1
|
Carvalho RG, Patekoski LF, Puppin-Rontani RM, Nakaie CR, Nascimento FD, Tersariol ILS. Self-assembled peptide P11-4 interacts with the type I collagen C-terminal telopeptide domain and calcium ions. Dent Mater 2023; 39:708. [PMID: 37394390 DOI: 10.1016/j.dental.2023.06.004] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2023] [Revised: 05/31/2023] [Accepted: 06/14/2023] [Indexed: 07/04/2023]
Abstract
OBJECTIVES Evaluate molecularly the role of P11-4 self-assembly peptide in dentin remineralization and its interaction with collagen I. METHODS The calcium-responsive P11-4 peptide was analyzed by intrinsic fluorescence emission spectrum, circular dichroism spectrum (CD), and atomic force microscope (AFM). Differential light scattering was used to monitor the nucleation growth rate of calcium phosphate nanocrystals in the absence or in the presence of P11-4. AFM was used to analyze the radial size (nm) of calcium phosphate nanocrystals formed in the absence or in the presence of P11-4, as well as to verify the spatial structure of P11-4 in the absence or in the presence of Ca2+. RESULTS The interaction of Ca2+ with the P11-4 (KD = 0.58 ± 0.06 mM) promotes the formation of β-sheet antiparallel structure, leads to its precipitation in saturated solutions of Ca/P = 1.67 and induces the formation of parallel large fibrils (0.6 - 1.5 µm). P11-4 organized the HAP nucleation by reducing both the growth rate and size variability of nanocrystals, analyzed by the F test (p < 0.0001, N = 30). P11-4 interacts (KD = 0.75 ± 0.06 μM) with the KGHRGFSGL motif present at the C-terminal collagen telopeptide domain. P11-4 also increased the amount of HAP and collagen in the MDPC-23 cells. SIGNIFICANCE The presented data propose a mechanism that will help future clinical and/or basic research to better understand a molecule able to inhibit structural collagen loss and help the impaired tissue to remineralize.
Collapse
Affiliation(s)
- Rafael Guzella Carvalho
- Department of Biochemistry, Molecular Biology Division, Escola Paulista de Medicina, Federal University of São Paulo, São Paulo, SP, Brazil
| | - Luiz Fernando Patekoski
- Department of Biochemistry, Molecular Biology Division, Escola Paulista de Medicina, Federal University of São Paulo, São Paulo, SP, Brazil
| | - Regina M Puppin-Rontani
- Department of Health Sciences and Pediatric Dentistry, Piracicaba Dental School, State University of Campinas, Piracicaba, SP, Brazil
| | - Clovis Ryuichi Nakaie
- Department of Biophysics, Escola Paulista de Medicina, Federal University of São Paulo, São Paulo, SP, Brazil
| | - Fabio Dupart Nascimento
- Department of Biochemistry, Molecular Biology Division, Escola Paulista de Medicina, Federal University of São Paulo, São Paulo, SP, Brazil.
| | - Ivarne L S Tersariol
- Department of Biochemistry, Molecular Biology Division, Escola Paulista de Medicina, Federal University of São Paulo, São Paulo, SP, Brazil.
| |
Collapse
|
2
|
Stein MB, Jain S, Simon NM, West JC, Marvar PJ, Bui E, He F, Benedek DM, Cassano P, Griffith JL, Howlett J, Malgaroli M, Melaragno A, Seligowski AV, Shu IW, Song S, Szuhany K, Taylor CT, Ressler KJ. Randomized, Placebo-Controlled Trial of the Angiotensin Receptor Antagonist Losartan for Posttraumatic Stress Disorder. Biol Psychiatry 2021; 90:473-481. [PMID: 34275593 DOI: 10.1016/j.biopsych.2021.05.012] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/02/2021] [Revised: 04/20/2021] [Accepted: 05/03/2021] [Indexed: 11/17/2022]
Abstract
BACKGROUND Evidence-based pharmacological treatments for posttraumatic stress disorder (PTSD) are few and of limited efficacy. Previous work suggests that angiotensin type 1 receptor inhibition facilitates fear inhibition and extinction, important for recovery from PTSD. This study tests the efficacy of the angiotensin type 1 receptor antagonist losartan, an antihypertensive drug, repurposed for the treatment of PTSD. METHODS A randomized controlled trial was conducted for 10 weeks in 149 men and women meeting DSM-5 PTSD criteria. Losartan (vs. placebo) was flexibly titrated from 25 to 100 mg/day by week 6 and held at highest tolerated dose until week 10. Primary outcome was the Clinician-Administered PTSD Scale for DSM-5 (CAPS-5) change score at 10 weeks from baseline. A key secondary outcome was change in CAPS-5 associated with a single nucleotide polymorphism of the ACE gene. Additional secondary outcomes included changes in the PTSD Checklist for DSM-5 and the Patient Health Questionnaire-9, and proportion of responders with a Clinical Global Impressions-Improvement scale of "much improved" or "very much improved." RESULTS Both groups had robust improvement in PTSD symptoms, but there was no significant difference on the primary end point, CAPS-5 measured as week 10 change from baseline, between losartan and placebo (mean change difference, 0.9, 95% confidence interval, -3.2 to 5.0). There was no significant difference in the proportion of Clinical Global Impressions-Improvement scale responders for losartan (58.6%) versus placebo (57.9%), no significant differences in changes in PTSD Checklist for DSM-5 or Patient Health Questionnaire-9, and no association between ACE genotype and CAPS-5 improvement on losartan. CONCLUSIONS At these doses and durations, there was no significant benefit of losartan compared with placebo for the treatment of PTSD. We discuss implications for failure to determine the benefit of a repurposed drug with strong a priori expectations of success based on preclinical and epidemiological data.
Collapse
Affiliation(s)
- Murray B Stein
- Department of Psychiatry, University of California San Diego, La Jolla, California; Herbert Wertheim School of Public Health and Human Longevity Science, University of California San Diego, La Jolla, California; VA San Diego Healthcare System, San Diego, California.
| | - Sonia Jain
- Herbert Wertheim School of Public Health and Human Longevity Science, University of California San Diego, La Jolla, California
| | - Naomi M Simon
- NYU Grossman School of Medicine and NYU Langone Health, New York, New York
| | - James C West
- Uniformed Services University of the Health Sciences, Bethesda, Maryland
| | | | - Eric Bui
- Department of Psychiatry, Massachusetts General Hospital, Boston, Massachusetts
| | - Feng He
- Herbert Wertheim School of Public Health and Human Longevity Science, University of California San Diego, La Jolla, California
| | - David M Benedek
- Uniformed Services University of the Health Sciences, Bethesda, Maryland
| | - Paolo Cassano
- Department of Psychiatry, Massachusetts General Hospital, Boston, Massachusetts
| | | | - Jonathan Howlett
- Department of Psychiatry, University of California San Diego, La Jolla, California; VA San Diego Healthcare System, San Diego, California
| | - Matteo Malgaroli
- NYU Grossman School of Medicine and NYU Langone Health, New York, New York
| | - Andrew Melaragno
- Department of Psychiatry, Massachusetts General Hospital, Boston, Massachusetts
| | - Antonia V Seligowski
- Department of Psychiatry, Harvard Medical School, Boston, Massachusetts; McLean Hospital, Belmont, Massachusetts
| | - I-Wei Shu
- Department of Psychiatry, University of California San Diego, La Jolla, California; VA San Diego Healthcare System, San Diego, California
| | - Suzan Song
- George Washington University, Washington, DC
| | - Kristin Szuhany
- NYU Grossman School of Medicine and NYU Langone Health, New York, New York
| | - Charles T Taylor
- Department of Psychiatry, University of California San Diego, La Jolla, California
| | - Kerry J Ressler
- Department of Psychiatry, Harvard Medical School, Boston, Massachusetts; McLean Hospital, Belmont, Massachusetts.
| |
Collapse
|
3
|
Diniz LCL, Alves FL, Miranda A, da Silva Junior PI. Two Tachykinin-Related Peptides with Antimicrobial Activity Isolated from Triatoma infestans Hemolymph. Microbiol Insights 2020; 13:1178636120933635. [PMID: 32843839 PMCID: PMC7416138 DOI: 10.1177/1178636120933635] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2020] [Accepted: 05/15/2020] [Indexed: 12/29/2022] Open
Abstract
Antimicrobial peptides and proteins (AMPs) are molecules that can interact with
microbial cells and lead to membrane disruption or intracellular molecule
interactions and death. Several molecules with antimicrobial effects also
present other biological activities. One such protein group representing the
duplicity of activities is the tachykinin family. Tachykinins (TKs) form a
family of neuropeptides in vertebrates with a consensus C-terminal region
(F-X-G-Y-R-NH2). Invertebrate TKs and TK-related peptides (TKRPs) are
subfamilies found in invertebrates that present high homology with TKs and have
similar biological effects. Several of these molecules have already been
described but reports of TKRP in Hemiptera species are limited. By analyzing the
Triatoma infestans hemolymph by reversed-phase
high-performance liquid chromatography, biological assays, and mass
spectrometry, two antimicrobial molecules were isolated and identified as TKRPs,
which we named as TRP1-TINF and TRP2-TINF (tachykinin-related peptides I and II
from T. infestans). TRP1-TINF is a random secondary structure
peptide with 9 amino acid residues. It is susceptible to aminopeptidases
degradation and is active mainly against Micrococcus luteus (32
μM). TRP2-TINF is a 10-amino acid peptide with a 310 helix secondary structure
and is susceptible to carboxypeptidases degradation. It has major antimicrobial
activity against both Pseudomonas aeruginosa and
Escherichia coli (45 μM). Neither molecule is toxic to
human erythrocytes and both present minor toxicity toward Vero cells at a
concentration of 1000 μM. As the first description of TKRPs with antimicrobial
activity in T. infestans, this work contributes to the wider
comprehension of the insects’ physiology and describes pharmacological relevant
molecules.
Collapse
Affiliation(s)
- Laura Cristina Lima Diniz
- Center of Toxins, Immune-Response and Cell Signaling - CeTICS/CEPID, LAboratory of Applied Toxinology, Butantan Institute, São Paulo, Brazil.,Postgraduate Program Interunits in Biotechnology, Department of Biomedical Sciences, USP/IPT/IBU, São Paulo, Brazil
| | | | | | - Pedro Ismael da Silva Junior
- Center of Toxins, Immune-Response and Cell Signaling - CeTICS/CEPID, LAboratory of Applied Toxinology, Butantan Institute, São Paulo, Brazil.,Postgraduate Program Interunits in Biotechnology, Department of Biomedical Sciences, USP/IPT/IBU, São Paulo, Brazil
| |
Collapse
|
4
|
Carvalho RG, Alvarez MMP, de Sá Oliveira T, Polassi MR, Vilhena FV, Alves FL, Nakaie CR, Nascimento FD, D'Alpino PHP, Tersariol ILDS. The interaction of sodium trimetaphosphate with collagen I induces conformational change and mineralization that prevents collagenase proteolytic attack. Dent Mater 2020; 36:e184-e193. [PMID: 32305153 DOI: 10.1016/j.dental.2020.03.023] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2019] [Revised: 01/31/2020] [Accepted: 03/27/2020] [Indexed: 10/24/2022]
Abstract
OBJECTIVES This study evaluated the cell viability and expression of different major genes involved in mineralization in odontoblast-like cells exposed to sodium trimetaphosphate (STMP). It was also investigated the influence of STMP on the rate of calcium phosphate crystal growth, its anti-proteolytic action against the enzymatic degradation of type I collagen, the binding mechanism of STMP to collagen fibrils, and the potential mechanism to induce collagen stabilization. METHODS Immortalized rat odontoblast MDPC-23 cells were cultured. Cell viability was assessed by trypan blue staining, and the changes in gene expression balance induced by STMP were assessed by quantitative reverse transcription (qRT) PCR assays. Crystalline particle formation was monitored by light-scattering detectors to estimate pH variation and the radial size of the crystalline particles as a function of reaction time (pH 7.4, 25°C) in the presence of STMP in supersaturated calcium phosphate solution (Ca/P=1.67). Images were obtained under atomic force microscopy (AFM) to measure the particle size in the presence of STMP. A three-point bending test was used to obtain the elastic modulus of fully demineralized dentin beams after immersion in STMP solution. The binding mechanism of STMP to collagen fibrils and potential stabilization mechanism was assessed with circular dichroism spectrometry (CD). The data were analyzed statistically (α=0.05). RESULTS STMP had no significant influence on the cell viability and gene expression of the MDPC-23 cells. STMP greatly increased the rate of crystal growth, significantly increasing the average radial crystal size. AFM corroborated the significant increase of STPM-treated crystal size. Mineralized collagen I fibrils exhibited less collagenase degradation with lower STMP concentration. CD analysis demonstrated changes in the conformational stability after STMP binding to type I collagen. SIGNIFICANCE The increased resistance of collagen against the proteolytic activity of collagenases appears to be related to the conformational change induced by STMP binding in collagen I and the STMP capacity for promoting biomimetic mineralization in type I collagen fibrils.
Collapse
Affiliation(s)
| | | | - Thales de Sá Oliveira
- Biotechnology and Innovation in Health Program, Universidade Anhanguera de São Paulo (UNIAN-SP), São Paulo, SP, Brazil.
| | - Mackeler Ramos Polassi
- Biotechnology and Innovation in Health Program, Universidade Anhanguera de São Paulo (UNIAN-SP), São Paulo, SP, Brazil.
| | | | - Flávio Lopes Alves
- Department of Biophysics, Escola Paulista de Medicina, Universidade Federal de São Paulo, São Paulo, SP, Brazil.
| | - Clóvis Ryuichi Nakaie
- Department of Biophysics, Escola Paulista de Medicina, Universidade Federal de São Paulo, São Paulo, SP, Brazil.
| | - Fábio Dupart Nascimento
- Interdisciplinary Center of Biochemistry Investigation, University of Mogi das Cruzes, Mogi das Cruzes, SP, Brazil.
| | | | - Ivarne Luis Dos Santos Tersariol
- Department of Biochemistry, Federal University of São Paulo, São Paulo, Brazil; Interdisciplinary Center of Biochemistry Investigation, University of Mogi das Cruzes, Mogi das Cruzes, SP, Brazil.
| |
Collapse
|