1
|
Lerksuthirat T, Prasopporn S, Wikiniyadhanee R, Chitphuk S, Stitchantrakul W, Owneium P, Jirawatnotai S, Dejsuphong D. DNA damage response mutations enhance the antitumor efficacy of ATR and PARP inhibitors in cholangiocarcinoma cell lines. Oncol Lett 2025; 29:128. [PMID: 39822940 PMCID: PMC11736248 DOI: 10.3892/ol.2025.14874] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2024] [Accepted: 11/28/2024] [Indexed: 01/19/2025] Open
Abstract
Cholangiocarcinoma (CCA) is a biliary tract carcinoma that is challenging to treat due to its heterogeneity and limited treatment options. Genetic alterations in DNA damage response (DDR) pathways and homologous recombination (HR) defects are common in CCA. This has prompted interest in the use of ataxia telangiectasia and Rad3-related protein (ATR) and poly(ADP-ribose) polymerase (PARP) inhibitors to treat CCA. The present study investigated the impact of an ATR inhibitor and various PARP inhibitors, individually and in combination, on CCA cell lines with different DDR mutation profiles. DDR gene alterations in these cell lines were analyzed, and the responses of the cells to treatment with the PARP inhibitors olaparib, veliparib and talazoparib and/or the ATR inhibitor AZD6738 were evaluated. Assessments focused on cellular viability, clonogenic survival and the combination index, alongside changes in DNA damage assessed via the formation of micronuclei and γ-H2A histone family member X foci. The results revealed that the CCA cell lines with more DDR mutations exhibited greater sensitivity to single and combination treatments. Talazoparib was found to be the most potent PARP inhibitor in the CCA cell lines. The combination of AZD6738 and talazoparib demonstrated varying synergistic effects depending on the genetic background of the CCA cells, with greater efficacy in the cell lines less sensitive to single drug treatments. Mechanistically, this combination promoted the accumulation of DNA damage, including DNA double-strand breaks. Overall, the study underscores the importance of HR in CCA. It reveals an association between the extent of DDR mutations and the response to AZD6738 and PARP inhibitors in CCA, both as single agents and in combination. These findings highlight that the number of mutated genes influences variability in the drug response.
Collapse
Affiliation(s)
- Tassanee Lerksuthirat
- Research Center, Faculty of Medicine Ramathibodi Hospital, Mahidol University, Bangkok 10400, Thailand
| | - Sunisa Prasopporn
- Siriraj Center of Research for Excellence (SiCORE) for Systems Pharmacology, Department of Pharmacology, Faculty of Medicine Siriraj Hospital, Mahidol University, Bangkok 10700, Thailand
| | - Rakkreat Wikiniyadhanee
- Program in Translational Medicine, Chakri Naruebodindra Medical Institute, Faculty of Medicine Ramathibodi Hospital, Mahidol University, Samutprakarn 10540, Thailand
| | - Sermsiri Chitphuk
- Research Center, Faculty of Medicine Ramathibodi Hospital, Mahidol University, Bangkok 10400, Thailand
| | - Wasana Stitchantrakul
- Research Center, Faculty of Medicine Ramathibodi Hospital, Mahidol University, Bangkok 10400, Thailand
| | - Paravee Owneium
- Program in Translational Medicine, Chakri Naruebodindra Medical Institute, Faculty of Medicine Ramathibodi Hospital, Mahidol University, Samutprakarn 10540, Thailand
| | - Siwanon Jirawatnotai
- Siriraj Center of Research for Excellence (SiCORE) for Systems Pharmacology, Department of Pharmacology, Faculty of Medicine Siriraj Hospital, Mahidol University, Bangkok 10700, Thailand
| | - Donniphat Dejsuphong
- Program in Translational Medicine, Chakri Naruebodindra Medical Institute, Faculty of Medicine Ramathibodi Hospital, Mahidol University, Samutprakarn 10540, Thailand
| |
Collapse
|
2
|
Zhang H, Cheng M, Zhao Q, Liu H, Li L, Wu J, Chen X. PARP1 inhibitor niraparib exerts synergistic antimyeloma effect with bortezomib through inducing DNA damage and inhibiting DNA repair. Free Radic Biol Med 2024; 228:392-402. [PMID: 39736366 DOI: 10.1016/j.freeradbiomed.2024.12.052] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/31/2024] [Revised: 12/26/2024] [Accepted: 12/27/2024] [Indexed: 01/01/2025]
Abstract
Despite the improvements in outcomes for patients with multiple myeloma (MM) over the past decade, the disease remains incurable, and even those patients who initially respond favorably to induction therapy eventually suffer from relapse. Consequently, there is an urgent need for the development of novel therapeutic agents and strategies to enhance the treatment outcomes for patients with MM. The proteasome inhibitor bortezomib (BTZ) elicits endoplasmic reticulum (ER) stress and oxidative stress in MM cells, subsequent DNA damage, ultimately inducing cell apoptosis. Poly (ADP-ribose) polymerase 1 (PARP1) acts as a pivotal enzyme for DNA repair and thus deficient PARP1 renders cells more susceptible to DNA-damaging agents. Conceivably, targeting PARP1 may enhance BTZ-induced DNA damage and cell death in MM cells. In this study, Colony formation, CCK-8, and EdU-labeling assays were conducted to evaluate the effects on MM cell proliferation. The ZIP score was used to assess synergy. Apoptosis and intercellular ROS levels were analyzed using flow cytometry and fluorescence microscopy, respectively. Immunofluorescence and Western blot analyses were used to assess protein expression. The correlation between PARP1 expression levels and the clinical prognosis was examined by tumor-related databases and bioinformatics. The results show that PARP1 is overexpressed in patient MM cells and is associated with a poor prognosis. PARP1 inhibitor niraparib decreases MM cell growth and arrests cell cycle progression at the G2/M phase. When combined with BTZ, it synergistically increases DNA damage, inhibits proliferation, and induces apoptosis. Mechanistically, Niraparib facilitates BTZ-induced ROS elevation, causing DNA double-strand breaks (DSBs), and simultaneously inhibits lesion repair by impeding the expression of repair proteins XRCC1 (X-ray repair cross-complementing protein 1) and POLβ (DNA polymerase beta). Overall, Niraparib plus bortezomib represent a promising approach for treatment of MM.
Collapse
Affiliation(s)
- Haiyan Zhang
- Hematology Institute, School of Medicine, Northwest University, Xi'an, 710069, Shaanxi, China
| | - Mengdi Cheng
- Hematology Institute, School of Medicine, Northwest University, Xi'an, 710069, Shaanxi, China
| | - Qizhi Zhao
- Hematology Institute, School of Medicine, Northwest University, Xi'an, 710069, Shaanxi, China
| | - Hongbo Liu
- Department of Hematology, Affiliated Hospital of Northwest University & Xi'an No. 3 Hospital, Xi'an, 710018, Shaanxi, China
| | - Lining Li
- Department of Hematology, Affiliated Hospital of Northwest University & Xi'an No. 3 Hospital, Xi'an, 710018, Shaanxi, China
| | - Jinpeng Wu
- Hematology Institute, School of Medicine, Northwest University, Xi'an, 710069, Shaanxi, China
| | - Xiequn Chen
- Hematology Institute, School of Medicine, Northwest University, Xi'an, 710069, Shaanxi, China; Department of Hematology, Affiliated Hospital of Northwest University & Xi'an No. 3 Hospital, Xi'an, 710018, Shaanxi, China.
| |
Collapse
|
3
|
Shuai Q, Bai X, Li G, Wang L, Chen J, Chen L. Hematopoietic adverse events associated with PARP inhibitors: A FAERS database study. Expert Opin Drug Saf 2024:1-11. [PMID: 39705053 DOI: 10.1080/14740338.2024.2443781] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2024] [Revised: 10/30/2024] [Accepted: 11/08/2024] [Indexed: 12/21/2024]
Abstract
OBJECTIVES Analyze hematopoietic ADR signals of PARP inhibitors (Olaparib, Niraparib, Rucaparib, Talazoparib) using FAERS data to inform clinical practice. METHODS Extracted ASCII data for these drugs from Q1 2019 to Q2 2024. Employed SMQ and PT for standardization. Screened ADR signals via ROR, PRR, and MHRA method, comparing SMQ ratios. RESULTS Hematopoietic ADRs peaked within 30 days post-treatment, with cytopenia and leukopenia most prevalent. Niraparib showed the highest adverse event count and signal intensity. Olaparib and Talazoparib also indicated strong hematotoxicity. CONCLUSION PARP inhibitors vary in ADR incidence and duration, necessitating personalized treatment plans for optimized safety and rational use.
Collapse
Affiliation(s)
- Qindai Shuai
- Pharmacy, China Pharmaceutical University, Nanjing, China
| | - Xuefei Bai
- School of Pharmaceutical Science and Technology, Faculty of Medicine, Tianjin University, Tianjin, China
| | - Gen Li
- Department of Pharmacy, Sichuan Provincial Maternity and Child Health Care Hospital, Chengdu, China
| | - Li Wang
- Department of Pharmacy, Chengdu Jinniu District People's Hospital, Chengdu, China
- Key Laboratory of Birth Defects and Related Diseases of Women and Children, Sichuan University
| | - Jia Chen
- Department of Pharmacy and Evidence-Based Pharmacy Center, West China Second University Hospital, Sichuan University, Chengdu, China
| | - Li Chen
- Key Laboratory of Birth Defects and Related Diseases of Women and Children, Sichuan University
- Department of Pharmacy and Evidence-Based Pharmacy Center, West China Second University Hospital, Sichuan University, Chengdu, China
- Department of Pharmacology, Faculty of Medicine, University of the Basque Country, UPV/EHU, Leioa, Spain
| |
Collapse
|
4
|
Shen W, Lyu Q, Yi R, Sun Y, Zhang W, Wei T, Zhang Y, Shi J, Zhang J. HMGB1 promotes chemoresistance in small cell lung cancer by inducing PARP1-related nucleophagy. J Adv Res 2024; 66:165-180. [PMID: 38159843 PMCID: PMC11674788 DOI: 10.1016/j.jare.2023.12.020] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2023] [Revised: 12/24/2023] [Accepted: 12/27/2023] [Indexed: 01/03/2024] Open
Abstract
INTRODUCTION Small cell lung cancer (SCLC) is prone to chemoresistance, which is closely related to genome homeostasis-related processes, such as DNA damage and repair. Nucleophagy is the elimination of specific nuclear substances by cells themselves and is responsible for maintaining genome and chromosome stability. However, the roles of nucleophagy in tumour chemoresistance have not been investigated. OBJECTIVES The aim of this work was to elucidate the mechanism of chemoresistance in SCLC and reverse this chemoresistance. METHODS RNA-seq data from SCLC cohorts, chemosensitive SCLC cells and the corresponding chemoresistant cells were used to discover genes associated with chemoresistance and patient prognosis. In vitro and in vivo experiments were performed to verify the effect of high-mobility group box 1 (HMGB1) knockdown or overexpression on the chemotherapeutic response in SCLC. The regulatory effect of HMGB1 on nucleophagy was then investigated by coimmunoprecipitation (co-IP) and mass spectrometry (MS), and the underlying mechanism was explored using pharmacological inhibitors and mutant proteins. RESULTS HMGB1 is a factor indicating poor prognosis and promotes chemoresistance in SCLC. Mechanistically, HMGB1 significantly increases PARP1-LC3 binding to promote nucleophagy via PARP1 PARylation, which leads to PARP1 turnover from DNA lesions and chemoresistance. Furthermore, chemoresistance in SCLC can be attenuated by blockade of the PARP1-LC3 interaction or PARP1 inhibitor (PARPi) treatment. CONCLUSIONS HMGB1 can induce PARP1 self-modification, which promotes the interaction of PARP1 with LC3 to promote nucleophagy and thus chemoresistance in SCLC. HMGB1 could be a predictive biomarker for the PARPi response in patients with SCLC. Combining chemotherapy with PARPi treatment is an effective therapeutic strategy for overcoming SCLC chemoresistance.
Collapse
Affiliation(s)
- Weitao Shen
- Department of Oncology, Zhujiang Hospital, Southern Medical University, Guangzhou, Guangdong, People's Republic of China
| | - Qiong Lyu
- Department of Pathology, School of Basic Medical Science, Southern Medical University, Guangzhou, Guangdong, People's Republic of China
| | - Ruibin Yi
- Department of Oncology, Zhujiang Hospital, Southern Medical University, Guangzhou, Guangdong, People's Republic of China
| | - Yueqin Sun
- Department of Oncology, Zhujiang Hospital, Southern Medical University, Guangzhou, Guangdong, People's Republic of China
| | - Wei Zhang
- Department of Oncology, Zhujiang Hospital, Southern Medical University, Guangzhou, Guangdong, People's Republic of China
| | - Ting Wei
- Department of Oncology, Zhujiang Hospital, Southern Medical University, Guangzhou, Guangdong, People's Republic of China
| | - Yueming Zhang
- Department of Oncology, Zhujiang Hospital, Southern Medical University, Guangzhou, Guangdong, People's Republic of China
| | - Jian Shi
- Department of Pathology, School of Basic Medical Science, Southern Medical University, Guangzhou, Guangdong, People's Republic of China.
| | - Jian Zhang
- Department of Oncology, Zhujiang Hospital, Southern Medical University, Guangzhou, Guangdong, People's Republic of China.
| |
Collapse
|
5
|
Li S, Lei N, Chen M, Guo R, Han L, Qiu L, Wu F, Jiang S, Tong N, Wang K, Li Y, Chang L. Exploration of organoids in ovarian cancer: From basic research to clinical translation. Transl Oncol 2024; 50:102130. [PMID: 39303357 PMCID: PMC11437877 DOI: 10.1016/j.tranon.2024.102130] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2024] [Revised: 09/09/2024] [Accepted: 09/16/2024] [Indexed: 09/22/2024] Open
Abstract
Ovarian cancer is a highly heterogeneous tumor with a poor prognosis. The lack of reliable and efficient research models that can accurately mimic heterogeneity has impeded in-depth investigations and hindered the clinical translation of research findings in ovarian cancer. Organoid models have emerged as a promising in vitro approach, demonstrating remarkable fidelity to the histological, molecular, genomic, and transcriptomic features of their tissues of origin. In recent years, organoids have contributed to advancing our understanding of ovarian cancer initiation, metastasis, and drug resistance mechanisms, as well as facilitating clinical screening of effective therapeutic agents. The establishment of high-throughput organoid culture systems, coupled with cutting-edge technologies such as organ-on-a-chip, genetic engineering, and 3D printing, has tremendous potential for accelerating ovarian cancer research translation. In this review, we present a comprehensive overview of the latest exploration of organoids in basic ovarian cancer research and clinical translation. Furthermore, we discuss the prospects and challenges associated with the use of organoids and related novel technologies in the context of ovarian cancer. This review provides insights into the application of organoids in ovarian cancer.
Collapse
Affiliation(s)
- Siyu Li
- Department of Gynecology, The First Affiliated Hospital of Zhengzhou University, No. 1 East Jianshe Road, Erqi District, Zhengzhou, Henan 450000, China
| | - Ningjing Lei
- School of Basic Medical Sciences, Zhengzhou University, Zhengzhou, Henan, China
| | - Mengyu Chen
- Department of Gynecology, The First Affiliated Hospital of Zhengzhou University, No. 1 East Jianshe Road, Erqi District, Zhengzhou, Henan 450000, China
| | - Ruixia Guo
- Department of Gynecology, The First Affiliated Hospital of Zhengzhou University, No. 1 East Jianshe Road, Erqi District, Zhengzhou, Henan 450000, China
| | - Liping Han
- Department of Gynecology, The First Affiliated Hospital of Zhengzhou University, No. 1 East Jianshe Road, Erqi District, Zhengzhou, Henan 450000, China
| | - Luojie Qiu
- Department of Gynecology, The First Affiliated Hospital of Zhengzhou University, No. 1 East Jianshe Road, Erqi District, Zhengzhou, Henan 450000, China
| | - Fengling Wu
- Department of Gynecology, The First Affiliated Hospital of Zhengzhou University, No. 1 East Jianshe Road, Erqi District, Zhengzhou, Henan 450000, China
| | - Shan Jiang
- Department of Gynecology, The First Affiliated Hospital of Zhengzhou University, No. 1 East Jianshe Road, Erqi District, Zhengzhou, Henan 450000, China
| | - Ningyao Tong
- Department of Gynecology, The First Affiliated Hospital of Zhengzhou University, No. 1 East Jianshe Road, Erqi District, Zhengzhou, Henan 450000, China
| | - Kunmei Wang
- Department of Gynecology, The First Affiliated Hospital of Zhengzhou University, No. 1 East Jianshe Road, Erqi District, Zhengzhou, Henan 450000, China
| | - Yong Li
- St George and Sutherland Clinical Campuses, School of Clinical Medicine, UNSW Sydney, Kensington, NSW 2052, Australia; Cancer Care Centre, St. George Hospital, Kogarah, NSW 2217, Australia.
| | - Lei Chang
- Department of Gynecology, The First Affiliated Hospital of Zhengzhou University, No. 1 East Jianshe Road, Erqi District, Zhengzhou, Henan 450000, China.
| |
Collapse
|
6
|
Moosavi F, Hassani B, Nazari S, Saso L, Firuzi O. Targeting DNA damage response in pancreatic ductal adenocarcinoma: A review of preclinical and clinical evidence. Biochim Biophys Acta Rev Cancer 2024; 1879:189185. [PMID: 39326802 DOI: 10.1016/j.bbcan.2024.189185] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2024] [Revised: 09/18/2024] [Accepted: 09/18/2024] [Indexed: 09/28/2024]
Abstract
Pancreatic ductal adenocarcinoma (PDAC) is associated with one of the most unfavorable prognoses across all malignancies. In this review, we investigate the role of inhibitors targeting crucial regulators of DNA damage response (DDR) pathways, either as single treatments or in combination with chemotherapeutic agents and targeted therapies in PDAC. The most prominent clinical benefit of PARP inhibitors' monotherapy is related to the principle of synthetic lethality in individuals harboring BRCA1/2 and other DDR gene mutations as predictive biomarkers. Moreover, induction of BRCAness with inhibitors of RTKs, including VEGFR and c-MET and their downstream signaling pathways, RAS/RAF/MEK/ERK and PI3K/AKT/mTOR in order to expand the application of PARP inhibitors in patients without DDR mutations, has also been addressed. Other DDR-targeting agents beyond PARP inhibitors, including inhibitors of ATM, ATR, CHEK1/2, and WEE1 have also demonstrated their potential in preclinical models of PDAC and may hold promise in future studies.
Collapse
Affiliation(s)
- Fatemeh Moosavi
- Medicinal and Natural Products Chemistry Research Center, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Bahareh Hassani
- Medicinal and Natural Products Chemistry Research Center, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Somayeh Nazari
- Medicinal and Natural Products Chemistry Research Center, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Luciano Saso
- Department of Physiology and Pharmacology "Vittorio Erspamer", Sapienza University of Rome, P. le Aldo Moro 5, 00185 Rome, Italy
| | - Omidreza Firuzi
- Medicinal and Natural Products Chemistry Research Center, Shiraz University of Medical Sciences, Shiraz, Iran.
| |
Collapse
|
7
|
Zeng X, Lu Z, Dai C, Su H, Liu Z, Cheng S. Establish TIIC signature score based the machine learning fusion in bladder cancer. Discov Oncol 2024; 15:368. [PMID: 39186114 PMCID: PMC11347539 DOI: 10.1007/s12672-024-01187-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/26/2024] [Accepted: 07/23/2024] [Indexed: 08/27/2024] Open
Abstract
BACKGROUND Bladder cancer is a prevalent malignant tumor with high heterogeneity. Current treatments, such as transurethral resection of bladder tumor (TURBT) and intravesical Bacillus Calmette-Guérin (BCG) therapy, still have limitations, with approximately 30% of non-muscle-invasive bladder cancer (NMIBC) progressing to muscle-invasive bladder cancer (MIBC), and a substantial number of MIBC patients experiencing recurrence after surgery. Immunotherapy has shown potential benefits, but accurate prediction of its prognostic effects remains challenging. METHODS We analyzed bladder cancer RNA-seq data and clinical information from The Cancer Genome Atlas (TCGA) and Gene Expression Omnibus (GEO) databases, and used various machine learning algorithms to screen for feature RNAs related to tumor-infiltrating immune cells (TIICs) from single-cell data. Based on these RNAs, we established a TIIC signature score and evaluated its relationship with overall survival (OS) and immunotherapy response in bladder cancer patients. RESULTS The study identified 171 TIIC-RNAs and selected 11 TIIC-RNAs with prognostic value through survival analysis. The TIIC signature score established using a machine learning fusion method was significantly associated with OS and showed good predictive performance in different datasets. Additionally, the signature score was negatively correlated with immunotherapy response, with patients with low TIIC feature scores showing better survival outcomes after immunotherapy. Further biological functional analysis revealed a close association between the TIIC signature score and immune regulation processes, cellular metabolism, and genetic variations. CONCLUSION This study successfully constructed and validated an RNA signature scoring system based on tumor-infiltrating immune cell (TIIC) features, which can effectively predict OS and the effectiveness of immunotherapy in bladder cancer patients.
Collapse
Affiliation(s)
- Xiangju Zeng
- Department of Outpatient, The Second Xiangya Hospital of Central South University, Changsha, 410011, Hunan, China
| | - Zhijie Lu
- Department of Urology, The Second Xiangya Hospital of Central South University, Changsha, 410011, Hunan, China
| | - Caixia Dai
- Department of Urology, The Second Xiangya Hospital of Central South University, Changsha, 410011, Hunan, China
| | - Hao Su
- Department of Urology, The Second Xiangya Hospital of Central South University, Changsha, 410011, Hunan, China
| | - Ziqi Liu
- Department of Acupuncture and Moxibustion, The First Hospital of Hunan University of Chinese Medicine, Changsha, Hunan, China
| | - Shunhua Cheng
- Department of Urology, The Second Xiangya Hospital of Central South University, Changsha, 410011, Hunan, China.
| |
Collapse
|
8
|
Frederick MI, Abdesselam D, Clouvel A, Croteau L, Hassan S. Leveraging PARP-1/2 to Target Distant Metastasis. Int J Mol Sci 2024; 25:9032. [PMID: 39201718 PMCID: PMC11354653 DOI: 10.3390/ijms25169032] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2024] [Revised: 08/14/2024] [Accepted: 08/14/2024] [Indexed: 09/03/2024] Open
Abstract
Poly (ADP-Ribose) Polymerase (PARP) inhibitors have changed the outcomes and therapeutic strategy for several cancer types. As a targeted therapeutic mainly for patients with BRCA1/2 mutations, PARP inhibitors have commonly been exploited for their capacity to prevent DNA repair. In this review, we discuss the multifaceted roles of PARP-1 and PARP-2 beyond DNA repair, including the impact of PARP-1 on chemokine signalling, immune modulation, and transcriptional regulation of gene expression, particularly in the contexts of angiogenesis and epithelial-to-mesenchymal transition (EMT). We evaluate the pre-clinical role of PARP inhibitors, either as single-agent or combination therapies, to block the metastatic process. Efficacy of PARP inhibitors was demonstrated via DNA repair-dependent and independent mechanisms, including DNA damage, cell migration, invasion, initial colonization at the metastatic site, osteoclastogenesis, and micrometastasis formation. Finally, we summarize the recent clinical advancements of PARP inhibitors in the prevention and progression of distant metastases, with a particular focus on specific metastatic sites and PARP-1 selective inhibitors. Overall, PARP inhibitors have demonstrated great potential in inhibiting the metastatic process, pointing the way for greater use in early cancer settings.
Collapse
Affiliation(s)
- Mallory I. Frederick
- Faculty of Medicine, Université de Montréal, Montreal, QC H3C 3T5, Canada; (M.I.F.); (D.A.); (L.C.)
- Centre de Recherche du Centre Hospitalier de l’Université de Montréal (CRCHUM), l’Institut de Cancer de Montreal, Montreal, QC H2X 0A9, Canada;
| | - Djihane Abdesselam
- Faculty of Medicine, Université de Montréal, Montreal, QC H3C 3T5, Canada; (M.I.F.); (D.A.); (L.C.)
- Centre de Recherche du Centre Hospitalier de l’Université de Montréal (CRCHUM), l’Institut de Cancer de Montreal, Montreal, QC H2X 0A9, Canada;
| | - Anna Clouvel
- Centre de Recherche du Centre Hospitalier de l’Université de Montréal (CRCHUM), l’Institut de Cancer de Montreal, Montreal, QC H2X 0A9, Canada;
| | - Laurent Croteau
- Faculty of Medicine, Université de Montréal, Montreal, QC H3C 3T5, Canada; (M.I.F.); (D.A.); (L.C.)
- Centre de Recherche du Centre Hospitalier de l’Université de Montréal (CRCHUM), l’Institut de Cancer de Montreal, Montreal, QC H2X 0A9, Canada;
| | - Saima Hassan
- Faculty of Medicine, Université de Montréal, Montreal, QC H3C 3T5, Canada; (M.I.F.); (D.A.); (L.C.)
- Centre de Recherche du Centre Hospitalier de l’Université de Montréal (CRCHUM), l’Institut de Cancer de Montreal, Montreal, QC H2X 0A9, Canada;
- Division of Surgical Oncology, Department of Surgery, Centre Hospitalier de l’Université de Montréal (CHUM), Montreal, QC H2X 0C1, Canada
| |
Collapse
|
9
|
Onji H, Tate S, Sakaue T, Fujiwara K, Nakano S, Kawaida M, Onishi N, Matsumoto T, Yamagami W, Sugiyama T, Higashiyama S, Pommier Y, Kobayashi Y, Murai J. Schlafen 11 further sensitizes BRCA-deficient cells to PARP inhibitors through single-strand DNA gap accumulation behind replication forks. Oncogene 2024; 43:2475-2489. [PMID: 38961202 PMCID: PMC11315672 DOI: 10.1038/s41388-024-03094-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2024] [Revised: 06/17/2024] [Accepted: 06/26/2024] [Indexed: 07/05/2024]
Abstract
The preferential response to PARP inhibitors (PARPis) in BRCA-deficient and Schlafen 11 (SLFN11)-expressing ovarian cancers has been documented, yet the underlying molecular mechanisms remain unclear. As the accumulation of single-strand DNA (ssDNA) gaps behind replication forks is key for the lethality effect of PARPis, we investigated the combined effects of SLFN11 expression and BRCA deficiency on PARPi sensitivity and ssDNA gap formation in human cancer cells. PARPis increased chromatin-bound RPA2 and ssDNA gaps in SLFN11-expressing cells and even more in cells with BRCA1 or BRCA2 deficiency. SLFN11 was co-localized with chromatin-bound RPA2 under PARPis treatment, with enhanced recruitment in BRCA2-deficient cells. Notably, the chromatin-bound SLFN11 under PARPis did not block replication, contrary to its function under replication stress. SLFN11 recruitment was attenuated by the inactivation of MRE11. Hence, under PARPi treatment, MRE11 expression and BRCA deficiency lead to ssDNA gaps behind replication forks, where SLFN11 binds and increases their accumulation. As ovarian cancer patients who responded (progression-free survival >2 years) to olaparib maintenance therapy had a significantly higher SLFN11-positivity than short-responders (<6 months), our findings provide a mechanistic understanding of the favorable responses to PARPis in SLFN11-expressing and BRCA-deficient tumors. It highlight the clinical implications of SLFN11.
Collapse
Affiliation(s)
- Hiroshi Onji
- Department of Obstetrics and Gynecology, Ehime University Graduate School of Medicine, Toon, Ehime, Japan
- Department of Biochemistry and Molecular Genetics, Ehime University Graduate School of Medicine, Toon, Ehime, Japan
| | - Sota Tate
- Department of Biochemistry and Molecular Genetics, Ehime University Graduate School of Medicine, Toon, Ehime, Japan
- Division of Cell Growth and Tumor Regulation, Proteo-Science Center (PROS), Toon, Ehime, Japan
| | - Tomohisa Sakaue
- Division of Cell Growth and Tumor Regulation, Proteo-Science Center (PROS), Toon, Ehime, Japan
- Department of Cardiovascular and Thoracic Surgery, Ehime University Graduate School of Medicine, Toon, Ehime, Japan
| | - Kohei Fujiwara
- Division of Physiological Chemistry and Metabolism, Graduate School of Pharmaceutical Sciences, Keio University, Minato-ku, Tokyo, Japan
- Laboratory for Metabolomics, RIKEN Center for Integrative Medical Sciences, Yokohama, Kanagawa, Japan
| | - Shiho Nakano
- Department of Obstetrics and Gynecology, Ehime University Graduate School of Medicine, Toon, Ehime, Japan
- Department of Biochemistry and Molecular Genetics, Ehime University Graduate School of Medicine, Toon, Ehime, Japan
| | - Miho Kawaida
- Division of Diagnostic Pathology, Keio University Hospital, Shinjuku-ku, Tokyo, Japan
| | - Nobuyuki Onishi
- Department of Clinical Diagnostic Oncology, Clinical Research Institute for Clinical Pharmacology and Therapeutics, Showa University, Shinagawa-ku, Tokyo, Japan
- Department of Plastic and Reconstructive Surgery, Keio University School of Medicine, Shinjuku-ku, Tokyo, Japan
| | - Takashi Matsumoto
- Department of Obstetrics and Gynecology, Ehime University Graduate School of Medicine, Toon, Ehime, Japan
| | - Wataru Yamagami
- Department of Obstetrics and Gynecology, Keio University School of Medicine, Shinjuku-ku, Tokyo, Japan
| | - Takashi Sugiyama
- Department of Obstetrics and Gynecology, Ehime University Graduate School of Medicine, Toon, Ehime, Japan
| | - Shigeki Higashiyama
- Department of Biochemistry and Molecular Genetics, Ehime University Graduate School of Medicine, Toon, Ehime, Japan
- Division of Cell Growth and Tumor Regulation, Proteo-Science Center (PROS), Toon, Ehime, Japan
- Department of Oncogenesis and Tumor Regulation, Osaka International Cancer Institute, Chuo-ku, Osaka, Japan
| | - Yves Pommier
- Developmental Therapeutics Branch and Laboratory of Molecular Pharmacology, Center for Cancer Research, National Cancer Institute, NIH, Bethesda, MD, 20892, USA
| | - Yusuke Kobayashi
- Department of Obstetrics and Gynecology, Keio University School of Medicine, Shinjuku-ku, Tokyo, Japan.
- Department of Obstetrics and Gynecology, Institute of Medicine, University of Tsukuba, Tsukuba, Ibaraki, Japan.
| | - Junko Murai
- Department of Biochemistry and Molecular Genetics, Ehime University Graduate School of Medicine, Toon, Ehime, Japan.
- Division of Cell Growth and Tumor Regulation, Proteo-Science Center (PROS), Toon, Ehime, Japan.
- Institute for Advanced Biosciences, Keio University, Tsuruoka, Yamagata, Japan.
| |
Collapse
|
10
|
Bastos IM, Rebelo S, Silva VLM. A review of poly(ADP-ribose)polymerase-1 (PARP1) role and its inhibitors bearing pyrazole or indazole core for cancer therapy. Biochem Pharmacol 2024; 221:116045. [PMID: 38336156 DOI: 10.1016/j.bcp.2024.116045] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2023] [Revised: 01/10/2024] [Accepted: 02/02/2024] [Indexed: 02/12/2024]
Abstract
Cancer is a disease with a high mortality rate characterized by uncontrolled proliferation of abnormal cells. The hallmarks of cancer evidence the acquired cells characteristics that promote the growth of malignant tumours, including genomic instability and mutations, the ability to evade cellular death and the capacity of sustaining proliferative signalization. Poly(ADP-ribose) polymerase-1 (PARP1) is a protein that plays key roles in cellular regulation, namely in DNA damage repair and cell survival. The inhibition of PARP1 promotes cellular death in cells with homologous recombination deficiency, and therefore, the interest in PARP protein has been rising as a target for anticancer therapies. There are already some PARP1 inhibitors approved by Food and Drug Administration (FDA), such as Olaparib and Niraparib. The last compound presents in its structure an indazole core. In fact, pyrazoles and indazoles have been raising interest due to their various medicinal properties, namely, anticancer activity. Derivatives of these compounds have been studied as inhibitors of PARP1 and presented promising results. Therefore, this review aims to address the importance of PARP1 in cell regulation and its role in cancer. Moreover, it intends to report a comprehensive literature review of PARP1 inhibitors, containing the pyrazole and indazole scaffolds, published in the last fifteen years, focusing on structure-activity relationship aspects, thus providing important insights for the design of novel and more effective PARP1 inhibitors.
Collapse
Affiliation(s)
- Inês M Bastos
- LAQV-REQUIMTE and Department of Chemistry, University of Aveiro, 3810-193 Aveiro, Portugal
| | - Sandra Rebelo
- Institute of Biomedicine-iBiMED, Department of Medical Sciences, University of Aveiro, 3810-193 Aveiro, Portugal
| | - Vera L M Silva
- LAQV-REQUIMTE and Department of Chemistry, University of Aveiro, 3810-193 Aveiro, Portugal.
| |
Collapse
|
11
|
Akashi H, Yachida N, Ueda H, Yamaguchi M, Yamawaki K, Tamura R, Suda K, Ishiguro T, Adachi S, Nagase Y, Ueda Y, Ueda M, Abiko K, Kagabu M, Baba T, Nakaoka H, Enomoto T, Murai J, Yoshihara K. SLFN11 is a BRCA Independent Biomarker for the Response to Platinum-Based Chemotherapy in High-Grade Serous Ovarian Cancer and Clear Cell Ovarian Carcinoma. Mol Cancer Ther 2024; 23:106-116. [PMID: 37717249 DOI: 10.1158/1535-7163.mct-23-0257] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2023] [Revised: 07/12/2023] [Accepted: 09/08/2023] [Indexed: 09/19/2023]
Abstract
BRCA1/2 mutations are robust biomarkers for platinum-based chemotherapy in epithelial ovarian cancers. However, BRCA1/2 mutations in clear cell ovarian carcinoma (CCC) are less frequent compared with high-grade serous ovarian cancer (HGSC). The discovery of biomarkers that can be applied to CCC is an unmet need in chemotherapy. Schlafen 11 (SLFN11) has attracted attention as a novel sensitizer for DNA-damaging agents including platinum. In this study, we investigated the utility of SLFN11 in HGSC and CCC for platinum-based chemotherapy. SLFN11 expression was analyzed retrospectively by IHC across 326 ovarian cancer samples. The clinicopathologic significance of SLFN11 expression was analyzed across 57 advanced HGSC as a discovery set, 96 advanced HGSC as a validation set, and 57 advanced CCC cases, all of whom received platinum-based chemotherapy. BRCA1/2 mutation was analyzed using targeted-gene sequencing. In the HGSC cohort, the SLFN11-positive and BRCA mutation group showed significantly longer whereas the SLFN11-negative and BRCA wild-type group showed significantly shorter progression-free survival and overall survival. Moreover, SLFN11-positive HGSC shrunk significantly better than SLFN11-negative HGSC after neoadjuvant chemotherapy. Comparable results were obtained with CCC but without consideration of BRCA1/2 mutation due to a small population. Multivariate analysis identified SLFN11 as an independent factor for better survival in HGSC and CCC. The SLFN11-dependent sensitivity to platinum and PARP inhibitors were validated with genetically modified non-HGSC ovarian cancer cell lines. Our study reveals that SLFN11 predicts platinum sensitivity in HGSC and CCC independently of BRCA1/2 mutation status, indicating that SLFN11 assessment can guide treatment selection in HGSC and CCC.
Collapse
Affiliation(s)
- Hidehiko Akashi
- Department of Obstetrics and Gynecology, Niigata University Graduate School of Medical and Dental Sciences, Niigata, Japan
| | - Nozomi Yachida
- Department of Obstetrics and Gynecology, Niigata University Graduate School of Medical and Dental Sciences, Niigata, Japan
| | - Haruka Ueda
- Department of Obstetrics and Gynecology, Niigata University Graduate School of Medical and Dental Sciences, Niigata, Japan
| | - Manako Yamaguchi
- Department of Obstetrics and Gynecology, Niigata University Graduate School of Medical and Dental Sciences, Niigata, Japan
| | - Kaoru Yamawaki
- Department of Obstetrics and Gynecology, Niigata University Graduate School of Medical and Dental Sciences, Niigata, Japan
| | - Ryo Tamura
- Department of Obstetrics and Gynecology, Niigata University Graduate School of Medical and Dental Sciences, Niigata, Japan
| | - Kazuaki Suda
- Department of Obstetrics and Gynecology, Niigata University Graduate School of Medical and Dental Sciences, Niigata, Japan
| | - Tatsuya Ishiguro
- Department of Obstetrics and Gynecology, Niigata University Graduate School of Medical and Dental Sciences, Niigata, Japan
| | - Sosuke Adachi
- Department of Obstetrics and Gynecology, Niigata University Graduate School of Medical and Dental Sciences, Niigata, Japan
| | - Yoshikazu Nagase
- Department of Obstetrics and Gynecology, Osaka University Graduate School of Medicine, Osaka, Japan
| | - Yutaka Ueda
- Department of Obstetrics and Gynecology, Osaka University Graduate School of Medicine, Osaka, Japan
| | - Masashi Ueda
- Department of Obstetrics and Gynecology, National Hospital Organization Kyoto Medical Center, Kyoto, Japan
| | - Kaoru Abiko
- Department of Obstetrics and Gynecology, National Hospital Organization Kyoto Medical Center, Kyoto, Japan
| | - Masahiro Kagabu
- Department of Obstetrics and Gynecology, Iwate Medical University School of Medicine, Shiwa, Japan
| | - Tsukasa Baba
- Department of Obstetrics and Gynecology, Iwate Medical University School of Medicine, Shiwa, Japan
| | - Hirofumi Nakaoka
- Department of Cancer Genome Research, Sasaki Institute, Sasaki Foundation Chiyoda-ku, Japan
| | - Takayuki Enomoto
- Department of Obstetrics and Gynecology, Niigata University Graduate School of Medical and Dental Sciences, Niigata, Japan
| | - Junko Murai
- Institute for Advanced Biosciences, Keio University, Tsuruoka, Japan
- Department of Cell Growth and Tumor Regulation, Proteo-Science Center, Ehime University, Toon, Japan
| | - Kosuke Yoshihara
- Department of Obstetrics and Gynecology, Niigata University Graduate School of Medical and Dental Sciences, Niigata, Japan
| |
Collapse
|
12
|
Nakai H, Matsumura N. Selection of maintenance therapy during first-line treatment of advanced ovarian cancer based on pharmacologic characteristics. Expert Opin Pharmacother 2023; 24:2161-2173. [PMID: 38111255 DOI: 10.1080/14656566.2023.2295393] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2023] [Accepted: 12/12/2023] [Indexed: 12/20/2023]
Abstract
INTRODUCTION Maintenance therapy with bevacizumab and the poly (ADP-ribose) polymerase (PARP) inhibitors olaparib and niraparib after first-line treatment of advanced ovarian cancer has been approved. However, it is not clear which one should be used for which patients. AREAS COVERED This paper presents a detailed analysis of data from phase 3 trials in ovarian cancer evaluating bevacizumab (ICON7, GOG-0218), olaparib (SOLO1, PAOLA-1), and niraparib (PRIMA, PRIME). We will discuss how the results of these trials relate to the 'rebound effect,' in which the risk of progression increases after discontinuation of bevacizumab in patients receiving bevacizumab, and to the significant difference in tissue permeability between olaparib and niraparib. EXPERT OPINION In patients with homologous recombination deficiency and no macroscopic residual disease (R0) after primary debulking surgery (PDS), the combination of bevacizumab plus olaparib seems to be the best regimen. Olaparib monotherapy is suitable for patients with BRCA mutations other than PDS R0. Bevacizumab is most useful in cases with a short duration of the rebound effect, i.e. short survival. Niraparib is useful in others but may be more useful in Asians.
Collapse
Affiliation(s)
- Hidekatsu Nakai
- Department of Obstetrics and Gynecology, Kindai University Faculty of Medicine, Osaka-Sayama, Osaka, Japan
| | - Noriomi Matsumura
- Department of Obstetrics and Gynecology, Kindai University Faculty of Medicine, Osaka-Sayama, Osaka, Japan
| |
Collapse
|
13
|
Duma L, Ahel I. The function and regulation of ADP-ribosylation in the DNA damage response. Biochem Soc Trans 2023; 51:995-1008. [PMID: 37171085 PMCID: PMC10317172 DOI: 10.1042/bst20220749] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2023] [Revised: 04/27/2023] [Accepted: 05/02/2023] [Indexed: 05/13/2023]
Abstract
ADP-ribosylation is a post-translational modification involved in DNA damage response (DDR). In higher organisms it is synthesised by PARP 1-3, DNA strand break sensors. Recent advances have identified serine residues as the most common targets for ADP-ribosylation during DDR. To ADP-ribosylate serine, PARPs require an accessory factor, HPF1 which completes the catalytic domain. Through ADP-ribosylation, PARPs recruit a variety of factors to the break site and control their activities. However, the timely removal of ADP-ribosylation is also key for genome stability and is mostly performed by two hydrolases: PARG and ARH3. Here, we describe the key writers, readers and erasers of ADP-ribosylation and their contribution to the mounting of the DDR. We also discuss the use of PARP inhibitors in cancer therapy and the ways to tackle PARPi treatment resistance.
Collapse
Affiliation(s)
- Lena Duma
- Sir William Dunn School of Pathology, University of Oxford, Oxford, U.K
| | - Ivan Ahel
- Sir William Dunn School of Pathology, University of Oxford, Oxford, U.K
| |
Collapse
|
14
|
Zhao ML, Stefanick DF, Nadalutti CA, Beard WA, Wilson SH, Horton JK. Temporal recruitment of base excision DNA repair factors in living cells in response to different micro-irradiation DNA damage protocols. DNA Repair (Amst) 2023; 126:103486. [PMID: 37028218 PMCID: PMC10133186 DOI: 10.1016/j.dnarep.2023.103486] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2022] [Revised: 03/07/2023] [Accepted: 03/20/2023] [Indexed: 04/09/2023]
Abstract
Laser micro-irradiation across the nucleus rapidly generates localized chromatin-associated DNA lesions permitting analysis of repair protein recruitment in living cells. Recruitment of three fluorescently-tagged base excision repair factors [DNA polymerase β (pol β), XRCC1 and PARP1], known to interact with one another, was compared in gene-deleted mouse embryonic fibroblasts and in those expressing the endogenous factor. A low energy micro-irradiation (LEMI) forming direct single-strand breaks and a moderate energy (MEMI) protocol that additionally creates oxidized bases were compared. Quantitative characterization of repair factor recruitment and sensitivity to clinical PARP inhibitors (PARPi) was dependent on the micro-irradiation protocol. PARP1 recruitment was biphasic and generally occurred prior to pol β and XRCC1. After LEMI, but not after MEMI, pol β and XRCC1 recruitment was abolished by the PARPi veliparib. Consistent with this, pol β and XRCC1 recruitment following LEMI was considerably slower in PARP1-deficient cells. Surprisingly, the recruitment half-times and amplitudes for pol β were less affected by PARPi than were XRCC1 after MEMI suggesting there is a XRCC1-independent component for pol β recruitment. After LEMI, but not MEMI, pol β dissociation was more rapid than that of XRCC1. Unexpectedly, PARP1 dissociation was slowed in the absence of XRCC1 as well with a PARPi after LEMI but not MEMI, suggesting that XRCC1 facilitates PARP1 dissociation from specific DNA lesions. XRCC1-deficient cells showed pronounced hypersensitivity to the PARPi talazoparib correlating with its known cytotoxic PARP1 trapping activity. In contrast to DNA methylating agents, PARPi only minimally sensitized pol β and XRCC1-deficient cells to oxidative DNA damage suggesting differential binding of PARP1 to alternate repair intermediates. In summary, pol β, XRCC1, and PARP1 display recruitment kinetics that exhibit correlated and unique properties that depend on the DNA lesion and PARP activity revealing that there are multiple avenues utilized in the repair of chromatin-associated DNA.
Collapse
Affiliation(s)
- Ming-Lang Zhao
- Genome Integrity and Structural Biology Laboratory, NIEHS, National Institutes of Health, Research Triangle Park, NC 27709, USA
| | - Donna F Stefanick
- Genome Integrity and Structural Biology Laboratory, NIEHS, National Institutes of Health, Research Triangle Park, NC 27709, USA
| | - Cristina A Nadalutti
- Genome Integrity and Structural Biology Laboratory, NIEHS, National Institutes of Health, Research Triangle Park, NC 27709, USA
| | - William A Beard
- Genome Integrity and Structural Biology Laboratory, NIEHS, National Institutes of Health, Research Triangle Park, NC 27709, USA
| | - Samuel H Wilson
- Genome Integrity and Structural Biology Laboratory, NIEHS, National Institutes of Health, Research Triangle Park, NC 27709, USA
| | - Julie K Horton
- Genome Integrity and Structural Biology Laboratory, NIEHS, National Institutes of Health, Research Triangle Park, NC 27709, USA.
| |
Collapse
|
15
|
Jackson LM, Moldovan GL. Mechanisms of PARP1 inhibitor resistance and their implications for cancer treatment. NAR Cancer 2022; 4:zcac042. [PMID: 36568963 PMCID: PMC9773381 DOI: 10.1093/narcan/zcac042] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2022] [Revised: 11/28/2022] [Accepted: 12/06/2022] [Indexed: 12/24/2022] Open
Abstract
The discovery of synthetic lethality as a result of the combined loss of PARP1 and BRCA has revolutionized the treatment of DNA repair-deficient cancers. With the development of PARP inhibitors, patients displaying germline or somatic mutations in BRCA1 or BRCA2 were presented with a novel therapeutic strategy. However, a large subset of patients do not respond to PARP inhibitors. Furthermore, many of those who do respond eventually acquire resistance. As such, combating de novo and acquired resistance to PARP inhibitors remains an obstacle in achieving durable responses in patients. In this review, we touch on some of the key mechanisms of PARP inhibitor resistance, including restoration of homologous recombination, replication fork stabilization and suppression of single-stranded DNA gap accumulation, as well as address novel approaches for overcoming PARP inhibitor resistance.
Collapse
Affiliation(s)
- Lindsey M Jackson
- Department of Biochemistry and Molecular Biology, The Pennsylvania State University College of Medicine, Hershey, PA 17033, USA
| | - George-Lucian Moldovan
- Department of Biochemistry and Molecular Biology, The Pennsylvania State University College of Medicine, Hershey, PA 17033, USA
| |
Collapse
|