1
|
Li J, Tan YS, Verma CS. Dissecting the geometric and hydrophobic constraints of stapled peptides. Proteins 2025; 93:287-301. [PMID: 38196284 DOI: 10.1002/prot.26662] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2023] [Revised: 12/01/2023] [Accepted: 12/27/2023] [Indexed: 01/11/2024]
Abstract
Stapled peptides are a promising class of molecules with potential as highly specific probes of protein-protein interactions and as therapeutics. Hydrocarbon stapling affects the peptide properties through the interplay of two factors: enhancing the overall hydrophobicity and constraining the conformational flexibility. By constructing a series of virtual peptides, we study the role of each factor in modulating the structural properties of a hydrocarbon-stapled peptide PM2, which has been shown to enter cells, engage its target Mouse Double Minute 2 (MDM2), and activate p53. Hamiltonian replica exchange molecular dynamics (HREMD) simulations suggest that hydrocarbon stapling favors helical populations of PM2 through a combination of the geometric constraints and the enhanced hydrophobicity of the peptide. To further understand the conformational landscape of the stapled peptides along the binding pathway, we performed HREMD simulations by restraining the peptide at different distances from MDM2. When the peptide approaches MDM2, the binding pocket undergoes dehydration which appears to be greater in the presence of the stapled peptide compared with the linear peptide. In the binding pocket, the helicity of the stapled peptide is increased due to the favorable interactions between the peptide residues as well as the staple and the microenvironment of the binding pocket, contributing to enhanced affinity. The dissection of the multifaceted mechanism of hydrocarbon stapling into individual factors not only deepens fundamental understanding of peptide stapling, but also provides guidelines for the design of new stapled peptides.
Collapse
Affiliation(s)
- Jianguo Li
- Bioinformatics Institute, Agency for Science, Technology and Research (A*STAR), Singapore, Singapore
- Singapore Eye Research Institute, Singapore, Singapore
| | - Yaw Sing Tan
- Bioinformatics Institute, Agency for Science, Technology and Research (A*STAR), Singapore, Singapore
| | - Chandra S Verma
- Bioinformatics Institute, Agency for Science, Technology and Research (A*STAR), Singapore, Singapore
- Department of Biological Sciences, National University of Singapore, Singapore, Singapore
- School of Biological Sciences, Nanyang Technological University, Singapore, Singapore
| |
Collapse
|
2
|
Ge Y, Zhang S, Erdelyi M, Voelz VA. Solution-State Preorganization of Cyclic β-Hairpin Ligands Determines Binding Mechanism and Affinities for MDM2. J Chem Inf Model 2021; 61:2353-2367. [PMID: 33905247 PMCID: PMC9960209 DOI: 10.1021/acs.jcim.1c00029] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Abstract
Understanding mechanisms of protein folding and binding is crucial to designing their molecular function. Molecular dynamics (MD) simulations and Markov state model (MSM) approaches provide a powerful way to understand complex conformational change that occurs over long time scales. Such dynamics are important for the design of therapeutic peptidomimetic ligands, whose affinity and binding mechanism are dictated by a combination of folding and binding. To examine the role of preorganization in peptide binding to protein targets, we performed massively parallel explicit-solvent MD simulations of cyclic β-hairpin ligands designed to mimic the p53 transactivation domain and competitively bind mouse double minute 2 homologue (MDM2). Disrupting the MDM2-p53 interaction is a therapeutic strategy to prevent degradation of the p53 tumor suppressor in cancer cells. MSM analysis of over 3 ms of aggregate trajectory data enabled us to build a detailed mechanistic model of coupled folding and binding of four cyclic peptides which we compare to experimental binding affinities and rates. The results show a striking relationship between the relative preorganization of each ligand in solution and its affinity for MDM2. Specifically, changes in peptide conformational populations predicted by the MSMs suggest that entropy loss upon binding is the main factor influencing affinity. The MSMs also enable detailed examination of non-native interactions which lead to misfolded states and comparison of structural ensembles with experimental NMR measurements. In contrast to an MSM study of p53 transactivation domain (TAD) binding to MDM2, MSMs of cyclic β-hairpin binding show a conformational selection mechanism. Finally, we make progress toward predicting accurate off rates of cyclic peptides using multiensemble Markov models (MEMMs) constructed from unbiased and biased simulated trajectories.
Collapse
Affiliation(s)
- Yunui Ge
- Department of Chemistry, Temple University, Philadelphia, PA 19122, USA
| | - Si Zhang
- Department of Chemistry, Temple University, Philadelphia, PA 19122, USA
| | - Mate Erdelyi
- Department of Chemistry - BMC, Uppsala University, SE-75123 Uppsala, Sweden
| | - Vincent A. Voelz
- Department of Chemistry, Temple University, Philadelphia, PA 19122, USA
| |
Collapse
|
3
|
Sawyer TK, Partridge AW, Kaan HYK, Juang YC, Lim S, Johannes C, Yuen TY, Verma C, Kannan S, Aronica P, Tan YS, Sherborne B, Ha S, Hochman J, Chen S, Surdi L, Peier A, Sauvagnat B, Dandliker PJ, Brown CJ, Ng S, Ferrer F, Lane DP. Macrocyclic α helical peptide therapeutic modality: A perspective of learnings and challenges. Bioorg Med Chem 2018; 26:2807-2815. [PMID: 29598901 DOI: 10.1016/j.bmc.2018.03.008] [Citation(s) in RCA: 39] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2018] [Revised: 03/03/2018] [Accepted: 03/06/2018] [Indexed: 12/20/2022]
Abstract
Macrocyclic α-helical peptides have emerged as a compelling new therapeutic modality to tackle targets confined to the intracellular compartment. Within the scope of hydrocarbon-stapling there has been significant progress to date, including the first stapled α-helical peptide to enter into clinical trials. The principal design concept of stapled α-helical peptides is to mimic a cognate (protein) ligand relative to binding its target via an α-helical interface. However, it was the proclivity of such stapled α-helical peptides to exhibit cell permeability and proteolytic stability that underscored their promise as unique macrocyclic peptide drugs for intracellular targets. This perspective highlights key learnings as well as challenges in basic research with respect to structure-based design, innovative chemistry, cell permeability and proteolytic stability that are essential to fulfill the promise of stapled α-helical peptide drug development.
Collapse
|
4
|
Co-operative intra-protein structural response due to protein–protein complexation revealed through thermodynamic quantification: study of MDM2-p53 binding. J Comput Aided Mol Des 2017; 31:891-903. [DOI: 10.1007/s10822-017-0057-y] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2017] [Accepted: 08/30/2017] [Indexed: 12/29/2022]
|
5
|
Zheng L, Yu C, Zhan Y, Deng X, Wang Y, Jiang H. Locking Interconversion of Aromatic Oligoamide Foldamers by Intramolecular Side-chain Crosslinking: toward Absolute Control of Helicity in Synthetic Aromatic Foldamers. Chemistry 2017; 23:5361-5367. [DOI: 10.1002/chem.201700134] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2017] [Indexed: 12/12/2022]
Affiliation(s)
- Lu Zheng
- Key Laboratory of Theoretical and Computational Photochemistry, and Key Laboratory of Radiopharmaceuticals; Ministry of Education; College of Chemistry; Beijing Normal University; Beijing 100875 P. R. China
| | - Chengyuan Yu
- Key Laboratory of Theoretical and Computational Photochemistry, and Key Laboratory of Radiopharmaceuticals; Ministry of Education; College of Chemistry; Beijing Normal University; Beijing 100875 P. R. China
| | - Yulin Zhan
- Key Laboratory of Theoretical and Computational Photochemistry, and Key Laboratory of Radiopharmaceuticals; Ministry of Education; College of Chemistry; Beijing Normal University; Beijing 100875 P. R. China
| | - Xuebin Deng
- Key Laboratory of Theoretical and Computational Photochemistry, and Key Laboratory of Radiopharmaceuticals; Ministry of Education; College of Chemistry; Beijing Normal University; Beijing 100875 P. R. China
| | - Ying Wang
- Key Laboratory of Theoretical and Computational Photochemistry, and Key Laboratory of Radiopharmaceuticals; Ministry of Education; College of Chemistry; Beijing Normal University; Beijing 100875 P. R. China
| | - Hua Jiang
- Key Laboratory of Theoretical and Computational Photochemistry, and Key Laboratory of Radiopharmaceuticals; Ministry of Education; College of Chemistry; Beijing Normal University; Beijing 100875 P. R. China
| |
Collapse
|
6
|
Morrone JA, Perez A, Deng Q, Ha SN, Holloway MK, Sawyer TK, Sherborne BS, Brown FK, Dill KA. Molecular Simulations Identify Binding Poses and Approximate Affinities of Stapled α-Helical Peptides to MDM2 and MDMX. J Chem Theory Comput 2017; 13:863-869. [PMID: 28042965 DOI: 10.1021/acs.jctc.6b00978] [Citation(s) in RCA: 35] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Abstract
Traditionally, computing the binding affinities of proteins to even relatively small and rigid ligands by free-energy methods has been challenging due to large computational costs and significant errors. Here, we apply a new molecular simulation acceleration method called MELD (Modeling by Employing Limited Data) to study the binding of stapled α-helical peptides to the MDM2 and MDMX proteins. We employ free-energy-based molecular dynamics simulations (MELD-MD) to identify binding poses and calculate binding affinities. Even though stapled peptides are larger and more complex than most protein ligands, the MELD-MD simulations can identify relevant binding poses and compute relative binding affinities. MELD-MD appears to be a promising method for computing the binding properties of peptide ligands with proteins.
Collapse
Affiliation(s)
- Joseph A Morrone
- Laufer Center for Physical and Quantitative Biology, Stony Brook University , Stony Brook, New York 11794, United States
| | - Alberto Perez
- Laufer Center for Physical and Quantitative Biology, Stony Brook University , Stony Brook, New York 11794, United States
| | - Qiaolin Deng
- Department of Structural Chemistry, MRL, Merck & Co., Inc. , Kenilworth, New Jersey 07033, United States
| | - Sookhee N Ha
- Department of Structural Chemistry, MRL, Merck & Co., Inc. , Kenilworth, New Jersey 07033, United States
| | - M Katharine Holloway
- Department of Structural Chemistry, MRL, Merck & Co., Inc. , West Point, Pennsylvania 19486, United States
| | - Tomi K Sawyer
- Department of Discovery Chemistry, MRL, Merck & Co., Inc. , Boston, Massachusetts 02115, United States
| | - Bradley S Sherborne
- Department of Structural Chemistry, MRL, Merck & Co., Inc. , Kenilworth, New Jersey 07033, United States
| | - Frank K Brown
- Department of Structural Chemistry, MRL, Merck & Co., Inc. , West Point, Pennsylvania 19486, United States
| | - Ken A Dill
- Laufer Center for Physical and Quantitative Biology, Stony Brook University , Stony Brook, New York 11794, United States.,Department of Chemistry, Stony Brook University , Stony Brook, New York 11794, United States.,Department of Physics & Astronomy, Stony Brook University , Stony Brook, New York 11794, United States
| |
Collapse
|
7
|
Morrone JA, Perez A, MacCallum J, Dill KA. Computed Binding of Peptides to Proteins with MELD-Accelerated Molecular Dynamics. J Chem Theory Comput 2017; 13:870-876. [DOI: 10.1021/acs.jctc.6b00977] [Citation(s) in RCA: 44] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- Joseph A. Morrone
- Laufer
Center for Physical and Quantitative Biology, Stony Brook University, Stony
Brook, New York 11794, United States
| | - Alberto Perez
- Laufer
Center for Physical and Quantitative Biology, Stony Brook University, Stony
Brook, New York 11794, United States
| | - Justin MacCallum
- Department
of Chemistry, University of Calgary, Calgary, Alberta T2N 1N4, Canada
| | - Ken A. Dill
- Laufer
Center for Physical and Quantitative Biology, Stony Brook University, Stony
Brook, New York 11794, United States
- Department
of Chemistry, Stony Brook University, Stony Brook, New York 11794, United States
- Department of Physics & Astronomy, Stony Brook University, Stony Brook, New York 11794, United States
| |
Collapse
|
8
|
Bhachoo J, Beuming T. Investigating Protein-Peptide Interactions Using the Schrödinger Computational Suite. Methods Mol Biol 2017; 1561:235-254. [PMID: 28236242 DOI: 10.1007/978-1-4939-6798-8_14] [Citation(s) in RCA: 86] [Impact Index Per Article: 10.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Abstract
The Schrödinger software suite contains a broad array of computational chemistry and molecular modeling tools that can be used to study the interaction of peptides with proteins. These include molecular docking using Glide and Piper, relative binding free energy predictions with FEP+, conformational searches using MacroModel and Desmond, and structural refinement using Prime and PrimeX. In this review we provide a comprehensive overview of these tools and describe their potential application in the identification and optimization of peptide ligands for proteins.
Collapse
Affiliation(s)
- Jas Bhachoo
- Schrödinger, Inc., 120 West 45th Street, 17th Floor, New York, NY, 10036, USA
| | - Thijs Beuming
- Schrödinger, Inc., 120 West 45th Street, 17th Floor, New York, NY, 10036, USA.
| |
Collapse
|
9
|
Stapled peptide design: principles and roles of computation. Drug Discov Today 2016; 21:1642-1653. [DOI: 10.1016/j.drudis.2016.06.012] [Citation(s) in RCA: 74] [Impact Index Per Article: 8.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2016] [Revised: 05/11/2016] [Accepted: 06/13/2016] [Indexed: 12/23/2022]
|
10
|
Mukherjee S, Pantelopulos GA, Voelz VA. Markov models of the apo-MDM2 lid region reveal diffuse yet two-state binding dynamics and receptor poses for computational docking. Sci Rep 2016; 6:31631. [PMID: 27538695 PMCID: PMC4990920 DOI: 10.1038/srep31631] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2016] [Accepted: 07/22/2016] [Indexed: 12/11/2022] Open
Abstract
MDM2 is a negative regulator of p53 activity and an important target for cancer therapeutics. The N-terminal lid region of MDM2 modulates interactions with p53 via competition for its binding cleft, exchanging slowly between docked and undocked conformations in the absence of p53. To better understand these dynamics, we constructed Markov State Models (MSMs) from large collections of unbiased simulation trajectories of apo-MDM2, and find strong evidence for diffuse, yet two-state folding and binding of the N-terminal region to the p53 receptor site. The MSM also identifies holo-like receptor conformations highly suitable for computational docking, despite initiating trajectories from closed-cleft receptor structures unsuitable for docking. Fixed-anchor docking studies using a test set of high-affinity small molecules and peptides show simulated receptor ensembles achieve docking successes comparable to cross-docking studies using crystal structures of receptors bound by alternative ligands. For p53, the best-scoring receptor structures have the N-terminal region lid region bound in a helical conformation mimicking the bound structure of p53, suggesting lid region association induces receptor conformations suitable for binding. These results suggest that MD + MSM approaches can sample binding-competent receptor conformations suitable for computational peptidomimetic design, and that inclusion of disordered regions may be essential to capturing the correct receptor dynamics.
Collapse
Affiliation(s)
| | | | - Vincent A Voelz
- Department of Chemistry, Temple University, Philadelphia, PA, USA
| |
Collapse
|
11
|
Micewicz ED, Sharma S, Waring AJ, Luong HT, McBride WH, Ruchala P. Bridged Analogues for p53-Dependent Cancer Therapy Obtained by S-Alkylation. Int J Pept Res Ther 2015; 22:67-81. [PMID: 26957954 DOI: 10.1007/s10989-015-9487-3] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
A small library of anticancer, cell-permeating, stapled peptides based on potent dual-specific antagonist of p53-MDM2/MDMX interactions, PMI-N8A, was synthesized, characterized and screened for anticancer activity against human colorectal cancer cell line, HCT-116. Employed synthetic modifications included: S-alkylation-based stapling, point mutations increasing hydrophobicity in key residues as well as improvement of cell-permeability by introduction of polycationic sequence(s) that were woven into the sequence of parental peptide. Selected analogue, ArB14Co, was also tested in vivo and exhibited potent anticancer bioactivity at the low dose (3.0 mg/kg). Collectively, our findings suggest that application of stapling in combination with rational design of polycationic short analogues may be a suitable approach in the development of physiologically active p53-MDM2/MDMX peptide inhibitors.
Collapse
Affiliation(s)
- Ewa D Micewicz
- Department of Radiation Oncology, University of California at Los Angeles, 10833 Le Conte Avenue, Los Angeles, CA 90095, USA
| | - Shantanu Sharma
- Materials and Process Simulation Center, California Institute of Technology, 1200 East California Boulevard, Pasadena, CA 91125, USA
| | - Alan J Waring
- Department of Medicine, Los Angeles Biomedical Research Institute at Harbor-UCLA, Medical Center, 1000 West Carson Street, Torrance, CA 90502, USA
| | - Hai T Luong
- Department of Analytical Operations, Gilead Sciences, Inc., 4049 Avenida de la Plata, Oceanside CA, 92056, USA
| | - William H McBride
- Department of Radiation Oncology, University of California at Los Angeles, 10833 Le Conte Avenue, Los Angeles, CA 90095, USA
| | - Piotr Ruchala
- Department of Psychiatry and Biobehavioral Sciences, University of California at Los Angeles, 760 Westwood Plaza, Los Angeles, CA 90024, USA
| |
Collapse
|
12
|
Pantelopulos GA, Mukherjee S, Voelz VA. Microsecond simulations of mdm2 and its complex with p53 yield insight into force field accuracy and conformational dynamics. Proteins 2015; 83:1665-76. [DOI: 10.1002/prot.24852] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2015] [Revised: 06/08/2015] [Accepted: 06/24/2015] [Indexed: 12/13/2022]
Affiliation(s)
| | - Sudipto Mukherjee
- Department of Chemistry; Temple University; Philadelphia Pennsylvania 19122
| | - Vincent A. Voelz
- Department of Chemistry; Temple University; Philadelphia Pennsylvania 19122
| |
Collapse
|
13
|
Cromm PM, Spiegel J, Grossmann TN. Hydrocarbon stapled peptides as modulators of biological function. ACS Chem Biol 2015; 10:1362-75. [PMID: 25798993 DOI: 10.1021/cb501020r] [Citation(s) in RCA: 227] [Impact Index Per Article: 22.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
Peptide-based drug discovery has experienced a significant upturn within the past decade since the introduction of chemical modifications and unnatural amino acids has allowed for overcoming some of the drawbacks associated with peptide therapeutics. Strengthened by such features, modified peptides become capable of occupying a niche that emerges between the two major classes of today's therapeutics-small molecules (<500 Da) and biologics (>5000 Da). Stabilized α-helices have proven particularly successful at impairing disease-relevant PPIs previously considered "undruggable." Among those, hydrocarbon stapled α-helical peptides have emerged as a novel class of potential peptide therapeutics. This review provides a comprehensive overview of the development and applications of hydrocarbon stapled peptides discussing the benefits and limitations of this technique.
Collapse
Affiliation(s)
- Philipp M. Cromm
- Max Planck Institute of Molecular Physiology, Otto-Hahn-Str. 11, 44227 Dortmund, Germany
- Technical University Dortmund, Department of Chemistry and Chemical Biology, Otto-Hahn-Str. 6, 44227 Dortmund, Germany
| | - Jochen Spiegel
- Max Planck Institute of Molecular Physiology, Otto-Hahn-Str. 11, 44227 Dortmund, Germany
- Technical University Dortmund, Department of Chemistry and Chemical Biology, Otto-Hahn-Str. 6, 44227 Dortmund, Germany
| | - Tom N. Grossmann
- Max Planck Institute of Molecular Physiology, Otto-Hahn-Str. 11, 44227 Dortmund, Germany
- Technical University Dortmund, Department of Chemistry and Chemical Biology, Otto-Hahn-Str. 6, 44227 Dortmund, Germany
- Chemical Genomics Centre of the Max Planck Society, Otto-Hahn-Str. 15, 44227 Dortmund, Germany
| |
Collapse
|
14
|
Sawyer TK, Guerlavais V, Darlak K, Feyfant E. Macrocyclic α-Helical Peptide Drug Discovery. MACROCYCLES IN DRUG DISCOVERY 2014. [DOI: 10.1039/9781782623113-00339] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/29/2023]
Abstract
Macrocyclic α-helical peptides have emerged as a promising new drug class and within the scope of hydrocarbon-stapled peptides such molecules have advanced into the clinic. The overarching concept of designing proteomimetics of an α-helical ‘ligand’ which binds its cognate ‘target’ relative to α-helical interfacing protein-protein interactions has been well-validated and expanded through numerous investigations for a plethora of therapeutic targets oftentimes referred to as “undruggable” with respect to other modalities (e.g., small-molecule or proteins). This chapter highlights the evolution of macrocyclic α-helical peptides in terms of target space, biophysical and computational chemistry, structural diversity and synthesis, drug design and chemical biology. It is noteworthy that hydrocarbon-stapled peptides have successfully risen to the summit of such drug discovery campaigns.
Collapse
|
15
|
Guo Z, Li B, Dzubiella J, Cheng LT, McCammon JA, Che J. Heterogeneous Hydration of p53/MDM2 Complex. J Chem Theory Comput 2014; 10:1302-1313. [PMID: 24803860 PMCID: PMC3958133 DOI: 10.1021/ct400967m] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2013] [Indexed: 12/23/2022]
Abstract
![]()
Water-mediated
interactions play critical roles in biomolecular
recognition processes. Explicit solvent molecular dynamics (MD) simulations
and the variational implicit-solvent model (VISM) are used to study
those hydration properties during binding for the biologically important
p53/MDM2 complex. Unlike simple model solutes, in such a realistic
and heterogeneous solute–solvent system with both geometrical
and chemical complexity, the local water distribution sensitively
depends on nearby amino acid properties and the geometric shape of
the protein. We show that the VISM can accurately describe the locations
of high and low density solvation shells identified by the MD simulations
and can explain them by a local coupling balance of solvent–solute
interaction potentials and curvature. In particular, capillary transitions
between local dry and wet hydration states in the binding pocket are
captured for interdomain distance between 4 to 6 Å, right at
the onset of binding. The underlying physical connection between geometry
and polarity is illustrated and quantified. Our study offers a microscopic
and physical insight into the heterogeneous hydration behavior of
the biologically highly relevant p53/MDM2 system and demonstrates
the fundamental importance of hydrophobic effects for biological binding
processes. We hope our study can help to establish new design rules
for drugs and medical substances.
Collapse
Affiliation(s)
- Zuojun Guo
- Genomics Institute of the Novartis Research Foundation , 10675 John Jay Hopkins Drive, San Diego, California 92121, United States
| | - Bo Li
- Department of Mathematics and Center for Theoretical Biological Physics, University of California, San Diego , 9500 Gilman Drive, La Jolla, California 92093-0112, United States
| | - Joachim Dzubiella
- Department of Physics, Humboldt University of Berlin , Newtonstr. 15, 12489 Berlin, Germany ; Soft Matter and Functional Materials, Helmholtz-Zentrum Berlin , Hahn-Meitner Platz 1, 14109 Berlin, Germany
| | - Li-Tien Cheng
- Department of Mathematics, University of California, San Diego , 9500 Gilman Drive, La Jolla, California 92093-0112, United States
| | - J Andrew McCammon
- Department of Chemistry and Biochemistry, Department of Pharmacology, Howard Hughes Medical Institute, and Center for Theoretical Biological Physics, University of California , San Diego, 9500 Gilman Drive, La Jolla, California 92093-0365, United States
| | - Jianwei Che
- Genomics Institute of the Novartis Research Foundation , 10675 John Jay Hopkins Drive, San Diego, California 92121, United States
| |
Collapse
|