1
|
BAYDOUN HASSAN, KATO YUJI, KAMO HIROKI, HÜSCH ANNA, MIZUTA HAYATO, KAWAHARA RYOTA, SIMIZU SIRO. DPY19L3 promotes vasculogenic mimicry by its C-mannosyltransferase activity. Oncol Res 2024; 32:607-614. [PMID: 38560568 PMCID: PMC10972723 DOI: 10.32604/or.2023.030304] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2023] [Accepted: 11/24/2023] [Indexed: 04/04/2024] Open
Abstract
C-mannosylation is a post-translational modification that occurs intracellularly in the endoplasmic reticulum. In humans, biosynthesis of C-mannosylation in proteins containing thrombospondin type 1 repeat is catalyzed by the DPY19 family; nonetheless, biological functions of protein C-mannosylation are not yet fully understood, especially in tumor progression. Vasculogenic mimicry (VM) is the formation of fluid-conducting channels by highly invasive and genetically deregulated tumor cells, enabling the tumors to form matrix-embedded vasculogenic structures, containing plasma and blood cells to meet the metabolic demands of rapidly growing tumors. In this study, we focused on DPY19L3, a C-mannosyltransferase, and aimed to unravel its role in VM. Knockout of DPY19L3 inhibited the formation of VM in HT1080 human fibrosarcoma cells. Re-expression of wild-type DPY19L3 recovered VM formation; however, DPY19L3 isoform2, an enzymatic activity-defect mutant, did not restore it, suggesting that the C-mannosyltransferase activity of DPY19L3 is crucial to its function. Furthermore, the knockdown of DPY19L3 in MDA-MB-231 breast cancer cells hindered its network formation ability. Altogether, our findings suggest that DPY19L3 is required for VM formation and stipulate the relevance of C-mannosylation in oncogenesis.
Collapse
Affiliation(s)
- HASSAN BAYDOUN
- Department of Applied Chemistry, Faculty of Science and Technology, Keio University, Yokohama, 223-8522, Japan
| | - YUJI KATO
- Department of Applied Chemistry, Faculty of Science and Technology, Keio University, Yokohama, 223-8522, Japan
| | - HIROKI KAMO
- Department of Applied Chemistry, Faculty of Science and Technology, Keio University, Yokohama, 223-8522, Japan
| | - ANNA HÜSCH
- Department of Applied Chemistry, Faculty of Science and Technology, Keio University, Yokohama, 223-8522, Japan
- Department of Pharmacy and Biochemistry, Faculty of Science, University of Tübingen, Tübingen, 72074, Germany
| | - HAYATO MIZUTA
- Department of Applied Chemistry, Faculty of Science and Technology, Keio University, Yokohama, 223-8522, Japan
| | - RYOTA KAWAHARA
- Department of Applied Chemistry, Faculty of Science and Technology, Keio University, Yokohama, 223-8522, Japan
| | - SIRO SIMIZU
- Department of Applied Chemistry, Faculty of Science and Technology, Keio University, Yokohama, 223-8522, Japan
| |
Collapse
|
2
|
Yoshimoto S, Suzuki T, Otani N, Takahashi D, Toshima K, Dohmae N, Simizu S. Destabilization of vitelline membrane outer layer protein 1 homolog (VMO1) by C-mannosylation. FEBS Open Bio 2023; 13:490-499. [PMID: 36680395 PMCID: PMC9989928 DOI: 10.1002/2211-5463.13561] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2022] [Revised: 01/11/2023] [Accepted: 01/19/2023] [Indexed: 01/22/2023] Open
Abstract
C-mannosylation is a rare type of protein glycosylation whereby a single mannose is added to the first tryptophan in the consensus sequence Trp-Xaa-Xaa-Trp/Cys (in which Xaa represents any amino acid). Its consensus sequence is mainly found in proteins containing a thrombospondin type-1 repeat (TSR1) domain and in type I cytokine receptors. In these proteins, C-mannosylation affects protein secretion, intracellular localization, and protein stability; however, the role of C-mannosylation in proteins that are not type I cytokine receptors and/or do not contain a TSR1 domain is less well explored. In this study, we focused on human vitelline membrane outer layer protein 1 homolog (VMO1). VMO1, which possesses two putative C-mannosylation sites, is a 21-kDa secreted protein that does not contain a TSR1 domain and is not a type I cytokine receptor. Mass spectrometry analyses revealed that VMO1 is C-mannosylated at Trp105 but not at Trp44 . Although C-mannosylation does not affect the extracellular secretion of VMO1, it destabilizes the intracellular VMO1. In addition, a structural comparison between VMO1 and C-mannosylated VMO1 showed that the modification of the mannose changes the conformation of three loops in VMO1. Taken together, our results demonstrate the first example of C-mannosylation for protein destabilization of VMO1.
Collapse
Affiliation(s)
- Satoshi Yoshimoto
- Department of Applied Chemistry, Faculty of Science and Technology, Keio University, Yokohama, Japan
| | - Takehiro Suzuki
- Biomolecular Characterization Unit, RIKEN Center for Sustainable Resource Science, Wako, Japan
| | - Naoki Otani
- Department of Applied Chemistry, Faculty of Science and Technology, Keio University, Yokohama, Japan
| | - Daisuke Takahashi
- Department of Applied Chemistry, Faculty of Science and Technology, Keio University, Yokohama, Japan
| | - Kazunobu Toshima
- Department of Applied Chemistry, Faculty of Science and Technology, Keio University, Yokohama, Japan
| | - Naoshi Dohmae
- Biomolecular Characterization Unit, RIKEN Center for Sustainable Resource Science, Wako, Japan
| | - Siro Simizu
- Department of Applied Chemistry, Faculty of Science and Technology, Keio University, Yokohama, Japan
| |
Collapse
|
3
|
Nakajima M, Kawahara R, Simizu S. Cofilin promotes vasculogenic mimicry by regulating the actin cytoskeleton in human breast cancer cells. FEBS Lett 2023; 597:1114-1124. [PMID: 36737242 DOI: 10.1002/1873-3468.14594] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2022] [Revised: 01/16/2023] [Accepted: 01/27/2023] [Indexed: 02/05/2023]
Abstract
Vasculogenic mimicry (VM) is the formation of microvascular channels by cancer cells. VM requires cellular processes that are regulated by changes in cellular migration and morphology. Cofilin (CFL), a key regulator of actin depolymerization, has been reported to affect malignant phenotypes of cancer. We show that treatment with inhibitors of actin dynamics suppresses VM in MDA-MB-231 human breast cancer cells. We established CFL-knockout (KO) MDA-MB-231 cells and found that VM was attenuated in CFL-KO cells. Although the re-expression of wild-type CFL restored VM in CFL-KO cells, inactive phosphomimetic CFL failed to do so. Collectively, our results demonstrate that CFL is a critical regulator of VM and implicate CFL as a novel therapeutic target for breast cancer.
Collapse
Affiliation(s)
- Minami Nakajima
- Department of Applied Chemistry, Faculty of Science and Technology, Keio University, Yokohama, Japan
| | - Ryota Kawahara
- Department of Applied Chemistry, Faculty of Science and Technology, Keio University, Yokohama, Japan
| | - Siro Simizu
- Department of Applied Chemistry, Faculty of Science and Technology, Keio University, Yokohama, Japan
| |
Collapse
|
4
|
Simizu S. Vasculogenic mimicry: A dynamic event of malignancy. Biochim Biophys Acta Gen Subj 2022; 1866:130084. [PMID: 34999116 DOI: 10.1016/j.bbagen.2022.130084] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
Affiliation(s)
- Siro Simizu
- Faculty of Science and Technology, Department of Applied Chemistry, Keio University, Yokohama, Japan.
| |
Collapse
|