1
|
Zhang L, Liu R, Li M, Zhang G, Wang Z, Qin H. Integrating multiomics sequencing analyses uncover the key mechanisms related to oxidative stress, mitochondria, and immune cells in keloid. Gene 2025; 935:149078. [PMID: 39489224 DOI: 10.1016/j.gene.2024.149078] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2024] [Revised: 10/22/2024] [Accepted: 10/31/2024] [Indexed: 11/05/2024]
Abstract
BACKGROUND This study aimed to investigate the key molecular mechanisms underlying keloid pathogenesis by integrating oxidative stress, mitochondria, and immune cells. METHODS Transcriptome sequencing (mRNA, lncRNA, and circRNA expression data), proteomic sequencing, and small RNA sequencing analyses of lesional and non-lesional skin of patients with keloids and healthy control (normal) skin were conducted. By integrating mRNA and publicly available gene expression data (GSE158395), differentially expressed genes related to oxidative stress and mitochondrial function in keloids were identified. Hub genes were identified using various bioinformatics analyses such as immune infiltration analysis, weighted gene co-expression network analysis, machine learning, and expression validation using proteomics sequencing data. Moreover, a competing endogenous RNA (ceRNA) network of hub genes was constructed by combining miRNA, lncRNA, and circRNA expression data. Five hub genes were identified: MGST1, DHCR24, ALDH3A2, ADH1B, and FKBP5. RESULTS These hub genes had a high diagnostic value for keloids, with an AUC value > 0.8 each. In addition, five hub genes were associated with the infiltration of multiple immune cells. The immune cells with the strongest positive and negative correlations with hub genes were M0 and M1 macrophages. A ceRNA network was constructed, and several ceRNAs, such as AC005062.1/miR-134-5p/FKBP5 and BASP1-AS1/miR-503-5p/ADH1B, were identified. These five hub genes may contribute to keloid pathogenesis. CONCLUSION These genes and their related ceRNAs may serve as diagnostic biomarkers and therapeutic targets for keloids.
Collapse
Affiliation(s)
- Lianbo Zhang
- Department of Plastic Surgery, China-Japan Union Hospital of Jilin University, Changchun, China
| | - Ruizhu Liu
- Department of Anesthesiology, China-Japan Union Hospital of Jilin University, Changchun, China
| | - Mingxi Li
- Department of Plastic Surgery, China-Japan Union Hospital of Jilin University, Changchun, China
| | - Guang Zhang
- Department of Thyroid Surgery, China-Japan Union Hospital of Jilin University, Changchun, China
| | - Zichao Wang
- Department of Plastic Surgery, China-Japan Union Hospital of Jilin University, Changchun, China
| | - Haiyan Qin
- Department of Plastic Surgery, China-Japan Union Hospital of Jilin University, Changchun, China.
| |
Collapse
|
2
|
Krishna S, Prajapati B, Seth P, Sinha S. LncRNA BASP1-AS1 is a positive regulator of stemness and pluripotency in human SH-SY5Y neuroblastoma cells. Biochem Biophys Res Commun 2024; 733:150691. [PMID: 39303525 DOI: 10.1016/j.bbrc.2024.150691] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2024] [Revised: 09/03/2024] [Accepted: 09/10/2024] [Indexed: 09/22/2024]
Abstract
Neuroblastoma is the most common extra-cranial solid tumor diagnosed mostly in children below the age of five years and comprises of about 15 % of all paediatric cancer deaths. Tumor initiating cancer stem cells (CSCs) can be targeted for better treatment approaches. BASP1-AS1 is a long non coding (Lnc) RNA that is a divergent LncRNA for its coding gene brain abundant membrane attached signal protein 1 (BASP1). We had earlier demonstrated it to be expressed in foetus derived human neural progenitor cells (hNPCs), where it was a positive regulator of BASP1 and was critical for neural differentiation. In this study, we have investigated the role of BASP1-AS1 in CSCs derived from the human neuroblastoma cell line SH-SY5Y. We cultured SH-SY5Y cells on Poly-d-Lysine coated flasks in serum free media supplemented with growth factors, which led to the enrichment of CSCs as determined by marker expression. When grown on ultra-low attachment flasks, these cells formed CSCs enriched neurospheres. We examined the effects of BASP1-AS1 siRNA mediated knockdown on CSCs enriched SH-SY5Y cells and SH-SY5Y derived neurospheres. BASP1-AS1 knockdown decreased the levels of the corresponding gene BASP1 and the rate of cell proliferation of CSCs enriched cells along with low expression of Ki67. It also reduced the mRNA levels of stem cell and pluripotency gene markers (CD133, CD44, c-KIT, SOX2, OCT4 and NANOG), as also Wnt 2 and the Wnt pathway effector β catenin. It also abrogated the formation of neurospheres in ultra-low attachment flasks. A similar effect on proliferation and stemness related properties was seen on BASP1 knockdown. BASP1-AS1 and its related pathways may provide a point of intervention for the CSCs population in neuroblastoma.
Collapse
Affiliation(s)
| | - Bharat Prajapati
- National Brain Research Centre, Manesar, Gurugram, India; Department of Medical Biochemistry and Cell Biology, The Sahlgrenska Academy, Institute of Biomedicine, Gothenburg, Sweden
| | - Pankaj Seth
- National Brain Research Centre, Manesar, Gurugram, India.
| | - Subrata Sinha
- National Brain Research Centre, Manesar, Gurugram, India; Department of Biochemistry, All India Institute of Medical Sciences, New Delhi, India.
| |
Collapse
|
3
|
Wu Y, Yin S, Li C, Zhao L, Song M, Yu Y, Tang L, Yang Y. A signature of seven hypoxia-related lncRNAs is a potential biomarker for predicting the prognosis of melanoma. Am J Cancer Res 2024; 14:1712-1729. [PMID: 38726277 PMCID: PMC11076246 DOI: 10.62347/lhkw3124] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2024] [Accepted: 04/09/2024] [Indexed: 05/12/2024] Open
Abstract
Melanoma is the most aggressive type of skin cancer and has a high mortality rate once metastasis occurs. Hypoxia is a universal characteristic of the microenvironment of cancer and a driver of melanoma progression. In recent years, long noncoding RNAs (lncRNAs) have attracted widespread attention in oncology research. In this study, screening was performed and revealed seven hypoxia-related lncRNAs AC008687.3, AC009495.1, AC245128.3, AL512363.1, LINC00518, LINC02416 and MCCC1-AS1 as predictive biomarkers. A predictive risk model was constructed via univariate Cox regression analysis, least absolute shrinkage and selection operator (LASSO), and multivariate Cox regression analyses. Patients were grouped according to the model risk score, and Kaplan-Meier analysis was performed to compare survival between groups. Functional and pathway enrichment analyses were performed to compare gene set enrichment between groups. Moreover, a nomogram was constructed with the risk score as a variable. In both the training and validation sets, patients in the low-risk group had better overall survival than did those in the high-risk group (P<0.001). The 3-, 5- and 10-year area under the curve (AUC) values for the nomogram model were 0.821, 0.795 and 0.820, respectively. Analyses of immune checkpoints, immunotherapy response, drug sensitivity, and mutation landscape were also performed. The results suggested that the low-risk group had a better response to immunotherapeutic. In addition, the nomogram can effectively predict the prognosis and immunotherapy response of melanoma patients. The signature of seven hypoxia-related lncRNAs showed great potential value as an immunotherapy response biomarker, and these lncRNAs might be treatment targets for melanoma patients.
Collapse
Affiliation(s)
- Yunyang Wu
- School of Traditional Chinese Medicine, Naval Medical UniversityShanghai, China
- Department of Traditional Chinese Medicine, The First Affiliated Hospital of Naval Medical UniversityShanghai, China
| | - Shenhui Yin
- National Key Laboratory of Immunity & Inflammation, Naval Medical UniversityShanghai, China
| | - Chunzhen Li
- National Key Laboratory of Immunity & Inflammation, Naval Medical UniversityShanghai, China
| | - Liyuan Zhao
- National Key Laboratory of Immunity & Inflammation, Naval Medical UniversityShanghai, China
| | - Mengqi Song
- National Key Laboratory of Immunity & Inflammation, Naval Medical UniversityShanghai, China
| | - Yizhi Yu
- National Key Laboratory of Immunity & Inflammation, Naval Medical UniversityShanghai, China
| | - Ling Tang
- School of Traditional Chinese Medicine, Naval Medical UniversityShanghai, China
- Department of Traditional Chinese Medicine, The First Affiliated Hospital of Naval Medical UniversityShanghai, China
| | - Yanlong Yang
- School of Traditional Chinese Medicine, Naval Medical UniversityShanghai, China
- Department of Traditional Chinese Medicine, The First Affiliated Hospital of Naval Medical UniversityShanghai, China
| |
Collapse
|
4
|
Cong L, Zhao Q, Sun H, Zhou Z, Hu Y, Li C, Hao M, Cong X. A novel long non-coding RNA SLNCR1 promotes proliferation, migration, and invasion of melanoma via transcriptionally regulating SOX5. Cell Death Discov 2024; 10:160. [PMID: 38561355 PMCID: PMC10984963 DOI: 10.1038/s41420-024-01922-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2023] [Revised: 03/13/2024] [Accepted: 03/19/2024] [Indexed: 04/04/2024] Open
Abstract
Steroid receptor RNA activator (SRA)-like non-coding RNA (SLNCR1) has been implicated in various tumorigenic processes, but the precise regulatory role in melanoma progression remains uncertain. We performed a comprehensive analysis to investigate the prognostic value of SLNCR1 expression in patients with melanoma by TCGA database and melanoma tissue samples via the Kaplan-Meier method. Subsequently, we conducted qRT-PCR and Fluorescence in Situ Hybridization (FISH) assays to identify SLNCR1 expression levels and localization in tissues and cells, respectively. Loss-of-function assays utilizing shRNAs vectors were used to investigate the potential impact of SLNCR1. Our data showed that SLNCR1 is significantly up-regulated in human malignant melanoma tissues and cell lines and functions as an oncogene. Silencing of SLNCR1 suppressed melanoma cell proliferation, migration, invasion, and inhibited tumorigenesis in a mouse xenograft model. Additionally, we employed bioinformatic predictive analysis, combined with dual-luciferase reporter analysis and functional rescue assays, to elucidate the mechanistic target of the SLNCR1/SOX5 axis in melanoma. Mechanistically, we discovered that SLNCR1 promotes EMT of human melanoma by targeting SOX5, as downregulation of SLNCR1 expression leads to a decrease in SOX5 protein levels and inhibits melanoma tumorigenesis. Our research offers promising insights for more precise diagnosis and treatment of human melanoma.
Collapse
Affiliation(s)
- Lele Cong
- Department of Dermatology, China-Japan Union Hospital of Jilin University, Changchun, Jilin, China
| | - Qing Zhao
- Department of Neurology, China-Japan Union Hospital of Jilin University, Changchun, Jilin, China
| | - Hongyan Sun
- Department of Biobank, China-Japan Union Hospital of Jilin University, Changchun, Jilin, China
| | - Zilong Zhou
- Department of Biobank, China-Japan Union Hospital of Jilin University, Changchun, Jilin, China
| | - Yue Hu
- Department of Biobank, China-Japan Union Hospital of Jilin University, Changchun, Jilin, China
| | - Chunyi Li
- Institute of Antler Science and Product Technology, Changchun Sci-Tech University, Changchun, China
| | - Miao Hao
- Scientific Research Center, China-Japan Union Hospital of Jilin University, Changchun, Jilin, China.
| | - Xianling Cong
- Department of Biobank, China-Japan Union Hospital of Jilin University, Changchun, Jilin, China.
| |
Collapse
|
5
|
Liu X, Cui Q, Qin N. Low expression of KLRB1 predicts poor survival outcomes and is associated with immune infiltration in breast cancer. Transl Cancer Res 2024; 13:1225-1240. [PMID: 38617516 PMCID: PMC11009814 DOI: 10.21037/tcr-23-1231] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2023] [Accepted: 02/08/2024] [Indexed: 04/16/2024]
Abstract
Background KLRB1 is downregulated in various cancer types. Nevertheless, the specific involvement of KLRB1 in the context of breast cancer (BRCA) has not been fully elucidated. This research aimed to explore its clinical value in BRCA. Methods A dataset comprising 1,109 BRCA samples and 113 healthy samples was retrieved from The Cancer Genome Atlas (TCGA) database to establish the association between KLRB1 expression and pan-cancer. Subsequently, an analysis was executed to explore the link between KLRB1 and BRCA. T-tests and Chi-squared tests were conducted to assess the expression of KLRB1 and its clinical implications in BRCA. The prognosis-predictive value of KLRB1 in BRCA was assessed using the Kaplan-Meier method and Cox regression analysis. Gene Ontology (GO) and Kyoto Encyclopedia of Genes and Genomes (KEGG) enrichment analyses screened biological pathways to analyze the association between the immune infiltration level and KLRB1 expression in BRCA. Lastly, the conclusion was validated through quantitative polymerase chain reaction (qPCR), immunohistochemistry (IHC), and Cell Counting Kit-8 (CCK8) assays. Results KLRB1 exhibited low expression in patients with BRCA. Furthermore, KLRB1 demonstrated strong diagnostic potential, as indicated by an area under curve (AUC) of 0.712. Kaplan-Meier survival and Cox regression analyses indicated that attenuated expression of KLRB1 was independently linked to unfavorable clinical outcomes. GO and KEGG enrichment analyses were performed on the top 10 genes that exhibited positive and negative correlations with KLRB1. Analysis of genes positively correlated with KLRB1 revealed associations with signaling receptor activator activity, lymphocyte proliferation, mononuclear cell proliferation, leukocyte proliferation, receptor-ligand activity, immunoglobulin binding, and hematopoietic cell lineage signaling pathway. KLRB1 expression exhibited significant correlations with all immune cells. Furthermore, qPCR and IHC outcomes demonstrated that KLRB1 was significantly downregulated in BRCA tissues. CCK8 findings showed a decrease in the proliferation of BRCA MCF7 cells upon knockout of KLRB1. Conclusions This research investigated the mechanism and potential therapeutic target of the KLRB1 gene in BRCA. By analyzing the expression and function of the KLRB1 gene, the study aims to find its significant role in the onset and progression of BRCA. This research endeavors to offer novel strategies and approaches for treating BRCA.
Collapse
Affiliation(s)
- Xiao Liu
- Department of Breast Surgery, Cancer Hospital of China Medical University, Liaoning Cancer Hospital & Institute, Shenyang, China
| | - Qianqian Cui
- Department of Breast Surgery, Cancer Hospital of China Medical University, Liaoning Cancer Hospital & Institute, Shenyang, China
- Department of Breast Surgery, Altaira Nursing Service, Campbelltown, SA, Australia
| | - Nan Qin
- Department of Breast Surgery, Cancer Hospital of China Medical University, Liaoning Cancer Hospital & Institute, Shenyang, China
| |
Collapse
|
6
|
Jiang T, Qi J, Xue Z, Liu B, Liu J, Hu Q, Li Y, Ren J, Song H, Xu Y, Xu T, Fan R, Song J. The m 6A modification mediated-lncRNA POU6F2-AS1 reprograms fatty acid metabolism and facilitates the growth of colorectal cancer via upregulation of FASN. Mol Cancer 2024; 23:55. [PMID: 38491348 PMCID: PMC10943897 DOI: 10.1186/s12943-024-01962-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2023] [Accepted: 02/19/2024] [Indexed: 03/18/2024] Open
Abstract
BACKGROUND Long noncoding RNAs (lncRNAs) have emerged as key players in tumorigenesis and tumour progression. However, the biological functions and potential mechanisms of lncRNAs in colorectal cancer (CRC) are unclear. METHODS The novel lncRNA POU6F2-AS1 was identified through bioinformatics analysis, and its expression in CRC patients was verified via qRT-PCR and FISH. In vitro and in vivo experiments, such as BODIPY staining, Oil Red O staining, triglyceride (TAG) assays, and liquid chromatography mass spectrometry (LC-MS) were subsequently performed with CRC specimens and cells to determine the clinical significance, and functional roles of POU6F2-AS1. Biotinylated RNA pull-down, RIP, Me-RIP, ChIP, and patient-derived organoid (PDO) culture assays were performed to confirm the underlying mechanism of POU6F2-AS1. RESULTS The lncRNA POU6F2-AS1 is markedly upregulated in CRC and associated with adverse clinicopathological features and poor overall survival in CRC patients. Functionally, POU6F2-AS1 promotes the growth and lipogenesis of CRC cells both in vitro and in vivo. Mechanistically, METTL3-induced m6A modification is involved in the upregulation of POU6F2-AS1. Furthermore, upregulated POU6F2-AS1 could tether YBX1 to the FASN promoter to induce transcriptional activation, thus facilitating the growth and lipogenesis of CRC cells. CONCLUSIONS Our data revealed that the upregulation of POU6F2-AS1 plays a critical role in CRC fatty acid metabolism and might provide a novel promising biomarker and therapeutic target for CRC.
Collapse
Affiliation(s)
- Tao Jiang
- Department of General Surgery, The Affiliated Hospital of Xuzhou Medical University, Xuzhou, Jiangsu, 221006, China
- Institute of Digestive Diseases, Xuzhou Medical University, Xuzhou, Jiangsu, 221002, China
- Affiliated First Clinical College, Xuzhou Medical University, Xuzhou, Jiangsu, 221004, China
| | - Junwen Qi
- Affiliated First Clinical College, Xuzhou Medical University, Xuzhou, Jiangsu, 221004, China
- Central Laboratory, The Affiliated Hospital of Xuzhou Medical University, Xuzhou, Jiangsu, 221002, China
| | - Zhenyu Xue
- Department of Radiation Oncology, The Affiliated Hospital of Jiangsu University, Zhenjiang, Jiangsu, 212001, China
| | - Bowen Liu
- Department of General Surgery, The Affiliated Hospital of Xuzhou Medical University, Xuzhou, Jiangsu, 221006, China
- Central Laboratory, The Affiliated Hospital of Xuzhou Medical University, Xuzhou, Jiangsu, 221002, China
| | - Jianquan Liu
- Affiliated First Clinical College, Xuzhou Medical University, Xuzhou, Jiangsu, 221004, China
- Central Laboratory, The Affiliated Hospital of Xuzhou Medical University, Xuzhou, Jiangsu, 221002, China
| | - Qihang Hu
- Affiliated First Clinical College, Xuzhou Medical University, Xuzhou, Jiangsu, 221004, China
- Central Laboratory, The Affiliated Hospital of Xuzhou Medical University, Xuzhou, Jiangsu, 221002, China
| | - Yuqiu Li
- Affiliated First Clinical College, Xuzhou Medical University, Xuzhou, Jiangsu, 221004, China
- Central Laboratory, The Affiliated Hospital of Xuzhou Medical University, Xuzhou, Jiangsu, 221002, China
| | - Jing Ren
- Jiangsu Key Laboratory of Brain Disease Bioinformation, Research Center for Biochemistry and Molecular Biology, Xuzhou Medical University, Xuzhou, Jiangsu, 221004, China
| | - Hu Song
- Department of General Surgery, The Affiliated Hospital of Xuzhou Medical University, Xuzhou, Jiangsu, 221006, China
- Institute of Digestive Diseases, Xuzhou Medical University, Xuzhou, Jiangsu, 221002, China
| | - Yixin Xu
- Department of General Surgery, The Affiliated Hospital of Xuzhou Medical University, Xuzhou, Jiangsu, 221006, China
- Institute of Digestive Diseases, Xuzhou Medical University, Xuzhou, Jiangsu, 221002, China
| | - Teng Xu
- Department of General Surgery, The Affiliated Hospital of Xuzhou Medical University, Xuzhou, Jiangsu, 221006, China
- Institute of Digestive Diseases, Xuzhou Medical University, Xuzhou, Jiangsu, 221002, China
| | - Ruizhi Fan
- Department of General Surgery, The Affiliated Hospital of Xuzhou Medical University, Xuzhou, Jiangsu, 221006, China
- Institute of Digestive Diseases, Xuzhou Medical University, Xuzhou, Jiangsu, 221002, China
| | - Jun Song
- Department of General Surgery, The Affiliated Hospital of Xuzhou Medical University, Xuzhou, Jiangsu, 221006, China.
- Institute of Digestive Diseases, Xuzhou Medical University, Xuzhou, Jiangsu, 221002, China.
| |
Collapse
|
7
|
Chen Y, Zhang YH, Li J, Shi L, Xie JC, Han X, Chen YT, Xiang M, Li BW, Xing HR, Wang JY. Novel lncRNA Gm33149 modulates metastatic heterogeneity in melanoma by regulating the miR-5623-3p/Wnt axis via exosomal transfer. Cancer Gene Ther 2024; 31:364-375. [PMID: 38072970 DOI: 10.1038/s41417-023-00707-x] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2023] [Revised: 11/16/2023] [Accepted: 11/21/2023] [Indexed: 03/16/2024]
Abstract
The high mortality rate associated with melanoma primarily results from metastasis and recurrence. However, the precise mechanisms driving these processes remain poorly understood. Intercellular communication between cancer cells and non-cancer cells significantly influences the tumor microenvironment and plays a crucial role in metastasis. Therefore, our current study aims to investigate the role and mechanism of long non-coding RNAs (lncRNAs) in regulating the interaction between melanoma cancer stem cells (CSCs) and non-CSCs during the metastatic colonization process. This study has characterized a novel lncRNA called Gm33149. Importantly, we provide evidence for the first time that Gm33149, originating from highly metastatic melanoma stem cells (OL-SD), can be packaged into exosomes and transferred to low-metastatic nonstem cells (OL). Once internalized by OL cells, Gm33149 exerts its function through a competitive endogenous RNA mechanism (ceRNA) involving miR-5623-3p. Specifically, Gm33149 competitively binds to miR-5623-3p, thereby activating the Wnt signaling pathway and promoting the acquisition of a more aggressive metastatic phenotype by OL cells. In summary, our findings suggest that targeting lncRNA Gm33149 within extracellular vesicles could potentially serve as a therapeutic strategy for the treatment of metastatic melanoma. Schematic representation of the mechanisms underlying the pro-metastatic activity of lncRNA Gm33149 mediated by exosomal transfer. The figure illustrates the key mechanisms involved in the pro-metastatic activity of lncRNA Gm33149 through exosomal transfer. Melanoma stem cells (OLSD) release exosomes containing lncRNA Gm33149. These exosomes are taken up by non-stem melanoma cells (OL), delivering lncRNA Gm33149 to the recipient cells. Within OL cells, lncRNA Gm33149 functions as a competitive endogenous RNA (ceRNA), sequestering miR-5623-3p. This sequestration prevents miR-5623-3p from binding to its target genes, thereby activating the Wnt signaling pathway. The activated Wnt signaling pathway enhances the migration, invasion, and metastatic colonization capabilities of OL cells. The transfer of lncRNA Gm33149 via exosomes contributes to OL cells acquiring "metastatic competency" while promoting their metastatic colonization. These findings underscore the importance of lncRNA Gm33149 in intercellular communication and the metastatic progression of melanoma.
Collapse
Affiliation(s)
- Yan Chen
- State Key Laboratory of Ultrasound in Medicine and Engineering, College of Biomedical Engineering, Chongqing Medical University, Chongqing, 400016, China
- Chongqing Key Laboratory of Biomedical Engineering, Chongqing Medical University, Chongqing, 400016, China
| | - Yu-Han Zhang
- State Key Laboratory of Ultrasound in Medicine and Engineering, College of Biomedical Engineering, Chongqing Medical University, Chongqing, 400016, China
- Chongqing Key Laboratory of Biomedical Engineering, Chongqing Medical University, Chongqing, 400016, China
| | - Jie Li
- Institute of Life Sciences, Chongqing Medical University, Chongqing, China
| | - Lei Shi
- State Key Laboratory of Ultrasound in Medicine and Engineering, College of Biomedical Engineering, Chongqing Medical University, Chongqing, 400016, China
- Chongqing Key Laboratory of Biomedical Engineering, Chongqing Medical University, Chongqing, 400016, China
| | - Jia-Cheng Xie
- State Key Laboratory of Ultrasound in Medicine and Engineering, College of Biomedical Engineering, Chongqing Medical University, Chongqing, 400016, China
- Chongqing Key Laboratory of Biomedical Engineering, Chongqing Medical University, Chongqing, 400016, China
| | - Xue Han
- Institute of Life Sciences, Chongqing Medical University, Chongqing, China
| | - Yu-Ting Chen
- State Key Laboratory of Ultrasound in Medicine and Engineering, College of Biomedical Engineering, Chongqing Medical University, Chongqing, 400016, China
- Chongqing Key Laboratory of Biomedical Engineering, Chongqing Medical University, Chongqing, 400016, China
| | - Meng Xiang
- State Key Laboratory of Ultrasound in Medicine and Engineering, College of Biomedical Engineering, Chongqing Medical University, Chongqing, 400016, China
- Chongqing Key Laboratory of Biomedical Engineering, Chongqing Medical University, Chongqing, 400016, China
| | - Bo-Wen Li
- State Key Laboratory of Ultrasound in Medicine and Engineering, College of Biomedical Engineering, Chongqing Medical University, Chongqing, 400016, China
- Chongqing Key Laboratory of Biomedical Engineering, Chongqing Medical University, Chongqing, 400016, China
| | - H Rosie Xing
- State Key Laboratory of Ultrasound in Medicine and Engineering, College of Biomedical Engineering, Chongqing Medical University, Chongqing, 400016, China.
- Chongqing Key Laboratory of Biomedical Engineering, Chongqing Medical University, Chongqing, 400016, China.
| | - Jian-Yu Wang
- Institute of Life Sciences, Chongqing Medical University, Chongqing, China.
| |
Collapse
|
8
|
Dinh NTM, Nguyen TM, Park MK, Lee CH. Y-Box Binding Protein 1: Unraveling the Multifaceted Role in Cancer Development and Therapeutic Potential. Int J Mol Sci 2024; 25:717. [PMID: 38255791 PMCID: PMC10815159 DOI: 10.3390/ijms25020717] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2023] [Revised: 12/22/2023] [Accepted: 01/02/2024] [Indexed: 01/24/2024] Open
Abstract
Y-box binding protein 1 (YBX1), a member of the Cold Shock Domain protein family, is overexpressed in various human cancers and is recognized as an oncogenic gene associated with poor prognosis. YBX1's functional diversity arises from its capacity to interact with a broad range of DNA and RNA molecules, implicating its involvement in diverse cellular processes. Independent investigations have unveiled specific facets of YBX1's contribution to cancer development. This comprehensive review elucidates YBX1's multifaceted role in cancer across cancer hallmarks, both in cancer cell itself and the tumor microenvironment. Based on this, we proposed YBX1 as a potential target for cancer treatment. Notably, ongoing clinical trials addressing YBX1 as a target in breast cancer and lung cancer have showcased its promise for cancer therapy. The ramp up in in vitro research on targeting YBX1 compounds also underscores its growing appeal. Moreover, the emerging role of YBX1 as a neural input is also proposed where the high level of YBX1 was strongly associated with nerve cancer and neurodegenerative diseases. This review also summarized the up-to-date advanced research on the involvement of YBX1 in pancreatic cancer.
Collapse
Affiliation(s)
- Ngoc Thi Minh Dinh
- College of Pharmacy, Dongguk University, Goyang 10326, Republic of Korea; (N.T.M.D.); (T.M.N.)
| | - Tuan Minh Nguyen
- College of Pharmacy, Dongguk University, Goyang 10326, Republic of Korea; (N.T.M.D.); (T.M.N.)
| | - Mi Kyung Park
- Department of BioHealthcare, Hwasung Medi-Science University, Hwaseong-si 18274, Republic of Korea
| | - Chang Hoon Lee
- College of Pharmacy, Dongguk University, Goyang 10326, Republic of Korea; (N.T.M.D.); (T.M.N.)
| |
Collapse
|
9
|
Maciak P, Suder A, Wadas J, Aronimo F, Maiuri P, Bochenek M, Pyrc K, Kula-Pacurar A, Pabis M. Dynamic changes in LINC00458/HBL1 lncRNA expression during hiPSC differentiation to cardiomyocytes. Sci Rep 2024; 14:109. [PMID: 38167488 PMCID: PMC10761834 DOI: 10.1038/s41598-023-49753-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2023] [Accepted: 12/12/2023] [Indexed: 01/05/2024] Open
Abstract
Long non-coding RNAs (lncRNAs) constitute the largest and most diverse class of non-coding RNAs. They localize to the nucleus, cytoplasm, or both compartments, and regulate gene expression through various mechanisms at multiple levels. LncRNAs tend to evolve faster and present higher tissue- and developmental stage-specific expression than protein-coding genes. Initially considered byproducts of erroneous transcription without biological function, lncRNAs are now recognized for their involvement in numerous biological processes, such as immune response, apoptosis, pluripotency, reprogramming, and differentiation. In this study, we focused on Heart Brake lncRNA 1 (HBL1), a lncRNA recently reported to modulate the process of pluripotent stem cell differentiation toward cardiomyocytes. We employed RT-qPCR and high-resolution RNA FISH to monitor the expression and localization of HBL1 during the differentiation progression. Our findings indicate a significant increase in HBL1 expression during mesodermal and cardiac mesodermal stages, preceding an anticipated decrease in differentiated cells. We detected the RNA in discrete foci in both the nucleus and in the cytoplasm. In the latter compartment, we observed colocalization of HBL1 with Y-box binding protein 1 (YB-1), which likely results from an interaction between the RNA and the protein, as the two were found to be coimmunoprecipitated in RNP-IP experiments. Finally, we provide evidence that HBL1, initially reported as an independent lncRNA gene, is part of the LINC00458 (also known as lncRNA-ES3 or ES3) gene, forming the last exon of some LINC00458 splice isoforms.
Collapse
Affiliation(s)
- Patrycja Maciak
- Małopolska Centre of Biotechnology, Jagiellonian University, Gronostajowa 7A, 30-387, Cracow, Poland
| | - Agnieszka Suder
- Virogenetics Laboratory of Virology, Małopolska Centre of Biotechnology, Jagiellonian University, Gronostajowa 7A, 30-387, Cracow, Poland
- Doctoral School of Exact and Natural Sciences, Jagiellonian University, Łojasiewicza 11, 30-348, Cracow, Poland
| | - Jakub Wadas
- Virogenetics Laboratory of Virology, Małopolska Centre of Biotechnology, Jagiellonian University, Gronostajowa 7A, 30-387, Cracow, Poland
- Doctoral School of Exact and Natural Sciences, Jagiellonian University, Łojasiewicza 11, 30-348, Cracow, Poland
| | - Faith Aronimo
- Małopolska Centre of Biotechnology, Jagiellonian University, Gronostajowa 7A, 30-387, Cracow, Poland
| | - Paolo Maiuri
- Department of Molecular Medicine and Medical Biotechnology, University of Naples Federico II, Naples, Italy
| | - Michał Bochenek
- Małopolska Centre of Biotechnology, Jagiellonian University, Gronostajowa 7A, 30-387, Cracow, Poland
| | - Krzysztof Pyrc
- Virogenetics Laboratory of Virology, Małopolska Centre of Biotechnology, Jagiellonian University, Gronostajowa 7A, 30-387, Cracow, Poland
| | - Anna Kula-Pacurar
- Virogenetics Laboratory of Virology, Małopolska Centre of Biotechnology, Jagiellonian University, Gronostajowa 7A, 30-387, Cracow, Poland.
| | - Marta Pabis
- Małopolska Centre of Biotechnology, Jagiellonian University, Gronostajowa 7A, 30-387, Cracow, Poland.
| |
Collapse
|
10
|
Beatriz Cristina Biz T, Carolina de Sousa CS, Frank John S, Miriam Galvonas J. LncRNAs in melanoma phenotypic plasticity: emerging targets for promising therapies. RNA Biol 2024; 21:81-93. [PMID: 39498940 PMCID: PMC11540095 DOI: 10.1080/15476286.2024.2421672] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Revised: 09/23/2024] [Accepted: 10/22/2024] [Indexed: 11/07/2024] Open
Abstract
Long non-coding RNAs (lncRNAs) have received growing attention due to their diverse regulatory roles in cancer, including in melanoma, an aggressive type of skin cancer. The plasticity and phenotypic adaptability of melanoma cells are crucial factors contributing to therapeutic resistance. The identification of molecules playing key roles in melanoma cell plasticity could unravel novel and more effective therapeutic targets. This review presents current concepts of melanoma cell plasticity, illustrating its fluidity and dismissing the outdated notion of epithelial-mesenchymal-like transition as a simplistic binary process. Emphasis is placed on the pivotal role of lncRNAs in orchestrating cell plasticity, employing various mechanisms recently elucidated and unveiling their potential as promising targets for novel therapeutic strategies. Insights into the molecular mechanisms coordinated by lncRNAs in melanoma pave the way for the development of RNA-based therapies, holding great promise for enhancing treatment outcomes and offering a glimpse into a more effective approach to melanoma treatment.
Collapse
Affiliation(s)
- Tonin Beatriz Cristina Biz
- Department of Pharmacology, Escola Paulista de Medicina, Universidade Federal de São Paulo, São Paulo, Brazil
| | | | - Slack Frank John
- Department of Pathology, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, USA
| | - Jasiulionis Miriam Galvonas
- Department of Pharmacology, Escola Paulista de Medicina, Universidade Federal de São Paulo, São Paulo, Brazil
| |
Collapse
|
11
|
Yu L, Li J, Xiao M. LncRNA SLC7A11-AS1 stabilizes CTCF by inhibiting its UBE3A-mediated ubiquitination to promote melanoma metastasis. Am J Cancer Res 2023; 13:6256-6269. [PMID: 38187043 PMCID: PMC10767361] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2023] [Accepted: 11/28/2023] [Indexed: 01/09/2024] Open
Abstract
Malignant melanoma (MM) is one of the most aggressive types of skin cancer. Long non-coding RNAs (lncRNAs) are important regulatory factors in the pathogenesis of various diseases. Here, we found that the lncRNA SLC7A11-AS1 was highly expressed in MM. Therefore, we investigated its regulatory role in the migration and invasion of MM cells and the associated mechanism. SLC7A11-AS1 and CTCF levels in MM cell lines were detected using RT-qPCR and western blotting, and their regulatory effects on the migratory and invasive abilities were determined using CCK-8, EdU, transwell, wound-healing assays and mouse model. RNA pull-down and RIP assays were performed to explore the association of SLC7A11-AS1 and CTCF and the correlation between CTCF and UBE3A. SLC7A11-AS1 and CTCF were highly expressed in MM cells. The knockdown of SLC7A11-AS1 decreased the expression of CTCF. Mechanistically, SLC7A11-AS1 inhibited the degradation of CTCF by inhibiting the ubiquitination by UBE3A. The knockdown of both SLC7A11-AS1 and CTCF inhibited the migration and invasion of MM cells and attenuated MM-to-lung metastasis in a mouse model. Taken together, SLC7A11-AS1 promoted the invasive and migratory abilities of MM cells by inhibiting the UBE3A-regulated ubiquitination of CTCF. Therefore, SLC7A11-AS1 may be a potential therapeutic target for MM.
Collapse
Affiliation(s)
- Lingling Yu
- Department of Dermatology, Shanghai Eighth People's Hospital Shanghai, China
| | - Jing Li
- Department of Dermatology, Shanghai Eighth People's Hospital Shanghai, China
| | - Ming Xiao
- Department of Dermatology, Shanghai Eighth People's Hospital Shanghai, China
| |
Collapse
|
12
|
Zhang L, Li Y, Cai B, Chen J, Zhao K, Li M, Lang J, Wang K, Pan S, Zhu K. A Notch signaling-related lncRNA signature for predicting prognosis and therapeutic response in clear cell renal cell carcinoma. Sci Rep 2023; 13:21141. [PMID: 38036719 PMCID: PMC10689792 DOI: 10.1038/s41598-023-48596-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2023] [Accepted: 11/28/2023] [Indexed: 12/02/2023] Open
Abstract
Increasing evidence has confirmed the vital role of Notch signaling in the tumorigenesis of clear cell renal cell carcinoma (ccRCC). The underlying function of long non-coding RNA (lncRNA) related to Notch signaling in ccRCC remains unclear. In present study, the prognostic value and therapeutic strategy of Notch signaling-related lncRNA are comprehensively explored in ccRCC. In total, we acquired 1422 NSRlncRNAs, of which 41 lncRNAs were identified the key NSRlncRNAs associated with the occurrence of ccRCC. The prognostic signature containing five NSRlncRNAs (AC092611.2, NNT-AS1, AGAP2-AS1, AC147651.3, and AC007406.3) was established and validated, and the ccRCC patients were clustered into the high- and low-risk groups. The overall survival of patients in the low-risk group were much more favorable than those in the high-risk group. Multivariate Cox regression analysis indicated that the risk score was an independent prognostic biomarker. Based on the risk score and clinical variables, a nomogram for predicting prognosis of ccRCC patients was constructed, and the calibration curves and DCA curves showed the superior predictive ability of nomogram. The risk score was correlated with immune cell infiltration, targeted therapy or chemotherapy sensitivity, and multiple oncogenic pathways. Additionally, consensus clustering analysis stratified the ccRCC patients into four clusters with obvious different outcomes, immune microenvironments, and expression of immune checkpoints. The constructed NSRlncRNA-based signature might serve as a potential biomarker for predicting prognosis and response to immunotherapy or targeted therapy in patients with ccRCC.
Collapse
Affiliation(s)
- Lulu Zhang
- Department of Medical Research Center, Shaoxing People's Hospital, No.568, Zhongxing North Road, Shaoxing, 312000, Zhejiang Province, China
| | - Yulei Li
- Department of Urology, Shaoxing People's Hospital, No.568, Zhongxing North Road, Shaoxing, 312000, Zhejiang Province, China
| | - Bin Cai
- Shaoxing People's Hospital, No.568, Zhongxing North Road, Shaoxing, 312000, Zhejiang Province, China
| | - Jiajun Chen
- Department of Urology, Shaoxing People's Hospital, No.568, Zhongxing North Road, Shaoxing, 312000, Zhejiang Province, China
| | - Keyuan Zhao
- Department of Urology, Shaoxing People's Hospital, No.568, Zhongxing North Road, Shaoxing, 312000, Zhejiang Province, China
| | - Mengyao Li
- Department of Pathology, Shaoxing People's Hospital, No.568, Zhongxing North Road, Shaoxing, 312000, Zhejiang Province, China
| | - Juan Lang
- Department of Pathology, Shaoxing People's Hospital, No.568, Zhongxing North Road, Shaoxing, 312000, Zhejiang Province, China
| | - Kaifang Wang
- Faculty of Health Sciences, University of Macau, Taipa, Macau
| | - Shouhua Pan
- Department of Urology, Shaoxing People's Hospital, No.568, Zhongxing North Road, Shaoxing, 312000, Zhejiang Province, China.
| | - Ke Zhu
- Nanchang People's Hospital, No.1268 Jiuzhou Street, Xihu District, Nanchang City, China.
| |
Collapse
|
13
|
Shi Q, He Y, He S, Li J, Xia J, Chen T, Huo L, Ling Y, Liu Q, Zang W, Wang Q, Tang C, Wang X. RP11-296E3.2 acts as an important molecular chaperone for YBX1 and promotes colorectal cancer proliferation and metastasis by activating STAT3. J Transl Med 2023; 21:418. [PMID: 37370092 DOI: 10.1186/s12967-023-04267-4] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2023] [Accepted: 06/11/2023] [Indexed: 06/29/2023] Open
Abstract
BACKGROUND RP11-296E3.2 is a novel long noncoding RNA (lncRNA) associated with colorectal cancer (CRC) metastasis, that was reported in our previous clinical studies. However, the mechanisms of RP11-296E3.2 in colorectal tumorigenesis remain elusive. METHODS RNA sequencing (RNA-seq), Fluorescence in situ hybridization (FISH), Transwell assays and others, were performed to evaluate the function of RP11-296E3.2 for proliferation and metastasis in vitro. In situ and metastatic tumor models were performed to evaluate the function of RP11-296E3.2 for proliferation and metastasis in vivo. RNA-pulldown, RNA-interacting protein immunoprecipitation (RIP), tissue microarray (TMA) assay, a luciferase reporter assay, chromatin immunoprecipitation (ChIP) and others were performed to explore the mechanisms by which RP11-296E3.2 regulates CRC tumorigenesis. RESULTS RP11-296E3.2 was confirmed to be associated with CRC cell proliferation and metastasis in vitro and in vivo. Mechanistically, RP11-296E3.2 directly bound to recombinant Y-Box Binding Protein 1 (YBX1) and enhanced signal transducer and activator of transcription 3 (STAT3) transcription and phosphorylation. YBX1 promoted the CRC cell proliferation and migration, while knockdown of RP11-296E3.2 attenuated the effects of YBX1 on CRC cell proliferation, and metastasis and the expression of several related downstream genes. We are the first to discover and confirm the existence of the YBX1/STAT3 pathway, a pathway dependent on RP11-296E3.2. CONCLUSION Together, these novel findings show that the RP11-296E3.2/YBX1 pathway promotes colorectal tumorigenesis and progression by activating STAT3 transcription and phosphorylation, and suggest that RP11-296E3.2 is a potential diagnostic biomarker and therapeutic target in CRC.
Collapse
Affiliation(s)
- Qian Shi
- Key Laboratory for Translational Medicine, First Affiliated Hospital, The First People's Hospital of Huzhou, Huzhou University, Huzhou, 313000, China
| | - Ying He
- Key Laboratory for Translational Medicine, First Affiliated Hospital, The First People's Hospital of Huzhou, Huzhou University, Huzhou, 313000, China
| | - Shouyu He
- Key Laboratory for Translational Medicine, First Affiliated Hospital, The First People's Hospital of Huzhou, Huzhou University, Huzhou, 313000, China
| | - Jingjing Li
- Key Laboratory of Nutrition, Metabolism and Food Safety, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, 320 Yueyang Road, Shanghai, 200031, China
| | - Ji Xia
- Key Laboratory of Nutrition, Metabolism and Food Safety, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, 320 Yueyang Road, Shanghai, 200031, China
| | - Tianwei Chen
- Key Laboratory of Integrated Oncology and Intelligent Medicine of Zhejiang Province, Affiliated Hangzhou First People's Hospital, Zhejiang University School of Medicine, Hangzhou, 310006, China
| | - Lixia Huo
- Key Laboratory for Translational Medicine, First Affiliated Hospital, The First People's Hospital of Huzhou, Huzhou University, Huzhou, 313000, China
| | - Yuhang Ling
- Key Laboratory for Translational Medicine, First Affiliated Hospital, The First People's Hospital of Huzhou, Huzhou University, Huzhou, 313000, China
| | - Qinchen Liu
- Department of General Surgery, Shanghai Fengxian Central Hospital (Affiliated Fengxian Hospital to Southern Medical University), Shanghai, 201499, China
| | - Wei Zang
- Department of General Surgery, Shanghai Fengxian Central Hospital (Affiliated Fengxian Hospital to Southern Medical University), Shanghai, 201499, China
| | - Qiang Wang
- Medical Transformation Research Institute, The First Affiliated Hospital of Anhui Medical University, Hefei, 230000, China.
- Department of Hepatobiliary Surgery, The First Affiliated Hospital of Anhui Medical University, Hefei, 230000, China.
| | - Chengwu Tang
- Key Laboratory for Translational Medicine, First Affiliated Hospital, The First People's Hospital of Huzhou, Huzhou University, Huzhou, 313000, China.
| | - Xiang Wang
- Key Laboratory for Translational Medicine, First Affiliated Hospital, The First People's Hospital of Huzhou, Huzhou University, Huzhou, 313000, China.
- Key Laboratory of Integrated Oncology and Intelligent Medicine of Zhejiang Province, Affiliated Hangzhou First People's Hospital, Zhejiang University School of Medicine, Hangzhou, 310006, China.
| |
Collapse
|
14
|
Chen GR, Zhang YB, Zheng SF, Xu YW, Lin P, Shang-Guan HC, Lin YX, Kang DZ, Yao PS. Decreased SPTBN2 expression regulated by the ceRNA network is associated with poor prognosis and immune infiltration in low‑grade glioma. Exp Ther Med 2023; 25:253. [PMID: 37153896 PMCID: PMC10161196 DOI: 10.3892/etm.2023.11952] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2022] [Accepted: 02/24/2023] [Indexed: 05/10/2023] Open
Abstract
The majority of low-grade gliomas (LGGs) in adults invariably progress to glioblastoma over time. Spectrin β non-erythrocytic 2 (SPTBN2) is detected in numerous tumors and is involved in tumor occurrence and metastasis. However, the specific roles and detailed mechanisms of SPTBN2 in LGG are largely unknown. The present study performed pan-cancer analysis for the expression and prognosis of SPTBN2 in LGG using The Cancer Genome Atlas and The Genotype-Tissue Expression. Western blotting was used to detect the amount of SPTBN2 between glioma tissues and normal brain tissues. Subsequently, based on expression, prognosis, correlation and immune infiltration, non-coding RNAs (ncRNAs) were identified that regulated SPTBN2 expression. Finally, tumor immune infiltrates associated with SPTBN2 and prognosis were performed. Lower expression of SPTBN2 was correlated with an unfavorable outcome in LGG. A significant correlation between the low SPTBN2 mRNA expression and poor clinicopathological features was observed, including wild-type isocitrate dehydrogenase status (P<0.001), 1p/19q non-codeletion (P<0.001) and elders (P=0.019). The western blotting results revealed that, compared with normal brain tissues, the amount of SPTBN2 was significantly lower in LGG tissues (P=0.0266). Higher expression of five microRNAs (miRs/miRNAs), including hsa-miR-15a-5p, hsa-miR-15b-5p, hsa-miR-16-5p, hsa-miR-34c-5p and hsa-miR-424-5p, correlated with poor prognosis by targeting SPTBN2 in LGG. Subsequently, four long ncRNAs (lncRNAs) [ARMCX5-GPRASP2, BASP1-antisense RNA 1 (AS1), EPB41L4A-AS1 and LINC00641] were observed in the regulation of SPTBN2 via five miRNAs. Moreover, the expression of SPTBN2 was significantly correlated with tumor immune infiltration, immune checkpoint expression and biomarkers of immune cells. In conclusion, SPTBN2 was lowly expressed and correlated with an unfavorable prognosis in LGG. A total of six miRNAs and four lncRNAs were identified as being able to modulate SPTBN2 in a lncRNA-miRNA-mRNA network of LGG. Furthermore, the current findings also indicated that SPTBN2 possessed anti-tumor roles by regulating tumor immune infiltration and immune checkpoint expression.
Collapse
Affiliation(s)
- Guo-Rong Chen
- Department of Neurosurgery, Neurosurgical Research Institute, The First Affiliated Hospital, Fujian Medical University, Fuzhou, Fujian 350005, P.R. China
- Department of Neurosurgery, National Regional Medical Center, Binhai Campus of The First Affiliated Hospital, Fujian Medical University, Fuzhou, Fujian 350212, P.R. China
| | - Yi-Bin Zhang
- Department of Neurosurgery, Neurosurgical Research Institute, The First Affiliated Hospital, Fujian Medical University, Fuzhou, Fujian 350005, P.R. China
- Department of Neurosurgery, National Regional Medical Center, Binhai Campus of The First Affiliated Hospital, Fujian Medical University, Fuzhou, Fujian 350212, P.R. China
| | - Shu-Fa Zheng
- Department of Neurosurgery, Neurosurgical Research Institute, The First Affiliated Hospital, Fujian Medical University, Fuzhou, Fujian 350005, P.R. China
- Department of Neurosurgery, National Regional Medical Center, Binhai Campus of The First Affiliated Hospital, Fujian Medical University, Fuzhou, Fujian 350212, P.R. China
| | - Ya-Wen Xu
- Department of Neurosurgery, Neurosurgical Research Institute, The First Affiliated Hospital, Fujian Medical University, Fuzhou, Fujian 350005, P.R. China
- Department of Neurosurgery, National Regional Medical Center, Binhai Campus of The First Affiliated Hospital, Fujian Medical University, Fuzhou, Fujian 350212, P.R. China
| | - Peng Lin
- Department of Pain, The First Affiliated Hospital, Fujian Medical University, Fuzhou, Fujian 350005, P.R. China
| | - Huang-Cheng Shang-Guan
- Department of Neurosurgery, Neurosurgical Research Institute, The First Affiliated Hospital, Fujian Medical University, Fuzhou, Fujian 350005, P.R. China
- Department of Neurosurgery, National Regional Medical Center, Binhai Campus of The First Affiliated Hospital, Fujian Medical University, Fuzhou, Fujian 350212, P.R. China
| | - Yuan-Xiang Lin
- Department of Neurosurgery, Neurosurgical Research Institute, The First Affiliated Hospital, Fujian Medical University, Fuzhou, Fujian 350005, P.R. China
- Fujian Key Laboratory of Precision Medicine for Cancer, The First Affiliated Hospital, Fujian Medical University, Fuzhou, Fujian 350005, P.R. China
| | - De-Zhi Kang
- Department of Neurosurgery, Neurosurgical Research Institute, The First Affiliated Hospital, Fujian Medical University, Fuzhou, Fujian 350005, P.R. China
- Department of Neurosurgery, National Regional Medical Center, Binhai Campus of The First Affiliated Hospital, Fujian Medical University, Fuzhou, Fujian 350212, P.R. China
- Fujian Key Laboratory of Precision Medicine for Cancer, The First Affiliated Hospital, Fujian Medical University, Fuzhou, Fujian 350005, P.R. China
- Key Laboratory of Radiation Biology of Fujian Higher Education Institutions, The First Affiliated Hospital, Fujian Medical University, Fuzhou, Fujian 350005, P.R. China
- Fujian Provincial Institutes of Brain Disorders and Brain Sciences, The First Affiliated Hospital, Fujian Medical University, Fuzhou, Fujian 350005, P.R. China
- Correspondence to: Professor De-Zhi Kang or Dr Pei-Sen Yao, Department of Neurosurgery, Neurosurgical Research Institute, The First Affiliated Hospital, Fujian Medical University, 20 Chazhong Road, Taijiang, Fuzhou, Fujian 350005, P.R. China
| | - Pei-Sen Yao
- Department of Neurosurgery, Neurosurgical Research Institute, The First Affiliated Hospital, Fujian Medical University, Fuzhou, Fujian 350005, P.R. China
- Department of Neurosurgery, National Regional Medical Center, Binhai Campus of The First Affiliated Hospital, Fujian Medical University, Fuzhou, Fujian 350212, P.R. China
- Correspondence to: Professor De-Zhi Kang or Dr Pei-Sen Yao, Department of Neurosurgery, Neurosurgical Research Institute, The First Affiliated Hospital, Fujian Medical University, 20 Chazhong Road, Taijiang, Fuzhou, Fujian 350005, P.R. China
| |
Collapse
|
15
|
Yang R, Li L, Hou Y, Li Y, Zhang J, Yang N, Zhang Y, Ji W, Yu T, Lv L, Liang H, Li X, Li T, Shan H. Long non-coding RNA KCND1 protects hearts from hypertrophy by targeting YBX1. Cell Death Dis 2023; 14:344. [PMID: 37253771 DOI: 10.1038/s41419-023-05852-7] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2022] [Revised: 04/11/2023] [Accepted: 05/05/2023] [Indexed: 06/01/2023]
Abstract
Cardiac hypertrophy is a common structural remodeling in many cardiovascular diseases. Recently, long non-coding RNAs (LncRNAs) were found to be involved in the physiological and pathological processes of cardiac hypertrophy. In this study, we found that LncRNA KCND1 (LncKCND1) was downregulated in both transverse aortic constriction (TAC)-induced hypertrophic mouse hearts and Angiotensin II (Ang II)-induced neonatal mouse cardiomyocytes. Further analyses showed that the knockdown of LncKCND1 impaired cardiac mitochondrial function and led to hypertrophic changes in cardiomyocytes. In contrast, overexpression of LncKCND1 inhibited Ang II-induced cardiomyocyte hypertrophic changes. Importantly, enhanced expression of LncKCND1 protected the heart from TAC-induced pathological cardiac hypertrophy and improved heart function in TAC mice. Subsequent analyses involving mass spectrometry and RNA immunoprecipitation assays showed that LncKCND1 directly binds to YBX1. Furthermore, overexpression of LncKCND1 upregulated the expression level of YBX1, while silencing LncKCND1 had the opposite effect. Furthermore, YBX1 was downregulated during cardiac hypertrophy, whereas overexpression of YBX1 inhibited Ang II-induced cardiomyocyte hypertrophy. Moreover, silencing YBX1 reversed the effect of LncKCND1 on cardiomyocyte mitochondrial function and its protective role in cardiac hypertrophy, suggesting that YBX1 is a downstream target of LncKCND1 in regulating cardiac hypertrophy. In conclusion, our study provides mechanistic insights into the functioning of LncKCND1 and supports LncKCND1 as a potential therapeutic target for pathological cardiac hypertrophy.
Collapse
Affiliation(s)
- Rui Yang
- Shanghai Frontiers Science Research Center for Druggability of Cardiovascular noncoding RNA, Institute for Frontier Medical Technology, Shanghai University of Engineering Science, Shanghai, 201620, China
- Department of Pharmacology (State-Province Key Laboratories of Biomedicine-Pharmaceutics of China, Key Laboratory of Cardiovascular Research, Ministry of Education), College of Pharmacy, Harbin Medical University, Harbin, 150081, China
- Department of Pharmacology, School of Basic Medicine, Inner Mongolia Medical University, Hohhot, 010110, China
| | - Liangliang Li
- Department of Pharmacology (State-Province Key Laboratories of Biomedicine-Pharmaceutics of China, Key Laboratory of Cardiovascular Research, Ministry of Education), College of Pharmacy, Harbin Medical University, Harbin, 150081, China
| | - Yumeng Hou
- Department of Pharmacology (State-Province Key Laboratories of Biomedicine-Pharmaceutics of China, Key Laboratory of Cardiovascular Research, Ministry of Education), College of Pharmacy, Harbin Medical University, Harbin, 150081, China
| | - Yingnan Li
- Center for Tumor and Immunology, the Precision Medical Institute, Xi'an Jiaotong University, Xi'an, 710115, China
| | - Jing Zhang
- Department of Pharmacology (State-Province Key Laboratories of Biomedicine-Pharmaceutics of China, Key Laboratory of Cardiovascular Research, Ministry of Education), College of Pharmacy, Harbin Medical University, Harbin, 150081, China
| | - Na Yang
- Department of Pharmacology (State-Province Key Laboratories of Biomedicine-Pharmaceutics of China, Key Laboratory of Cardiovascular Research, Ministry of Education), College of Pharmacy, Harbin Medical University, Harbin, 150081, China
| | - Yuhan Zhang
- Department of Pharmacology (State-Province Key Laboratories of Biomedicine-Pharmaceutics of China, Key Laboratory of Cardiovascular Research, Ministry of Education), College of Pharmacy, Harbin Medical University, Harbin, 150081, China
| | - Weihang Ji
- Department of Pharmacology (State-Province Key Laboratories of Biomedicine-Pharmaceutics of China, Key Laboratory of Cardiovascular Research, Ministry of Education), College of Pharmacy, Harbin Medical University, Harbin, 150081, China
| | - Tong Yu
- Shanghai Frontiers Science Research Center for Druggability of Cardiovascular noncoding RNA, Institute for Frontier Medical Technology, Shanghai University of Engineering Science, Shanghai, 201620, China
- Department of Pharmacology (State-Province Key Laboratories of Biomedicine-Pharmaceutics of China, Key Laboratory of Cardiovascular Research, Ministry of Education), College of Pharmacy, Harbin Medical University, Harbin, 150081, China
| | - Lifang Lv
- Department of Pharmacology (State-Province Key Laboratories of Biomedicine-Pharmaceutics of China, Key Laboratory of Cardiovascular Research, Ministry of Education), College of Pharmacy, Harbin Medical University, Harbin, 150081, China
- Department of Basic Medicine, The Centre of Functional Experiment Teaching, Harbin Medical University, Harbin, 150081, China
| | - Haihai Liang
- Department of Pharmacology (State-Province Key Laboratories of Biomedicine-Pharmaceutics of China, Key Laboratory of Cardiovascular Research, Ministry of Education), College of Pharmacy, Harbin Medical University, Harbin, 150081, China
- Research Unit of Noninfectious Chronic Diseases in Frigid Zone (2019RU070), Chinese Academy of Medical Sciences, Harbin, 150081, China
| | - Xuelian Li
- Department of Pharmacology (State-Province Key Laboratories of Biomedicine-Pharmaceutics of China, Key Laboratory of Cardiovascular Research, Ministry of Education), College of Pharmacy, Harbin Medical University, Harbin, 150081, China
| | - Tianyu Li
- Department of Pharmacology (State-Province Key Laboratories of Biomedicine-Pharmaceutics of China, Key Laboratory of Cardiovascular Research, Ministry of Education), College of Pharmacy, Harbin Medical University, Harbin, 150081, China.
| | - Hongli Shan
- Shanghai Frontiers Science Research Center for Druggability of Cardiovascular noncoding RNA, Institute for Frontier Medical Technology, Shanghai University of Engineering Science, Shanghai, 201620, China.
- Department of Pharmacology (State-Province Key Laboratories of Biomedicine-Pharmaceutics of China, Key Laboratory of Cardiovascular Research, Ministry of Education), College of Pharmacy, Harbin Medical University, Harbin, 150081, China.
- Research Unit of Noninfectious Chronic Diseases in Frigid Zone (2019RU070), Chinese Academy of Medical Sciences, Harbin, 150081, China.
| |
Collapse
|
16
|
Zhang M, Yang L, Wang Y, Zuo Y, Chen D, Guo X. Comprehensive prediction of immune microenvironment and hot and cold tumor differentiation in cutaneous melanoma based on necroptosis-related lncRNA. Sci Rep 2023; 13:7299. [PMID: 37147395 PMCID: PMC10163022 DOI: 10.1038/s41598-023-34238-0] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2023] [Accepted: 04/26/2023] [Indexed: 05/07/2023] Open
Abstract
As per research, causing cancer cells to necroptosis might be used as a therapy to combat cancer drug susceptibility. Long non-coding RNA (lncRNA) modulates the necroptosis process in Skin Cutaneous Melanoma (SKCM), even though the precise mechanism by which it does so has yet been unknown. RNA sequencing and clinical evidence of SKCM patients were accessed from The Cancer Genome Atlas database, and normal skin tissue sequencing data was available from the Genotype-Tissue Expression database. Person correlation analysis, differential screening, and univariate Cox regression were successively utilized to identify necroptosis-related hub lncRNAs. Following this, we adopt the least absolute shrinkage and selection operator regression analysis to construct a risk model. The model was evaluated on various clinical characteristics using many integrated approaches to ensure it generated accurate predictions. Through risk score comparisons and consistent cluster analysis, SKCM patients were sorted either high-risk or low-risk subgroups as well as distinct clusters. Finally, the effect of immune microenvironment, m7G methylation, and viable anti-cancer drugs in risk groups and potential clusters was evaluated in further detail. Included USP30-AS1, LINC01711, LINC00520, NRIR, BASP1-AS1, and LINC02178, the 6 necroptosis-related hub lncRNAs were utilized to construct a novel prediction model with excellent accuracy and sensitivity, which was not influenced by confounding clinical factors. Immune-related, necroptosis, and apoptosis pathways were enhanced in the model structure, as shown by Gene Set Enrichment Analysis findings. TME score, immune factors, immune checkpoint-related genes, m7G methylation-related genes, and anti-cancer drug sensitivity differed significantly between the high-risk and low-risk groups. Cluster 2 was identified as a hot tumor with a better immune response and therapeutic effect. Our study may provide potential biomarkers for predicting prognosis in SKCM and provide personalized clinical therapy for patients based on hot and cold tumor classification.
Collapse
Affiliation(s)
- Miao Zhang
- Department of Plastic and Burns Surgery, Affiliated Hospital of Southwest Medical University, Luzhou, Sichuan, China
| | - Lushan Yang
- Department of Plastic and Burns Surgery, Affiliated Hospital of Southwest Medical University, Luzhou, Sichuan, China
| | - Yizhi Wang
- Department of Plastic and Burns Surgery, Affiliated Hospital of Southwest Medical University, Luzhou, Sichuan, China
| | - Yuzhi Zuo
- Department of Plastic and Burns Surgery, Affiliated Hospital of Southwest Medical University, Luzhou, Sichuan, China
| | - Dengdeng Chen
- Department of Plastic and Burns Surgery, Affiliated Hospital of Southwest Medical University, Luzhou, Sichuan, China
| | - Xing Guo
- Department of Plastic and Burns Surgery, Affiliated Hospital of Southwest Medical University, Luzhou, Sichuan, China.
| |
Collapse
|
17
|
Zhang Z, Su D, Thakur A, Zhang K, Xia F, Yan Y. Immune cell death-related lncRNA signature as a predictive factor of clinical outcomes and immune checkpoints in gastric cancer. Front Pharmacol 2023; 14:1162995. [PMID: 37081965 PMCID: PMC10110873 DOI: 10.3389/fphar.2023.1162995] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2023] [Accepted: 03/20/2023] [Indexed: 04/07/2023] Open
Abstract
Background: Immune cell death (ICD) is a type of tumor cell death that has recently been shown to activate and regulate tumor immunity. However, the role of ICD-related long non-coding RNAs (lncRNAs) in gastric cancer remains to be clarified.Methods: We obtained 375 tumor samples from the Cancer Genome Atlas (TCGA) database and randomly assigned them to training and verification groups. LASSO and Cox regression analysis were utilized to identify ICD-related lncRNAs and establish a risk model. The changes in the immune microenvironment of the two groups were compared by examining the tumor-infiltrating immune cells.Results: We established a tumor signature based on nine ICD-related lncRNAs. In light of the receiver operating characteristic and Kaplan–Meier curves, the prognostic values of this risk model were verified. Multivariate regression analysis showed that the risk score was an independent risk factor for the prognosis of patients in both the training cohort (HR 2.52; 95% CI: 1.65–3.87) and validation cohort (HR 2.70; 95% CI: 1.54–4.8). A nomogram was developed to predict the 1-, 3-, and 5-year survival of patients with gastric cancer, and the signature was linked to high levels of immunological checkpoint expression (B7-H3, VSIR).Conclusions: An ICD-related lncRNA signature could predict the immune response and prognosis of patients with gastric cancer. This prognostic signature could be employed to independently monitor the efficacy of immunotherapy for gastric cancer patients.
Collapse
Affiliation(s)
- Zeyu Zhang
- Department of General Surgery, Xiangya Hospital, Central South University, Changsha, Hunan, China
| | - Duntao Su
- Department of General Surgery, Xiangya Hospital, Central South University, Changsha, Hunan, China
| | - Abhimanyu Thakur
- Pritzker School of Molecular Engineering, Ben May Department for Cancer Research, University of Chicago, Chicago, IL, United States
| | - Kui Zhang
- State Key Laboratory of Silkworm Genome Biology, Medical Research Institute, Southwest University, Chongqing, China
| | - Fada Xia
- Department of General Surgery, Xiangya Hospital, Central South University, Changsha, Hunan, China
- *Correspondence: Fada Xia, ; Yuanliang Yan,
| | - Yuanliang Yan
- Department of Pharmacy, Xiangya Hospital, Central South University, Changsha, Hunan, China
- National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, Hunan, China
- *Correspondence: Fada Xia, ; Yuanliang Yan,
| |
Collapse
|
18
|
Zhang Y, Li Y, Yan H. Low Expression of CLEC2B Indicates Poor Prognosis in Melanoma. Clin Cosmet Investig Dermatol 2023; 16:463-477. [PMID: 36851951 PMCID: PMC9961593 DOI: 10.2147/ccid.s395854] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2022] [Accepted: 02/11/2023] [Indexed: 02/22/2023]
Abstract
Background Melanoma is a highly malignant skin tumor with a poor prognosis. Identification of novel biomarkers might potentially reveal the underlying mechanisms of melanoma progression. Methods We demonstrated the relationship between pan-cancer CLEC2B expression and melanoma samples in The Cancer Genome Atlas (TCGA) database. Next, the Kaplan-Meier plot and Cox regression analysis determined the prognostic value of CLEC2B in melanoma. Biological pathway enrichment was screened by Gene Ontology (GO), Kyoto Encyclopedia of Genes and Genomes (KEGG), and Gene Set Enrichment Analysis (GSEA), enabling the correlation analysis between the immune infiltration level and CLEC2B expression in melanoma. Our final claim was validated using qPCR, immunohistochemistry, Western blot, cell colony formation assays, ethynyldeoxyuridine (Edu) analysis, and cell Invasion assays. Results Our study revealed that the high CLEC2B expression correlates with poor overall survival of melanoma patients. Moreover, a low expression of CLEC2B was found in the A375 cell line. In addition, CLEC2B has significant prognostic value in melanoma diagnosis, with an AUC of 0.896. Prognostic analysis showed the low expression of CLEC2B to be independently associated with melanoma patients. Moreover, the expression of CLEC2B was significantly correlated with B cells, eosinophils, macrophages, neutrophils, NK cells, T helper cells, Tregs, Th1 cells, Th17 cells, and Th2 cells. PCR and immunohistochemistry indicated CLEC2B to be significantly downregulated in melanoma. The cell colony formation assay showed CLEC2B knockout increased the proliferation of A375 cells. Conclusion Our study established low levels of CLEC2B to be poor prognostic markers, enabling immunosuppressive cell infiltration in melanoma.
Collapse
Affiliation(s)
- Yanqiu Zhang
- Department of Dermatology, The First Hospital of China Medical University, Shenyang, 110001, People's Republic of China
| | - Yaling Li
- Department of Dermatology, The First Hospital of China Medical University, Shenyang, 110001, People's Republic of China
| | - Hongwei Yan
- Department of Dermatology, The First Hospital of China Medical University, Shenyang, 110001, People's Republic of China
| |
Collapse
|
19
|
Novel Green Fluorescent Probe Stem From Carbon Quantum Dots for Specific Recognition of Tyrosinase in Serum and Living Cells. J Fluoresc 2023; 33:739-750. [PMID: 36515759 DOI: 10.1007/s10895-022-03101-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2022] [Accepted: 11/21/2022] [Indexed: 12/15/2022]
Abstract
Tyrosinase (TYR), an important biomarker for melanoma, offered significant information early detection of melanoma and may decrease the likelihood of mortality. Therefore, this article constructed a highly sensitive and selective green fluorescent functionalized carbon quantum dots (TYR-CQDs) for tyrosinase (TYR) activity detection by one-step hydrothermal protocol utilizing catechol, citric acid and urea as precursors. The prepared TYR-CQDs illustrated excellent linear relationship and broad linear range with a low detection limit, which exhibited high accuracy and recovery in quantitative determination of TYR in human serum samples. Furthermore, the TYR-CQDs had successfully realized intracellular TYR detection owing to excellent biocompatibility, high anti-interference ability and good cellular imaging capability, suggesting the potential biomedical applications in early diagnosis of melanoma and other tyrosinase-related diseases.
Collapse
|
20
|
Mikheil D, Prabhakar K, Ng TL, Teertam S, Longley BJ, Newton MA, Setaluri V. Notch Signaling Suppresses Melanoma Tumor Development in BRAF/Pten Mice. Cancers (Basel) 2023; 15:cancers15020519. [PMID: 36672468 PMCID: PMC9857214 DOI: 10.3390/cancers15020519] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2022] [Revised: 01/11/2023] [Accepted: 01/12/2023] [Indexed: 01/18/2023] Open
Abstract
Both oncogenic and tumor suppressor roles have been assigned to Notch signaling in melanoma. In clinical trials, Notch inhibitors proved to be ineffective for melanoma treatment. Notch signaling has also been implicated in melanoma transdifferentiation, a prognostic feature in primary melanoma. In this study, we investigated the role of Notch signaling in melanoma tumor development and growth using the genetic model of mouse melanoma by crossing BRAFCA/+/Pten+/+/Tyr-CreER+ (B) and BRAFCA/+/Pten-/-/Tyr-CreER + (BP) mice with Notch1 or Notch2 floxed allele mice. The topical application of tamoxifen induced tumors in BP mice but not in B mice with or without the deletion of either Notch1 or Notch2. These data show that the loss of either Notch1 nor Notch2 can substitute the tumor suppressor function of Pten in BRAFV600E-induced melanomagenesis. However, in Pten-null background, the loss of either Notch1 or Notch2 appeared to accelerate BRAFV600E-induced tumor development, suggesting a tumor suppressor role for Notch1 and Notch2 in BRAFV600E/Pten-null driven melanomagenesis. Quantitative immunochemical analysis of a human cutaneous melanoma tissue microarray that consists of >100 primary tumors with complete clinical history showed a weak to moderate correlation between NOTCH protein levels and clinical and pathological parameters. Our data show that Notch signaling is involved during melanomagenesis and suggest that the identification of genes and signaling pathways downstream of Notch could help devise strategies for melanoma prevention.
Collapse
Affiliation(s)
- Dareen Mikheil
- Department of Dermatology, School of Medicine and Public Health, University of Wisconsin-Madison, Madison, WI 53705, USA
| | - Kirthana Prabhakar
- Department of Dermatology, School of Medicine and Public Health, University of Wisconsin-Madison, Madison, WI 53705, USA
| | - Tun Lee Ng
- Department of Biostatistics and Medical Informatics, School of Medicine and Public Health, University of Wisconsin-Madison, Madison, WI 53706, USA
| | - Sireesh Teertam
- Department of Dermatology, School of Medicine and Public Health, University of Wisconsin-Madison, Madison, WI 53705, USA
| | - B. Jack Longley
- Department of Dermatology, School of Medicine and Public Health, University of Wisconsin-Madison, Madison, WI 53705, USA
| | - Michael A. Newton
- Department of Biostatistics and Medical Informatics, School of Medicine and Public Health, University of Wisconsin-Madison, Madison, WI 53706, USA
| | - Vijayasaradhi Setaluri
- Department of Dermatology, School of Medicine and Public Health, University of Wisconsin-Madison, Madison, WI 53705, USA
- William S. Middleton Memorial Veterans’ Hospital, Madison, WI 53705, USA
- Correspondence:
| |
Collapse
|
21
|
Zhou W, Xu X, Cen Y, Chen J. The role of lncRNAs in the tumor microenvironment and immunotherapy of melanoma. Front Immunol 2022; 13:1085766. [PMID: 36601121 PMCID: PMC9806239 DOI: 10.3389/fimmu.2022.1085766] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2022] [Accepted: 12/05/2022] [Indexed: 12/23/2022] Open
Abstract
Melanoma is one of the most lethal tumors with highly aggressive and metastatic properties. Although immunotherapy and targeted therapy have certain therapeutic effects in melanoma, a significant proportion of patients still have drug resistance after treatment. Recent studies have shown that long noncoding RNAs (lncRNAs) are widely recognized as regulatory factors in cancer. They can regulate numerous cellular processes, including cell proliferation, metastasis, epithelial-mesenchymal transition (EMT) progression and the immune microenvironment. The role of lncRNAs in malignant tumors has received much attention, whereas the relationship between lncRNAs and melanoma requires further investigation. Our review summarizes tumor suppressive and oncogenic lncRNAs closely related to the occurrence and development of melanoma. We summarize the role of lncRNAs in the immune microenvironment, immunotherapy and targeted therapy to provide new targets and therapeutic methods for clinical treatment.
Collapse
|
22
|
Development and Validation of a Combined Ferroptosis and Immune Prognostic Model for Melanoma. JOURNAL OF ONCOLOGY 2022; 2022:1840361. [DOI: 10.1155/2022/1840361] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/20/2022] [Revised: 07/13/2022] [Accepted: 10/13/2022] [Indexed: 11/27/2022]
Abstract
Background. Melanoma development and progression are significantly influenced by ferroptosis and the immune microenvironment. However, there are no reliable biomarkers for melanoma prognosis prediction based on ferroptosis and immunological response. Methods. Ferroptosis-related genes (FRGs) were retrieved from the FerrDb website. Immune-related genes (IRGs) were collected in the ImmPort dataset. The TCGA (The Cancer Genome Atlas) and GSE65904 datasets both contained prognostic FRGs and IRGs. The model was created using multivariate Cox regression, the least absolute shrinkage and selection operator (LASSO) Cox regression analysis, and the analysis and comparison between the expression patterns of ferroptosis and immune cell infiltration were done. Last but not least, research was conducted to assess the expression and involvement of the genes in the comprehensive index of ferroptosis and immune (CIFI). Results. Two prognostic ferroptosis- and immune-related markers (PDGFRB and FOXM1) were utilized to develop a CIFI. In various datasets and patient subgroups, CIFI exhibits consistent predictive performance. The fact that CIFI is an independent prognostic factor for melanoma patients was revealed. Patients in the CIFI-high group further exhibited immune-suppressive characteristics and had elevated ferroptosis gene expression levels. The results of in vitro research point to the possibility that the PDGFRB and FOXM1 genes function as oncogenes in melanoma. Conclusion. In this study, a novel prognostic classifier for melanoma patients was developed and validated using ferroptosis and immune expression profiles.
Collapse
|
23
|
Hashemi M, Hasani S, Hajimazdarany S, Mirmazloomi SR, Makvandy S, Zabihi A, Goldoost Y, Gholinia N, Kakavand A, Tavakolpournegari A, Salimimoghadam S, Nabavi N, Zarrabi A, Taheriazam A, Entezari M, Hushmandi K. Non-coding RNAs targeting notch signaling pathway in cancer: From proliferation to cancer therapy resistance. Int J Biol Macromol 2022; 222:1151-1167. [DOI: 10.1016/j.ijbiomac.2022.09.203] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2022] [Accepted: 09/22/2022] [Indexed: 11/26/2022]
|
24
|
Ma X, Yu S, Zhao B, Bai W, Cui Y, Ni J, Lyu Q, Zhao J. Development and Validation of a Novel Ferroptosis-Related LncRNA Signature for Predicting Prognosis and the Immune Landscape Features in Uveal Melanoma. Front Immunol 2022; 13:922315. [PMID: 35774794 PMCID: PMC9238413 DOI: 10.3389/fimmu.2022.922315] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2022] [Accepted: 05/10/2022] [Indexed: 12/18/2022] Open
Abstract
Background Ferroptosis is a newly iron-dependent mode of programmed cell death that is involved in a variety of malignancies. But no research has shown a link between ferroptosis-related long non-coding RNAs (FRLs) and uveal melanoma (UM). We aimed to develop a predictive model for UM and explore its potential function in relation to immune cell infiltration. Methods Identification of FRLs was performed using the Cancer Genome Atlas (TCGA) and FerrDb databases. To develop a prognostic FRLs signature, univariate Cox regression and least absolute shrinkage and selection operator (LASSO) were used in training cohort. Kaplan-Meier (K-M) and receiver operating characteristic (ROC) curve analyses were used to assess the reliability of the risk model. The immunological functions of FRLs signature were determined using gene set enrichment analysis (GSEA). Immunological cell infiltration and immune treatment were studied using the ESTIMATE, CIBERSORT, and ssGSEA algorithms. Finally, in vitro assays were carried out to confirm the biological roles of FRLs with known primer sequences (LINC00963, PPP1R14B.AS1, and ZNF667.AS1). Results A five-genes novel FRLs signature was identified. The mean risk score generated by this signature was used to create two risk groups. The high-risk score UM patients had a lower overall survival rate. The area under the curve (AUC) of ROC and K-M analysis further validated the strong prediction capacity of the prognostic signature. Immune cells such as memory CD8 T cells, M1 macrophages, monocytes, and B cells showed a substantial difference between the two groups. GSEA enrichment results showed that the FRLs signature was linked to certain immune pathways. Moreover, UM patients with high-risk scores were highly susceptible to several chemotherapy drugs, such as cisplatin, imatinib, bortezomib, and pazopanib. Finally, the experimental validation confirmed that knockdown of three identified lncRNA (LINC00963, PPP1R14B.AS1, and ZNF667.AS1) suppressed the invasive ability of tumor cells in vitro. Conclusion The five-FRLs (AC104129.1, AC136475.3, LINC00963, PPP1R14B.AS1, and ZNF667.AS1) signature has effects on clinical survival prediction and selection of immunotherapies for UM patients.
Collapse
Affiliation(s)
- Xiaochen Ma
- The Second Clinical Medical College, Jinan University, Shenzhen, China
| | - Sejie Yu
- The Second Clinical Medical College, Jinan University, Shenzhen, China
| | - Bin Zhao
- Biomedical Research Institute, Shenzhen Peking University-The Hong Kong University of Science and Technology Medical Center, Shenzhen, China
| | - Wei Bai
- The Second Clinical Medical College, Jinan University, Shenzhen, China
| | - Yubo Cui
- Department of Ophthalmology, Shenzhen People’s Hospital, The Second Clinical Medical College of Jinan University & The First Affiliated Hospital of Southern University of Science and Technology, Shenzhen, China
| | - Jinglan Ni
- The Second Clinical Medical College, Jinan University, Shenzhen, China
| | - Qinghua Lyu
- Department of Ophthalmology, Shenzhen People’s Hospital, The Second Clinical Medical College of Jinan University & The First Affiliated Hospital of Southern University of Science and Technology, Shenzhen, China
- *Correspondence: Qinghua Lyu, ; Jun Zhao,
| | - Jun Zhao
- Department of Ophthalmology, Shenzhen People’s Hospital, The Second Clinical Medical College of Jinan University & The First Affiliated Hospital of Southern University of Science and Technology, Shenzhen, China
- *Correspondence: Qinghua Lyu, ; Jun Zhao,
| |
Collapse
|
25
|
YB-1 as an Oncoprotein: Functions, Regulation, Post-Translational Modifications, and Targeted Therapy. Cells 2022; 11:cells11071217. [PMID: 35406781 PMCID: PMC8997642 DOI: 10.3390/cells11071217] [Citation(s) in RCA: 19] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2022] [Revised: 03/26/2022] [Accepted: 04/02/2022] [Indexed: 02/04/2023] Open
Abstract
Y box binding protein 1 (YB-1) is a protein with a highly conserved cold shock domain (CSD) that also belongs to the family of DNA- and RNA-binding proteins. YB-1 is present in both the nucleus and cytoplasm and plays versatile roles in gene transcription, RNA splicing, DNA damage repair, cell cycle progression, and immunity. Cumulative evidence suggests that YB-1 promotes the progression of multiple tumor types and serves as a potential tumor biomarker and therapeutic target. This review comprehensively summarizes the emerging functions, mechanisms, and regulation of YB-1 in cancers, and further discusses targeted strategies.
Collapse
|