1
|
Akhtar M, Gul S, Shamim S, Naeem S, Khan A. Moxifloxacin Amide Analogs as Antibacterial and Antifungal Agents: Synthesis, Characterization, and Enzyme Inhibition Studies. Pharm Chem J 2023; 57:1008-1017. [DOI: 10.1007/s11094-023-02978-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2022] [Indexed: 07/04/2024]
|
2
|
Suaifan GARY, Mohammed AAM, Alkhawaja BA. Fluoroquinolones' Biological Activities against Laboratory Microbes and Cancer Cell Lines. Molecules 2022; 27:1658. [PMID: 35268759 PMCID: PMC8911966 DOI: 10.3390/molecules27051658] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2021] [Revised: 02/13/2022] [Accepted: 02/15/2022] [Indexed: 12/02/2022] Open
Abstract
Development of novel derivatives to rein in and fight bacteria have never been more demanding, as microbial resistance strains are alarmingly increasing. A multitude of new fluoroquinolones derivatives with an improved spectrum of activity and/or enhanced pharmacokinetics parameters have been widely explored. Reporting novel antimicrobial agents entails comparing their potential activity to their parent drugs; hence, parent fluoroquinolones have been used in research as positive controls. Given that these fluoroquinolones possess variable activities according to their generation, it is necessary to include parent compounds and market available antibiotics of the same class when investigating antimicrobial activity. Herein, we provide a detailed guide on the in vitro biological activity of fluoroquinolones based on experimental results published in the last years. This work permits researchers to compare and analyze potential fluoroquinolones as positive control agents and to evaluate changes occurring in their activities. More importantly, the selection of fluoroquinolones as positive controls by medicinal chemists when investigating novel FQs analogs must be correlated to the laboratory pathogen inquest for reliable results.
Collapse
Affiliation(s)
- Ghadeer A. R. Y. Suaifan
- Department of Pharmaceutical Sciences, Faculty of Pharmacy, The University of Jordan, Amman 11942, Jordan;
| | - Aya A. M. Mohammed
- Department of Pharmaceutical Sciences, Faculty of Pharmacy, The University of Jordan, Amman 11942, Jordan;
| | - Bayan A. Alkhawaja
- Department of Pharmacy, Faculty of Pharmacy and Medical Sciences, The University of Petra, Amman 11196, Jordan;
| |
Collapse
|
3
|
Ibrahim NM, Fahim SH, Hassan M, Farag AE, Georgey HH. Design and synthesis of ciprofloxacin-sulfonamide hybrids to manipulate ciprofloxacin pharmacological qualities: Potency and side effects. Eur J Med Chem 2022; 228:114021. [PMID: 34871841 DOI: 10.1016/j.ejmech.2021.114021] [Citation(s) in RCA: 16] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2021] [Revised: 11/17/2021] [Accepted: 11/25/2021] [Indexed: 11/29/2022]
Abstract
Fluoroquinolones are a class of antibacterial agents used clinically to treat a wide array of bacterial infections. Although being potent, susceptibility to CNS side effects limits their use. It was observed that improvements in absorption, activity and side effects were achieved via modifications at the N atom of the C7 of the side chain. To meet the increasing demand for development of new antibacterial agents, nineteen novel ciprofloxacin-sulfonamide hybrid molecules were designed, synthesized and characterized by IR, 1H NMR and 13C NMR as potential antibacterial agents with dual DNA gyrase/topoisomerase IV inhibitory activity. Most of the synthesized compounds showed significant antibacterial activity that was revealed by testing their inhibitory activity against DNA gyrase, DNA topoisomerase IV as well as their minimum inhibitory concentration against Staphylococcus aureus. Six ciprofloxacin-sulfonamide hybrids (3f, 5d, 7a, 7d, 7e and 9b) showed potent inhibitory activity against DNA topoisomerase IV, compared to ciprofloxacin (IC50: 0.55 μM), with IC50 range: 0.23-0.44 μM. DNA gyrase was also efficiently inhibited by five ciprofloxacin-sulfonamide hybrids (3f, 5d, 5e, 7a and 7d) with IC50 range: 0.43-1.1 μM (IC50 of ciprofloxacin: 0.83 μM). Compounds 3a and 3b showed a marked improvement in the antibacterial activity over ciprofloxacin against both Gram-positive and Gram-negative pathogens, namely, Staphylococcus aureus Newman and Escherichia coli ATCC8739, with MIC = 0.324 and 0.422 μM, respectively, that is 4.2-fold and 3.2-fold lower than ciprofloxacin (MIC = 1.359 μM) against the Gram-positive Staphylococcus aureus, and MIC = 0.025 and 0.013 μM, respectively, that is 10.2-fold and 19.6-fold lower than ciprofloxacin (MIC = 0.255 μM) against the Gram-negative Escherichia coli ATCC8739. Also, the most active compounds showed lower CNS and convulsive side effects compared to ciprofloxacin with a concomitant decrease in GABA expression.
Collapse
Affiliation(s)
- Noha M Ibrahim
- Pharmaceutical Chemistry Department, Faculty of Pharmacy, Cairo University, El-Kasr El-Eini Street, Cairo, 11562, Egypt
| | - Samar H Fahim
- Pharmaceutical Chemistry Department, Faculty of Pharmacy, Cairo University, El-Kasr El-Eini Street, Cairo, 11562, Egypt.
| | - Mariam Hassan
- Department of Microbiology and Immunology, Faculty of Pharmacy, Cairo University, El-Kasr El-Eini Street, Cairo, 11562, Egypt
| | - Awatef E Farag
- Pharmaceutical Chemistry Department, Faculty of Pharmacy, Cairo University, El-Kasr El-Eini Street, Cairo, 11562, Egypt
| | - Hanan H Georgey
- Pharmaceutical Chemistry Department, Faculty of Pharmacy, Cairo University, El-Kasr El-Eini Street, Cairo, 11562, Egypt; Pharmaceutical Chemistry Department, Faculty of Pharmacy and Drug Technology, Egyptian Chinese University, Cairo, 11786, Egypt
| |
Collapse
|
4
|
Kulabaş N, Türe A, Bozdeveci A, Krishna VS, Alpay Karaoğlu Ş, Sriram D, Küçükgüzel İ. Novel fluoroquinolones containing 2‐arylamino‐2‐oxoethyl fragment: Design, synthesis, evaluation of antibacterial and antituberculosis activities and molecular modeling studies. J Heterocycl Chem 2022. [DOI: 10.1002/jhet.4430] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Affiliation(s)
- Necla Kulabaş
- Department of Pharmaceutical Chemistry Faculty of Pharmacy, Marmara University İstanbul Turkey
| | - Aslı Türe
- Department of Pharmaceutical Chemistry Faculty of Pharmacy, Marmara University İstanbul Turkey
| | - Arif Bozdeveci
- Department of Biology, Faculty of Art and Sciences Recep Tayyip Erdoğan University Rize Turkey
| | - Vagolu Siva Krishna
- Medicinal Chemistry Research Laboratory, Pharmacy Group Birla Institute of Technology and Science Hyderabad India
| | - Şengül Alpay Karaoğlu
- Department of Biology, Faculty of Art and Sciences Recep Tayyip Erdoğan University Rize Turkey
| | - Dharmarajan Sriram
- Medicinal Chemistry Research Laboratory, Pharmacy Group Birla Institute of Technology and Science Hyderabad India
| | - İlkay Küçükgüzel
- Department of Pharmaceutical Chemistry Faculty of Pharmacy, Marmara University İstanbul Turkey
| |
Collapse
|
5
|
Şenkardeş S, Kulabaş N, Bingöl Özakpinar Ö, Kalayci S, Şahin F, Küçükgüzel İ, Küçükgüzel ŞG. Synthesis and Anticancer and Antimicrobial Evaluation of Novel Ether-linked Derivatives of Ornidazole. Turk J Pharm Sci 2020; 17:81-93. [PMID: 32454765 DOI: 10.4274/tjps.galenos.2018.59389] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2018] [Accepted: 11/29/2018] [Indexed: 02/08/2023]
Abstract
Objectives Some novel 1-(2-methyl-5-nitro-1H-imidazol-1-yl)-3-(substituted phenoxy)propan-2-ol derivatives (3a-g) were designed and synthesized. Materials and Methods Compounds 3a-g were obtained by refluxing ornidazole (1) with the corresponding phenolic compounds (2a-g) in the presence of anhydrous K2CO3 in acetonitrile. Results Following the structure elucidation, the in vitro antimicrobial activity and cytotoxic effects of compounds 3a-g on K562 leukemia and NIH/3T3 mouse embryonic fibroblast cells were measured. As a part of this study, the compliance of the compounds with the drug-likeness properties was evaluated. The physico-chemical parameters (log P, TPSA, nrotb, number of hydrogen bond donors and acceptors, logS) were calculated using the software OSIRIS. Conclusion All the synthesized compounds except 3a showed significant activity (MIC=4-16 μg mL-1) against the bacterial strain Bacillus subtilis as compared to the standard drug, whereas antileukemic activities were rather limited. Furthermore, all the compounds were nontoxic and the selectivity index outcome indicated that the antileukemic and antimicrobial effects of the compounds were selective with good estimated oral bioavailability and drug-likeness scores.
Collapse
Affiliation(s)
- Sevil Şenkardeş
- Marmara University, Faculty of Pharmacy, Department of Pharmaceutical Chemistry, Haydarpaşa, İstanbul, Turkey
| | - Necla Kulabaş
- Marmara University, Faculty of Pharmacy, Department of Pharmaceutical Chemistry, Haydarpaşa, İstanbul, Turkey
| | - Özlem Bingöl Özakpinar
- Marmara University, Faculty of Pharmacy, Department of Biochemistry, Haydarpaşa, İstanbul, Turkey
| | - Sadık Kalayci
- Yeditepe University, Faculty of Engineering, Department of Genetics and Bioengineering, Kayışdağı, İstanbul, Turkey
| | - Fikrettin Şahin
- Yeditepe University, Faculty of Engineering, Department of Genetics and Bioengineering, Kayışdağı, İstanbul, Turkey
| | - İlkay Küçükgüzel
- Marmara University, Faculty of Pharmacy, Department of Pharmaceutical Chemistry, Haydarpaşa, İstanbul, Turkey
| | - Ş Güniz Küçükgüzel
- Marmara University, Faculty of Pharmacy, Department of Pharmaceutical Chemistry, Haydarpaşa, İstanbul, Turkey
| |
Collapse
|
6
|
Suaifan GA, Mohammed AA. Fluoroquinolones structural and medicinal developments (2013–2018): Where are we now? Bioorg Med Chem 2019; 27:3005-3060. [DOI: 10.1016/j.bmc.2019.05.038] [Citation(s) in RCA: 36] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2019] [Revised: 05/22/2019] [Accepted: 05/25/2019] [Indexed: 12/11/2022]
|
7
|
Zhang J, Ba Y, Wang S, Yang H, Hou X, Xu Z. Nitroimidazole-containing compounds and their antibacterial and antitubercular activities. Eur J Med Chem 2019; 179:376-388. [PMID: 31260891 DOI: 10.1016/j.ejmech.2019.06.068] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2019] [Revised: 06/23/2019] [Accepted: 06/24/2019] [Indexed: 11/24/2022]
Abstract
Infections especially tuberculosis caused by various bacteria including mycobacteria result in millions of lives every year, but the control of bacterial infections is challenged by the limitation of effective pharmaceuticals against drug-resistant pathogens. Nitroimidazoles belong to a group of nitroheterocyclic compounds that have broad-spectrum activity against a series of organisms such as mycobacteria, anaerobic Gram-positive and Gram-negative bacteria, and some of them have already been used in clinics or under clinical trials for the treatment of infectious diseases. In this review, we made an overview of the recent advances in nitroimidazole-containing compounds with antibacterial and antitubercular activity in the recent 20 years.
Collapse
Affiliation(s)
- Jingyu Zhang
- Pharmacy College, Henan University of Chinese Medicine, 450046, Zhengzhou, PR China
| | - Yanyan Ba
- Pharmacy College, Henan University of Chinese Medicine, 450046, Zhengzhou, PR China
| | - Su Wang
- Pharmacy College, Henan University of Chinese Medicine, 450046, Zhengzhou, PR China
| | - Huaixia Yang
- Pharmacy College, Henan University of Chinese Medicine, 450046, Zhengzhou, PR China
| | - Xuehui Hou
- Faculty of Science, Henan University of Animal Husbandry and Economy, 450046, Zhengzhou, PR China.
| | - Zhi Xu
- Huanghuai University, College of Chemistry and Pharmaceutical Engineering, Zhumadian, PR China.
| |
Collapse
|
8
|
Li S, Hu L, Li J, Zhu J, Zeng F, Huang Q, Qiu L, Du R, Cao R. Design, synthesis, structure-activity relationships and mechanism of action of new quinoline derivatives as potential antitumor agents. Eur J Med Chem 2019; 162:666-678. [DOI: 10.1016/j.ejmech.2018.11.048] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2018] [Revised: 11/18/2018] [Accepted: 11/20/2018] [Indexed: 01/02/2023]
|
9
|
Esfahani EN, Mohammadi-Khanaposhtani M, Rezaei Z, Valizadeh Y, Rajabnia R, Hassankalhori M, Bandarian F, Faramarzi MA, Samadi N, Amini MR, Mahdavi M, Larijani B. New ciprofloxacin–dithiocarbamate–benzyl hybrids: design, synthesis, antibacterial evaluation, and molecular modeling studies. RESEARCH ON CHEMICAL INTERMEDIATES 2018. [DOI: 10.1007/s11164-018-3598-3] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/28/2022]
|
10
|
Gao F, Wang P, Yang H, Miao Q, Ma L, Lu G. Recent developments of quinolone-based derivatives and their activities against Escherichia coli. Eur J Med Chem 2018; 157:1223-1248. [DOI: 10.1016/j.ejmech.2018.08.095] [Citation(s) in RCA: 66] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2018] [Revised: 08/29/2018] [Accepted: 08/31/2018] [Indexed: 12/14/2022]
|
11
|
Gao C, Fan YL, Zhao F, Ren QC, Wu X, Chang L, Gao F. Quinolone derivatives and their activities against methicillin-resistant Staphylococcus aureus (MRSA). Eur J Med Chem 2018; 157:1081-1095. [PMID: 30179746 DOI: 10.1016/j.ejmech.2018.08.061] [Citation(s) in RCA: 62] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2018] [Revised: 08/21/2018] [Accepted: 08/22/2018] [Indexed: 01/10/2023]
Abstract
Methicillin-resistant Staphylococcus aureus (MRSA) is the most common pathogen both in hospital and community settings, and is capable of causing serious and even fatal infections. Several antibiotics have been approved for the treatment of infections caused by MRSA, but MRSA has already developed resistance to them. More than ever, it's imperative to develop novel, high effective and fast acting anti-MRSA agents. Quinolones are one of the most common antibiotics in clinical practice used to treat various bacterial infections, and some of them displayed excellent in vitro and in vivo anti-MRSA activities, so quinolone derivatives are one of the most promising candidates. This review summarizes the recent developments of quinolone derivatives with potential activity against MRSA, and the structure-activity relationship is also discussed.
Collapse
Affiliation(s)
- Chuan Gao
- WuXi AppTec (Wuhan), Hubei, PR China
| | - Yi-Lei Fan
- Key Laboratory of Drug Prevention and Control Technology of Zhejiang Province, Zhejiang Police College, Hangzhou, PR China
| | - Feng Zhao
- WuXi AppTec (Wuhan), Hubei, PR China
| | | | - Xiang Wu
- WuXi AppTec (Wuhan), Hubei, PR China.
| | - Le Chang
- WuXi AppTec (Wuhan), Hubei, PR China.
| | - Feng Gao
- Life Sciences Division, TRIUMF, 4004 Wesbrook Mall, Vancouver, British Columbia, Canada.
| |
Collapse
|
12
|
Jiang D. 4-Quinolone Derivatives and Their Activities Against Gram-negative Pathogens. J Heterocycl Chem 2018. [DOI: 10.1002/jhet.3244] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Affiliation(s)
- Dan Jiang
- School of Nuclear Technology and Chemistry & Biology; Hubei University of Science and Technology; Xianning Hubei China
| |
Collapse
|
13
|
New 7-piperazinylquinolones containing (benzo[d]imidazol-2-yl)methyl moiety as potent antibacterial agents. Mol Divers 2018; 22:815-825. [DOI: 10.1007/s11030-018-9834-3] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2017] [Accepted: 05/14/2018] [Indexed: 10/14/2022]
|
14
|
Zhang GF, Liu X, Zhang S, Pan B, Liu ML. Ciprofloxacin derivatives and their antibacterial activities. Eur J Med Chem 2018; 146:599-612. [PMID: 29407984 DOI: 10.1016/j.ejmech.2018.01.078] [Citation(s) in RCA: 183] [Impact Index Per Article: 30.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2017] [Revised: 01/13/2018] [Accepted: 01/24/2018] [Indexed: 02/06/2023]
Abstract
Bacterial infections represent a significant health threat globally, and are responsible for the majority of hospital-acquired infections, leading to extensive mortality and burden on global healthcare systems. The second generation fluoroquinolone ciprofloxacin which exhibits excellent antimicrobial activity and pharmacokinetic properties as well as few side effects is introduced into clinical practice for the treatment of various bacterial infections for around 3 decades. The emergency and widely spread of drug-resistant pathogens making ciprofloxacin more and more ineffective, so it's imperative to develop novel antibacterials. Numerous of ciprofloxacin derivatives have been synthesized for seeking for new antibacterials, and some of them exhibited promising potency. This review aims to summarize the recent advances made towards the discovery of ciprofloxacin derivatives as antibacterial agents and the structure-activity relationship of these derivatives was also discussed.
Collapse
Affiliation(s)
- Gui-Fu Zhang
- School of Nuclear Technology and Chemistry & Biology, Hubei University of Science and Technology, Hubei, PR China
| | - Xiaofeng Liu
- Zhejiang Xianju Junye Pharmaceutical Co., Ltd, Xianju, Zhejiang, 317300, PR China; School of Chemistry and Chemical Engineering, Wuhan University of Science and Technology, Wuhan, Hubei 430081, PR China.
| | - Shu Zhang
- Pony Testing International Group (Wuhan), Hubei, PR China.
| | - Baofeng Pan
- Zhejiang Xianju Junye Pharmaceutical Co., Ltd, Xianju, Zhejiang, 317300, PR China
| | - Ming-Liang Liu
- Institute of Medicinal Biotechnology, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100050, PR China.
| |
Collapse
|
15
|
4-Quinolone hybrids and their antibacterial activities. Eur J Med Chem 2017; 141:335-345. [DOI: 10.1016/j.ejmech.2017.09.050] [Citation(s) in RCA: 134] [Impact Index Per Article: 19.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2017] [Revised: 09/11/2017] [Accepted: 09/24/2017] [Indexed: 01/28/2023]
|
16
|
Zhang GF, Zhang S, Pan B, Liu X, Feng LS. 4-Quinolone derivatives and their activities against Gram positive pathogens. Eur J Med Chem 2017; 143:710-723. [PMID: 29220792 DOI: 10.1016/j.ejmech.2017.11.082] [Citation(s) in RCA: 131] [Impact Index Per Article: 18.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2017] [Revised: 11/24/2017] [Accepted: 11/27/2017] [Indexed: 11/17/2022]
Abstract
Gram-positive bacteria are responsible for a broad range of infectious diseases, and the emergency and wide spread of drug-resistant Gram-positive pathogens including MRSA and MRSE has caused great concern throughout the world. 4-Quinolones which are exemplified by fluoroquinolones are mainstays of chemotherapy against various bacterial infections including Gram-positive pathogen infections, and their value and role in the treatment of bacterial infections continues to expand. However, the resistance of Gram-positive organisms to 4-quinolones develops rapidly and spreads widely, making them more and more ineffective. To overcome the resistance and reduce the toxicity, numerous of 4-quinolone derivatives were synthesized and screened for their in vitro and in vivo activities against Gram-positive pathogens, and some of them exhibited excellent potency. This review aims to outlines the recent advances made towards the discovery of 4-quinolone-based derivatives as anti-Gram-positive pathogens agents and the critical aspects of design as well as the structure-activity relationship of these derivatives. The enriched SAR paves the way to the further rational development of 4-quinolones with a unique mechanism of action different from that of the currently used drugs to overcome the resistance, well-tolerated and low toxic profiles.
Collapse
Affiliation(s)
- Gui-Fu Zhang
- School of Nuclear Technology and Chemistry & Life Science, Hubei University of Science and Technology, Hubei, PR China
| | - Shu Zhang
- Pony Testing International Group (Wuhan), Hubei, PR China
| | - Baofeng Pan
- Zhejiang Xianju Junye Pharmaceutical Co., Ltd, Xianju, Zhejiang, 317300, PR China
| | - Xiaofeng Liu
- Zhejiang Xianju Junye Pharmaceutical Co., Ltd, Xianju, Zhejiang, 317300, PR China; School of Chemistry and Chemical Engineering, Wuhan University of Science and Technology, Wuhan, Hubei, 430081, PR China.
| | - Lian-Shun Feng
- Synthetic and Functional Biomolecules Center, Peking University, Beijing, PR China.
| |
Collapse
|
17
|
Zhou P, Huang L, Zhou J, Jiang B, Zhao Y, Deng X, Zhao Q, Li F. Discovery of novel 4(1H)-quinolone derivatives as potential antiproliferative and apoptosis inducing agents. Bioorg Med Chem Lett 2017; 27:4185-4189. [DOI: 10.1016/j.bmcl.2017.07.005] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2017] [Revised: 06/29/2017] [Accepted: 07/01/2017] [Indexed: 01/11/2023]
|
18
|
Gorityala BK, Guchhait G, Goswami S, Fernando DM, Kumar A, Zhanel GG, Schweizer F. Hybrid Antibiotic Overcomes Resistance in P. aeruginosa by Enhancing Outer Membrane Penetration and Reducing Efflux. J Med Chem 2016; 59:8441-55. [DOI: 10.1021/acs.jmedchem.6b00867] [Citation(s) in RCA: 45] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Affiliation(s)
- Bala Kishan Gorityala
- Department
of Chemistry, University of Manitoba, 144 Dysart Road, 450 Parker Building, Winnipeg, Manitoba R3T 2N2, Canada
| | - Goutam Guchhait
- Department
of Chemistry, University of Manitoba, 144 Dysart Road, 450 Parker Building, Winnipeg, Manitoba R3T 2N2, Canada
| | - Sudeep Goswami
- Department
of Chemistry, University of Manitoba, 144 Dysart Road, 450 Parker Building, Winnipeg, Manitoba R3T 2N2, Canada
| | - Dinesh M. Fernando
- Department
of Microbiology, University of Manitoba, Winnipeg, Manitoba R3T 2N2, Canada
| | - Ayush Kumar
- Department
of Microbiology, University of Manitoba, Winnipeg, Manitoba R3T 2N2, Canada
- Department
of Medical Microbiology, University of Manitoba, Winnipeg, Manitoba R3T 1R9, Canada
| | - George G. Zhanel
- Department
of Medical Microbiology, University of Manitoba, Winnipeg, Manitoba R3T 1R9, Canada
| | - Frank Schweizer
- Department
of Chemistry, University of Manitoba, 144 Dysart Road, 450 Parker Building, Winnipeg, Manitoba R3T 2N2, Canada
- Department
of Medical Microbiology, University of Manitoba, Winnipeg, Manitoba R3T 1R9, Canada
| |
Collapse
|
19
|
Abstract
Governments, academics and industry are beginning to listen to the medical communities call for new anti-bacterials. This special issue brings together diverse review articles on topics from economics and pricing to new discovery methods.
Collapse
Affiliation(s)
- Roberta J Melander
- Department of Chemistry, North Carolina State University, Raleigh, NC, 27695, USA
| | | |
Collapse
|