1
|
Li F, Zhi J, Zhao R, Sun Y, Wen H, Cai H, Chen W, Jiang X, Bai R. Discovery of matrix metalloproteinase inhibitors as anti-skin photoaging agents. Eur J Med Chem 2024; 267:116152. [PMID: 38278079 DOI: 10.1016/j.ejmech.2024.116152] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2023] [Accepted: 01/11/2024] [Indexed: 01/28/2024]
Abstract
Photodamage is the result of prolonged exposure of the skin to sunlight. This exposure causes an overexpression of matrix metalloproteinases (MMPs), leading to the abnormal degradation of collagen in the skin tissue and resulting in skin aging and damage. This review presents a detailed overview of MMPs as a potential target for addressing skin aging. Specifically, we elucidated the precise mechanisms by which MMP inhibitors exert their anti-photoaging effects. Furthermore, we comprehensively analyzed the current research progress on MMP inhibitors that demonstrate significant inhibitory activity against MMPs and anti-skin photoaging effects. The review also provides insights into the structure-activity relationships of these inhibitors. Our objective in conducting this review is to provide valuable practical information to researchers engaged in investigations on anti-skin photoaging.
Collapse
Affiliation(s)
- Feifan Li
- School of Pharmacy, Hangzhou Normal University, Hangzhou, 311121, PR China; Key Laboratory of Elemene Class Anti-tumor Chinese Medicines, Engineering Laboratory of Development and Application of Traditional Chinese Medicines, Collaborative Innovation Center of Traditional Chinese Medicines of Zhejiang Province, Hangzhou Normal University, Hangzhou, 311121, PR China
| | - Jia Zhi
- School of Pharmacy, Hangzhou Normal University, Hangzhou, 311121, PR China; Key Laboratory of Elemene Class Anti-tumor Chinese Medicines, Engineering Laboratory of Development and Application of Traditional Chinese Medicines, Collaborative Innovation Center of Traditional Chinese Medicines of Zhejiang Province, Hangzhou Normal University, Hangzhou, 311121, PR China
| | - Rui Zhao
- School of Pharmacy, Hangzhou Normal University, Hangzhou, 311121, PR China; Key Laboratory of Elemene Class Anti-tumor Chinese Medicines, Engineering Laboratory of Development and Application of Traditional Chinese Medicines, Collaborative Innovation Center of Traditional Chinese Medicines of Zhejiang Province, Hangzhou Normal University, Hangzhou, 311121, PR China
| | - Yinyan Sun
- School of Pharmacy, Hangzhou Normal University, Hangzhou, 311121, PR China; Key Laboratory of Elemene Class Anti-tumor Chinese Medicines, Engineering Laboratory of Development and Application of Traditional Chinese Medicines, Collaborative Innovation Center of Traditional Chinese Medicines of Zhejiang Province, Hangzhou Normal University, Hangzhou, 311121, PR China
| | - Hao Wen
- School of Pharmacy, Hangzhou Normal University, Hangzhou, 311121, PR China; Key Laboratory of Elemene Class Anti-tumor Chinese Medicines, Engineering Laboratory of Development and Application of Traditional Chinese Medicines, Collaborative Innovation Center of Traditional Chinese Medicines of Zhejiang Province, Hangzhou Normal University, Hangzhou, 311121, PR China
| | - Hong Cai
- School of Pharmacy, Hangzhou Normal University, Hangzhou, 311121, PR China; Key Laboratory of Elemene Class Anti-tumor Chinese Medicines, Engineering Laboratory of Development and Application of Traditional Chinese Medicines, Collaborative Innovation Center of Traditional Chinese Medicines of Zhejiang Province, Hangzhou Normal University, Hangzhou, 311121, PR China
| | - Wenchao Chen
- School of Pharmacy, Hangzhou Normal University, Hangzhou, 311121, PR China; Key Laboratory of Elemene Class Anti-tumor Chinese Medicines, Engineering Laboratory of Development and Application of Traditional Chinese Medicines, Collaborative Innovation Center of Traditional Chinese Medicines of Zhejiang Province, Hangzhou Normal University, Hangzhou, 311121, PR China
| | - Xiaoying Jiang
- School of Pharmacy, Hangzhou Normal University, Hangzhou, 311121, PR China; Key Laboratory of Elemene Class Anti-tumor Chinese Medicines, Engineering Laboratory of Development and Application of Traditional Chinese Medicines, Collaborative Innovation Center of Traditional Chinese Medicines of Zhejiang Province, Hangzhou Normal University, Hangzhou, 311121, PR China
| | - Renren Bai
- School of Pharmacy, Hangzhou Normal University, Hangzhou, 311121, PR China; Key Laboratory of Elemene Class Anti-tumor Chinese Medicines, Engineering Laboratory of Development and Application of Traditional Chinese Medicines, Collaborative Innovation Center of Traditional Chinese Medicines of Zhejiang Province, Hangzhou Normal University, Hangzhou, 311121, PR China.
| |
Collapse
|
2
|
Almutairi S, Kalloush HM, Manoon NA, Bardaweel SK. Matrix Metalloproteinases Inhibitors in Cancer Treatment: An Updated Review (2013-2023). Molecules 2023; 28:5567. [PMID: 37513440 PMCID: PMC10384300 DOI: 10.3390/molecules28145567] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2023] [Revised: 07/09/2023] [Accepted: 07/18/2023] [Indexed: 07/30/2023] Open
Abstract
Matrix metalloproteinases (MMPs) are identifiable members of proteolytic enzymes that can degrade a wide range of proteins in the extracellular matrix (ECM). MMPs can be categorized into six groups based on their substrate specificity and structural differences: collagenases, gelatinases, stromelysins, matrilysins, metalloelastase, and membrane-type MMPs. MMPs have been linked to a wide variety of biological processes, such as cell transformation and carcinogenesis. Over time, MMPs have been evaluated for their role in cancer progression, migration, and metastasis. Accordingly, various MMPs have become attractive therapeutic targets for anticancer drug development. The first generations of broad-spectrum MMP inhibitors displayed effective inhibitory activities but failed in clinical trials due to poor selectivity. Thanks to the evolution of X-ray crystallography, NMR analysis, and homology modeling studies, it has been possible to characterize the active sites of various MMPs and, consequently, to develop more selective, second-generation MMP inhibitors. In this review, we summarize the computational and synthesis approaches used in the development of MMP inhibitors and their evaluation as potential anticancer agents.
Collapse
Affiliation(s)
- Shriefa Almutairi
- Department of Pharmaceutical Sciences, School of Pharmacy, University of Jordan, Amman 11942, Jordan
| | - Hanin Moh'd Kalloush
- Department of Pharmaceutical Sciences, School of Pharmacy, University of Jordan, Amman 11942, Jordan
- Department of Pharmacy, Al-Zaytoonah University of Jordan, Amman 11733, Jordan
| | - Nour A Manoon
- Department of Pharmaceutical Sciences, School of Pharmacy, University of Jordan, Amman 11942, Jordan
| | - Sanaa K Bardaweel
- Department of Pharmaceutical Sciences, School of Pharmacy, University of Jordan, Amman 11942, Jordan
| |
Collapse
|
3
|
Lepechkin-Zilbermintz V, Bareket D, Gonnord V, Steffen A, Morice C, Michaut M, Munder A, Korshin EE, Contreras JM, Cerasi E, Sasson S, Gruzman A. Moderately lipophilic 2-(Het)aryl-6-dithioacetals, 2-phenyl-1,4-benzodioxane-6-dithioacetals and 2-phenylbenzofuran-5-dithioacetals: Synthesis and primary evaluation as potential antidiabetic AMPK-activators. Bioorg Med Chem 2023; 87:117303. [PMID: 37167713 DOI: 10.1016/j.bmc.2023.117303] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2023] [Revised: 04/24/2023] [Accepted: 04/26/2023] [Indexed: 05/13/2023]
Abstract
Since the 1950's, AMP-kinase (AMPK) has been used as a promising target for the development of antidiabetic drugs against Type 2 diabetes mellitus (T2D). Indeed, the canonical antidiabetic drug metformin recruits, at least partially, AMPK activation for its therapeutic effect. Herein we present design and synthesis of 20 novel relatively polar cyclic and acyclic dithioacetals of 2-(Het)arylchroman-6-carbaldehydes, 2-phenyl-1,4-benzodioxane-6-carbaldehyde, and 2-phenylbenzofuran-5-carbaldehyde, which were developed as potential AMPK activators. Three of the synthesized dithioacetals demonstrated significant enhancement (≥70%) of glucose uptake in rat L6 myotubes. Noteworthy, one of the dithioacetals, namely 4-(6-(1,3-dithian-2-yl)chroman-2-yl)pyridine, exhibited high potency comparing to other molecules. It increased the rate of glucose uptake in rat L6 myotubes and augmented insulin secretion from rat INS-1E cells in pharmacological relevant concentrations (up to 2 μM). Both effects were mediated by activation of AMPK. In addition, the compound showed excellent pharmacokinetic profile in healthy mice, including maximal oral bioavailability. Such bifunctionality (increased glucose uptake and insulin secretion) can be used as a starting point for the development of a novel class of antidiabetic drugs with dual activity that is relevant for T2D treatment.
Collapse
Affiliation(s)
| | - Daniel Bareket
- Department of Pharmacology, Institute for Drug Research, School of Pharmacy, Faculty of Medicine, The Hebrew University of Jerusalem, 91120, Jerusalem, Israel
| | - Virginie Gonnord
- PRESTWICK CHEMICAL, 220 Boulevard Gonthier d'Andernach, 67400 Illkirch, France
| | - Alexandre Steffen
- PRESTWICK CHEMICAL, 220 Boulevard Gonthier d'Andernach, 67400 Illkirch, France
| | - Christophe Morice
- PRESTWICK CHEMICAL, 220 Boulevard Gonthier d'Andernach, 67400 Illkirch, France
| | - Mathieu Michaut
- PRESTWICK CHEMICAL, 220 Boulevard Gonthier d'Andernach, 67400 Illkirch, France
| | - Anna Munder
- RECIPHARM Israel Ltd., 9 Hamzamara Str., 7404709, Nes Ziona, Israel
| | - Edward E Korshin
- Department of Chemistry, Faculty of Exact Sciences, Bar-Ilan University, 52900, Ramat-Gan, Israel
| | | | - Erol Cerasi
- The Endocrinology and Metabolism Service, Department of Medicine, Hadassah-Hebrew University Medical Center, Jerusalem 91120, Israel
| | - Shlomo Sasson
- Department of Pharmacology, Institute for Drug Research, School of Pharmacy, Faculty of Medicine, The Hebrew University of Jerusalem, 91120, Jerusalem, Israel
| | - Arie Gruzman
- Department of Chemistry, Faculty of Exact Sciences, Bar-Ilan University, 52900, Ramat-Gan, Israel.
| |
Collapse
|
4
|
Balkenhohl M, Kölbl S, Georgiev T, Carreira EM. Mn- and Co-Catalyzed Aminocyclizations of Unsaturated Hydrazones Providing a Broad Range of Functionalized Pyrazolines. JACS AU 2021; 1:919-924. [PMID: 34337605 PMCID: PMC8317158 DOI: 10.1021/jacsau.1c00176] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 06/13/2023]
Abstract
Manganese- and cobalt-catalyzed aminocyclization reactions of unsaturated hydrazones are reported. Whereas manganese catalysis provides access to pyrazoline and tetrahydropyridazine alcohols, cobalt catalysis for the first time paves the way for the selective formation of pyrazoline aldehydes. Furthermore, various functional groups including hydroperoxide, thiol derivatives, iodide, and bicyclopentane may be introduced via manganese-catalyzed ring-forming aminofunctionalization. A progesterone receptor antagonist was prepared using the aminocyclization protocol.
Collapse
Affiliation(s)
- Moritz Balkenhohl
- Laboratorium für Organische
Chemie, Eidgenössische Technische
Hochschule Zürich, 8093 Zürich, Switzerland
| | - Sebastian Kölbl
- Laboratorium für Organische
Chemie, Eidgenössische Technische
Hochschule Zürich, 8093 Zürich, Switzerland
| | - Tony Georgiev
- Laboratorium für Organische
Chemie, Eidgenössische Technische
Hochschule Zürich, 8093 Zürich, Switzerland
| | - Erick M. Carreira
- Laboratorium für Organische
Chemie, Eidgenössische Technische
Hochschule Zürich, 8093 Zürich, Switzerland
| |
Collapse
|
5
|
Gimeno A, Beltrán-Debón R, Mulero M, Pujadas G, Garcia-Vallvé S. Understanding the variability of the S1′ pocket to improve matrix metalloproteinase inhibitor selectivity profiles. Drug Discov Today 2020; 25:38-57. [DOI: 10.1016/j.drudis.2019.07.013] [Citation(s) in RCA: 24] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2018] [Revised: 06/23/2019] [Accepted: 07/26/2019] [Indexed: 12/15/2022]
|
6
|
Wang PF, Wang ZF, Qiu HY, Huang Y, Hu HM, Wang ZC, Zhu HL. Identification and Biological Evaluation of Novel Type II B-Raf V600E Inhibitors. ChemMedChem 2018; 13:2558-2566. [PMID: 30353975 DOI: 10.1002/cmdc.201800574] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2018] [Revised: 10/14/2018] [Indexed: 12/15/2022]
Abstract
The mitogen-activated protein kinase (MAPK) pathway plays a vital role in signal transduction networks. Severe diseases may be triggered if it is disturbed by mutated components, especially the kinase B-RafV600E . New inhibitors of the kinase are needed as cases of relapse and resistance with the known drugs have been widely reported in the clinic. In the present work, a new class of B-RafV600E inhibitors was identified by fragment linking. In vitro and in vivo assays were used to demonstrate the pharmacological properties of the compounds. 3-{3-[4-Chloro-3-(trifluoromethyl)phenyl]ureido}-N-[1-(4-methoxyphenyl)-1H-pyrazol-4-yl]benzamide was the most potent agent with IC50 values of 0.035±0.004 μm (B-RafV600E kinase) and 0.39±0.04 μm (A375 cells). Furthermore, no obvious toxicity was observed. Collectively, the results favored justified the design rationale and hinted that this new chemotype might be worth studying further to develop novel B-Raf inhibitor candidates.
Collapse
Affiliation(s)
- Peng-Fei Wang
- State Key Laboratory of Pharmaceutical Biotechnology, Nanjing University, Nanjing, 210023, P.R. China
| | - Ze-Feng Wang
- State Key Laboratory of Pharmaceutical Biotechnology, Nanjing University, Nanjing, 210023, P.R. China
| | - Han-Yue Qiu
- State Key Laboratory of Pharmaceutical Biotechnology, Nanjing University, Nanjing, 210023, P.R. China
| | - Yue Huang
- College of Light Industry and Food Engineering, Nanjing Forestry University, Nanjing, 210037, P.R. China
| | - Hui-Min Hu
- State Key Laboratory of Pharmaceutical Biotechnology, Nanjing University, Nanjing, 210023, P.R. China
| | - Zhong-Chang Wang
- State Key Laboratory of Pharmaceutical Biotechnology, Nanjing University, Nanjing, 210023, P.R. China
| | - Hai-Liang Zhu
- State Key Laboratory of Pharmaceutical Biotechnology, Nanjing University, Nanjing, 210023, P.R. China
| |
Collapse
|