1
|
Alemi F, Sadeghsoltani F, Fattah K, Hassanpour P, Malakoti F, Kardeh S, Izadpanah M, de Campos Zuccari DAP, Yousefi B, Majidinia M. Applications of engineered exosomes in drugging noncoding RNAs for cancer therapy. Chem Biol Drug Des 2023; 102:1257-1275. [PMID: 37496299 DOI: 10.1111/cbdd.14300] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2022] [Revised: 05/31/2023] [Accepted: 07/17/2023] [Indexed: 07/28/2023]
Abstract
Noncoding RNAs (ncRNAs) are engaged in key cell biological and pathological events, and their expression alteration is connected to cancer progression both directly and indirectly. A huge number of studies have mentioned the significant role of ncRNAs in cancer prevention and therapy that make them an interesting subject for cancer therapy. However, there are several limitations, including delivery, uptake, and short half-life, in the application of ncRNAs in cancer treatment. Exosomes are introduced as promising options for the delivery of ncRNAs to the target cells. In this review, we will briefly discuss the application and barriers of ncRNAs. After that we will focus on exosome-based ncRNAs delivery and their advantages as well as the latest achievements in drugging ncRNAs with exosomes.
Collapse
Affiliation(s)
- Forough Alemi
- Department of Clinical Biochemistry and Laboratory Medicine, School of Medicine, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Fatemeh Sadeghsoltani
- Department of Clinical Biochemistry and Laboratory Medicine, School of Medicine, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Khashayar Fattah
- School of Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Parisa Hassanpour
- Department of Clinical Biochemistry and Laboratory Medicine, School of Medicine, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Faezeh Malakoti
- Department of Clinical Biochemistry and Laboratory Medicine, School of Medicine, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Sina Kardeh
- Central Clinical School, Monash University, Melbourne, Australia
| | - Melika Izadpanah
- Department of Clinical Biochemistry and Laboratory Medicine, School of Medicine, Tabriz University of Medical Sciences, Tabriz, Iran
| | | | - Bahman Yousefi
- Department of Clinical Biochemistry and Laboratory Medicine, School of Medicine, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Maryam Majidinia
- Solid Tumor Research Center, Cellular and Molecular Medicine Institute, Urmia University of Medical Sciences, Urmia, Iran
| |
Collapse
|
2
|
Ma L, Yu J, Zhang H, Zhao B, Zhang J, Yang D, Luo F, Wang B, Jin B, Liu J. Effects of Immune Cells on Intestinal Stem Cells: Prospects for Therapeutic Targets. Stem Cell Rev Rep 2022; 18:2296-2314. [DOI: 10.1007/s12015-022-10347-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 01/27/2022] [Indexed: 11/29/2022]
|
3
|
Bahrami A, Ferns GA. Diagnostic, Prognostic, and Therapeutic Value of miR-148b in Human Cancers. Curr Mol Med 2022; 22:860-869. [PMID: 34961461 DOI: 10.2174/1566524021666211213123315] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2021] [Revised: 07/06/2021] [Accepted: 11/05/2021] [Indexed: 11/22/2022]
Abstract
MicroRNAs (miRs) is a class of conserved, small, noncoding RNA molecules that modulate gene expression post-transcriptionally. miR-148b is a member of miR- 148/152 family generally known to be a tumor suppressor via its effect on different signaling pathways and regulatory genes. Aberrant expression of miR-148b has recently been shown to be responsible for tumorigenesis of several different cancer types. This review discusses the current evidence regarding the involvement of miR-148b expression in human cancers and its potential clinical importance for tumor diagnosis, prognosis, and therapeutics.
Collapse
Affiliation(s)
- Afsane Bahrami
- Clinical Research Development Unit, Imam Reza Hospital, Faculty of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Gordon A Ferns
- Division of Medical Education, Brighton & Sussex Medical School, Brighton, Sussex, UK
| |
Collapse
|
4
|
Huang PS, Liao CJ, Huang YH, Yeh CT, Chen CY, Tang HC, Chang CC, Lin KH. Functional and Clinical Significance of Dysregulated microRNAs in Liver Cancer. Cancers (Basel) 2021; 13:5361. [PMID: 34771525 PMCID: PMC8582514 DOI: 10.3390/cancers13215361] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2021] [Revised: 10/12/2021] [Accepted: 10/19/2021] [Indexed: 11/27/2022] Open
Abstract
Liver cancer is the leading cause of cancer-related mortality in the world. This mainly reflects the lack of early diagnosis tools and effective treatment methods. MicroRNAs (miRNAs) are a class of non-transcribed RNAs, some of which play important regulatory roles in liver cancer. Here, we discuss microRNAs with key impacts on liver cancer, such as miR-122, miR-21, miR-214, and miR-199. These microRNAs participate in various physiological regulatory pathways of liver cancer cells, and their modulation can have non-negligible effects in the treatment of liver cancer. We discuss whether these microRNAs can be used for better clinical diagnosis and/or drug development. With the advent of novel technologies, fast, inexpensive, and non-invasive RNA-based biomarker research has become a new mainstream approach. However, the clinical application of microRNA-based markers has been limited by the high sequence similarity among them and the potential for off-target problems. Therefore, researchers particularly value microRNAs that are specific to or have special functions in liver cancer. These include miR-122, which is specifically expressed in the liver, and miR-34, which is necessary for the replication of the hepatitis C virus in liver cancer. Clinical treatment drugs have been developed based on miR-34 and miR-122 (MRX34 and Miravirsen, respectively), but their side effects have not yet been overcome. Future research is needed to address these weaknesses and establish a feasible microRNA-based treatment strategy for liver cancer.
Collapse
Affiliation(s)
- Po-Shuan Huang
- Department of Biochemistry, College of Medicine, Chang Gung University, Taoyuan 333, Taiwan; (P.-S.H.); (C.-J.L.)
- Department of Biomedical Sciences, College of Medicine, Chang-Gung University, Taoyuan 333, Taiwan
| | - Chia-Jung Liao
- Department of Biochemistry, College of Medicine, Chang Gung University, Taoyuan 333, Taiwan; (P.-S.H.); (C.-J.L.)
- Department of Biomedical Sciences, College of Medicine, Chang-Gung University, Taoyuan 333, Taiwan
| | - Ya-Hui Huang
- Liver Research Center, Chang Gung Memorial Hospital, Taoyuan 333, Taiwan; (Y.-H.H.); (C.-T.Y.)
| | - Chau-Ting Yeh
- Liver Research Center, Chang Gung Memorial Hospital, Taoyuan 333, Taiwan; (Y.-H.H.); (C.-T.Y.)
| | - Cheng-Yi Chen
- Department of Cell Biology and Anatomy, College of Medicine, National Cheng Kung University, Tainan 701, Taiwan;
| | - Hui-Chi Tang
- Department of Biochemistry and Molecular Biology, McGovern Medical School, University of Texas Health Science Center at Houston, Houston, TX 77030, USA;
| | - Cheng-Chih Chang
- Department of General Surgery, Chang Gung Memorial Hospital at Chia-yi, Chia-yi 613, Taiwan
| | - Kwang-Huei Lin
- Department of Biochemistry, College of Medicine, Chang Gung University, Taoyuan 333, Taiwan; (P.-S.H.); (C.-J.L.)
- Department of Biomedical Sciences, College of Medicine, Chang-Gung University, Taoyuan 333, Taiwan
- Liver Research Center, Chang Gung Memorial Hospital, Taoyuan 333, Taiwan; (Y.-H.H.); (C.-T.Y.)
- Research Center for Chinese Herbal Medicine, College of Human Ecology, Chang Gung University of Science and Technology, Taoyuan 333, Taiwan
| |
Collapse
|
5
|
Abstract
Gastric cancer (GC) is one of the most common malignant tumors. The mechanism of how GC develops is vague, and therapies are inefficient. The function of microRNAs (miRNAs) in tumorigenesis has attracted the attention from many scientists. During the development of GC, miRNAs function in the regulation of different phenotypes, such as proliferation, apoptosis, invasion and metastasis, drug sensitivity and resistance, and stem-cell-like properties. MiRNAs were evaluated for use in diagnostic and prognostic predictions and exhibited considerable accuracy. Although many problems exist for the application of therapy, current studies showed the antitumor effects of miRNAs. This paper reviews recent advances in miRNA mechanisms in the development of GC and the potential use of miRNAs in the diagnosis and treatment of GC.
Collapse
|
6
|
Khan K, Quispe C, Javed Z, Iqbal MJ, Sadia H, Raza S, Irshad A, Salehi B, Reiner Ž, Sharifi-Rad J. Resveratrol, curcumin, paclitaxel and miRNAs mediated regulation of PI3K/Akt/mTOR pathway: go four better to treat bladder cancer. Cancer Cell Int 2020; 20:560. [PMID: 33292283 PMCID: PMC7685642 DOI: 10.1186/s12935-020-01660-7] [Citation(s) in RCA: 39] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2020] [Accepted: 11/16/2020] [Indexed: 02/06/2023] Open
Abstract
Bladder cancer (BC) is a leading cause of death among urothelial malignancies that more commonly affect male population. Poor prognosis and resistance to chemotherapy are the two most important characteristics of this disease. PI3K/Akt/mTOR signaling pathway has been considered pivotal in the regulation of proliferation, migration, invasiveness, and metastasis. Deregulation of PI3K/Akt/mTOR signaling has been found in 40% of bladder cancers. Several microRNAs (miRNAs) have been reported to interact with the PI3K/Akt/mTOR signaling pathway with a different possible role in proliferation and apoptosis in bladder cancer. Thus, miRNAs can be used as potential biomarkers for BC. Natural compounds have been in the spotlight for the past decade due to their effective anti-proliferative capabilities. However, little is known of its possible effects in bladder cancer. The aim of this review is to discuss the interplay between PI3K/Akt/mTOR, miRNAs, and natural compounds and emphasize the importance of miRNAs as biomarkers and resveratrol, curcumin and paclitaxel as a possible therapeutic approach against bladder cancer.
Collapse
Affiliation(s)
- Khushbukhat Khan
- Atta-Ur-Rahman School of Applied Biosciences (ASAB), National University of Sciences and Technology (NUST), Sector H-12, Islamabad, 44000, Pakistan
| | - Cristina Quispe
- Facultad de Ciencias de La Salud, Universidad Arturo Prat, Avda. Arturo Prat 2120, 1110939, Iquique, Chile
| | - Zeeshan Javed
- Lahore Garrison University, Main Campus, Sector C, Phase VI, DHA Lahore Pakistan, Lahore, Pakistan
| | - Muhammad Javed Iqbal
- Department of Biotechnology, Faculty of Sciences, University of Sialkot, Punjab, Pakistan
| | - Haleema Sadia
- Department of Biotechnology, BUITMS, Quetta, Pakistan
| | - Shahid Raza
- Lahore Garrison University, Main Campus, Sector C, Phase VI, DHA Lahore Pakistan, Lahore, Pakistan
| | - Asma Irshad
- Department of Life Sciences, University of Management Sciences, Lahore, Pakistan
| | - Bahare Salehi
- Medical Ethics and Law Research Center, Shahid Beheshti University of Medical Sciences, Tehran, Iran.
| | - Željko Reiner
- Department of Internal Medicine, School of Medicine, University Hospital Centre Zagreb, University of Zagreb, Zagreb, Croatia
| | - Javad Sharifi-Rad
- Phytochemistry Research Center, Shahid Beheshti University of Medical Sciences, Tehran, Iran.
| |
Collapse
|
7
|
Bajan S, Hutvagner G. RNA-Based Therapeutics: From Antisense Oligonucleotides to miRNAs. Cells 2020; 9:E137. [PMID: 31936122 PMCID: PMC7016530 DOI: 10.3390/cells9010137] [Citation(s) in RCA: 246] [Impact Index Per Article: 49.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2019] [Revised: 12/23/2019] [Accepted: 12/30/2019] [Indexed: 02/07/2023] Open
Abstract
The first therapeutic nucleic acid, a DNA oligonucleotide, was approved for clinical use in 1998. Twenty years later, in 2018, the first therapeutic RNA-based oligonucleotide was United States Food and Drug Administration (FDA) approved. This promises to be a rapidly expanding market, as many emerging biopharmaceutical companies are developing RNA interference (RNAi)-based, and RNA-based antisense oligonucleotide therapies. However, miRNA therapeutics are noticeably absent. miRNAs are regulatory RNAs that regulate gene expression. In disease states, the expression of many miRNAs is measurably altered. The potential of miRNAs as therapies and therapeutic targets has long been discussed and in the context of a wide variety of infections and diseases. Despite the great number of studies identifying miRNAs as potential therapeutic targets, only a handful of miRNA-targeting drugs (mimics or inhibitors) have entered clinical trials. In this review, we will discuss whether the investment in finding potential miRNA therapeutic targets has yielded feasible and practicable results, the benefits and obstacles of miRNAs as therapeutic targets, and the potential future of the field.
Collapse
Affiliation(s)
- Sarah Bajan
- Faculty of Science, University of Technology Sydney, Sydney, NSW 2000, Australia
- Health and Sport Science, University of Sunshine Coast, Sunshine Coast, QLD 4556, Australia
| | - Gyorgy Hutvagner
- School of Biomedical Engineering Faculty of Engineering and Information Technology, University of Technology Sydney, Sydney, NSW 2000, Australia
| |
Collapse
|
8
|
Choi RSY, Lai WYX, Lee LTC, Wong WLC, Pei XM, Tsang HF, Leung JJ, Cho WCS, Chu MKM, Wong EYL, Wong SCC. Current and future molecular diagnostics of gastric cancer. Expert Rev Mol Diagn 2019; 19:863-874. [PMID: 31448971 DOI: 10.1080/14737159.2019.1660645] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Introduction: Gastric cancer (GC) is the fifth most common cancer and confers the second-highest mortality among other cancers. Improving the survival rates of GC patients requires prompt and accurate diagnosis and effective treatment which is often preceded by the poorly understood pathogenic mechanisms. Area covered: This literature review aims to summarize current understanding of genetic and molecular alterations that promote carcinogenesis including (1) activation of oncogenes, (2) overexpression of growth factors, receptors and matrix metalloproteinases, (3) inactivation of tumor suppressor genes, DNA repair genes, and cell adhesion molecules and (4) alterations of cell-cycle regulators that regulate biological characteristics of cancer cells. Moreover, the significance of molecular biomarkers such as micro-RNAs (miRNAs) and long non-coding RNAs (lncRNAs) and advanced molecular techniques including droplet digital polymerase chain reaction (ddPCR), quantitative PCR (qPCR) and next-generation sequencing (NGS) are also discussed. Expert opinion: A GC-specific panel of biomarkers based on the NGS or ddPCR has the potential for diagnosis, prognosis, and monitoring treatment response in GC patients. Despite the requirements for validation in larger population in clinical studies, race-specific differences in the gene panel have also to be examined by performing the clinical trials in subjects with different races.
Collapse
Affiliation(s)
- Rachel Sin-Yu Choi
- Department of Health Technology and Informatics, Faculty of Health and Social Sciences, Hong Kong Polytechnic University , Hong Kong , Hong Kong Special Administrative Region, China
| | - Wing Yin Xenia Lai
- Department of Health Technology and Informatics, Faculty of Health and Social Sciences, Hong Kong Polytechnic University , Hong Kong , Hong Kong Special Administrative Region, China
| | - Lok Ting Claire Lee
- Department of Health Technology and Informatics, Faculty of Health and Social Sciences, Hong Kong Polytechnic University , Hong Kong , Hong Kong Special Administrative Region, China
| | - Wing Lam Christa Wong
- Department of Health Technology and Informatics, Faculty of Health and Social Sciences, Hong Kong Polytechnic University , Hong Kong , Hong Kong Special Administrative Region, China
| | - Xiao Meng Pei
- Department of Health Technology and Informatics, Faculty of Health and Social Sciences, Hong Kong Polytechnic University , Hong Kong , Hong Kong Special Administrative Region, China
| | - Hin Fung Tsang
- Department of Health Technology and Informatics, Faculty of Health and Social Sciences, Hong Kong Polytechnic University , Hong Kong , Hong Kong Special Administrative Region, China
| | - Joel Johnson Leung
- Department of Health Technology and Informatics, Faculty of Health and Social Sciences, Hong Kong Polytechnic University , Hong Kong , Hong Kong Special Administrative Region, China
| | - William Chi Shing Cho
- Department of Clinical Oncology, Queen Elizabeth Hospital , Kowloon , Hong Kong Special Administrative Region, China
| | - Man Kee Maggie Chu
- Division of Life Science, The Hong Kong University of Science and Technology , Clear Water Bay , Hong Kong Special Administrative Region, China
| | - Elaine Yue Ling Wong
- Department of Health Technology and Informatics, Faculty of Health and Social Sciences, Hong Kong Polytechnic University , Hong Kong , Hong Kong Special Administrative Region, China
| | - Sze Chuen Cesar Wong
- Department of Health Technology and Informatics, Faculty of Health and Social Sciences, Hong Kong Polytechnic University , Hong Kong , Hong Kong Special Administrative Region, China
| |
Collapse
|
9
|
MicroRNA-15a tissue expression is a prognostic marker for survival in patients with clear cell renal cell carcinoma. Clin Exp Med 2019; 19:515-524. [DOI: 10.1007/s10238-019-00574-7] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2019] [Accepted: 08/05/2019] [Indexed: 12/19/2022]
|
10
|
MicroRNA-34a-5p suppresses tumorigenesis and progression of glioma and potentiates Temozolomide-induced cytotoxicity for glioma cells by targeting HMGA2. Eur J Pharmacol 2019; 852:42-50. [PMID: 30851271 DOI: 10.1016/j.ejphar.2019.03.005] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2018] [Revised: 02/27/2019] [Accepted: 03/06/2019] [Indexed: 02/08/2023]
Abstract
Glioma is a frequently diagnosed brain tumors and Temozolomide (TMZ) is a common chemotherapeutic drug for glioma. High mobility group AT-hook 2 (HMGA2) was reported to be linked with glioma pathogenesis and Temozolomide (TMZ)-induced cytotoxicity. Our present study aimed to further search for the upstream regulatory microRNAs (miRNAs) of HMGA2 in glioma. RT-qPCR assay was conducted to measure the expression of HMGA2 mRNA and microRNA-34a-5p (miR-34a-5p). HMGA2 protein expression was examined by western blot assay. Cell proliferative ability and cell viability was assessed by CCK-8 assay. Cell migratory and invasive capacities were estimated by Transwell migration and invasion assay. Bioinformatics analysis and luciferase reporter assay was conducted to investigate the potential interaction between miR-34a-5p and HMGA2. Mouse xenograft experiments were performed to further test the roles of TMZ, miR-34a-5p and HMGA2, alone or in combination, in glioma tumorigenesis in vivo. We found HMGA2 expression was notably upregulated in glioma tissues and cells, and associated with glioma grade and poor prognosis. HMGA2 knockdown or miR-34a-5p overexpression inhibited migration, invasion, proliferation and enhanced TMZ-induced cytotoxicity in glioma cells. Moreover, HMGA2 was a target of miR-34a-5p. And, miR-34a-5p expression was remarkably reduced in glioma tissues and cells. MiR-34a-5p exerted its function through targeting HMGA2 in glioma cells. HMGA2 knockdown or miR-34a-5p overexpression inhibited tumor growth and enhanced TMZ-mediated anti-tumor effect in glioma xenograft models. We concluded MiR-34a-5p suppressed tumorigenesis and progression of glioma and potentiated TMZ-induced cytotoxicity for glioma cells by targeting HMGA2, deepening our understanding on molecular basis of HMGA2 in glioma.
Collapse
|
11
|
Chua CEL, Tang BL. miR-34a in Neurophysiology and Neuropathology. J Mol Neurosci 2018; 67:235-246. [DOI: 10.1007/s12031-018-1231-y] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2018] [Accepted: 11/22/2018] [Indexed: 12/28/2022]
|
12
|
Gasparri ML, Besharat ZM, Farooqi AA, Khalid S, Taghavi K, Besharat RA, Sabato C, Papadia A, Panici PB, Mueller MD, Ferretti E. MiRNAs and their interplay with PI3K/AKT/mTOR pathway in ovarian cancer cells: a potential role in platinum resistance. J Cancer Res Clin Oncol 2018; 144:2313-2318. [PMID: 30109500 DOI: 10.1007/s00432-018-2737-y] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2018] [Accepted: 08/09/2018] [Indexed: 01/08/2023]
Abstract
Ovarian cancer is a leading cause of death among gynecologic malignancies. This disappointing prognosis is closely related to intrinsic or acquired resistance to conventional platinum-based chemotherapy, which can affect a third of patients. As such, investigating relevant molecular targets is crucial in the fight against this disease. So far, many mutations involved in ovarian cancer pathogenesis have been identified. Among them, a few pathways were implicated. One such pathway is the P13K/AKT/mTOR with abnormalities found in many cases. This pathway is considered to have an instrumental role in proliferation, migration, invasion and, more recently, in chemotherapy resistance. Many miRNAs have been found to influence P13K/AKT/mTOR pathway with different potential role in tumor genesis and ovarian cancer behaviour. In particular, their biological function was recently investigated as regards chemoresistance, therefore, leading to the identification of potential specific indirect biomarker of platinum sensitivity in ovarian cancer.
Collapse
Affiliation(s)
- Maria Luisa Gasparri
- Department of Gynecology Obstetrics and Urology, Sapienza University of Rome, Rome, Italy. .,Department of Obstetrics and Gynecology, University Hospital of Bern, University of Bern, Bern, Switzerland. .,Surgical and Medical Department of Translational Medicine, Sapienza University of Rome, Rome, Italy.
| | | | | | - Sumbul Khalid
- Department of Bioinformatics and Biotechnology, International Islamic University, Islamabad, Pakistan
| | - Katayoun Taghavi
- Department of Obstetrics and Gynecology, University Hospital of Bern, University of Bern, Bern, Switzerland
| | - Raad Aris Besharat
- Department of Gynecology Obstetrics and Urology, Sapienza University of Rome, Rome, Italy
| | - Claudia Sabato
- Department of Molecular Medicine, Sapienza University of Rome, Rome, Italy.,Center for Life NanoScience@Sapienza, Istituto Italiano di Tecnologia, Rome, Italy
| | - Andrea Papadia
- Department of Obstetrics and Gynecology, University Hospital of Bern, University of Bern, Bern, Switzerland
| | | | - Michael David Mueller
- Department of Obstetrics and Gynecology, University Hospital of Bern, University of Bern, Bern, Switzerland
| | - Elisabetta Ferretti
- Department of Experimental Medicine, Sapienza University of Rome, Rome, Italy.,IRCCS Neuromed, Pozzilli, Italy
| |
Collapse
|
13
|
Hong L, Wang Y, Chen W, Yang S. MicroRNA-508 suppresses epithelial-mesenchymal transition, migration, and invasion of ovarian cancer cells through the MAPK1/ERK signaling pathway. J Cell Biochem 2018; 119:7431-7440. [PMID: 29781537 DOI: 10.1002/jcb.27052] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2017] [Accepted: 04/23/2018] [Indexed: 01/02/2023]
Abstract
Ovarian cancer (OC) is the sixth most common cancer in women worldwide. Despite advances in detection and therapies, it still represents the most lethal gynecologic malignancy in the industrialized countries. Unfortunately, the molecular events that lead to the development of this highly aggressive disease remain largely unknown. The study explored the ability of microRNA-508 (miR-508) to influence proliferation, migration, invasion, and epithelial-mesenchymal transition (EMT) in OC cells. We quantified the level of miR-508 cancer tissues with corresponding adjacent normal tissues collected from 84 patients with OC. Human OC cells SKOV3 and A2780 were treated with negative control (NC), miR-508 mimics, miR-508 inhibitors, and miR-508 inhibitors + a specific MAPK/ERK kinase inhibitor (PD98059) to validate the interaction between miR-508 and MAPK/ERK signaling. The miR-508 expression level was lower while MAPK1 and ERK expression levels were higher in the cancer tissues than in the adjacent normal tissues. Dual-luciferase reporter assay indicated MAPK1 as a target gene of miR-508. The miR-508 mimics reduced the expression of MAPK1, p-MAPK1, ERK, p-ERK and Vimentin, inhibited cell proliferation, migration and invasion, and increased the expression of E-cadherin, while the miR-508 inhibitors resulted in an opposed trend in OC cells. The effects of miR-508 inhibitors on OC cells were lost when the MAPK1/ERK signaling pathway was inhibited by PD98059. Collectively, our data indicate that miR-508 plays a tumor suppressor role in the development and progression of OC and may be a novel therapeutic target against OC.
Collapse
Affiliation(s)
- Lan Hong
- Department of Gynecology and Obstetrics, Zhujiang Hospital of Southern Medical University, Guangzhou, P. R. China.,Department of Gynecology, Hainan General Hospital, Haikou, P. R. China
| | - Yifeng Wang
- Department of Gynecology and Obstetrics, Zhujiang Hospital of Southern Medical University, Guangzhou, P. R. China
| | - Wangsheng Chen
- Department of Radiology, Hainan General Hospital, Haikou, P. R. China
| | - Shuying Yang
- Department of Gynecology, Hainan General Hospital, Haikou, P. R. China
| |
Collapse
|
14
|
Schliesser MG, Claus R, Hielscher T, Grimm C, Weichenhan D, Blaes J, Wiestler B, Hau P, Schramm J, Sahm F, Weiß EK, Weiler M, Baer C, Schmidt-Graf F, Schackert G, Westphal M, Hertenstein A, Roth P, Galldiks N, Hartmann C, Pietsch T, Felsberg J, Reifenberger G, Sabel MC, Winkler F, von Deimling A, Meisner C, Vajkoczy P, Platten M, Weller M, Plass C, Wick W. Prognostic relevance of miRNA-155 methylation in anaplastic glioma. Oncotarget 2018; 7:82028-82045. [PMID: 27880937 PMCID: PMC5347671 DOI: 10.18632/oncotarget.13452] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2016] [Accepted: 09/13/2016] [Indexed: 02/03/2023] Open
Abstract
The outcome of patients with anaplastic gliomas varies considerably depending on single molecular markers, such as mutations of the isocitrate dehydrogenase (IDH) genes, as well as molecular classifications based on epigenetic or genetic profiles. Remarkably, 98% of the RNA within a cell is not translated into proteins. Of those, especially microRNAs (miRNAs) have been shown not only to have a major influence on physiologic processes but also to be deregulated and prognostic in malignancies.To find novel survival markers and treatment options we performed unbiased DNA methylation screens that revealed 12 putative miRNA promoter regions with differential DNA methylation in anaplastic gliomas. Methylation of these candidate regions was validated in different independent patient cohorts revealing a set of miRNA promoter regions with prognostic relevance across data sets. Of those, miR-155 promoter methylation and miR-155 expression were negatively correlated and especially the methylation showed superior correlation with patient survival compared to established biomarkers.Functional examinations in malignant glioma cells further cemented the relevance of miR-155 for tumor cell viability with transient and stable modifications indicating an onco-miRNA activity. MiR-155 also conferred resistance towards alkylating temozolomide and radiotherapy as consequence of nuclear factor (NF)κB activation.Preconditioning glioma cells with an NFκB inhibitor reduced therapy resistance of miR-155 overexpressing cells. These cells resembled tumors with a low methylation of the miR-155 promoter and thus mir-155 or NFκB inhibition may provide treatment options with a special focus on patients with IDH wild type tumors.
Collapse
Affiliation(s)
- Maximilian Georg Schliesser
- Department of Neurology, Heidelberg University Hospital and German Cancer Consortium, Clinical Cooperation Units, Germany.,Clinical Cooperation Unit of Neurooncology, German Cancer Research Center (DKFZ), Heidelberg, Germany
| | - Rainer Claus
- Division of Epigenomics and Cancer Risk Factors, German Cancer Research Center (DKFZ), Heidelberg, Germany.,Department of Diagnostic and Interventional Neuroradiology, Klinikum rechts der Isar der Technischen Universität München, Munich, Germany
| | - Thomas Hielscher
- Division of Biostatistics, German Cancer Research Center (DKFZ), Heidelberg, Germany
| | - Christiane Grimm
- Department of Neurology, Heidelberg University Hospital and German Cancer Consortium, Clinical Cooperation Units, Germany.,Clinical Cooperation Unit of Neurooncology, German Cancer Research Center (DKFZ), Heidelberg, Germany
| | - Dieter Weichenhan
- Division of Epigenomics and Cancer Risk Factors, German Cancer Research Center (DKFZ), Heidelberg, Germany
| | - Jonas Blaes
- Clinical Cooperation Unit of Neurooncology, German Cancer Research Center (DKFZ), Heidelberg, Germany
| | - Benedikt Wiestler
- Department of Neurology, Heidelberg University Hospital and German Cancer Consortium, Clinical Cooperation Units, Germany.,Clinical Cooperation Unit of Neurooncology, German Cancer Research Center (DKFZ), Heidelberg, Germany
| | - Peter Hau
- Neurology Clinic, Regensburg University, Regensburg, Germany
| | - Johannes Schramm
- Neurosurgery Clinic, University of Bonn Medical Center, TU Munich, Munich, Germany
| | - Felix Sahm
- Department of Neuropathology, Heidelberg University Hospital and German Cancer Consortium, Clinical Cooperation Units, Germany.,Clinical Cooperation Unit of Neuropathology, German Cancer Research Center (DKFZ), Heidelberg, Germany
| | - Elisa K Weiß
- Department of Neurology, Heidelberg University Hospital and German Cancer Consortium, Clinical Cooperation Units, Germany.,Clinical Cooperation Unit of Neurooncology, German Cancer Research Center (DKFZ), Heidelberg, Germany
| | - Markus Weiler
- Department of Neurology, Heidelberg University Hospital and German Cancer Consortium, Clinical Cooperation Units, Germany.,Clinical Cooperation Unit of Neurooncology, German Cancer Research Center (DKFZ), Heidelberg, Germany.,Department of General Neurology, University Hospital Tübingen, Germany
| | - Constance Baer
- Division of Epigenomics and Cancer Risk Factors, German Cancer Research Center (DKFZ), Heidelberg, Germany
| | - Friederike Schmidt-Graf
- Department of General Neurology, University Hospital Tübingen, Germany.,Neurology Clinic, TU Munich, Munich, Germany
| | | | - Manfred Westphal
- Neurosurgery Clinic, University Clinic Hamburg, Eppendorf, Germany
| | - Anne Hertenstein
- Department of Neurology, Heidelberg University Hospital and German Cancer Consortium, Clinical Cooperation Units, Germany.,Clinical Cooperation Unit of Neurooncology, German Cancer Research Center (DKFZ), Heidelberg, Germany
| | - Patrick Roth
- Department of General Neurology, University Hospital Tübingen, Germany.,Department of Neurology, University Hospital Zurich, Zurich, Switzerland
| | | | - Christian Hartmann
- Department of Neuropathology, Heidelberg University Hospital and German Cancer Consortium, Clinical Cooperation Units, Germany.,Clinical Cooperation Unit of Neuropathology, German Cancer Research Center (DKFZ), Heidelberg, Germany.,Department for Neuropathology, Institute of Pathology, Medical University of Hannover, Hannover, Germany
| | - Torsten Pietsch
- Department of Neuropathology, Heinrich-Heine-University, Germany
| | - Joerg Felsberg
- Department of Neurosurgery, Heinrich-Heine-University, Germany.,Neurosurgery Clinic, Charité, Berlin, Germany
| | - Guido Reifenberger
- Department of Neurosurgery, Heinrich-Heine-University, Germany.,Neurosurgery Clinic, Charité, Berlin, Germany
| | | | - Frank Winkler
- Department of Neurology, Heidelberg University Hospital and German Cancer Consortium, Clinical Cooperation Units, Germany.,Clinical Cooperation Unit of Neurooncology, German Cancer Research Center (DKFZ), Heidelberg, Germany
| | - Andreas von Deimling
- Department of Neuropathology, Heidelberg University Hospital and German Cancer Consortium, Clinical Cooperation Units, Germany.,Clinical Cooperation Unit of Neuropathology, German Cancer Research Center (DKFZ), Heidelberg, Germany
| | | | - Peter Vajkoczy
- Department Hematology, Oncology and Stem Cell Transplantation, University Hospital Freiburg, Germany
| | - Michael Platten
- Department of Neurology, Heidelberg University Hospital and German Cancer Consortium, Clinical Cooperation Units, Germany.,Clinical Cooperation Unit of Neuroimmunology and Brain Tumor Immunology, German Cancer Research Center (DKFZ), Heidelberg, Germany.,Department of General Neurology, University Hospital Tübingen, Germany
| | - Michael Weller
- Department of General Neurology, University Hospital Tübingen, Germany.,Department of Neurology, University Hospital Zurich, Zurich, Switzerland
| | - Christoph Plass
- Division of Epigenomics and Cancer Risk Factors, German Cancer Research Center (DKFZ), Heidelberg, Germany
| | - Wolfgang Wick
- Department of Neurology, Heidelberg University Hospital and German Cancer Consortium, Clinical Cooperation Units, Germany.,Clinical Cooperation Unit of Neurooncology, German Cancer Research Center (DKFZ), Heidelberg, Germany.,Department of General Neurology, University Hospital Tübingen, Germany
| |
Collapse
|
15
|
Shao D, Wang C, Sun Y, Cui L. Effects of oral implants with miR‑122‑modified cell sheets on rat bone marrow mesenchymal stem cells. Mol Med Rep 2017; 17:1537-1544. [PMID: 29257226 PMCID: PMC5780093 DOI: 10.3892/mmr.2017.8094] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2017] [Accepted: 09/22/2017] [Indexed: 02/06/2023] Open
Abstract
The aim of the present study was to regulate the transformation of bone marrow mesenchymal stem cells (BMMSCs) to osteoblasts to promote bone formation and osseointegration surrounding oral implants. BMMSCs were cultured using the whole bone marrow adherence method. Cell surface markers were detected by flow cytometry, and multi‑lineage differentiation potential was detected by osteogenic and adipogenic tests. miR‑122‑modified cell sheets were prepared by non‑viral transfection and complexed with micro‑arc titanium oxide implants to construct a gene‑modified tissue‑engineered implant, with its surface morphology observed by scanning electron microscopy (SEM). In vitro osteogenic activity of the implant was determined by alkaline phosphatase (ALP), Sirius Red, alizarin red staining, polymerase chain reaction and western blot analysis. The BMMSCs were spindle‑ or triangular‑shaped. Surface markers, cluster of differentiation 29 (CD29), CD90 and CD105 were positively expressed, whereas blood cell markers CD34, CD45 and CD31 were negatively expressed. Osteogenic staining exhibited deposition of calcified nodules, while adipogenic staining demonstrated the formation of lipid droplets. miR‑122 modification significantly enhanced the in vitro osteogenic activity of the sheets. On day 3 of osteogenic induction, runt-related transcription factor 2, osterix, osteocalcin, collagen I, ALP and bone morphogenetic protein 2 expression levels of the experimental group were 2.0, 3.1, 4.6, 3.2, 10.5 and 4.5 times those of the blank control group, respectively. SEM imaging of the modified sheet demonstrated close adhesion and fitting between abundant cellular and extracellular matrices, and the porous surface of the implant. In vitro osteogenesis of the complex was promoted and accelerated. Thus, miR‑122 effectively promoted osteogenic differentiation of the BMMSC sheet. Therefore, it is feasible to construct gene‑modified tissue‑engineered implants by complexing miR‑122‑modified sheets with micro‑arc titanium oxide implants.
Collapse
Affiliation(s)
- Dan Shao
- Department of Stomatology, The First People's Hospital of Qingdao Economic and Technological Development Zone, Qingdao, Shandong 266555, P.R. China
| | - Chunfang Wang
- Department of Stomatology, The First People's Hospital of Qingdao Economic and Technological Development Zone, Qingdao, Shandong 266555, P.R. China
| | - Yaping Sun
- Department of Stomatology, The First People's Hospital of Qingdao Economic and Technological Development Zone, Qingdao, Shandong 266555, P.R. China
| | - Lei Cui
- Department of Stomatology, The First People's Hospital of Qingdao Economic and Technological Development Zone, Qingdao, Shandong 266555, P.R. China
| |
Collapse
|
16
|
Gothelf Y, Kaspi H, Abramov N, Aricha R. miRNA profiling of NurOwn®: mesenchymal stem cells secreting neurotrophic factors. Stem Cell Res Ther 2017; 8:249. [PMID: 29116031 PMCID: PMC5678806 DOI: 10.1186/s13287-017-0692-1] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2017] [Revised: 09/05/2017] [Accepted: 10/09/2017] [Indexed: 01/22/2023] Open
Abstract
BACKGROUND MSC-NTF cells are Mesenchymal Stromal Cells (MSC) induced to express high levels of neurotrophic factors (NTFs) using a culture-medium based approach. MSC-NTF cells have been successfully studied in clinical trials for Amyotrophic Lateral Sclerosis (ALS) patients. MicroRNAs (miRNA) are short non-coding RNA molecules that coordinate post-transcriptional regulation of multiple gene targets. The purpose of this study was to determine whether the miRNA profile could provide a tool for MSC-NTF cell characterization and to distinguish them from the matched MSC from which they are derived. METHODS NTF secretion in the culture supernatant of MSC-NTF cells was evaluated by ELISA assays. The Agilent microarray miRNA platform was used for pairwise comparisons of MSC-NTF cells to MSC. The differentially expressed miRNAs and putative mRNA targets were validated using qPCR analyses. RESULTS Principal component analysis revealed two distinct clusters based on cell type (MSC and MSC-NTFs). Nineteen miRNAs were found to be upregulated and 22 miRNAs were downregulated in MSC-NTF cells relative to the MSC cells of origin. Further validation of differentially expressed miRNAs confirmed that miR-3663 and miR-132 were increased 18.5- and 4.06-fold, respectively while hsa-miR-503 was reduced more than 15-fold, suggesting that miRNAs could form the basis of an MSC-NTF cell characterization assay. In an analysis of the miRNA mRNA targets, three mRNA targets of hsa-miR-132-3p (HN-1, RASA1 and KLH-L11) were found to be significantly downregulated. CONCLUSIONS We have demonstrated that MSC-NTF cells can be distinguished from their MSCs of origin by a unique miRNA expression profile. TRIAL REGISTRATION Clinicaltrial.gov identifier NCT01777646 . Registered 12 December 2012.
Collapse
Affiliation(s)
- Yael Gothelf
- BrainStorm Cell Therapeutics Ltd., 12 Bazel St., POB 10019, Kiryat Arieh, Petach-Tikva, 4900101, Israel.
| | - Haggai Kaspi
- BrainStorm Cell Therapeutics Ltd., 12 Bazel St., POB 10019, Kiryat Arieh, Petach-Tikva, 4900101, Israel
| | - Natalie Abramov
- BrainStorm Cell Therapeutics Ltd., 12 Bazel St., POB 10019, Kiryat Arieh, Petach-Tikva, 4900101, Israel
| | - Revital Aricha
- BrainStorm Cell Therapeutics Ltd., 12 Bazel St., POB 10019, Kiryat Arieh, Petach-Tikva, 4900101, Israel
| |
Collapse
|
17
|
MicroRNA-34a: A Versatile Regulator of Myriads of Targets in Different Cancers. Int J Mol Sci 2017; 18:ijms18102089. [PMID: 29036883 PMCID: PMC5666771 DOI: 10.3390/ijms18102089] [Citation(s) in RCA: 45] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2017] [Revised: 09/24/2017] [Accepted: 09/25/2017] [Indexed: 12/22/2022] Open
Abstract
MicroRNA-34a (miR-34a) is a tumor suppressor that has attracted considerable attention in recent years. It modulates cancer cell invasion, metastasis, and drug resistance, and has also been evaluated as a diagnostic and/or prognostic biomarker. A number of targets of miR-34a have been identified, including some other non-coding RNAs, and it is believed that the modulation of these myriads of targets underlines the versatile role of miR-34a in cancer progression and pathogenesis. Seemingly appealing results from preclinical studies have advocated the testing of miR-34a in clinical trials. However, the results obtained are not very encouraging and there is a need to re-interpret how miR-34a behaves in a context dependent manner in different cancers. In this review, we have attempted to summarize the most recent evidence related to the regulation of different genes and non-coding RNAs by miR-34a and the advances in the field of nanotechnology for the targeted delivery of miR-34a-based therapeutics and mimics. With the emergence of data that contradicts miR-34a’s tumor suppressive function, it is important to understand miR-34a’s precise functioning, with the aim to establish its role in personalized medicine and to apply this knowledge for the identification of individual patients that are likely to benefit from miR-34a-based therapy.
Collapse
|
18
|
Hao NB, He YF, Li XQ, Wang K, Wang RL. The role of miRNA and lncRNA in gastric cancer. Oncotarget 2017; 8:81572-81582. [PMID: 29113415 PMCID: PMC5655310 DOI: 10.18632/oncotarget.19197] [Citation(s) in RCA: 179] [Impact Index Per Article: 22.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2017] [Accepted: 06/20/2017] [Indexed: 12/14/2022] Open
Abstract
Gastric cancer is one of the most common cancers and has the highest mortality rate worldwide. It is worthwhile to explore the mechanism of gastric cancer progression. An increasing number of studies have found that non-coding RNAs including miRNA and lncRNA play important roles in gastric cancer progression. This review summarized the role of ectopic miRNA in gastric cancer proliferation, growth, migration, invasion and apoptosis. Meantime, aberrantly expressed miRNA also received a great deal of attention as potential biomarker for gastric cancer diagnosis and therapy. Over the last decade, lncRNA was considered to regulate gastric cancer progression at the transcript and post-transcript level. At the transcript level, lncRNA induced gastric cancer progression by changing chromatin modification and mRNA stabilization to regulate mRNA and miRNA expression. Furthermore, lncRNA regulated gastric cancer progression by completely combining with miRNA to produce ceRNA or promote protein stabilization at the post-transcript level. Greater attention of miRNA and lncRNA in gastric cancer can provide new insight of mechanism of cancer development and may be acted as a new anticancer target.
Collapse
Affiliation(s)
- Ning-Bo Hao
- Department of Gastroenterology, General Hospital of the PLA Rocket Force, Beijing, China
| | - Ya-Fei He
- Intensive Medical Center, 302 Hospital of PLA, Beijing, China
| | - Xiao-Qin Li
- Department of Ophthalmology, General Hospital of the PLA Rocket Force, Beijing, China
| | - Kai Wang
- New Era Stoke Care and Research Institute, General Hospital of the PLA Rocket Force, Beijing, China
| | - Rui-Ling Wang
- Department of Gastroenterology, General Hospital of the PLA Rocket Force, Beijing, China
| |
Collapse
|
19
|
Martiáñez Canales T, de Leeuw DC, Vermue E, Ossenkoppele GJ, Smit L. Specific Depletion of Leukemic Stem Cells: Can MicroRNAs Make the Difference? Cancers (Basel) 2017; 9:cancers9070074. [PMID: 28665351 PMCID: PMC5532610 DOI: 10.3390/cancers9070074] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2017] [Revised: 06/15/2017] [Accepted: 06/20/2017] [Indexed: 01/22/2023] Open
Abstract
For over 40 years the standard treatment for acute myeloid leukemia (AML) patients has been a combination of chemotherapy consisting of cytarabine and an anthracycline such as daunorubicin. This standard treatment results in complete remission (CR) in the majority of AML patients. However, despite these high CR rates, only 30–40% (<60 years) and 10–20% (>60 years) of patients survive five years after diagnosis. The main cause of this treatment failure is insufficient eradication of a subpopulation of chemotherapy resistant leukemic cells with stem cell-like properties, often referred to as “leukemic stem cells” (LSCs). LSCs co-exist in the bone marrow of the AML patient with residual healthy hematopoietic stem cells (HSCs), which are needed to reconstitute the blood after therapy. To prevent relapse, development of additional therapies targeting LSCs, while sparing HSCs, is essential. As LSCs are rare, heterogeneous and dynamic, these cells are extremely difficult to target by single gene therapies. Modulation of miRNAs and consequently the regulation of hundreds of their targets may be the key to successful elimination of resistant LSCs, either by inducing apoptosis or by sensitizing them for chemotherapy. To address the need for specific targeting of LSCs, miRNA expression patterns in highly enriched HSCs, LSCs, and leukemic progenitors, all derived from the same patients’ bone marrow, were determined and differentially expressed miRNAs between LSCs and HSCs and between LSCs and leukemic progenitors were identified. Several of these miRNAs are specifically expressed in LSCs and/or HSCs and associated with AML prognosis and treatment outcome. In this review, we will focus on the expression and function of miRNAs expressed in normal and leukemic stem cells that are residing within the AML bone marrow. Moreover, we will review their possible prospective as specific targets for anti-LSC therapy.
Collapse
Affiliation(s)
- Tania Martiáñez Canales
- Department of Hematology, VU University Medical Center, Cancer Center Amsterdam, Boelelaan 1117, 1081 HV Amsterdam, The Netherlands.
| | - David C de Leeuw
- Department of Hematology, VU University Medical Center, Cancer Center Amsterdam, Boelelaan 1117, 1081 HV Amsterdam, The Netherlands.
| | - Eline Vermue
- Department of Hematology, VU University Medical Center, Cancer Center Amsterdam, Boelelaan 1117, 1081 HV Amsterdam, The Netherlands.
| | - Gert J Ossenkoppele
- Department of Hematology, VU University Medical Center, Cancer Center Amsterdam, Boelelaan 1117, 1081 HV Amsterdam, The Netherlands.
| | - Linda Smit
- Department of Hematology, VU University Medical Center, Cancer Center Amsterdam, Boelelaan 1117, 1081 HV Amsterdam, The Netherlands.
| |
Collapse
|
20
|
Gasparri ML, Casorelli A, Bardhi E, Besharat AR, Savone D, Ruscito I, Farooqi AA, Papadia A, Mueller MD, Ferretti E, Benedetti Panici P. Beyond circulating microRNA biomarkers: Urinary microRNAs in ovarian and breast cancer. Tumour Biol 2017; 39:1010428317695525. [PMID: 28459207 DOI: 10.1177/1010428317695525] [Citation(s) in RCA: 39] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
Breast cancer is the most common malignancy in women worldwide, and ovarian cancer is the most lethal gynecological malignancy. Women carrying a BRCA1/2 mutation have a very high lifetime risk of developing breast and ovarian cancer. The only effective risk-reducing strategy in BRCA-mutated women is a prophylactic surgery with bilateral mastectomy and bilateral salpingo-oophorectomy. However, many women are reluctant to undergo these prophylactic surgeries due to a consequent mutilated body perception, unfulfilled family planning, and precocious menopause. In these patients, an effective screening strategy is available only for breast cancer, but it only consists in close radiological exams with a significant burden for the health system and a significant distress to the patients. No biomarkers have been shown to effectively detect breast and ovarian cancer at an early stage. MicroRNAs (miRNAs) are key regulatory molecules operating in a post-transcriptional regulation of gene expression. Aberrant expression of miRNAs has been documented in several pathological conditions, including solid tumors, suggesting their involvement in tumorigenesis. miRNAs can be detected in blood and urine and could be used as biomarkers in solid tumors. Encouraging results are emerging in gynecological malignancy as well, and suggest a different pattern of expression of miRNAs in biological fluids of breast and ovarian cancer patients as compared to healthy control. Aim of this study is to highlight the role of the urinary miRNAs which are specifically associated with cancer and to investigate their role in early diagnosis and in determining the prognosis in breast and ovarian cancer.
Collapse
Affiliation(s)
- Maria Luisa Gasparri
- 1 Department of Gynecology, Obstetrics and Urology, Sapienza University of Rome, Rome, Italy.,2 Department of Obstetrics and Gynecology, University Hospital of Berne, University of Berne, Berne, Switzerland
| | - Assunta Casorelli
- 1 Department of Gynecology, Obstetrics and Urology, Sapienza University of Rome, Rome, Italy
| | - Erlisa Bardhi
- 1 Department of Gynecology, Obstetrics and Urology, Sapienza University of Rome, Rome, Italy
| | - Aris Raad Besharat
- 1 Department of Gynecology, Obstetrics and Urology, Sapienza University of Rome, Rome, Italy
| | - Delia Savone
- 1 Department of Gynecology, Obstetrics and Urology, Sapienza University of Rome, Rome, Italy
| | - Ilary Ruscito
- 1 Department of Gynecology, Obstetrics and Urology, Sapienza University of Rome, Rome, Italy
| | - Ammad Ahmad Farooqi
- 3 Institute of Biomedical and Genetic Engineering (IBGE), Islamabad, Pakistan
| | - Andrea Papadia
- 2 Department of Obstetrics and Gynecology, University Hospital of Berne, University of Berne, Berne, Switzerland
| | - Michael David Mueller
- 2 Department of Obstetrics and Gynecology, University Hospital of Berne, University of Berne, Berne, Switzerland
| | - Elisabetta Ferretti
- 4 Department of Experimental Medicine, Sapienza University of Rome, Rome, Italy.,5 Neuromed Institute, Pozzilli, Italy
| | | |
Collapse
|
21
|
Shiina M, Hashimoto Y, Kato T, Yamamura S, Tanaka Y, Majid S, Saini S, Varahram S, Kulkarni P, Dasgupta P, Mitsui Y, Sumida M, Tabatabai L, Deng G, Kumar D, Dahiya R. Differential expression of miR-34b and androgen receptor pathway regulate prostate cancer aggressiveness between African-Americans and Caucasians. Oncotarget 2017; 8:8356-8368. [PMID: 28039468 PMCID: PMC5352406 DOI: 10.18632/oncotarget.14198] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2016] [Accepted: 11/23/2016] [Indexed: 11/25/2022] Open
Abstract
African-Americans are diagnosed with more aggressive prostate cancers and have worse survival than Caucasians, however a comprehensive understanding of this health disparity remains unclear. To clarify the mechanisms leading to this disparity, we analyzed the potential involvement of miR-34b expression in African-Americans and Caucasians. miR-34b functions as a tumor suppressor and has a multi-functional role, through regulation of cell proliferation, cell cycle and apoptosis. We found that miR-34b expression is lower in human prostate cancer tissues from African-Americans compared to Caucasians. DNA hypermethylation of the miR-34b-3p promoter region showed significantly higher methylation in prostate cancer compared to normal samples. We then sequenced the promoter region of miR-34b-3p and found a chromosomal deletion in miR-34b in African-American prostate cancer cell line (MDA-PCA-2b) and not in Caucasian cell line (DU-145). We found that AR and ETV1 genes are differentially expressed in MDA-PCa-2b and DU-145 cells after overexpression of miR-34b. Direct interaction of miR-34b with the 3' untranslated region of AR and ETV1 was validated by luciferase reporter assay. We found that miR-34b downregulation in African-Americans is inversely correlated with high AR levels that lead to increased cell proliferation. Overexpression of miR-34b in cell lines showed higher inhibition of cell proliferation, apoptosis and G1 arrest in the African-American cells (MDA-PCa-2b) compared to Caucasian cell line (DU-145). Taken together, our results show that differential expression of miR-34b and AR are associated with prostate cancer aggressiveness in African-Americans.
Collapse
Affiliation(s)
- Marisa Shiina
- Department of Urology, Veterans Affairs Medical Center, San Francisco and University of California San Francisco, San Francisco, California, USA
| | - Yutaka Hashimoto
- Department of Urology, Veterans Affairs Medical Center, San Francisco and University of California San Francisco, San Francisco, California, USA
| | - Taku Kato
- Department of Urology, Veterans Affairs Medical Center, San Francisco and University of California San Francisco, San Francisco, California, USA
| | - Soichiro Yamamura
- Department of Urology, Veterans Affairs Medical Center, San Francisco and University of California San Francisco, San Francisco, California, USA
| | - Yuichiro Tanaka
- Department of Urology, Veterans Affairs Medical Center, San Francisco and University of California San Francisco, San Francisco, California, USA
| | - Shahana Majid
- Department of Urology, Veterans Affairs Medical Center, San Francisco and University of California San Francisco, San Francisco, California, USA
| | - Sharanjot Saini
- Department of Urology, Veterans Affairs Medical Center, San Francisco and University of California San Francisco, San Francisco, California, USA
| | - Shahryari Varahram
- Department of Urology, Veterans Affairs Medical Center, San Francisco and University of California San Francisco, San Francisco, California, USA
| | - Priyanka Kulkarni
- Department of Urology, Veterans Affairs Medical Center, San Francisco and University of California San Francisco, San Francisco, California, USA
| | - Pritha Dasgupta
- Department of Urology, Veterans Affairs Medical Center, San Francisco and University of California San Francisco, San Francisco, California, USA
| | - Yozo Mitsui
- Department of Urology, Veterans Affairs Medical Center, San Francisco and University of California San Francisco, San Francisco, California, USA
| | - Mitsuho Sumida
- Department of Urology, Veterans Affairs Medical Center, San Francisco and University of California San Francisco, San Francisco, California, USA
| | - Laura Tabatabai
- Department of Urology, Veterans Affairs Medical Center, San Francisco and University of California San Francisco, San Francisco, California, USA
| | - Guoren Deng
- Department of Urology, Veterans Affairs Medical Center, San Francisco and University of California San Francisco, San Francisco, California, USA
| | - Deepak Kumar
- Division of Science and Mathematic, Cancer Research Laboratory, University of the District of Columbia, Washington, DC, USA
| | - Rajvir Dahiya
- Department of Urology, Veterans Affairs Medical Center, San Francisco and University of California San Francisco, San Francisco, California, USA
| |
Collapse
|
22
|
Neault M, Couteau F, Bonneau É, De Guire V, Mallette FA. Molecular Regulation of Cellular Senescence by MicroRNAs: Implications in Cancer and Age-Related Diseases. INTERNATIONAL REVIEW OF CELL AND MOLECULAR BIOLOGY 2017; 334:27-98. [DOI: 10.1016/bs.ircmb.2017.04.001] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/09/2023]
|
23
|
Sun X, Xiao D, Xu T, Yuan Y. miRNA-24-3p promotes cell proliferation and regulates chemosensitivity in head and neck squamous cell carcinoma by targeting CHD5. Future Oncol 2016; 12:2701-2712. [PMID: 27513190 DOI: 10.2217/fon-2016-0179] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022] Open
Abstract
Aim: To investigate the role of miR-24-3p in tumorigenesis and chemosensitivity in head and neck squamous cell carcinoma (HNSCC). Methods: Growth rate and colony formation assays were performed after transfection with miR-24-3p mimic and inhibitor in cultured SCC-15 cells, followed by a CellTiter-Glo® assay. Western blot and luciferase assays were performed to investigate the direct target of miR-24-3p. Xenograft mouse model was used to evaluate combinatorial effects of miR-24-3p inhibitor and 5-fluorouracil. Results & conclusion: Inhibition of miR-24-3p reduced cell proliferation, colony formation efficiency and reversed chemoresistance in HNSCC cells. CHD5 is the direct target of miR-24-3p which is required for the regulatory role of miR-24-3p in chemoresistance. miR-24-3p may represent a new therapeutic target for the improvement of clinical outcome in HNSCC.
Collapse
Affiliation(s)
- Xiaofeng Sun
- Department of Stomatology, The Second People’s Hospital of Wuxi, 68 Zhong Shan Road, Wuxi 214002, Jiangsu, PR China
| | - Dajiang Xiao
- Department of Otolaryngology, The Second People’s Hospital of Wuxi, 68 Zhong Shan Road, Wuxi 214002, Jiangsu, PR China
| | - Ting Xu
- Department of Otolaryngology, The Second People’s Hospital of Wuxi, 68 Zhong Shan Road, Wuxi 214002, Jiangsu, PR China
| | - Yuan Yuan
- Department of Otolaryngology, The Second People’s Hospital of Wuxi, 68 Zhong Shan Road, Wuxi 214002, Jiangsu, PR China
| |
Collapse
|
24
|
Ho BC, Yang PC, Yu SL. MicroRNA and Pathogenesis of Enterovirus Infection. Viruses 2016; 8:v8010011. [PMID: 26751468 PMCID: PMC4728571 DOI: 10.3390/v8010011] [Citation(s) in RCA: 34] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2015] [Revised: 12/04/2015] [Accepted: 12/18/2015] [Indexed: 12/15/2022] Open
Abstract
There are no currently available specific antiviral therapies for non-polio Enterovirus infections. Although several vaccines have entered clinical trials, the efficacy requires further evaluation, particularly for cross-strain protective activity. Curing patients with viral infections is a public health problem due to antigen alterations and drug resistance caused by the high genomic mutation rate. To conquer these limits in the development of anti-Enterovirus treatments, a comprehensive understanding of the interactions between Enterovirus and host cells is urgently needed. MicroRNA (miRNA) constitutes the biggest family of gene regulators in mammalian cells and regulates almost a half of all human genes. The roles of miRNAs in Enterovirus pathogenesis have recently begun to be noted. In this review, we shed light on recent advances in the understanding of Enterovirus infection-modulated miRNAs. The impacts of altered host miRNAs on cellular processes, including immune escape, apoptosis, signal transduction, shutdown of host protein synthesis and viral replication, are discussed. Finally, miRNA-based medication provides a promising strategy for the development of antiviral therapy.
Collapse
Affiliation(s)
- Bing-Ching Ho
- Department of Clinical Laboratory Sciences and Medical Biotechnology, College of Medicine, National Taiwan University, No. 1 Chang-Te Street, Taipei 10048, Taiwan.
- Center of Genomic Medicine, National Taiwan University, Taipei 10048, Taiwan.
| | - Pan-Chyr Yang
- Center of Genomic Medicine, National Taiwan University, Taipei 10048, Taiwan.
- Department of Internal Medicine, National Taiwan University Hospital, Taipei 10048, Taiwan.
- Institute of Biomedical Sciences, Academia Sinica, Taipei 10048, Taiwan.
| | - Sung-Liang Yu
- Department of Clinical Laboratory Sciences and Medical Biotechnology, College of Medicine, National Taiwan University, No. 1 Chang-Te Street, Taipei 10048, Taiwan.
- Center of Genomic Medicine, National Taiwan University, Taipei 10048, Taiwan.
- Center for Optoelectronic Biomedicine, College of Medicine, National Taiwan University, Taipei 10048, Taiwan.
- Graduate Institute of Pathology, College of Medicine, National Taiwan University, Taipei 10048, Taiwan.
- Department of Laboratory Medicine, National Taiwan University Hospital, Taipei 10048, Taiwan.
| |
Collapse
|