Arnold-Heller-Straße 3, 24105, Kiel, Germany
| | - Niklas Reimer
- University Cancer Center Schleswig-Holstein, University Hospital of Schleswig-Holstein, Campus Lübeck, Ratzeburger Alee 160, 23538, Lübeck, Germany
- Medical Systems Biology Group, University of Lübeck, Ratzeburger Allee 160, 23538, Lübeck, Germany
- Institute for Cardiogenetics, University of Lübeck, Ratzeburger Allee 160, 23538, Lübeck, Germany
| | - Veronica Bernard
- Hämatopathologie Lübeck, Reference Centre for Lymph Node Pathology and Hematopathology, Maria-Goeppert-Straße 9a, 23562, Lübeck, Germany
| | - Nikolas von Bubnoff
- Department of Hematology and Oncology, University Hospital of Schleswig-Holstein, Campus Lübeck, Ratzeburger Allee 160, 23538, Lübeck, Germany
- University Cancer Center Schleswig-Holstein, University Hospital of Schleswig-Holstein, Campus Lübeck, Ratzeburger Alee 160, 23538, Lübeck, Germany
| | - Hartmut Merz
- Hämatopathologie Lübeck, Reference Centre for Lymph Node Pathology and Hematopathology, Maria-Goeppert-Straße 9a, 23562, Lübeck, Germany
| | - Hauke Busch
- University Cancer Center Schleswig-Holstein, University Hospital of Schleswig-Holstein, Campus Lübeck, Ratzeburger Alee 160, 23538, Lübeck, Germany
- Medical Systems Biology Group, University of Lübeck, Ratzeburger Allee 160, 23538, Lübeck, Germany
- Institute for Cardiogenetics, University of Lübeck, Ratzeburger Allee 160, 23538, Lübeck, Germany
| | - Alfred Feller
- Hämatopathologie Lübeck, Reference Centre for Lymph Node Pathology and Hematopathology, Maria-Goeppert-Straße 9a, 23562, Lübeck, Germany
| | - Niklas Gebauer
- Department of Hematology and Oncology, University Hospital of Schleswig-Holstein, Campus Lübeck, Ratzeburger Allee 160, 23538, Lübeck, Germany
- University Cancer Center Schleswig-Holstein, University Hospital of Schleswig-Holstein, Campus Lübeck, Ratzeburger Alee 160, 23538, Lübeck, Germany
| |
Collapse
|
16
|
Wang B, Liu Y, Liao Z, Wu H, Zhang B, Zhang L. EZH2 in hepatocellular carcinoma: progression, immunity, and potential targeting therapies. Exp Hematol Oncol 2023; 12:52. [PMID: 37268997 DOI: 10.1186/s40164-023-00405-2] [Citation(s) in RCA: 18] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2023] [Accepted: 04/15/2023] [Indexed: 06/04/2023] Open
Abstract
Hepatocellular carcinoma (HCC) is the leading cause of cancer-related death. The accumulation of genetic and epigenetic changes is closely related to the occurrence and development of HCC. Enhancer of zeste homolog 2 (EZH2, a histone methyltransferase) is suggested to be one of the principal factors that mediates oncogenesis by acting as a driver of epigenetic alternation. Recent studies show that EZH2 is widely involved in proliferation and metastasis of HCC cells. In this review, the functions of EZH2 in HCC progression, the role of EZH2 in tumor immunity and the application of EZH2-related inhibitors in HCC therapy are summarized.
Collapse
Affiliation(s)
- Bohan Wang
- Hepatic Surgery Center, Institute of Hubei Key Laboratory of Hepato-Pancreato-Biliary Diseases, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, China
| | - Yachong Liu
- Hepatic Surgery Center, Institute of Hubei Key Laboratory of Hepato-Pancreato-Biliary Diseases, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, China
| | - Zhibin Liao
- Hepatic Surgery Center, Institute of Hubei Key Laboratory of Hepato-Pancreato-Biliary Diseases, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, China
| | - Haofeng Wu
- Hepatic Surgery Center, Institute of Hubei Key Laboratory of Hepato-Pancreato-Biliary Diseases, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, China
| | - Bixiang Zhang
- Hepatic Surgery Center, Institute of Hubei Key Laboratory of Hepato-Pancreato-Biliary Diseases, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, China.
| | - Lei Zhang
- Hepatic Surgery Center, Institute of Hubei Key Laboratory of Hepato-Pancreato-Biliary Diseases, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, China.
- Department of Hepatobiliary Surgery, Shanxi Tongji Hospital, Tongji Medical College, Shanxi Bethune Hospital, Shanxi Academy of Medical Sciences, Shanxi Medical University, Huazhong University of Science and Technology, Taiyuan, 030032, China.
- Key Laboratory of Hepatobiliary and Pancreatic Diseases of Shanxi Province (Preparatory), Shanxi Tongji Hospital, Tongji Medical College, Shanxi Bethune Hospital, Shanxi Academy of Medical Sciences, Shanxi Medical University, Huazhong University of Science and Technology, Taiyuan, 030032, China.
| |
Collapse
|
17
|
Ribeiro ML, Sánchez Vinces S, Mondragon L, Roué G. Epigenetic targets in B- and T-cell lymphomas: latest developments. Ther Adv Hematol 2023; 14:20406207231173485. [PMID: 37273421 PMCID: PMC10236259 DOI: 10.1177/20406207231173485] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2022] [Accepted: 04/17/2023] [Indexed: 06/06/2023] Open
Abstract
Non-Hodgkin's lymphomas (NHLs) comprise a diverse group of diseases, either of mature B-cell or of T-cell derivation, characterized by heterogeneous molecular features and clinical manifestations. While most of the patients are responsive to standard chemotherapy, immunotherapy, radiation and/or stem cell transplantation, relapsed and/or refractory cases still have a dismal outcome. Deep sequencing analysis have pointed out that epigenetic dysregulations, including mutations in epigenetic enzymes, such as chromatin modifiers and DNA methyltransferases (DNMTs), are prevalent in both B- cell and T-cell lymphomas. Accordingly, over the past decade, a large number of epigenetic-modifying agents have been developed and introduced into the clinical management of these entities, and a few specific inhibitors have already been approved for clinical use. Here we summarize the main epigenetic alterations described in B- and T-NHL, that further supported the clinical development of a selected set of epidrugs in determined diseases, including inhibitors of DNMTs, histone deacetylases (HDACs), and extra-terminal domain proteins (bromodomain and extra-terminal motif; BETs). Finally, we highlight the most promising future directions of research in this area, explaining how bioinformatics approaches can help to identify new epigenetic targets in B- and T-cell lymphoid neoplasms.
Collapse
Affiliation(s)
- Marcelo Lima Ribeiro
- Lymphoma Translational Group, Josep Carreras
Leukaemia Research Institute, Badalona, Spain
- Laboratory of Immunopharmacology and Molecular
Biology, Sao Francisco University Medical School, Braganca Paulista,
Brazil
| | - Salvador Sánchez Vinces
- Laboratory of Immunopharmacology and Molecular
Biology, Sao Francisco University Medical School, Braganca Paulista,
Brazil
| | - Laura Mondragon
- T Cell Lymphoma Group, Josep Carreras Leukaemia
Research Institute, IJC. Ctra de Can Ruti, Camí de les Escoles s/n, 08916
Badalona, Barcelona, Spain
| | - Gael Roué
- Lymphoma Translational Group, Josep Carreras
Leukaemia Research Institute, IJC. Ctra de Can Ruti, Camí de les Escoles
s/n, 08916 Badalona, Barcelona, Spain
| |
Collapse
|
18
|
Peng Y, Bui CH, Zhang XJ, Chen JS, Tham CC, Chu WK, Chen LJ, Pang CP, Yam JC. The role of EZH2 in ocular diseases: a narrative review. Epigenomics 2023; 15:557-570. [PMID: 37458071 DOI: 10.2217/epi-2023-0147] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/18/2023] Open
Abstract
EZH2, acting as a catalytic subunit of PRC2 to catalyze lysine 27 in histone H3, induces the suppression of gene expression. EZH2 can regulate cell proliferation and differentiation of retinal progenitors, which are required for physiological retinal development. Meanwhile, an abnormal level of EZH2 has been observed in ocular tumors and other pathological tissues. This review summarizes the current knowledge on EZH2 in retinal development and ocular diseases, including inherited retinal diseases, ocular tumors, corneal injury, cataract, glaucoma, diabetic retinopathy and age-related retinal degeneration. We highlight the potential of targeting EZH2 as a precision therapeutic target in ocular diseases.
Collapse
Affiliation(s)
- Yu Peng
- Department of Ophthalmology & Visual Sciences, The Chinese University of Hong Kong, 999077, Hong Kong
| | - Christine Ht Bui
- Department of Ophthalmology & Visual Sciences, The Chinese University of Hong Kong, 999077, Hong Kong
| | - Xiu J Zhang
- Department of Ophthalmology & Visual Sciences, The Chinese University of Hong Kong, 999077, Hong Kong
| | - Jian S Chen
- Aier School of Ophthalmology, Central South University, Changsha, Hunan Province, 410000, China
- Aier Eye Institute, Changsha, Hunan Province, 410000, China
- Key Laboratory for Regenerative Medicine, Ministry of Education, Jinan University, Guangzhou, Guangdong Province, 510000, China
| | - Clement C Tham
- Department of Ophthalmology & Visual Sciences, The Chinese University of Hong Kong, 999077, Hong Kong
- Hong Kong Eye Hospital, Kowloon, 999077, Hong Kong
- Department of Ophthalmology & Visual Sciences, Prince of Wales Hospital, 999077, Hong Kong
- Hong Kong Hub of Paediatric Excellence, The Chinese University of Hong Kong, 999077, Hong Kong
| | - Wai K Chu
- Department of Ophthalmology & Visual Sciences, The Chinese University of Hong Kong, 999077, Hong Kong
- Hong Kong Hub of Paediatric Excellence, The Chinese University of Hong Kong, 999077, Hong Kong
| | - Li J Chen
- Department of Ophthalmology & Visual Sciences, The Chinese University of Hong Kong, 999077, Hong Kong
- Department of Ophthalmology & Visual Sciences, Prince of Wales Hospital, 999077, Hong Kong
- Hong Kong Hub of Paediatric Excellence, The Chinese University of Hong Kong, 999077, Hong Kong
| | - Chi P Pang
- Department of Ophthalmology & Visual Sciences, The Chinese University of Hong Kong, 999077, Hong Kong
- Hong Kong Hub of Paediatric Excellence, The Chinese University of Hong Kong, 999077, Hong Kong
| | - Jason C Yam
- Department of Ophthalmology & Visual Sciences, The Chinese University of Hong Kong, 999077, Hong Kong
- Hong Kong Eye Hospital, Kowloon, 999077, Hong Kong
- Department of Ophthalmology, Hong Kong Children's Hospital, 999077, Hong Kong
- Department of Ophthalmology & Visual Sciences, Prince of Wales Hospital, 999077, Hong Kong
- Hong Kong Hub of Paediatric Excellence, The Chinese University of Hong Kong, 999077, Hong Kong
| |
Collapse
|
19
|
Marzochi LL, Cuzziol CI, Nascimento Filho CHVD, Dos Santos JA, Castanhole-Nunes MMU, Pavarino ÉC, Guerra ENS, Goloni-Bertollo EM. Use of histone methyltransferase inhibitors in cancer treatment: A systematic review. Eur J Pharmacol 2023; 944:175590. [PMID: 36775112 DOI: 10.1016/j.ejphar.2023.175590] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2022] [Revised: 02/02/2023] [Accepted: 02/09/2023] [Indexed: 02/12/2023]
Abstract
Histone modifications are an epigenetic mechanism, and the dysregulation of these proteins is known to be associated with the initiation and progression of cancer. In the search for the development of new and more effective drugs, histone modifications were identified as possible therapeutic targets. Histone methyltransferase (HMT) inhibitors correspond to the third generation of epigenetic drugs capable of writing or deleting epigenetic information. This systematic review summarized the development and prospect for the use of different HMT inhibitors in cancer therapy. An electronic search was applied across CENTRAL, Clinical Trials, Embase, LILACS, LIVIVO, Open Gray, PubMed, Scopus, and Web of Science. Based on the title and abstracts, two authors independently selected eligible studies. After the complete reading of the articles, based on the eligibility criteria, 11 studies were included in the review. Different inhibitors of HMT have been explored in multiple clinical studies, and have shown considerable anti-tumor effects. However, few phase 2 studies have been completed and/or have available results. The most advanced clinical trials mainly include tazemetostat, an Enhancer of zeste homolog 2 (EZH2) inhibitor approved for follicular lymphoma (FL). The use of HMT inhibitors has presented, so far, concise results in the treatment of hematological cancers, moreover, the adverse effects presented after the use of these medicines (alone or in combination) did not show a high level of risk for the patient. These findings, in addition to ongoing clinical studies, can represent a promising future regarding the use of HMT inhibitors in treating different types of cancer.
Collapse
Affiliation(s)
- Ludimila Leite Marzochi
- Research Unit of Genetics and Molecular Biology (UPGEM), Department of Molecular Biology, Faculty of Medicine of Sao Jose do Rio Preto (FAMERP), Sao Jose do Rio Preto, 15090-000, Brazil.
| | - Caroline Izak Cuzziol
- Research Unit of Genetics and Molecular Biology (UPGEM), Department of Molecular Biology, Faculty of Medicine of Sao Jose do Rio Preto (FAMERP), Sao Jose do Rio Preto, 15090-000, Brazil
| | | | - Juliana Amorim Dos Santos
- Laboratory of Oral Histopathology, Faculty of Health Sciences, University of Brasília, Brasília, 70910-900, Brazil
| | - Márcia Maria Urbanin Castanhole-Nunes
- Research Unit of Genetics and Molecular Biology (UPGEM), Department of Molecular Biology, Faculty of Medicine of Sao Jose do Rio Preto (FAMERP), Sao Jose do Rio Preto, 15090-000, Brazil
| | - Érika Cristina Pavarino
- Research Unit of Genetics and Molecular Biology (UPGEM), Department of Molecular Biology, Faculty of Medicine of Sao Jose do Rio Preto (FAMERP), Sao Jose do Rio Preto, 15090-000, Brazil
| | - Eliete Neves Silva Guerra
- Laboratory of Oral Histopathology, Faculty of Health Sciences, University of Brasília, Brasília, 70910-900, Brazil
| | - Eny Maria Goloni-Bertollo
- Research Unit of Genetics and Molecular Biology (UPGEM), Department of Molecular Biology, Faculty of Medicine of Sao Jose do Rio Preto (FAMERP), Sao Jose do Rio Preto, 15090-000, Brazil.
| |
Collapse
|
20
|
Liao Q, Yang J, Ge S, Chai P, Fan J, Jia R. Novel insights into histone lysine methyltransferases in cancer therapy: From epigenetic regulation to selective drugs. J Pharm Anal 2023; 13:127-141. [PMID: 36908859 PMCID: PMC9999304 DOI: 10.1016/j.jpha.2022.11.009] [Citation(s) in RCA: 15] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2022] [Revised: 11/24/2022] [Accepted: 11/27/2022] [Indexed: 12/03/2022] Open
Abstract
The reversible and precise temporal and spatial regulation of histone lysine methyltransferases (KMTs) is essential for epigenome homeostasis. The dysregulation of KMTs is associated with tumor initiation, metastasis, chemoresistance, invasiveness, and the immune microenvironment. Therapeutically, their promising effects are being evaluated in diversified preclinical and clinical trials, demonstrating encouraging outcomes in multiple malignancies. In this review, we have updated recent understandings of KMTs' functions and the development of their targeted inhibitors. First, we provide an updated overview of the regulatory roles of several KMT activities in oncogenesis, tumor suppression, and immune regulation. In addition, we summarize the current targeting strategies in different cancer types and multiple ongoing clinical trials of combination therapies with KMT inhibitors. In summary, we endeavor to depict the regulation of KMT-mediated epigenetic landscape and provide potential epigenetic targets in the treatment of cancers.
Collapse
Affiliation(s)
- Qili Liao
- Department of Ophthalmology, Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200001, China.,Shanghai Key Laboratory of Orbital Diseases and Ocular Oncology, Shanghai, 200001, China
| | - Jie Yang
- Department of Ophthalmology, Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200001, China.,Shanghai Key Laboratory of Orbital Diseases and Ocular Oncology, Shanghai, 200001, China
| | - Shengfang Ge
- Department of Ophthalmology, Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200001, China.,Shanghai Key Laboratory of Orbital Diseases and Ocular Oncology, Shanghai, 200001, China
| | - Peiwei Chai
- Department of Ophthalmology, Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200001, China.,Shanghai Key Laboratory of Orbital Diseases and Ocular Oncology, Shanghai, 200001, China
| | - Jiayan Fan
- Department of Ophthalmology, Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200001, China.,Shanghai Key Laboratory of Orbital Diseases and Ocular Oncology, Shanghai, 200001, China
| | - Renbing Jia
- Department of Ophthalmology, Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200001, China.,Shanghai Key Laboratory of Orbital Diseases and Ocular Oncology, Shanghai, 200001, China
| |
Collapse
|
21
|
EZH2: An Accomplice of Gastric Cancer. Cancers (Basel) 2023; 15:cancers15020425. [PMID: 36672374 PMCID: PMC9856299 DOI: 10.3390/cancers15020425] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2022] [Revised: 12/30/2022] [Accepted: 01/05/2023] [Indexed: 01/10/2023] Open
Abstract
Gastric cancer is the fifth most common cancer and the third leading cause of cancer deaths worldwide. Understanding the factors influencing the therapeutic effects in gastric cancer patients and the molecular mechanism behind gastric cancer is still facing challenges. In addition to genetic alterations and environmental factors, it has been demonstrated that epigenetic mechanisms can also induce the occurrence and progression of gastric cancer. Enhancer of zeste homolog 2 (EZH2) is the catalytic subunit of the polycomb repressor complex 2 (PRC2), which trimethylates histone 3 at Lys-27 and regulates the expression of downstream target genes through epigenetic mechanisms. It has been found that EZH2 is overexpressed in the stomach, which promotes the progression of gastric cancer through multiple pathways. In addition, targeted inhibition of EZH2 expression can effectively delay the progression of gastric cancer and improve its resistance to chemotherapeutic agents. Given the many effects of EZH2 in gastric cancer, there are no studies to comprehensively describe this mechanism. Therefore, in this review, we first introduce EZH2 and clarify the mechanisms of abnormal expression of EZH2 in cancer. Secondly, we summarize the role of EZH2 in gastric cancer, which includes the association of the EZH2 gene with genetic susceptibility to GC, the correlation of the EZH2 gene with gastric carcinogenesis and invasive metastasis, the resistance to chemotherapeutic drugs of gastric cancer mediated by EZH2 and the high expression of EZH2 leading to poor prognosis of gastric cancer patients. Finally, we also clarify some of the current statuses of drug development regarding targeted inhibition of EZH2/PRC2 activity.
Collapse
|
22
|
Targeting emerging cancer hallmarks by transition metal complexes: Epigenetic reprogramming and epitherapies. Part II. Coord Chem Rev 2023. [DOI: 10.1016/j.ccr.2022.214899] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
|
23
|
Fukuhara N, Kato K, Goto H, Takeshi T, Kawaguchi M, Tokushige K, Akashi K, Teshima T, Harigae H, Schuster SJ, Thieblemont C, Dreyling M, Fowler N. Efficacy and safety of tisagenlecleucel in adult Japanese patients with relapsed or refractory follicular lymphoma: results from the phase 2 ELARA trial. Int J Hematol 2023; 117:251-259. [PMID: 36404384 PMCID: PMC9889457 DOI: 10.1007/s12185-022-03481-y] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2022] [Revised: 10/24/2022] [Accepted: 10/24/2022] [Indexed: 11/22/2022]
Abstract
BACKGROUND Tisagenlecleucel yielded a high durable response rate in patients with relapsed/refractory (r/r) follicular lymphoma (FL) in the global phase 2 ELARA trial. Here, we report the efficacy, safety, and cellular kinetics of tisagenlecleucel in a subgroup of Japanese patients with r/r FL from ELARA. METHODS ELARA (NCT03568461) is a global single-arm trial of tisagenlecleucel in patients with r/r FL who received ≥ 2 prior lines of therapy. The primary endpoint was the complete response rate (CRR), and the secondary endpoints were the overall response rate, duration of response, progression-free survival, overall survival, safety, and cellular kinetics. RESULTS As of March 29, 2021, nine Japanese patients were enrolled and received tisagenlecleucel with a median follow-up of 13.6 months (range, 10.5‒19.3). Per independent review committee, CRR was 100% (95% CI 63.1‒100). Within 8 weeks of infusion, cytokine release syndrome (CRS) of any grade was reported in 6 patients (66.7%); however, no grade ≥ 3 CRS or any grade serious neurological events or treatment-related deaths were observed. CONCLUSION Tisagenlecleucel showed high efficacy and manageable safety in adult Japanese patients with r/r FL. Moreover, the clinical outcomes were similar to the global population, which supports the potential of tisagenlecleucel in Japanese patients with r/r FL.
Collapse
Affiliation(s)
- Noriko Fukuhara
- Department of Hematology, Tohoku University Hospital, 1-1 Seiryo-cho, Sendai, 980-8574 Japan
| | - Koji Kato
- Department of Medicine and Biosystemic Science, Kyushu University Graduate School of Medical Sciences, Fukuoka, Japan
| | - Hideki Goto
- Department of Hematology, Faculty of Medicine and Graduate School of Medicine, Hokkaido University, Sapporo, Japan
| | | | | | | | - Koichi Akashi
- Department of Hematology, Tohoku University Hospital, 1-1 Seiryo-cho, Sendai, 980-8574 Japan
| | - Takanori Teshima
- Department of Hematology, Faculty of Medicine and Graduate School of Medicine, Hokkaido University, Sapporo, Japan
| | - Hideo Harigae
- Department of Medicine and Biosystemic Science, Kyushu University Graduate School of Medical Sciences, Fukuoka, Japan
| | | | | | - Martin Dreyling
- Department of Internal Medicine III, LMU Hospital, Munich, Germany
| | - Nathan Fowler
- The University of Texas MD Anderson Cancer Center, Houston, TX USA ,BostonGene, Waltham, MA USA
| |
Collapse
|
24
|
Wang Y, Bui T, Zhang Y. The pleiotropic roles of EZH2 in T-cell immunity and immunotherapy. Int J Hematol 2022; 116:837-845. [PMID: 36271224 DOI: 10.1007/s12185-022-03466-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2022] [Revised: 10/02/2022] [Accepted: 10/03/2022] [Indexed: 10/24/2022]
Abstract
EZH2 is a histone methyltransferase. It catalyzes trimethylation of histone H3 at lysine 27 (H3K27me3) to control gene transcription critical for cell proliferation, differentiation, expansion, and function. For instance, EZH2 plays a central role in regulating T-cell immune responses. EZH2 restrains terminal differentiation of effector CD8 T cells, promotes formation of precursor and mature memory CD8 T cells, regulates appropriate lineage-specification and identity maintenance of helper CD4 T cells, and maintains survival of differentiated antigen-specific T cells. Most importantly, EZH2 is shown to be important for reinvigoration of exhausted chimeric antigen receptor (CAR) T cells. Dysregulated EZH2 function has been linked to many forms of cancer, including lymphomas and solid tumors. In B-cell lymphoid malignancies, EZH2 is overexpressed to drive tumorigenesis. These specific effects of EZH2, in the context of its roles in catalyzing H3K27me3 and orchestrating gene transcription programs in both normal and malignant cells, establishes EZH2 as a unique target for drug development. Here, we will discuss Ezh2 regulation of T-cell immunity, EZH2-mediated lymphomagenesis, and therapeutic benefits of EZH2 inhibitors to the treatment of lymphoma.
Collapse
Affiliation(s)
- Ying Wang
- Center for Discovery & Innovation, Hackensack University Medical Center, Nutley, NJ, USA
| | - Tien Bui
- Center for Discovery & Innovation, Hackensack University Medical Center, Nutley, NJ, USA
| | - Yi Zhang
- Center for Discovery & Innovation, Hackensack University Medical Center, Nutley, NJ, USA.
| |
Collapse
|
25
|
Yamagishi M. The role of epigenetics in T-cell lymphoma. Int J Hematol 2022; 116:828-836. [PMID: 36239901 DOI: 10.1007/s12185-022-03470-1] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2022] [Revised: 10/06/2022] [Accepted: 10/06/2022] [Indexed: 10/17/2022]
Abstract
Malignant lymphomas are a group of diseases with epigenomic abnormalities fundamental to pathogenesis and pathophysiology. They are characterized by a high frequency of abnormalities related to DNA methylation regulators (DNMT3A, TET2, IDH2, etc.) and histone modifiers (EZH2, HDAC, KMT2D/MLL2, CREBBP, EP300, etc.). These epigenomic abnormalities directly amplify malignant clones. They also originate from a hematopoietic stem cell-derived cell lineage triggered by epigenomic changes. These characteristics are linked to their high affinity for epigenomic therapies. Hematology has led disease epigenetics in the areas of basic research, clinical research, and drug discovery. However, epigenomic regulation is generally recognized as a complex system, and gaps exist between basic and clinical research. To provide an overview of the status and importance of epigenomic abnormalities in malignant lymphoma, this review first summarizes the concept and essential importance of the epigenome, then outlines the current status and future outlook of epigenomic abnormalities in malignant lymphomas.
Collapse
Affiliation(s)
- Makoto Yamagishi
- Laboratory of Tumor Cell Biology, Department of Computational Biology and Medical Sciences, Graduate School of Frontier Sciences, The University of Tokyo, 4-6-1, Shirokanedai, Minato-ku, Tokyo, 108-8639, Japan.
| |
Collapse
|
26
|
Ennishi D. Biological and clinical significance of epigenetic alterations in B-cell lymphomas. Int J Hematol 2022; 116:821-827. [PMID: 36208393 DOI: 10.1007/s12185-022-03461-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2022] [Revised: 09/21/2022] [Accepted: 09/21/2022] [Indexed: 10/10/2022]
Abstract
Recent advances in genetic analysis of hematopoietic tumors have led to the discovery of enzyme abnormalities that control epigenetic changes. Notably, genetic mutations associated with DNA methylation and histone modifications have been identified in B-cell malignant lymphomas, including diffuse large B-cell lymphoma and follicular lymphoma. Gene expression involved in B lymphocyte differentiation and maturation within the germinal center (GC) is regulated epigenetically in these lymphomas, and epigenetic alterations play critical roles in the pathogenesis of GC-driven lymphomas. Recent studies also indicate the importance of epigenetic alterations as biomarkers and therapeutic targets, suggesting that they will have a central role in developing precision medicine for patients with GC-driven lymphomas.
Collapse
Affiliation(s)
- Daisuke Ennishi
- Center for Comprehensive Genomic Medicine, Okayama University Hospital, 2-5-1 Shikata-Cho, Kita-ku, Okayama, 700-8558, Japan.
| |
Collapse
|
27
|
Li H, Wang YJ, Geng XN, Kang YR, Wang YL, Qiu XJ. Pharmacokinetics of Herb-Drug Interactions of Plumbagin and Tazemetostat in Rats by UPLC-MS/MS. Drug Des Devel Ther 2022; 16:3385-3394. [PMID: 36199632 PMCID: PMC9529013 DOI: 10.2147/dddt.s384156] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2022] [Accepted: 09/22/2022] [Indexed: 11/23/2022] Open
Abstract
Objective A sensitive and rapid UPLC-MS/MS method for determination of tazemetostat in rat plasma was developed, and the pharmacokinetics of herb-drug interactions (HDIs) of plumbagin (PLB) and tazemetostat was investigated. Methods After the rat plasma samples were precipitated by acetonitrile, tazemetostat and verubecestat (ISTD) were detected. Gradient elution was performed with 0.1% formic acid and acetonitrile as mobile phases. The multi-reaction monitoring was used with ESI+ source, and the ion pairs for tazemetostat and ISTD were m/z 573.12→135.99 and m/z 410.10→124.00, respectively. 12 SD rats were randomly divided into the control group and the experimental group, 6 rats in each group. The rats in the experimental group were given PLB 100 mg/kg by gavage once a day for 7 consecutive days. The rats in the control group were given the same amount of 0.1% sodium carboxymethyl cellulose solution by gavage once a day for 7 consecutive days. At the seventh day, tazemetostat (80 mg/kg) was given and the blood was collected at different time points. The main parameters of pharmacokinetics were calculated and the herb-drug interactions (HDIs) were evaluated. Results In the calibrated range of 1–1000 ng/mL, tazemetostat had a good linearity. The extraction recovery was more than 84%, and the RSD of intra-batch and inter-batch precision were both less than 15%. The Cmax of tazemetostat in the experimental group was 32.48% higher than that in the control group, and the AUC(0-t) and AUC(0−∞) of tazemetostat in the experimental group were 46.24% and 46.67% higher than that in the control group, respectively, and the t1/2 was prolonged from 10.56 h to 11.73 h. Conclusion A simple, rapid and sensitive UPLC-MS/MS method for the determination of tazemetostat in rat plasma was established. PLB can inhibit the metabolism of tazemetostat and increase the plasma exposure of tazemetostat in rats.
Collapse
Affiliation(s)
- Heng Li
- Department of Pharmacy, School of Basic Medical Sciences, Henan University of Science and Technology, Luoyang, 471023, People’s Republic of China
| | - Ying-Jie Wang
- Department of Pharmacy, School of Basic Medical Sciences, Henan University of Science and Technology, Luoyang, 471023, People’s Republic of China
| | - Xiao-Nan Geng
- Department of Pharmacy, School of Basic Medical Sciences, Henan University of Science and Technology, Luoyang, 471023, People’s Republic of China
| | - Yao-Ren Kang
- Department of Pharmacy, School of Basic Medical Sciences, Henan University of Science and Technology, Luoyang, 471023, People’s Republic of China
| | - Yi-Lin Wang
- Department of Pharmacy, School of Basic Medical Sciences, Henan University of Science and Technology, Luoyang, 471023, People’s Republic of China
| | - Xiang-Jun Qiu
- Department of Pharmacy, School of Basic Medical Sciences, Henan University of Science and Technology, Luoyang, 471023, People’s Republic of China
- Functional Experiment Teaching Center, School of Basic Medical Sciences, Henan University of Science and Technology, Luoyang, 471023, People’s Republic of China
- Correspondence: Xiang-Jun Qiu, Functional Experiment Teaching Center, School of Basic Medical Sciences, Henan University of Science and Technology, 263 Kaiyuan Avenue, Luoyang, 471023, Henan, People’s Republic of China, Email
| |
Collapse
|
28
|
do Canto LM, da Silva JM, Castelo-Branco PV, da Silva IM, Nogueira L, Fonseca-Alves CE, Khayat A, Birbrair A, Pereira SR. Mutational Signature and Integrative Genomic Analysis of Human Papillomavirus-Associated Penile Squamous Cell Carcinomas from Latin American Patients. Cancers (Basel) 2022; 14:cancers14143514. [PMID: 35884575 PMCID: PMC9316960 DOI: 10.3390/cancers14143514] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2022] [Revised: 06/26/2022] [Accepted: 06/27/2022] [Indexed: 02/01/2023] Open
Abstract
Simple Summary DNA sequencing has been crucial to comprehending cancer mutational patterns, leading to the identification of driver genes and altered signaling pathways. Thus, identifying new pathogenic variants and their impact on tumor onset, progression, and treatment response has fueled tumor biology research. Here, we present novel findings addressing the first whole-exome sequencing (WES) of human papillomavirus (HPV)-associated penile squamous cell carcinoma (PSCC) from Latin Americans and its association with pathogenesis. We also compared the molecular profile of the tumors to that of three previous studies from populations with different genetic and socioeconomic backgrounds, the majority of which was HPV-negative. We describe the most altered genes and the main pathogenic variants found in the Latin Americans, ten of which are exclusive to our study sample. The data allowed us to identify molecular pathways and druggable targets with potential treatment value for this still-neglected HPV-associated carcinoma. Abstract High-throughput DNA sequencing has allowed for the identification of genomic alterations and their impact on tumor development, progression, and therapeutic responses. In PSCC, for which the incidence has progressively increased worldwide, there are still limited data on the molecular mechanisms involved in the disease pathogenesis. In this study, we characterized the mutational signature of 30 human papillomavirus (HPV)-associated PSCC cases from Latin Americans, using whole-exome sequencing. Copy number variations (CNVs) were also identified and compared to previous array-generated data. Enrichment analyses were performed to reveal disrupted pathways and to identify alterations mapped to HPV integration sites (HPVis) and miRNA–mRNA hybridization regions. Among the most frequently mutated genes were NOTCH1, TERT, TTN, FAT1, TP53, CDKN2A, RYR2, CASP8, FBXW7, HMCN2, and ITGA8. Of note, 92% of these altered genes were localized at HPVis. We also found mutations in ten novel genes (KMT2C, SMARCA4, PTPRB, AJUBA, CR1, KMT2D, NBEA, FAM135B, GTF2I, and CIC), thus increasing our understanding of the potential HPV-disrupted pathways. Therefore, our study reveals innovative targets with potential therapeutic benefits for HPV-associated PSCCs. The CNV analysis by sequencing (CNV-seq) revealed five cancer-associated genes as the most frequent with gains (NOTCH1, MYC, NUMA1, PLAG1, and RAD21), while 30% of the tumors showed SMARCA4 with loss. Additionally, four cancer-associated genes (CARD11, CSMD3, KDR, and TLX3) carried untranslated regions (UTRs) variants, which may impact gene regulation by affecting the miRNAs hybridization regions. Altogether, these data contribute to the characterization of the mutational spectrum and its impact on cellular signaling pathways in PSCC, thus reinforcing the pivotal role of HPV infection in the molecular pathogenesis of these tumors.
Collapse
Affiliation(s)
- Luisa Matos do Canto
- Clinical Genetics Department, University Hospital of Southern Denmark, 7100 Vejle, Denmark;
| | - Jenilson Mota da Silva
- Postgraduate Program in Health Science, Federal University of Maranhão, São Luís 65080-805, MA, Brazil;
- Laboratory of Genetics and Molecular Biology, Department of Biology, Federal University of Maranhão, São Luís 65080-805, MA, Brazil; (P.V.C.-B.); (I.M.d.S.)
| | - Patrícia Valèria Castelo-Branco
- Laboratory of Genetics and Molecular Biology, Department of Biology, Federal University of Maranhão, São Luís 65080-805, MA, Brazil; (P.V.C.-B.); (I.M.d.S.)
| | - Ingrid Monteiro da Silva
- Laboratory of Genetics and Molecular Biology, Department of Biology, Federal University of Maranhão, São Luís 65080-805, MA, Brazil; (P.V.C.-B.); (I.M.d.S.)
| | | | | | - André Khayat
- Oncology Research Center, Federal University of Pará, Belém 66073-005, PA, Brazil;
| | - Alexander Birbrair
- Department of Dermatology, School of Medicine and Public Health, University of Wisconsin-Madison, Madison, WI 53706, USA;
- Department of Pathology, Federal University of Minas Gerais, Belo Horizonte 31270-901, MG, Brazil
- Department of Radiology, Columbia University Medical Center, New York, NY 10032, USA
| | - Silma Regina Pereira
- Laboratory of Genetics and Molecular Biology, Department of Biology, Federal University of Maranhão, São Luís 65080-805, MA, Brazil; (P.V.C.-B.); (I.M.d.S.)
- Correspondence: ; Tel.: +55-98-32728543
| |
Collapse
|
29
|
Deng K, Zou Y, Zou C, Wang H, Xiang Y, Yang X, Yang S, Cui C, Yang G, Huang J. Study on pharmacokinetic interactions between SHR2554 and itraconazole in healthy subjects: A single-center, open-label phase I trial. Cancer Med 2022; 12:1431-1440. [PMID: 35841331 PMCID: PMC9883540 DOI: 10.1002/cam4.5028] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2022] [Revised: 06/22/2022] [Accepted: 06/29/2022] [Indexed: 02/02/2023] Open
Abstract
BACKGROUND SHR2554, a novel oral Enhancer of Zeste Homolog 2 inhibitor, shows broad-spectrum anti-tumor efficacy in preclinical studies. As SHR2554 is mainly metabolized by CYP3A4, it is helpful to conduct research on the effects of itraconazole, a strong inhibitor of CYP3A4-metabolizing enzymes, on the pharmacokinetic characteristics and safety of SHR2554. METHODS We conducted a single-center, open-label pharmacokinetic study of itraconazole on SHR2554 in 18 healthy Chinese subjects. Subjects were orally administrated SHR2554 50 mg on Day 1, itraconazole 200 mg Quaque Die (QD) from Days 4 to 7, SHR2554 50 mg co-administrated with itraconazole 200 mg on Day 8, and itraconazole 200 mg QD from Days 9 to 12. Then, 4 ml of venous blood was collected at predetermined time points. Plasma SHR2554 concentrations were analyzed using a validated high-performance liquid chromatography tandem mass spectrometry method. Pharmacokinetic parameters were calculated using Phoenix WinNonlin v8.1. RESULTS The Cmax of SHR2554 alone and in combination was 10.197 ± 7.0262 ng·ml-1 versus 70.538 ± 25.0219 ng·ml-1 , AUC0-∞ was 50.99 ± 19.358 h·ng·ml-1 versus 641.53 ± 319.538 h·ng·ml-1 , and AUC0-t was 28.70 ± 18.913 h·ng·ml-1 versus 612.13 ± 315.720 h·ng·ml-1 . Co-administration of SHR2554 and itraconazole caused 7.73-, 12.47-, and 23.75-fold adjusted geometric mean ratios increases in SHR2554 Cmax , AUC0-∞ and AUC0-t respectively. The co-administration regimen was well tolerated and had a good safety profile. CONCLUSIONS Compared with a single dose of SHR2554 50 mg, the exposure of SHR2554 in vivo was significantly affected by the combined administration of itraconazole.
Collapse
Affiliation(s)
- Kunhong Deng
- Center of Clinical PharmacologyThe Third Xiangya Hospital, Central South UniversityChangshaChina
| | - Yi Zou
- School of Mathematics and StatisticsCentral South UniversityChangshaChina
| | - Chan Zou
- Center of Clinical PharmacologyThe Third Xiangya Hospital, Central South UniversityChangshaChina
| | - Hong Wang
- School of Mathematics and StatisticsCentral South UniversityChangshaChina
| | - Yuxia Xiang
- Center of Clinical PharmacologyThe Third Xiangya Hospital, Central South UniversityChangshaChina,Research Center of Drug Clinical Evaluation of Central South UniversityChangshaChina
| | - Xiaoyan Yang
- Center of Clinical PharmacologyThe Third Xiangya Hospital, Central South UniversityChangshaChina
| | - Shuang Yang
- Center of Clinical PharmacologyThe Third Xiangya Hospital, Central South UniversityChangshaChina
| | - Chang Cui
- Center of Clinical PharmacologyThe Third Xiangya Hospital, Central South UniversityChangshaChina
| | - Guoping Yang
- Center of Clinical PharmacologyThe Third Xiangya Hospital, Central South UniversityChangshaChina,Research Center of Drug Clinical Evaluation of Central South UniversityChangshaChina,Department of PharmacyThe Third Xiangya Hospital, Central South UniversityChangshaChina,XiangYa School of Pharmaceutical SciencesCentral South UniversityChangshaChina,National‐Local Joint Engineering Laboratory of Drug Clinical Evaluation TechnologyChangshaChina
| | - Jie Huang
- Center of Clinical PharmacologyThe Third Xiangya Hospital, Central South UniversityChangshaChina,Research Center of Drug Clinical Evaluation of Central South UniversityChangshaChina
| |
Collapse
|
30
|
Su R, Wu X, Tao L, Wang C. The role of epigenetic modifications in Colorectal Cancer Metastasis. Clin Exp Metastasis 2022; 39:521-539. [PMID: 35429301 PMCID: PMC9338907 DOI: 10.1007/s10585-022-10163-w] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2021] [Accepted: 03/18/2022] [Indexed: 12/19/2022]
Abstract
Distant metastasis is the major contributor to the high mortality rate of colorectal cancer (CRC). To overcome the poor prognosis caused by distant metastasis, the mechanisms of CRC metastasis should be further explored. Epigenetic events are the main mediators of gene regulation and further affect tumor progression. Recent studies have found that some epigenetic enzymes are often dysregulated or mutated in multiple tumor types, which prompted us to study the roles of these enzymes in CRC metastasis. In this review, we summarized the alteration of enzymes related to various modifications, including histone modification, nonhistone modification, DNA methylation, and RNA methylation, and their epigenetic mechanisms during the progression of CRC metastasis. Existing data suggest that targeting epigenetic enzymes is a promising strategy for the treatment of CRC metastasis.
Collapse
Affiliation(s)
- Riya Su
- Department of pharmacology, Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou, China
| | - Xinlin Wu
- Department of General Surgery, the Affiliated Hospital of Inner Mongolia Medical University, Huhhot, China
| | - Liang Tao
- Department of pharmacology, Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou, China.
| | - Changshan Wang
- The State Key Laboratory of Reproductive Regulation and Breeding of Grassland Livestock, School of Life Sciences, Inner Mongolia University, Hohhot, China.
| |
Collapse
|
31
|
Raychaudhuri R, Ujjani C. Targeted Therapy for Relapsed/Refractory Follicular Lymphoma: Focus on Clinical Utility of Tazemetostat. Onco Targets Ther 2022; 15:193-199. [PMID: 35250278 PMCID: PMC8893153 DOI: 10.2147/ott.s267011] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2021] [Accepted: 02/12/2022] [Indexed: 11/30/2022] Open
Abstract
The management of follicular lymphoma (FL) in the relapsed and refractory setting is challenging and an area of ongoing investigation. Epigenetic dysregulation has recently been shown to be a hallmark of FL. Mutations in histone-modifying genes are likely early, driver events in FL pathogenesis, and so are attractive targets to drug. Gain-of-function mutations in the histone methyltransferase EZH2 are common in FL and maintained through disease evolution. With mounting data supporting a critical role for EZH2 as an oncogenic driver for FL, the small molecule inhibitor, tazemetostat, was developed. Tazemetostat has shown promising activity in preclinical models and early phase trials. Importantly, responses were seen in patients with high-risk features. Based on these data, tazemetostat was approved in the US in 2020 for EZH2mut patients with FL who had received at least two prior lines of systemic therapy, or for EZH2wt patients without alternative treatment options. Here, we will review the biology of FL as it pertains to tazemetostat, the available clinical trial data, and future directions for this new therapy.
Collapse
Affiliation(s)
- Ruben Raychaudhuri
- Fred Hutchinson Cancer Research Center, University of Washington, Seattle, WA, USA
| | - Chaitra Ujjani
- Fred Hutchinson Cancer Research Center, University of Washington, Seattle, WA, USA
- Correspondence: Chaitra Ujjani, Tel +1 206-606-1955, Email
| |
Collapse
|
32
|
Epigenetics of Cutaneous Sarcoma. Int J Mol Sci 2021; 23:ijms23010422. [PMID: 35008848 PMCID: PMC8745302 DOI: 10.3390/ijms23010422] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2021] [Revised: 12/25/2021] [Accepted: 12/28/2021] [Indexed: 12/13/2022] Open
Abstract
Epigenetic changes influence various physiological and pathological conditions in the human body. Recent advances in epigenetic studies of the skin have led to an appreciation of the importance of epigenetic modifications in skin diseases. Cutaneous sarcomas are intractable skin cancers, and there are no curative therapeutic options for the advanced forms of cutaneous sarcomas. In this review, we discuss the detailed molecular effects of epigenetic modifications on skin sarcomas, such as dermatofibrosarcoma protuberans, angiosarcoma, Kaposi's sarcoma, leiomyosarcoma, and liposarcoma. We also discuss the application of epigenetic-targeted therapy for skin sarcomas.
Collapse
|
33
|
Mondello P, Ansell SM. Tazemetostat: a treatment option for relapsed/refractory follicular lymphoma. Expert Opin Pharmacother 2021; 23:295-301. [PMID: 34904909 DOI: 10.1080/14656566.2021.2014815] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
Abstract
INTRODUCTION Follicular lymphoma (FL) is the second most common form of B cell lymphoma and generally presents as an indolent and relatively slow-growing tumor. However, most FLs are incurable with a shortening of subsequent responses. Therefore, novel and more effective treatments are desperately needed. Tazemetostat is a first-in-class, selective, oral inhibitor of EZH2, a lysine methyltransferase that is mutated in about 25% of FL. Tazemetostat has been recently approved for relapsed/refractory FL after two or more lines of therapy in the presence of an EZH2 mutation or independent of an EZH2 mutation in the absence of other options. AREAS COVERED Here, the authors provide a review focusing on the molecular mechanisms of EZH2, clinical development of tazemetostat and other EZH2 inhibitors (EZH2i), as single-agent therapy and in combinatorial regimens. Finally, they provide a futuristic look at therapeutic approaches for this disease. EXPERT OPINION Tazemetostat monotherapy showed clinically meaningful and durable responses with a favorable toxicity profile, especially in EZH2 mutant lymphoma. Future studies should explore mechanism-based combinatorial regimens to maximize and prolong the anti-lymphoma effect.
Collapse
Affiliation(s)
- Patrizia Mondello
- Division of Hematology and Internal Medicine, Mayo Clinic, Rochester, MN, USA
| | - Stephen M Ansell
- Division of Hematology and Internal Medicine, Mayo Clinic, Rochester, MN, USA
| |
Collapse
|
34
|
The Use of Inhibitors of Tyrosine Kinase in Paediatric Haemato-Oncology-When and Why? Int J Mol Sci 2021; 22:ijms222112089. [PMID: 34769519 PMCID: PMC8584725 DOI: 10.3390/ijms222112089] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2021] [Revised: 11/01/2021] [Accepted: 11/03/2021] [Indexed: 12/25/2022] Open
Abstract
The fundamental pathophysiology of malignancies is dysregulation of the signalling pathways. Protein tyrosine kinases (PTKs) are among the enzymes which, if mutated, play a critical role in carcinogenesis. The best-studied rearrangement, which enhances PTK activity and causes atypical proliferation, is BCR-ABL1. Abnormal expression of PTKs has proven to play a significant role in the development of various malignancies, such as chronic myelogenous leukaemia, brain tumours, neuroblastoma, and gastrointestinal stromal tumours. The use of tyrosine kinase inhibitors (TKIs) is an outstanding example of successful target therapy. TKIs have been effectively applied in the adult oncology setting, but there is a need to establish TKIs’ importance in paediatric patients. Many years of research have allowed a significant improvement in the outcome of childhood cancers. However, there are still groups of patients who have a poor prognosis, where the intensification of chemotherapy could even cause death. TKIs are designed to target specific PTKs, which lead to the limitation of severe adverse effects and increase overall survival. These advances will hopefully allow new therapeutic approaches in paediatric haemato-oncology to emerge. In this review, we present an analysis of the current data on tyrosine kinase inhibitors in childhood cancers.
Collapse
|
35
|
Izutsu K, Ando K, Nishikori M, Shibayama H, Teshima T, Kuroda J, Kato K, Imaizumi Y, Nosaka K, Sakai R, Hojo S, Nakanishi T, Rai S. Phase II study of tazemetostat for relapsed or refractory B-cell non-Hodgkin lymphoma with EZH2 mutation in Japan. Cancer Sci 2021; 112:3627-3635. [PMID: 34159682 PMCID: PMC8409398 DOI: 10.1111/cas.15040] [Citation(s) in RCA: 35] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2021] [Revised: 06/18/2021] [Accepted: 06/19/2021] [Indexed: 12/17/2022] Open
Abstract
Tazemetostat is a selective, reversible, small-molecule inhibitor of the histone methyltransferase enzyme, enhancer of zest homolog 2 (EZH2). In this multicenter, open-label, phase II study, we assessed the efficacy and safety of tazemetostat in Japanese patients with relapsed or refractory (R/R) B-cell non-Hodgkin lymphoma harboring the EZH2 mutation. Tazemetostat (800 mg twice daily) was given orally (28-day cycle) until disease progression or unacceptable toxicity. Among the 20 eligible patients, 17 were enrolled in cohort 1 (follicular lymphoma [FL]), and three were enrolled in cohort 2 (diffuse large B-cell lymphoma). At data cut-off, the objective response rate in cohort 1 was 76.5%, including six patients (35.3%) with complete response and seven patients (41.2%) with partial response (PR). All three patients in cohort 2 achieved PR. In cohort 1, median progression-free survival (PFS) was not reached at the median follow-up of 12.9 months. The estimated PFS rate at 12 and 15 months was 94.1% and 73.2%, respectively. The most common grade 3 treatment-emergent adverse event (TEAE) was lymphopenia (n = 2). Grade 4 TEAEs included hypertriglyceridemia and pneumonia aspiration (n = 1 each), which were not related to tazemetostat. Treatment-emergent adverse events leading to study drug discontinuation were reported in four of the 20 patients, indicating that the safety profile of tazemetostat was acceptable and manageable. Tazemetostat 800 mg twice daily showed encouraging efficacy in patients with R/R EZH2 mutation-positive FL with a manageable safety profile in the overall population. Thus, tazemetostat could be a potential treatment for R/R EZH2 mutation-positive FL.
Collapse
MESH Headings
- Aged
- Aged, 80 and over
- Antineoplastic Agents/administration & dosage
- Antineoplastic Agents/adverse effects
- Benzamides/administration & dosage
- Benzamides/adverse effects
- Biphenyl Compounds/administration & dosage
- Biphenyl Compounds/adverse effects
- Cohort Studies
- Enhancer of Zeste Homolog 2 Protein/antagonists & inhibitors
- Enhancer of Zeste Homolog 2 Protein/genetics
- Female
- Humans
- Japan/epidemiology
- Lymphoma, Follicular/drug therapy
- Lymphoma, Follicular/epidemiology
- Lymphoma, Follicular/genetics
- Lymphoma, Large B-Cell, Diffuse/drug therapy
- Lymphoma, Large B-Cell, Diffuse/epidemiology
- Lymphoma, Large B-Cell, Diffuse/genetics
- Male
- Middle Aged
- Morpholines/administration & dosage
- Morpholines/adverse effects
- Mutation
- Progression-Free Survival
- Pyridones/administration & dosage
- Pyridones/adverse effects
- Recurrence
Collapse
Affiliation(s)
- Koji Izutsu
- Department of HematologyNational Cancer Center HospitalTokyoJapan
| | - Kiyoshi Ando
- Department of Hematology and OncologyTokai University School of MedicineIseharaJapan
| | | | - Hirohiko Shibayama
- Department of Hematology and OncologyOsaka University HospitalOsakaJapan
| | - Takanori Teshima
- Department of HematologyHokkaido University Faculty of MedicineSapporoJapan
| | - Junya Kuroda
- Division of Hematology and OncologyKyoto Prefectural University of MedicineKyotoJapan
| | - Koji Kato
- Department of Hematology and OncologyKyushu University HospitalFukuokaJapan
| | | | - Kisato Nosaka
- Department of Hematology, Rheumatology, and Infectious DiseasesKumamoto UniversityKumamotoJapan
| | - Rika Sakai
- Department of Hematology and Medical OncologyKanagawa Cancer CenterYokohamaJapan
| | | | | | - Shinya Rai
- Department of Hematology and RheumatologyKindai University HospitalOsakaJapan
| |
Collapse
|