1
|
Mumtaz SM, Khan MA, Jamal A, Hattiwale SH, Parvez S. Toxin-derived peptides: An unconventional approach to alleviating cerebral stroke burden and neurobehavioral impairments. Life Sci 2024; 351:122777. [PMID: 38851419 DOI: 10.1016/j.lfs.2024.122777] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2023] [Revised: 03/25/2024] [Accepted: 06/04/2024] [Indexed: 06/10/2024]
Abstract
Cerebral stroke is a pressing global health concern, ranking as the second leading cause of mortality and resulting in persistent neurobehavioral impairments. Cerebral strokes, triggered by various embolic events, initiate complex signaling pathways involving neuroexcitotoxicity, ionic imbalances, inflammation, oxidative stress, acidosis, and mitochondrial dysfunction, leading to programmed cell death. Currently, the FDA has approved tissue plasminogen activator as a relatively benign intervention for cerebral stroke, leaving a significant treatment gap. However, a promising avenue has emerged from Earth's toxic creatures. Animal venoms harbor bioactive molecules, particularly neuropeptides, with potential in innovative healthcare applications. These venomous components, affecting ion channels, receptors, and transporters, encompass neurochemicals, amino acids, and peptides, making them prime candidates for treating cerebral ischemia and neurological disorders. This review explores the composition, applications, and significance of toxin-derived peptides as viable therapeutic agents. It also investigates diverse toxins from select venomous creatures, with the primary objective of shedding light on current stroke treatments and paving the way for pioneering therapeutic strategies capable of addressing neurobehavioral deficits.
Collapse
Affiliation(s)
- Sayed Md Mumtaz
- Department of Toxicology, School of Chemical and Life Sciences, Jamia Hamdard, New Delhi 110062, India; Department of Pharmacology, School of Pharmaceutical Education and Research, Jamia Hamdard, New Delhi 110062, India
| | - Mohammad Ahmed Khan
- Department of Pharmacology, School of Pharmaceutical Education and Research, Jamia Hamdard, New Delhi 110062, India
| | - Azfar Jamal
- Department of Biology, College of Science Al-Zulfi, Majmaah University, Al-Majmaah 11952, Saudi Arabia; Health and Basic Science Research Centre, Majmaah University, Al-Majmaah 11952, Saudi Arabia
| | - Shaheenkousar H Hattiwale
- Department of Basic Medical Sciences, College of Medicine, Majmaah University, Al-Majmaah 11952, Saudi Arabia
| | - Suhel Parvez
- Department of Toxicology, School of Chemical and Life Sciences, Jamia Hamdard, New Delhi 110062, India.
| |
Collapse
|
2
|
Mirzaei R, Esmaeili Gouvarchin Ghaleh H, Ranjbar R. Antibiofilm effect of melittin alone and in combination with conventional antibiotics toward strong biofilm of MDR-MRSA and - Pseudomonas aeruginosa. Front Microbiol 2023; 14:1030401. [PMID: 36910230 PMCID: PMC9994733 DOI: 10.3389/fmicb.2023.1030401] [Citation(s) in RCA: 10] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2022] [Accepted: 02/01/2023] [Indexed: 02/22/2023] Open
Abstract
Introduction Multidrug-resistant (MDR) pathogens are being recognized as a critical threat to human health if they can form biofilm and, in this sense, biofilm-forming MDR-methicillin resistant Staphylococcus aureus (MRSA) and -Pseudomonas aeruginosa strains are a worse concern. Hence, a growing body of documents has introduced antimicrobial peptides (AMPs) as a substitute candidate for conventional antimicrobial agents against drug-resistant and biofilm-associated infections. We evaluated melittin's antibacterial and antibiofilm activity alone and/or in combination with gentamicin, ciprofloxacin, rifampin, and vancomycin on biofilm-forming MDR-P. aeruginosa and MDR-MRSA strains. Methods Antibacterial tests [antibiogram, minimum inhibitory concentration (MIC), and minimum bactericidal concentration (MBC)], anti-biofilm tests [minimum biofilm inhibition concentration (MBIC), and minimum biofilm eradication concentration (MBEC)], as well as synergistic antibiofilm activity of melittin and antibiotics, were performed. Besides, the influence of melittin alone on the biofilm encoding genes and the cytotoxicity and hemolytic effects of melittin were examined. Results MIC, MBC, MBIC, and MBEC indices for melittin were in the range of 0.625-5, 1.25-10, 2.5-20, and 10-40 μg/ml, respectively. The findings found that the combination of melittin AMP with antibiotics was synergistic and fractional biofilm inhibitory concentration index (FBICi) for most tested concentrations was <0.5, resulting in a significant reduction in melittin, gentamicin, ciprofloxacin, vancomycin, and rifampin concentrations by 2-256.4, 2-128, 2-16, 4-64 and 4-8 folds, respectively. This phenomenon reduced the toxicity of melittin, whereby its synergist concentration required for biofilm inhibition did not show cytotoxicity and hemolytic activity. Our findings found that melittin decreased the expression of icaA in S. aureus and LasR in P. aeruginosa genes from 0.1 to 4.11 fold for icaA, and 0.11 to 3.7 fold for LasR, respectively. Conclusion Overall, the results obtained from our study show that melittin alone is effective against the strong biofilm of MDR pathogens and also offers sound synergistic effects with antibiotics without toxicity. Hence, combining melittin and antibiotics can be a potential candidate for further evaluation of in vivo infections by MDR pathogens.
Collapse
Affiliation(s)
- Rasoul Mirzaei
- Department of Microbiology, School of Medicine, Hamadan University of Medical Sciences, Hamadan, Iran
| | | | - Reza Ranjbar
- Molecular Biology Research Center, Systems Biology and Poisonings Institute, Baqiyatallah University of Medical Sciences, Tehran, Iran
| |
Collapse
|
3
|
Akbari R, Hakemi Vala M, Sabatier JM, Pooshang Bagheri K. Fast killing kinetics, significant therapeutic index, and high stability of melittin-derived antimicrobial peptide. Amino Acids 2022; 54:1275-1285. [PMID: 35779173 DOI: 10.1007/s00726-022-03180-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2022] [Accepted: 06/07/2022] [Indexed: 12/01/2022]
Abstract
The emergence of multidrug-resistant (MDR) bacteria is a major challenge for antimicrobial chemotherapy. Concerning this issue, antimicrobial peptides (AMPs) have been presented as novel promising antibiotics. Our previous de novo designed melittin-derived peptides (MDP1 and MDP2) indicated their potential as peptide drug leads. Accordingly, this study was aimed to evaluate the kinetics of activity, toxicity, and stability of MDP1 and MDP2 as well as determination of their structures. The killing kinetics of MDP1 and MDP2 demonstrate that all bacterial strains were rapidly killed. MDP1 and MDP2 were ca. 100- and 26.6-fold less hemolytic than melittin and found to be respectively 72.9- and 41.6-fold less cytotoxic than melittin on the HEK293 cell line. MDP1 and MDP2 showed 252- and 132-fold improvement in their therapeutic index in comparison to melittin. MDP1 and MDP2 sustained their activities in the presence of human plasma and were found to be ca. four to eightfold more stable than melittin. Spectropolarimetry analysis of MDP1 and MDP2 indicates that the peptides adopt an alpha-helical structure predominantly. According to the fast killing kinetics, significant therapeutic index, and high stability of MDP1, it could be considered as a drug lead in a mouse model of septicemia infections.
Collapse
Affiliation(s)
- Reza Akbari
- Department of Microbiology, Faculty of Medicine, Urmia University of Medical Sciences, Urmia, West Azerbaijan, Iran
| | - Mojdeh Hakemi Vala
- Department of Microbiology, Faculty of Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran.
| | - Jean-Marc Sabatier
- Institute of NeuroPhysiopathology (INP), Faculté de Pharmacie, Université D'Aix-Marseille, UMR 7051, 27 Bd Jean Moulin, CEDEX 05, 13385, Marseille, France
| | - Kamran Pooshang Bagheri
- Venom and Biotherapeutics Molecules Lab, Medical Biotechnology Department, Biotechnology Research Center, Pasteur Institute of Iran, Tehran, Iran.
| |
Collapse
|
4
|
Mirzaei R, Alikhani MY, Arciola CR, Sedighi I, Irajian G, Jamasbi E, Yousefimashouf R, Bagheri KP. Highly Synergistic Effects of Melittin With Vancomycin and Rifampin Against Vancomycin and Rifampin Resistant Staphylococcus epidermidis. Front Microbiol 2022; 13:869650. [PMID: 35814659 PMCID: PMC9260053 DOI: 10.3389/fmicb.2022.869650] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2022] [Accepted: 05/11/2022] [Indexed: 12/27/2022] Open
Abstract
Methicillin-resistant Staphylococcus epidermidis (MRSE) strains are increasingly emerging as serious pathogens because they can be resistant to many antibiotics called multidrug resistance (MDR) that limit the therapeutic options. In the case of vancomycin- and rifampin-resistant MDR-MRSE, the physicians are not allowed to increase the doses of antibiotics because of severe toxicity. Accordingly, we investigated the synergistic activity of melittin antimicrobial peptide with vancomycin and rifampin against vancomycin-resistant, and rifampin-resistant MDR-MRSE isolates. Minimum inhibitory concentration (MIC), minimum bactericidal concentration (MBC), fractional inhibitory concentration index (FICi), and fractional bactericidal concentration index (FBCi) of antimicrobial agents against isolates were determined. Coagulate activities and serum and salt stability as well as melittin cytotoxicity on the human embryonic kidney (HEK) 293 cells and human red blood cells (RBCs) at their synergistic concentrations. MIC and MBC values for melittin were in the range of 0.312–2.5 and 0.312–5, respectively. Results also showed that the interaction of melittin with drugs was highly synergistic in which the geometric means of FICi and FBCi were < 0.5. Induced synergism led to a decrease in melittin, rifampin, and vancomycin concentrations by 8–1,020, 2–16, and 4–16-folds, respectively. This phenomenon caused a reduction in melittin toxicity by which the synergistic concentration of melittin needed to kill bacteria did not show cytotoxicity and hemolytic activity. Besides, no coagulation activity was found for the synergistic and alone concentrations of melittin in both Prothrombin Time (PT) and Partial Thromboplastin Time (PTT). Interestingly, the antibacterial activity of melittin in Mueller Hinton Broth (MHB) containing human serum did no significant differences between MIC and MBC values of melittin in MHB and MHB containing 10% human serum. The present findings showed that the therapeutic index of melittin was improved by 32.08- and 12.82-folds when combined with vancomycin and rifampin, respectively. Taken together, the obtained data show that melittin alone was effective against MDR-MRSE isolates and this antimicrobial peptide showed highly synergistic effects with vancomycin and rifampin without causing toxicity. Therefore, the combination of melittin and traditional antibiotics could be a promising strategy for the treatment of infections caused by MDR-MRSE.
Collapse
Affiliation(s)
- Rasoul Mirzaei
- Department of Microbiology, School of Medicine, Hamadan University of Medical Sciences, Hamadan, Iran
- Venom and Biotherapeutics Molecules Laboratory, Medical Biotechnology Department, Biotechnology Research Center, Pasteur Institute of Iran, Tehran, Iran
| | - Mohammad Yousef Alikhani
- Department of Microbiology, School of Medicine, Hamadan University of Medical Sciences, Hamadan, Iran
| | - Carla Renata Arciola
- Laboratorio di Patologia delle Infezioni Associate all’Impianto, IRCCS Istituto Ortopedico Rizzoli, Bologna, Italy
- Laboratorio di Immunoreumatologia e Rigenerazione Tissutale, IRCCS Istituto Ortopedico Rizzoli, Bologn, Italy
- Department of Experimental, Diagnostic and Specialty Medicine, University of Bologna, Bologna, Italy
| | - Iraj Sedighi
- Department of Pediatrics, School of Medicine, Hamadan University of Medical Sciences, Hamadan, Iran
| | - GholamReza Irajian
- Microbial Biotechnology Research Center, Iran University of Medical Sciences, Tehran, Iran
- Department of Microbiology, School of Medicine, Iran University of Medical Sciences, Tehran, Iran
| | - Elaheh Jamasbi
- Research Center of Oils and Fats, Kermanshah University of Medical Science, Kermanshah, Iran
| | - Rasoul Yousefimashouf
- Department of Microbiology, School of Medicine, Hamadan University of Medical Sciences, Hamadan, Iran
- *Correspondence: Rasoul Yousefimashouf,
| | - Kamran Pooshang Bagheri
- Venom and Biotherapeutics Molecules Laboratory, Medical Biotechnology Department, Biotechnology Research Center, Pasteur Institute of Iran, Tehran, Iran
- Kamran Pooshang Bagheri,
| |
Collapse
|
5
|
Zarghami V, Ghorbani M, Bagheri KP, Shokrgozar MA. Improving bactericidal performance of implant composite coatings by synergism between Melittin and tetracycline. JOURNAL OF MATERIALS SCIENCE. MATERIALS IN MEDICINE 2022; 33:46. [PMID: 35596852 PMCID: PMC9124168 DOI: 10.1007/s10856-022-06666-3] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/10/2022] [Accepted: 04/22/2022] [Indexed: 05/31/2023]
Abstract
Methicillin resistance Staphylococcus aureus bacteria (MRSA) are serious hazards of bone implants. The present study was aimed to use the potential synergistic effects of Melittin and tetracycline to prevent MRSA associated bone implant infection. Chitosan/bioactive glass nanoparticles/tetracycline composite coatings were deposited on hydrothermally etched titanium substrate. Melittin was then coated on composite coatings by drop casting method. The surfaces were analyzed by FTIR, XRD, and SEM instruments. Tetracycline in coatings revealed multifunctional behaviors include bone regeneration and antibacterial activity. Releasing ALP enzyme from MC3T3 cells increased by tetracycline, so it is suitable candidate as osteoinductive and antibacterial agent in orthopedic implants coatings. Melittin increased the proliferation of MC3T3 cells. Composite coatings with combination of tetracycline and Melittin eradicate all MRSA bacteria, while coatings with one of them could no t eradicate all of the bacteria. In conclusion, chitosan/bioactive glass/tetracycline/Melittin coating can be suggested as a multifunctional bone implant coating because of its osteogenic and promising antibacterial activity. Graphical abstract.
Collapse
Affiliation(s)
- Vahid Zarghami
- Institute for Nanoscience & Nanotechnology, Sharif University of Technology, Tehran, Iran
| | - Mohammad Ghorbani
- Institute for Nanoscience & Nanotechnology, Sharif University of Technology, Tehran, Iran.
- Department of Materials Science and Engineering, Sharif University of Technology, Tehran, Iran.
| | - Kamran Pooshang Bagheri
- Venom & Biotherapeutics Molecules Lab., Medical Biotechnology Department, Biotechnology Research Center, Pasteur Institute of Iran, Tehran, Iran.
| | | |
Collapse
|
6
|
Detection of αB-Conotoxin VxXXIVA (αB-CTX) by ic-ELISA Based on an Epitope-Specific Monoclonal Antibody. Toxins (Basel) 2022; 14:toxins14030166. [PMID: 35324663 PMCID: PMC8949368 DOI: 10.3390/toxins14030166] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2022] [Revised: 02/09/2022] [Accepted: 02/21/2022] [Indexed: 12/15/2022] Open
Abstract
In view of the toxicological hazard and important applications in analgesics and cancer chemotherapeutics of αB-CTX, it is urgent to develop an accurate, effective and feasible immunoassay for the determination and analysis of αB-CTX in real samples. In this study, MBP-αB-CTX4 tandem fusion protein was used as an immunogen to elicit a strong immune response, and a hybridoma cell 5E4 secreting IgG2b against αB-CTX was successfully screened by hybridoma technology. The affinity of the purified 5E4 monoclonal antibody (mAb) was 1.02 × 108 L/mol, which showed high affinity and specificity to αB-CTX. Epitope 1 of αB-CTX is the major binding region for 5E4 mAb recongnization, and two amino acid residues (14L and 15F) in αB-CTX were critical sites for the interaction between αB-CTX and 5E4 mAb. Indirect competitive ELISA (ic-ELISA) based on 5E4 mAb was developed to detect and analyze αB-CTX in real samples, and the linear range of ic-ELISA to αB-CTX was 117–3798 ng/mL, with a limit of detection (LOD) of 81 ng/mL. All the above results indicated that the developed ic-ELISA had high accuracy and repeatability, and it could be applied for αB-CTX detection and drug analysis in real samples.
Collapse
|
7
|
Mirzaei R, Alikhani MY, Arciola CR, Sedighi I, Yousefimashouf R, Bagheri KP. Prevention, inhibition, and degradation effects of melittin alone and in combination with vancomycin and rifampin against strong biofilm producer strains of methicillin-resistant Staphylococcus epidermidis. Biomed Pharmacother 2022; 147:112670. [PMID: 35123230 DOI: 10.1016/j.biopha.2022.112670] [Citation(s) in RCA: 23] [Impact Index Per Article: 11.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2021] [Revised: 01/19/2022] [Accepted: 01/24/2022] [Indexed: 12/20/2022] Open
Abstract
Methicillin-resistant Staphylococcus epidermidis (MRSE) bacteria are being recognized as true pathogens as they are able to resist methicillin and commonly form biofilms. Recent studies have shown that antimicrobial peptides (AMPs) are promising agents against biofilm-associated bacterial infections. In this study, we aimed to explore the antibiofilm activity of melittin, either alone or in combination with vancomycin and rifampin, against biofilm-producing MRSE strains. Minimum biofilm preventive concentration (MBPC), minimum biofilm inhibition concentration (MBIC), and minimum biofilm eradication concentration (MBEC), as well as fractional biofilm preventive-, inhibitory-, and eradication concentrations (FBPCi, FBICi, and FBECi), were determined for the antimicrobial agents tested. Cytotoxicity and hemolytic activity of melittin at its synergistic concentration were examined on human embryonic kidney cells (HEK-293) and Red Blood Cells (RBCs), respectively. The effect of melittin on the downregulation of biofilm-associated genes was explored using Real-Time PCR. MBPC, MBIC, and MBEC values for melittin were in the range of 0.625-20, 0.625-20, and 10-40 μg/μL, respectively. Melittin showed high synergy (FBPCi, FBICi and FBECi < 0.5). The synergism resulted in a 64-512-fold, 2-16 and 2-8-fold reduction in melittin, rifampicin and vancomycin concentrations, respectively. The synergistic melittin concentration found to be effective did not manifest either cytotoxicity on HEK-293 or hemolytic activity on RBCs. Results showed that melittin downregulated the expression of biofilm-associated icaA, aap, and psm genes in all isolates tested, ranging from 0.04-folds to 2.11-folds for icaA and from 0.05 to 3.76-folds for aap and psm. The preventive and therapeutic indexes of melittin were improved 8-fold when combined with vancomycin and rifampin. Based on these findings, the combination of melittin with conventional antibiotics could be proposed for treating or preventing biofilm-associated MRSE infections.
Collapse
Affiliation(s)
- Rasoul Mirzaei
- Department of Microbiology, School of Medicine, Hamadan University of Medical Sciences, Hamadan, Iran; Venom and Biotherapeutics Molecules Lab, Medical Biotechnology Department, Biotechnology Research Center, Pasteur Institute of Iran, Tehran, Iran
| | - Mohammad Yousef Alikhani
- Department of Microbiology, School of Medicine, Hamadan University of Medical Sciences, Hamadan, Iran
| | - Carla Renata Arciola
- Laboratorio di Patologia delle Infezioni Associate all'Impianto IRCCS Istituto Ortopedico Rizzoli, Bologna, Italy; Laboratorio di Immunoreumatologia e Rigenerazione Tissutale, IRCCS Istituto Ortopedico Rizzoli, Bologna, Italy; Department of Experimental, Diagnostic, and Specialty Medicine, University of Bologna, Bologna, Italy
| | - Iraj Sedighi
- Department of Pediatrics, School of Medicine, Hamadan University of Medical Sciences, Hamadan, Iran
| | - Rasoul Yousefimashouf
- Department of Microbiology, School of Medicine, Hamadan University of Medical Sciences, Hamadan, Iran.
| | - Kamran Pooshang Bagheri
- Venom and Biotherapeutics Molecules Lab, Medical Biotechnology Department, Biotechnology Research Center, Pasteur Institute of Iran, Tehran, Iran.
| |
Collapse
|
8
|
Tetramine in the Salivary Glands of Marine Carnivorous Snails: Analysis, Distribution, and Toxicological Aspects. JOURNAL OF MARINE SCIENCE AND ENGINEERING 2021. [DOI: 10.3390/jmse10010006] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Focusing on tetramine, tetramethylammonium ion, contained in the salivary glands of marine carnivorous snails, this paper gives an overview of analytical methods, distribution in marine snails, and toxicological aspects. Some Neptunea snails have often caused food poisoning in North Atlantic and Northeast Asia regions, especially in Japan. The toxin of both N. arthritica and N. antiqua was first proven to be tetramine in 1960. Subsequent research on marine snail tetramine has progressed with the development of analytical methods. Of the various methods developed, the LC/ESI-MS method is most recommended for tetramine analysis in terms of sensitivity, specificity, and versatility. Accumulated data show that tetramine is ubiquitously contained at high concentrations (usually several mg/g) in the salivary glands of Neptunea snails. Tetramine is also found in the muscle and viscera of Neptunea snails and even in the salivary gland of marine snails other than Neptunea species, although mostly at low levels (below 0.1 mg/g). Interestingly, the major toxin in the salivary glands of Fusitriton oregonensis and Hemifusus tuba is distinguishable from tetramine. In tetramine poisoning, diverse symptoms attributable to the ganglion-blocking action of tetramine, such as visual disturbance, headache, dizziness, abdominal pain, and nausea, develop within 30 min after ingestion of snails because of rapid absorption of tetramine from the gastrointestinal tract. The symptoms are generally mild and subside in a short time (within 24 at most) because of rapid excretion through the kidney. However, it should be kept in mind that tetramine poisoning can be severe in patients with kidney dysfunction, as shown by two recent case reports. Finally, given the diffusion of tetramine from the salivary gland to the muscle during boiling and thawing of snails, removal of salivary glands from live snails is essential to avoid tetramine poisoning.
Collapse
|
9
|
Bevalian P, Pashaei F, Akbari R, Pooshang Bagheri K. Eradication of vancomycin-resistant Staphylococcus aureus on a mouse model of third-degree burn infection by melittin: An antimicrobial peptide from bee venom. Toxicon 2021; 199:49-59. [PMID: 34087287 DOI: 10.1016/j.toxicon.2021.05.015] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2021] [Revised: 05/18/2021] [Accepted: 05/29/2021] [Indexed: 01/10/2023]
Abstract
Third-degree burn infections caused by antibiotic-resistant bacteria are of high clinical concern. Chemical antibiotics are not promising in eradication of bacterial infections. In this challenging condition, antimicrobial peptides (AMPs) are recently introduced as novel promising agents to overcome the issue. Accordingly, our study aimed to evaluate the efficiency of 'melittin' as natural peptide in bee venom, in eradicating vancomycin resistant Staphylococcus aureus (VRSA) on a mouse model of third-degree burn infection. In vitro pharmacological value of melittin was determined by examining its inhibitory and killing activities on VRSA isolates at different doses and time periods. The action mechanism of 'melittin' was evaluated by fluorescent release assay and Field Emission Scanning Electron Microscopy (FE-SEM) analyses. In vivo activity and toxicity of melittin were also examined on a mouse model of third-degree burn infection. The Minimum Inhibitory Concentration (MIC) and the Minimum Bactericidal Concentration (MBC) of melittin on all isolates ranged from '0.125-2 μg/mL' and '0.125-4 μg/mL', respectively. Rapid antibacterial activity of melittin on VRSA isolates was demonstrated by killing kinetics assays. Fluorometric and FE-SEM analyses indicated the membranolytic effects of melittin on VRSA isolates. The colonized VRSA bacteria were eradicated by melittin at 16 μg, in a single dose. No dermal toxicity and in vivo hemolysis were observed in the examined mice. The lack of in vivo toxicity of melittin along with its potent antibacterial activity indicated its promising therapeutic value as a topical drug against S. aureus associated third-degree burn infections.
Collapse
Affiliation(s)
- Parvaneh Bevalian
- Venom and Biotherapeutics Molecules Lab., Biotechnology Dept., Biotechnology Research Center, Pasteur Institute of Iran, Tehran, Iran
| | - Fatemeh Pashaei
- Venom and Biotherapeutics Molecules Lab., Biotechnology Dept., Biotechnology Research Center, Pasteur Institute of Iran, Tehran, Iran
| | - Reza Akbari
- Venom and Biotherapeutics Molecules Lab., Biotechnology Dept., Biotechnology Research Center, Pasteur Institute of Iran, Tehran, Iran; Department of Microbiology, Faculty of Medicine, Urmia University of Medical Sciences, Urmia, West Azerbaijan, Iran
| | - Kamran Pooshang Bagheri
- Venom and Biotherapeutics Molecules Lab., Biotechnology Dept., Biotechnology Research Center, Pasteur Institute of Iran, Tehran, Iran.
| |
Collapse
|
10
|
Bagheri-Ziari S, Shahbazzadeh D, Sardari S, Sabatier JM, Pooshang Bagheri K. Discovery of a New Analgesic Peptide, Leptucin, from the Iranian Scorpion, Hemiscorpius lepturus. Molecules 2021; 26:molecules26092580. [PMID: 33925223 PMCID: PMC8124257 DOI: 10.3390/molecules26092580] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2021] [Revised: 04/25/2021] [Accepted: 04/26/2021] [Indexed: 01/07/2023] Open
Abstract
Hemiscorpius lepturus scorpion stings do not induce considerable pain based on epidemiological surveys conducted in the southwest part of Iran. Accordingly, this study was aimed to identify the analgesic molecule in H. lepturus venom by analyzing a cDNA library of the scorpion venom gland looking for sequences having homology with known animal venom analgesic peptides. The analgesic molecule is a cysteine rich peptide of 55 amino acids. the synthetic peptide was deprotected and refolded. RP-HPLC, Ellman's, and DLS assays confirmed the refolding accuracy. Circular dichroism (CD) showed helix and beta sheet contents. This peptide, called leptucin, demonstrated 95% analgesic activity at the dose of 0.48 mg/kg in hot plate assay. Leptucin at the doses of 0.32, 0.48, and 0.64 mg/kg showed 100% activity in thermal tail flick test. No hemolysis or cytotoxicity was observed at 8 and 16 µg. Histopathology evaluations indicated no hepatotoxicity, nephrotoxicity, and cardiotoxicity. We thus report that leptucin is the analgesic agent of H. lepturus venom. Regarding the high in vivo efficacy of leptucin and the fact it shows no observable toxicity, it could be suggested as a drug lead in a preclinical study of acute pain as well as the study of its mechanism of action.
Collapse
Affiliation(s)
- Sedigheh Bagheri-Ziari
- Venom and Biotherapeutics Molecules Laboratory, Medical Biotechnology Department, Biotechnology Research Center, Pasteur Institute of Iran, Tehran 1316943551, Iran; (S.B.-Z.); (D.S.)
| | - Delavar Shahbazzadeh
- Venom and Biotherapeutics Molecules Laboratory, Medical Biotechnology Department, Biotechnology Research Center, Pasteur Institute of Iran, Tehran 1316943551, Iran; (S.B.-Z.); (D.S.)
| | - Soroush Sardari
- Drug Design and Bioinformatics Unit, Medical Biotechnology Department, Biotechnology Research Center, Pasteur Institute of Iran, Tehran 1316943551, Iran;
| | - Jean-Marc Sabatier
- Institute of NeuroPhysiopathology (INP), Faculté de Pharmacie, Université d’Aix-Marseille, UMR 7051, 27 Bd Jean Moulin, CEDEX, 13385 Marseille, France;
| | - Kamran Pooshang Bagheri
- Venom and Biotherapeutics Molecules Laboratory, Medical Biotechnology Department, Biotechnology Research Center, Pasteur Institute of Iran, Tehran 1316943551, Iran; (S.B.-Z.); (D.S.)
- Correspondence:
| |
Collapse
|
11
|
Ebou A, Koua D, Addablah A, Kakou-Ngazoa S, Dutertre S. Combined Proteotranscriptomic-Based Strategy to Discover Novel Antimicrobial Peptides from Cone Snails. Biomedicines 2021; 9:344. [PMID: 33805497 PMCID: PMC8066717 DOI: 10.3390/biomedicines9040344] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2021] [Revised: 03/22/2021] [Accepted: 03/23/2021] [Indexed: 12/21/2022] Open
Abstract
Despite their impressive diversity and already broad therapeutic applications, cone snail venoms have received less attention as a natural source in the investigation of antimicrobial peptides than other venomous animals such as scorpions, spiders, or snakes. Cone snails are among the largest genera (Conus sp.) of marine invertebrates, with more than seven hundred species described to date. These predatory mollusks use their sophisticated venom apparatus to capture prey or defend themselves. In-depth studies of these venoms have unraveled many biologically active peptides with pharmacological properties of interest in the field of pain management, the treatment of epilepsy, neurodegenerative diseases, and cardiac ischemia. Considering sequencing efficiency and affordability, cone snail venom gland transcriptome analyses could allow the discovery of new, promising antimicrobial peptides. We first present here the need for novel compounds like antimicrobial peptides as a viable alternative to conventional antibiotics. Secondly, we review the current knowledge on cone snails as a source of antimicrobial peptides. Then, we present the current state of the art in analytical methods applied to crude or milked venom followed by how antibacterial activity assay can be implemented for fostering cone snail antimicrobial peptides studies. We also propose a new innovative profile Hidden Markov model-based approach to annotate full venom gland transcriptomes and speed up the discovery of potentially active peptides from cone snails.
Collapse
Affiliation(s)
- Anicet Ebou
- Bioinformatic Team, Département Agriculture et Ressource Animales, UMRI 28, Institut National Polytechnique Félix Houphouët-Boigny, Yamoussoukro BP 1093, Ivory Coast;
| | - Dominique Koua
- Bioinformatic Team, Département Agriculture et Ressource Animales, UMRI 28, Institut National Polytechnique Félix Houphouët-Boigny, Yamoussoukro BP 1093, Ivory Coast;
| | - Audrey Addablah
- Plateforme de Biologie Moléculaire, Institut Pasteur de Côte d’Ivoire, Abidjan BP 490, Ivory Coast; (A.A.); (S.K.-N.)
| | - Solange Kakou-Ngazoa
- Plateforme de Biologie Moléculaire, Institut Pasteur de Côte d’Ivoire, Abidjan BP 490, Ivory Coast; (A.A.); (S.K.-N.)
| | - Sébastien Dutertre
- Institut des Biomolécules Max Mousseron, UMR 5247, Université de Montpellier, CNRS, ENSCM, 34095 Montpellier, France
| |
Collapse
|
12
|
Aridoss G, Kim D, Kim JI, Kang JE. Ziconotide (
ω‐conotoxin MVIIA
)—Efficient solid‐phase synthesis of a linear precursor peptide and its strategic native folding. Pept Sci (Hoboken) 2021. [DOI: 10.1002/pep2.24223] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Affiliation(s)
- Gopalakrishnan Aridoss
- Peptide Smart Process Department Anygen Co., Ltd Cheongju‐si Chungcheongbuk‐do South Korea
| | - Dong‐Min Kim
- Peptide Smart Process Department Anygen Co., Ltd Cheongju‐si Chungcheongbuk‐do South Korea
| | - Jae Il Kim
- Peptide Smart Process Department Anygen Co., Ltd Cheongju‐si Chungcheongbuk‐do South Korea
| | - Jae Eun Kang
- Peptide Smart Process Department Anygen Co., Ltd Cheongju‐si Chungcheongbuk‐do South Korea
| |
Collapse
|
13
|
Kobayashi K, Taguchi A, Cui Y, Shida H, Muguruma K, Takayama K, Taniguchi A, Hayashi Y. “On‐Resin” Disulfide Peptide Synthesis with Methyl 3‐Nitro‐2‐pyridinesulfenate. European J Org Chem 2021. [DOI: 10.1002/ejoc.202001517] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Affiliation(s)
- Kiyotaka Kobayashi
- Department of Medicinal chemistry School of Pharmacy Tokyo University of Pharmacy and Life Sciences 1432-1 Horinouchi Hachioji, Tokyo 192–0392 Japan
| | - Akihiro Taguchi
- Department of Medicinal chemistry School of Pharmacy Tokyo University of Pharmacy and Life Sciences 1432-1 Horinouchi Hachioji, Tokyo 192–0392 Japan
| | - Yan Cui
- Department of Medicinal chemistry School of Pharmacy Tokyo University of Pharmacy and Life Sciences 1432-1 Horinouchi Hachioji, Tokyo 192–0392 Japan
| | - Hayate Shida
- Department of Medicinal chemistry School of Pharmacy Tokyo University of Pharmacy and Life Sciences 1432-1 Horinouchi Hachioji, Tokyo 192–0392 Japan
| | - Kyohei Muguruma
- Department of Medicinal chemistry School of Pharmacy Tokyo University of Pharmacy and Life Sciences 1432-1 Horinouchi Hachioji, Tokyo 192–0392 Japan
| | - Kentaro Takayama
- Department of Medicinal chemistry School of Pharmacy Tokyo University of Pharmacy and Life Sciences 1432-1 Horinouchi Hachioji, Tokyo 192–0392 Japan
| | - Atsuhiko Taniguchi
- Department of Medicinal chemistry School of Pharmacy Tokyo University of Pharmacy and Life Sciences 1432-1 Horinouchi Hachioji, Tokyo 192–0392 Japan
| | - Yoshio Hayashi
- Department of Medicinal chemistry School of Pharmacy Tokyo University of Pharmacy and Life Sciences 1432-1 Horinouchi Hachioji, Tokyo 192–0392 Japan
| |
Collapse
|
14
|
Klein AH, Ballard KR, Storey KB, Motti CA, Zhao M, Cummins SF. Multi-omics investigations within the Phylum Mollusca, Class Gastropoda: from ecological application to breakthrough phylogenomic studies. Brief Funct Genomics 2020; 18:377-394. [PMID: 31609407 DOI: 10.1093/bfgp/elz017] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2019] [Revised: 07/06/2019] [Accepted: 07/15/2019] [Indexed: 12/22/2022] Open
Abstract
Gastropods are the largest and most diverse class of mollusc and include species that are well studied within the areas of taxonomy, aquaculture, biomineralization, ecology, microbiome and health. Gastropod research has been expanding since the mid-2000s, largely due to large-scale data integration from next-generation sequencing and mass spectrometry in which transcripts, proteins and metabolites can be readily explored systematically. Correspondingly, the huge data added a great deal of complexity for data organization, visualization and interpretation. Here, we reviewed the recent advances involving gastropod omics ('gastropodomics') research from hundreds of publications and online genomics databases. By summarizing the current publicly available data, we present an insight for the design of useful data integrating tools and strategies for comparative omics studies in the future. Additionally, we discuss the future of omics applications in aquaculture, natural pharmaceutical biodiscovery and pest management, as well as to monitor the impact of environmental stressors.
Collapse
Affiliation(s)
- Anne H Klein
- Genecology Research Centre, University of the Sunshine Coast, Maroochydore DC, Queensland 4558, Australia
| | - Kaylene R Ballard
- Genecology Research Centre, University of the Sunshine Coast, Maroochydore DC, Queensland 4558, Australia
| | - Kenneth B Storey
- Institute of Biochemistry & Department of Biology, Carleton University, Ottawa, ON, Canada K1S 5B6
| | - Cherie A Motti
- Australian Institute of Marine Science (AIMS), Cape Ferguson, Townsville Queensland 4810, Australia
| | - Min Zhao
- Genecology Research Centre, University of the Sunshine Coast, Maroochydore DC, Queensland 4558, Australia
| | - Scott F Cummins
- Genecology Research Centre, University of the Sunshine Coast, Maroochydore DC, Queensland 4558, Australia
| |
Collapse
|
15
|
Structure and Activity Studies of Disulfide-Deficient Analogues of αO-Conotoxin GeXIVA. J Med Chem 2020; 63:1564-1575. [DOI: 10.1021/acs.jmedchem.9b01409] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
|
16
|
Wang R, Zhong Y, Wang J, Yang H, Yuan J, Wang S. Development of an ic-ELISA and immunochromatographic strip based on IgG antibody for detection of ω-conotoxin MVIIA. JOURNAL OF HAZARDOUS MATERIALS 2019; 378:120510. [PMID: 31226588 DOI: 10.1016/j.jhazmat.2019.03.129] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/11/2018] [Revised: 03/06/2019] [Accepted: 03/30/2019] [Indexed: 06/09/2023]
Abstract
ω-conotoxin MVIIA(ω-CTX MVIIA) is a peptide consisting of 25 amino acid residues secreted mainly by Conus magus. In view of the toxin threat to humans and animals and defined application in analgesic therapy, it is necessary to develop a rapid, effective and accuracy method for the quantification and analysis of ω-CTX MVIIA in real samples. In the present study, a hybridoma cell named 2E5 stable secreting IgG antibody against ω-CTX MVIIA was selected successfully, and the subtype of Mab 2E5 was IgG1. The purified monoclonal antibody(Mab) 2E5 has high affinity (about 2.79 × 109 L/mol), and shows high specificity to ω-CTX MVIIA antigen. The linear range of ic-ELISA to detect ω-CTX MVIIA was 0.20˜7.22 μg/mL, with a lower detection limit (LOD) of 0.14 ng/mL. The average recovery of intra- and inter-assay were (85.45 ± 2.28)% and (88.03 ± 4.80)% respectively, with a coefficient of variation from 2.59% to 5.42%. The LOD of colloidal strip by naked eye was 1 μg/mL, and the detection time was less than 10 min without any equipment. The developed ELISA and colloidal test strips based on this IgG antibody could be used to detect ω-CTX MVIIA residue in real Conus samples.
Collapse
Affiliation(s)
- Rongzhi Wang
- Key Laboratory of Pathogenic Fungi and Mycotoxins of Fujian Province, Key Laboratory of Biopesticide and Chemical Biology of Education Ministry, and School of Life Sciences, Fujian Agriculture and Forestry University, Fuzhou, 350002, China
| | - Yanfang Zhong
- Key Laboratory of Pathogenic Fungi and Mycotoxins of Fujian Province, Key Laboratory of Biopesticide and Chemical Biology of Education Ministry, and School of Life Sciences, Fujian Agriculture and Forestry University, Fuzhou, 350002, China
| | - Juncheng Wang
- Key Laboratory of Pathogenic Fungi and Mycotoxins of Fujian Province, Key Laboratory of Biopesticide and Chemical Biology of Education Ministry, and School of Life Sciences, Fujian Agriculture and Forestry University, Fuzhou, 350002, China
| | - Hang Yang
- Key Laboratory of Pathogenic Fungi and Mycotoxins of Fujian Province, Key Laboratory of Biopesticide and Chemical Biology of Education Ministry, and School of Life Sciences, Fujian Agriculture and Forestry University, Fuzhou, 350002, China
| | - Jun Yuan
- Key Laboratory of Pathogenic Fungi and Mycotoxins of Fujian Province, Key Laboratory of Biopesticide and Chemical Biology of Education Ministry, and School of Life Sciences, Fujian Agriculture and Forestry University, Fuzhou, 350002, China
| | - Shihua Wang
- Key Laboratory of Pathogenic Fungi and Mycotoxins of Fujian Province, Key Laboratory of Biopesticide and Chemical Biology of Education Ministry, and School of Life Sciences, Fujian Agriculture and Forestry University, Fuzhou, 350002, China.
| |
Collapse
|
17
|
Jagonia RVS, Dela Victoria RG, Bajo LM, Tan RS. Conus striatus venom exhibits non-hepatotoxic and non-nephrotoxic potent analgesic activity in mice. Mol Biol Rep 2019; 46:5479-5486. [PMID: 31102148 DOI: 10.1007/s11033-019-04875-8] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2019] [Accepted: 05/13/2019] [Indexed: 11/26/2022]
Abstract
Constant research into the pharmaceutical properties of marine natural products has led to the discovery of many potentially active agents considered worthy of medical applications. Genus Conus, which approximately comprises 700 species, is currently under every researcher's interest because of the conopeptides in their crude venom. Conopeptides have a wide range of pharmacological classes and properties. This research focused on the crude venom of Conus striatus to assess its analgesic activity, mutagenicity, nephrotoxicity, and hepatotoxicity in mice. The crude venom was extracted from the conus snails and the protein concentration was determined using Bradford's method. The analgesic activity of the venom was determined using the hot-plate method and standard IFCC method was used to determine the alanine aminotransferase (ALT) and aspartate aminotransferase (AST). Evaluation of mutagenicity was done using micronucleus assay and the nephrotoxicity of the venom was determined using Kidney Coefficient and serum creatinine concentration. The maximum tolerable dose (MTD) of the crude venom was found to be 75 ppm. The venom exhibited potent analgesic activity even higher than the positive control (Ibuprofen). Most of the analgesic drugs can usually impact damage in the liver and kidneys. However, AST and ALT results revealed that the venom has no adverse effects on the liver. Although the venom increased the incidence of micronucleated polychromatic erythrocytes, making it mutagenic, with MTD concentration's mutagenicity comparable to the positive control methyl methanesulfonate (MMS). The kidney coefficients, on the other hand, showed no significant difference between the treated groups and that of the untreated group. The serum creatinine also showed a concentration-dependent increase; with MTD treated mice got the highest creatinine concentration. However, MTD/2 and MTD/4 showed no significant difference in creatinine levels with respect to the untreated groups. Hence, the nephrotoxicity of the venom was only evident when used at higher concentration. The venom exhibited potent analgesic activity indicated that the C. striatus crude venom extract could have a potential therapeutic component as analgesic drugs that displayed no hepatic damage. This study also suggests that for this venom to be utilized for future medical applications, their usage must be regulated and properly monitored to avoid nephrotoxic effect.
Collapse
Affiliation(s)
- Rofel Vincent S Jagonia
- Department of Chemistry, College of Science and Mathematics, Mindanao State University-Iligan Institute of Technology, A. Bonifacio Avenue, 9200, Tibanga Iligan City, Philippines
| | - Rejemae G Dela Victoria
- Department of Chemistry, College of Science and Mathematics, Mindanao State University-Iligan Institute of Technology, A. Bonifacio Avenue, 9200, Tibanga Iligan City, Philippines
| | - Lydia M Bajo
- Department of Chemistry, College of Science and Mathematics, Mindanao State University-Iligan Institute of Technology, A. Bonifacio Avenue, 9200, Tibanga Iligan City, Philippines
| | - Roger S Tan
- Department of Chemistry, College of Science, De La Salle University, 2401 Taft Avenue, 0922, Manila, Philippines.
| |
Collapse
|
18
|
Ikegami T. Hydrophilic interaction chromatography for the analysis of biopharmaceutical drugs and therapeutic peptides: A review based on the separation characteristics of the hydrophilic interaction chromatography phases. J Sep Sci 2019; 42:130-213. [DOI: 10.1002/jssc.201801074] [Citation(s) in RCA: 42] [Impact Index Per Article: 8.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2018] [Revised: 11/17/2018] [Accepted: 11/18/2018] [Indexed: 12/13/2022]
Affiliation(s)
- Tohru Ikegami
- Faculty of Molecular Chemistry and Engineering; Kyoto Institute of Technology; Kyoto Japan
- Institute of Pharmaceutical Sciences; Pharmaceutical (Bio-) Analysis; Eberhard-Karls Universität Tübingen; Tübingen Germany
| |
Collapse
|
19
|
Neurobiology and therapeutic applications of neurotoxins targeting transmitter release. Pharmacol Ther 2019; 193:135-155. [DOI: 10.1016/j.pharmthera.2018.08.016] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
|
20
|
Gao B, Peng C, Zhu Y, Sun Y, Zhao T, Huang Y, Shi Q. High Throughput Identification of Novel Conotoxins from the Vermivorous Oak Cone Snail ( Conus quercinus) by Transcriptome Sequencing. Int J Mol Sci 2018; 19:ijms19123901. [PMID: 30563163 PMCID: PMC6321112 DOI: 10.3390/ijms19123901] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2018] [Revised: 11/27/2018] [Accepted: 12/03/2018] [Indexed: 12/28/2022] Open
Abstract
The primary objective of this study was to realize the large-scale discovery of conotoxin sequences from different organs (including the venom duct, venom bulb and salivary gland) of the vermivorous Oak cone snail, Conus quercinus. Using high-throughput transcriptome sequencing, we identified 133 putative conotoxins that belong to 34 known superfamilies, of which nine were previously reported while the remaining 124 were novel conotoxins, with 17 in new and unassigned conotoxin groups. A-, O1-, M-, and I2- superfamilies were the most abundant, and the cysteine frameworks XIII and VIII were observed for the first time in the A- and I2-superfamilies. The transcriptome data from the venom duct, venom bulb and salivary gland showed considerable inter-organizational variations. Each organ had many exclusive conotoxins, and only seven of all the inferred mature peptides were common in the three organs. As expected, most of the identified conotoxins were synthesized in the venom duct at relatively high levels; however, a number of conotoxins were also identified in the venom bulb and the salivary gland with very low transcription levels. Therefore, various organs have different conotoxins with high diversity, suggesting greater contributions from several organs to the high-throughput discovery of new conotoxins for future drug development.
Collapse
Affiliation(s)
- Bingmiao Gao
- Hainan Provincial Key Laboratory of Research and Development of Herbs, College of Pharmacy, Hainan Medical University, Haikou 571199, China.
- Shenzhen Key Lab of Marine Genomics, Guangdong Provincial Key Lab of Molecular Breeding in Marine Economic Animals, BGI Academy of Marine Sciences, BGI Marine, BGI, Shenzhen 518083, China.
- Institute for Molecular Bioscience, The University of Queensland, St. Lucia, Brisbane, QLD 4072, Australia.
| | - Chao Peng
- Shenzhen Key Lab of Marine Genomics, Guangdong Provincial Key Lab of Molecular Breeding in Marine Economic Animals, BGI Academy of Marine Sciences, BGI Marine, BGI, Shenzhen 518083, China.
| | - Yabing Zhu
- BGI Genomics, BGI-Shenzhen, Shenzhen 518083, China.
| | - Yuhui Sun
- BGI Genomics, BGI-Shenzhen, Shenzhen 518083, China.
- Children's Hospital of Philadelphia, Philadelphia, PA 19104, USA.
| | - Tian Zhao
- Chemistry Department, College of Art and Science, Boston University, Boston, MA 02215, USA.
| | - Yu Huang
- Shenzhen Key Lab of Marine Genomics, Guangdong Provincial Key Lab of Molecular Breeding in Marine Economic Animals, BGI Academy of Marine Sciences, BGI Marine, BGI, Shenzhen 518083, China.
- BGI Education Center, University of Chinese Academy of Sciences, Shenzhen 518083, China.
| | - Qiong Shi
- Shenzhen Key Lab of Marine Genomics, Guangdong Provincial Key Lab of Molecular Breeding in Marine Economic Animals, BGI Academy of Marine Sciences, BGI Marine, BGI, Shenzhen 518083, China.
- BGI Education Center, University of Chinese Academy of Sciences, Shenzhen 518083, China.
| |
Collapse
|
21
|
Using Drosophila behavioral assays to characterize terebrid venom-peptide bioactivity. Sci Rep 2018; 8:15276. [PMID: 30323294 PMCID: PMC6189199 DOI: 10.1038/s41598-018-33215-2] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2018] [Accepted: 09/24/2018] [Indexed: 12/14/2022] Open
Abstract
The number of newly discovered peptides from the transcriptomes and proteomes of animal venom arsenals is rapidly increasing, resulting in an abundance of uncharacterized peptides. There is a pressing need for a systematic, cost effective, and scalable approach to identify physiological effects of venom peptides. To address this discovery-to-function gap, we developed a sequence driven:activity-based hybrid approach for screening venom peptides that is amenable to large-venom peptide libraries with minimal amounts of peptide. Using this approach, we characterized the physiological and behavioral phenotypes of two peptides from the venom of predatory terebrid marine snails, teretoxins Tv1 from Terebra variegata and Tsu1.1 from Terebra subulata. Our results indicate that Tv1 and Tsu1.1 have distinct bioactivity. Tv1 (100 µM) had an antinociceptive effect in adult Drosophila using a thermal nociception assay to measure heat avoidance. Alternatively, Tsu1.1 (100 µM) increased food intake. These findings describe the first functional bioactivity of terebrid venom peptides in relation to pain and diet and indicate that Tv1 and Tsu1.1 may, respectively, act as antinociceptive and orexigenic agents. Tv1 and Tsu1.1 are distinct from previously identified venom peptides, expanding the toolkit of peptides that can potentially be used to investigate the physiological mechanisms of pain and diet.
Collapse
|
22
|
Animal protein toxins: origins and therapeutic applications. BIOPHYSICS REPORTS 2018; 4:233-242. [PMID: 30533488 PMCID: PMC6245134 DOI: 10.1007/s41048-018-0067-x] [Citation(s) in RCA: 41] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2018] [Accepted: 07/23/2018] [Indexed: 12/21/2022] Open
Abstract
Venomous animals on the earth have been found to be valuable resources for the development of therapeutics. Enzymatic and non-enzymatic proteins and peptides are the major components of animal venoms, many of which can target various ion channels, receptors, and membrane transporters. Compared to traditional small molecule drugs, natural proteins and peptides exhibit higher specificity and potency to their targets. In this review, we summarize the varieties and characteristics of toxins from a few representative venomous animals, and describe the components and applications of animal toxins as potential drug candidates in the treatment of human diseases, including cancer, neurodegenerative diseases, cardiovascular diseases, neuropathic pain, as well as autoimmune diseases. In the meantime, there are many obstacles to translate new toxin discovery to their clinical applications. The challenges, strategies, and perspectives in the development of the protein toxin-based drugs are discussed as well.
Collapse
|
23
|
Gao B, Peng C, Yang J, Yi Y, Zhang J, Shi Q. Cone Snails: A Big Store of Conotoxins for Novel Drug Discovery. Toxins (Basel) 2017; 9:E397. [PMID: 29215605 PMCID: PMC5744117 DOI: 10.3390/toxins9120397] [Citation(s) in RCA: 81] [Impact Index Per Article: 11.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2017] [Revised: 11/28/2017] [Accepted: 12/04/2017] [Indexed: 12/11/2022] Open
Abstract
Marine drugs have developed rapidly in recent decades. Cone snails, a group of more than 700 species, have always been one of the focuses for new drug discovery. These venomous snails capture prey using a diverse array of unique bioactive neurotoxins, usually named as conotoxins or conopeptides. These conotoxins have proven to be valuable pharmacological probes and potential drugs due to their high specificity and affinity to ion channels, receptors, and transporters in the nervous systems of target prey and humans. Several research groups, including ours, have examined the venom gland of cone snails using a combination of transcriptomic and proteomic sequencing, and revealed the existence of hundreds of conotoxin transcripts and thousands of conopeptides in each Conus species. Over 2000 nucleotide and 8000 peptide sequences of conotoxins have been published, and the number is still increasing quickly. However, more than 98% of these sequences still lack 3D structural and functional information. With the rapid development of genomics and bioinformatics in recent years, functional predictions and investigations on conotoxins are making great progress in promoting the discovery of novel drugs. For example, ω-MVIIA was approved by the U.S. Food and Drug Administration in 2004 to treat chronic pain, and nine more conotoxins are at various stages of preclinical or clinical evaluation. In short, the genus Conus, the big family of cone snails, has become an important genetic resource for conotoxin identification and drug development.
Collapse
Affiliation(s)
- Bingmiao Gao
- Hainan Provincial Key Laboratory of Research and Development of Tropical Medicinal Plants, Hainan Medical University, Haikou 571199, China.
| | - Chao Peng
- Shenzhen Key Lab of Marine Genomics, Guangdong Provincial Key Lab of Molecular Breeding in Marine Economic Animals, BGI Academy of Marine Sciences, BGI Marine, BGI, Shenzhen 518083, China.
| | - Jiaan Yang
- Micro Pharmtech, Ltd., Wuhan 430075, China.
| | - Yunhai Yi
- Shenzhen Key Lab of Marine Genomics, Guangdong Provincial Key Lab of Molecular Breeding in Marine Economic Animals, BGI Academy of Marine Sciences, BGI Marine, BGI, Shenzhen 518083, China.
- BGI Education Center, University of Chinese Academy of Sciences, Shenzhen 518083, China.
| | - Junqing Zhang
- Hainan Provincial Key Laboratory of Research and Development of Tropical Medicinal Plants, Hainan Medical University, Haikou 571199, China.
| | - Qiong Shi
- Shenzhen Key Lab of Marine Genomics, Guangdong Provincial Key Lab of Molecular Breeding in Marine Economic Animals, BGI Academy of Marine Sciences, BGI Marine, BGI, Shenzhen 518083, China.
- BGI Education Center, University of Chinese Academy of Sciences, Shenzhen 518083, China.
| |
Collapse
|
24
|
Screening and Validation of Highly-Efficient Insecticidal Conotoxins from a Transcriptome-Based Dataset of Chinese Tubular Cone Snail. Toxins (Basel) 2017; 9:toxins9070214. [PMID: 28684723 PMCID: PMC5535161 DOI: 10.3390/toxins9070214] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2017] [Revised: 06/29/2017] [Accepted: 06/30/2017] [Indexed: 12/23/2022] Open
Abstract
Most previous studies have focused on analgesic and anti-cancer activities for the conotoxins identified from piscivorous and molluscivorous cone snails, but little attention has been devoted to insecticidal activity of conotoxins from the dominant vermivorous species. As a representative vermivorous cone snail, the Chinese tubular cone snail (Conus betulinus) is the dominant Conus species inhabiting the South China Sea. We sequenced related venom transcriptomes from C. betulinus using both the next-generation sequencing and traditional Sanger sequencing technologies, and a comprehensive library of 215 conotoxin transcripts was constructed. In our current study, six conotoxins with potential insecticidal activity were screened out from our conotoxin library by homologous search with a reported positive control (alpha-conotoxin ImI from C. imperialis) as the query. Subsequently, these conotoxins were synthesized by chemical solid-phase and oxidative folding for further insecticidal activity validation, such as MTT assay, insect bioassay and homology modeling. The final results proved insecticidal activities of our achieved six conotoxins from the transcriptome-based dataset. Interestingly, two of them presented a lot of high insecticidal activity, which supports their usefulness for a trial as insecticides in field investigations. In summary, our present work provides a good example for high throughput development of biological insecticides on basis of the accumulated genomic resources.
Collapse
|