1
|
Patel KB, Patel RV, Ahmad I, Rajani D, Patel H, Mukherjee S, Kumari P. Design, synthesis, molecular docking, molecular dynamic simulation, and MMGBSA analysis of 7-O-substituted 5-hydroxy flavone derivatives. J Biomol Struct Dyn 2024; 42:6378-6392. [PMID: 37551031 DOI: 10.1080/07391102.2023.2243520] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2023] [Accepted: 07/01/2023] [Indexed: 08/09/2023]
Abstract
A series of chrysin derivatives were designed, synthesized, and evaluated for their antibacterial activity against four different bacterial strains. We have synthesized new propyl-substituted and butyl-substituted chrysin-piperazine derivatives, which show marvellous inhibition against E. coli and S. aureus. The free hydroxyl group at the C-5 position of chrysin improved therapeutic efficacy in vivo and was a beneficial formulation for chemotherapy. All synthesized compounds were confirmed by various spectroscopic techniques such as IR, NMR, HPLC, and mass spectrometry. The compounds exhibited moderate to good inhibition, and their structure-activity relationship (SAR) has also been illustrated. Among the synthesised compounds, compounds 4 and 10 were the most active against S. pyogenes and E. coli, with 12.5 g/mL MICs; additionally, compound 12 exhibits significant activity on both the S. aureus and E. coli stains. Based on the promising activity profile and docking score of compound 12, it was selected for 100 ns MD simulation and post-dynamic binding free energy analysis within the active sites of S. aureus TyrRS (PDB ID: 1JIJ) and E. coli DNA GyrB (PDB ID: 6YD9) to investigate the stability of molecular contacts and to establish how the newly synthesized inhibitors fit together in the most stable conformations.Communicated by Ramaswamy H. Sarma.
Collapse
Affiliation(s)
- Kajalben B Patel
- Department of Chemistry, Sardar Vallabhbhai National Institute of Technology, Surat, Gujarat, India
| | - Rahul V Patel
- Department of Food Science and Biotechnology, Dongguk University-Seoul, Goyang-si, Gyeonggi-do, Korea
| | - Iqrar Ahmad
- Department of Pharmaceutical Chemistry, Prof. Ravindra Nikam College of Pharmacy, Dhule, Maharashtra, India
- Division of Computer Aided Drug Design, Department of Pharmaceutical Chemistry, R. C. Patel Institute of Pharmaceutical Education and Research, Shirpur, Maharashtra, India
| | | | - Harun Patel
- Division of Computer Aided Drug Design, Department of Pharmaceutical Chemistry, R. C. Patel Institute of Pharmaceutical Education and Research, Shirpur, Maharashtra, India
| | | | - Premlata Kumari
- Department of Chemistry, Sardar Vallabhbhai National Institute of Technology, Surat, Gujarat, India
| |
Collapse
|
2
|
Sun J, Zhang CP, Chen CH, Guo XM, Liu CS, Zhou Y, Hu FL. Design, Synthesis and Molecular Docking of 1,3,4-Oxadiazole-2(3H)-thione Derivatives Containing 1,4-Benzodioxane Skeleton as Potential FabH Inhibitors. Chem Biodivers 2023; 20:e202201060. [PMID: 36579401 DOI: 10.1002/cbdv.202201060] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2022] [Revised: 12/24/2022] [Accepted: 12/27/2022] [Indexed: 12/30/2022]
Abstract
Fatty acid biosynthesis is essential for bacterial survival. Of these promising targets, β-ketoacyl-acyl carrier protein (ACP) synthase III (FabH) is the most attractive target. A series of novel 1,3,4-oxadiazole-2(3H)-thione derivatives containing 1,4-benzodioxane skeleton targeting FabH were designed and synthesized. These compounds were determined by 1 H-NMR, 13 C-NMR, MS and further confirmed by crystallographic diffraction study for compound 7m and 7n. Most of the compounds exhibited good inhibitory activity against bacteria by computer-assisted screening, antibacterial activity test and E. coli FabH inhibitory activity test, wherein compounds 7e and 7q exhibited the most significant inhibitory activities. Besides, compound 7q showed the best E. coli FabH inhibitory activity (IC50 =2.45 μΜ). Computational docking studies also showed that compound 7q interacts with FabH critical residues in the active site.
Collapse
Affiliation(s)
- Juan Sun
- College of Animal Sciences, Zhejiang University, Hangzhou, 310058, P. R. China
- School of Biological & Chemical Engineering, Zhejiang University of Science & Technology, Hangzhou, 310023, P. R. China
| | - Cui-Ping Zhang
- College of Animal Sciences, Zhejiang University, Hangzhou, 310058, P. R. China
| | - Chong-Hao Chen
- School of Biological & Chemical Engineering, Zhejiang University of Science & Technology, Hangzhou, 310023, P. R. China
| | - Xiao-Meng Guo
- School of Biological & Chemical Engineering, Zhejiang University of Science & Technology, Hangzhou, 310023, P. R. China
| | - Cai-Shi Liu
- School of Biological & Chemical Engineering, Zhejiang University of Science & Technology, Hangzhou, 310023, P. R. China
| | - Yang Zhou
- Zhejiang Engineering Research Center for Biomedical Materials, Cixi Institute of Biomedical Engineering, Ningbo Institute of Materials Technology and Engineering, Chinese Academy of Sciences, Ningbo, 315300, China
| | - Fu-Liang Hu
- College of Animal Sciences, Zhejiang University, Hangzhou, 310058, P. R. China
| |
Collapse
|
3
|
Shinde R, Suvarna V. Fatty Acid Biosynthesis: An Updated Review on KAS Inhibitors. Curr Drug Discov Technol 2022; 19:e110122200137. [PMID: 35021976 DOI: 10.2174/1570163819666220111113032] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2021] [Revised: 10/04/2021] [Accepted: 10/18/2021] [Indexed: 06/14/2023]
Abstract
Since the early twentieth century, with the isolation of penicillin and streptomycin in the 1940s, the modern era of anti-infective drug development has gained momentum. Due to the enormous success of early drug discovery, many infectious diseases were successfully prevented and eradicated. However, this initial hope was wrongheaded, and pathogens evolved as a significant threat to human health. Drug resistance develops as a result of natural selection's relentless pressure, necessitating the identification of new drug targets and the creation of chemotherapeutics that bypass existing drug resistance mechanisms. Fatty acid biosynthesis (FAS) is a crucial metabolic mechanism for bacteria during their growth and development. Several crucial enzymes involved in this biosynthetic pathway have been identified as potential targets for new antibacterial agents. In Escherichia coli (E. coli), this pathway has been extensively investigated. The present review focuses on progress in the development of Kas A, Kas B, and Fab H inhibitors as mono-therapeutic antibiotics.
Collapse
Affiliation(s)
- Rani Shinde
- Department of Quality Assurance, SVKM's Dr. Bhanuben Nanavati College of Pharmacy, Mumbai University, Mumbai, India
| | - Vasanti Suvarna
- Department of Pharmaceutical Chemistry, SVKM's Dr. Bhanuben Nanavati College of Pharmacy, Mumbai University, Mumbai, India
| |
Collapse
|
4
|
Facile synthesis and biological evaluation of chrysin derivatives. JOURNAL OF CHEMICAL RESEARCH 2021. [DOI: 10.1177/17475198211057467] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
Abstract
In this paper, novel synthetic methods, including microwave O-alkylation, were used to produce several chrysin derivatives. These compounds were purified, characterised and tested on different cell lines and bacterial strains. From this family, 7-(2,4-dinitrophenoxy)-5-hydroxy-3-phenyl-4H-chromen-4-one (C3) was shown to be extremely active on bacterial strains methicillin-resistant Staphylococcus aureus, Pseudomonas aeruginosa and Klebsiella pneumoniae as well as having anticancer activity on a range of cancer cell lines with IC50 values less than 30 µM. Chrysin has been known for their anticancer and antimicrobial properties, and this study not only corroborates this but also shows that it is possible to synthesise new improved derivatives with therapeutic possibilities.
Collapse
|
5
|
Zhang RH, Guo HY, Deng H, Li J, Quan ZS. Piperazine skeleton in the structural modification of natural products: a review. J Enzyme Inhib Med Chem 2021; 36:1165-1197. [PMID: 34080510 PMCID: PMC8183565 DOI: 10.1080/14756366.2021.1931861] [Citation(s) in RCA: 41] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022] Open
Abstract
Piperazine moiety is a cyclic molecule containing two nitrogen atoms in positions 1 and 4, as well as four carbon atoms. Piperazine is one of the most sought heterocyclics for the development of new drug candidates with a wide range of applications. Over 100 molecules with a broad range of bioactivities, including antitumor, antibacterial, anti-inflammatory, antioxidant, and other activities, were reviewed. This article reviewed investigations regarding piperazine groups for the modification of natural product derivatives in the last decade, highlighting parameters that affect their biological activity.
Collapse
Affiliation(s)
- Run-Hui Zhang
- College of Pharmacy, Yanbian University, Yanji, Jilin, 133002, China
| | - Hong-Yan Guo
- College of Pharmacy, Yanbian University, Yanji, Jilin, 133002, China
| | - Hao Deng
- College of Pharmacy, Yanbian University, Yanji, Jilin, 133002, China
| | - Jinzi Li
- Affiliated Hospital of Yanbian University, Yanji, Jilin, China
| | - Zhe-Shan Quan
- College of Pharmacy, Yanbian University, Yanji, Jilin, 133002, China
| |
Collapse
|
6
|
Šuran J, Cepanec I, Mašek T, Radić B, Radić S, Tlak Gajger I, Vlainić J. Propolis Extract and Its Bioactive Compounds-From Traditional to Modern Extraction Technologies. Molecules 2021; 26:molecules26102930. [PMID: 34069165 PMCID: PMC8156449 DOI: 10.3390/molecules26102930] [Citation(s) in RCA: 58] [Impact Index Per Article: 14.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2021] [Revised: 05/11/2021] [Accepted: 05/11/2021] [Indexed: 12/14/2022] Open
Abstract
Propolis is a honeybee product known for its antioxidant, anti-inflammatory, anticancer, and antimicrobial effects. It is rich in bioactive molecules whose content varies depending on the botanical and geographical origin of propolis. These bioactive molecules have been studied individually and as a part of propolis extracts, as they can be used as representative markers for propolis standardization. Here, we compare the pharmacological effects of representative polyphenols and whole propolis extracts. Based on the literature data, polyphenols and extracts act by suppressing similar targets, from pro-inflammatory TNF/NF-κB to the pro-proliferative MAPK/ERK pathway. In addition, they activate similar antioxidant mechanisms of action, like Nrf2-ARE intracellular antioxidant pathway, and they all have antimicrobial activity. These similarities do not imply that we should attribute the action of propolis solely to the most representative compounds. Moreover, its pharmacological effects will depend on the efficacy of these compounds’ extraction. Thus, we also give an overview of different propolis extraction technologies, from traditional to modern ones, which are environmentally friendlier. These technologies belong to an open research area that needs further effective solutions in terms of well-standardized liquid and solid extracts, which would be reliable in their pharmacological effects, environmentally friendly, and sustainable for production.
Collapse
Affiliation(s)
- Jelena Šuran
- Department of Pharmacology and Toxicology, Faculty of Veterinary Medicine, University of Zagreb, Heinzelova 55, 10000 Zagreb, Croatia;
| | - Ivica Cepanec
- Director of Research & Development and CTO, Amelia Ltd., Zagorska 28, Bunjani, 10314 Kriz, Croatia;
| | - Tomislav Mašek
- Department of Animal Nutrition and Dietetics, Faculty of Veterinary Medicine, University of Zagreb, Heinzelova 55, 10000 Zagreb, Croatia;
| | - Božo Radić
- Hedera Ltd., 4. Gardijske Brigade 35, 21311 Split, Croatia; (B.R.); (S.R.)
| | - Saša Radić
- Hedera Ltd., 4. Gardijske Brigade 35, 21311 Split, Croatia; (B.R.); (S.R.)
| | - Ivana Tlak Gajger
- Department for Biology and Pathology of Fish and Bees, Faculty of Veterinary Medicine, University of Zagreb, Heinzelova 55, 10000 Zagreb, Croatia;
| | - Josipa Vlainić
- Division of Molecular Medicine, Ruđer Bošković Institute, Bijenička cesta 54, 10000 Zagreb, Croatia
- Correspondence:
| |
Collapse
|
7
|
Zeng Z, Liu S, Luo W, Liang J, Peng A. Efficient Synthesis of Phosphorus/Nitrogen‐Containing Chrysin Derivatives via Classic Reactions. ChemistrySelect 2021. [DOI: 10.1002/slct.202004358] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/21/2023]
Affiliation(s)
- Ziyi Zeng
- School of Chemistry Sun Yat-sen University 135 Xingangxi Lu Guangzhou China
| | - Shuang Liu
- School of Chemistry Sun Yat-sen University 135 Xingangxi Lu Guangzhou China
| | - Wenjun Luo
- School of Chemistry Sun Yat-sen University 135 Xingangxi Lu Guangzhou China
| | - Jiaxin Liang
- School of Chemistry Sun Yat-sen University 135 Xingangxi Lu Guangzhou China
| | - Ai‐Yun Peng
- School of Chemistry Sun Yat-sen University 135 Xingangxi Lu Guangzhou China
| |
Collapse
|
8
|
Chen N, Wang R, Lu LJ, Yan LJ, Bai LL, Fu Y, Wang Y, Peng DQ, Chen X, Wang CH, Li J, Zhao K. Synthesis of chrysin derivatives and screening of antitumor activity. JOURNAL OF ASIAN NATURAL PRODUCTS RESEARCH 2020; 22:444-451. [PMID: 30887830 DOI: 10.1080/10286020.2019.1586677] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/29/2018] [Revised: 02/20/2019] [Accepted: 02/21/2019] [Indexed: 06/09/2023]
Abstract
A series of aromatic or long-chain chrysin derivatives (1-10) were synthesized by esterification of chrysin and acyl chloride. The chemical structures of these compounds were determined by mass spectrum (MS), 1H NMR, and 13C NMR spectra. Though aromatic chrysin derivatives (1-9) with a rigid structure were hard to dissolve in common organic solvents, the long-chain chrysin derivative (10) with a flexible structure had better solubility, and its anticancer activity (IC50 = 14.79 μmol/L) against liver cancer cell lines was 5.4 times better than chrysin (IC50 = 74.97 μmol/L), which showed superposition of pharmacological activity.
Collapse
Affiliation(s)
- Ni Chen
- School of Pharmacy, Hainan Medical College, Haikou 571100, China
| | - Ru Wang
- School of Pharmacy, Hainan Medical College, Haikou 571100, China
| | - Liu-Jun Lu
- School of Pharmacy, Hainan Medical College, Haikou 571100, China
| | - Li-Jian Yan
- School of Pharmacy, Hainan Medical College, Haikou 571100, China
| | - Li-Li Bai
- School of Pharmacy, Hainan Medical College, Haikou 571100, China
| | - Yan Fu
- School of Pharmacy, Hainan Medical College, Haikou 571100, China
| | - Ying Wang
- School of Pharmacy, Hainan Medical College, Haikou 571100, China
| | - De-Qian Peng
- School of Pharmacy, Hainan Medical College, Haikou 571100, China
| | - Xun Chen
- School of Pharmacy, Hainan Medical College, Haikou 571100, China
| | - Can-Hong Wang
- Hainan Branch Institute of Medicinal Plant Development, Chinese Academy of Medical Sciences and Peking Union Medical College, Haikou 570311, China
| | - Juan Li
- School of Pharmacy, Hainan Medical College, Haikou 571100, China
| | - Ke Zhao
- School of Pharmacy, Hainan Medical College, Haikou 571100, China
| |
Collapse
|
9
|
Farhadi F, Khameneh B, Iranshahi M, Iranshahy M. Antibacterial activity of flavonoids and their structure-activity relationship: An update review. Phytother Res 2018; 33:13-40. [PMID: 30346068 DOI: 10.1002/ptr.6208] [Citation(s) in RCA: 305] [Impact Index Per Article: 43.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2018] [Revised: 08/05/2018] [Accepted: 09/12/2018] [Indexed: 12/13/2022]
Abstract
Based on World Health Organization reports, resistance of bacteria to well-known antibiotics is a major global health challenge now and in the future. Different strategies have been proposed to tackle this problem including inhibition of multidrug resistance pumps and biofilm formation in bacteria and development of new antibiotics with novel mechanism of action. Flavonoids are a large class of natural compounds, have been extensively studied for their antibacterial activity, and more than 150 articles have been published on this topic since 2005. Over the past decade, some promising results were obtained with the antibacterial activity of flavonoids. In some cases, flavonoids (especially chalcones) showed up to sixfold stronger antibacterial activities than standard drugs in the market. Some synthetic derivatives of flavonoids also exhibited remarkable antibacterial activities with 20- to 80-fold more potent activity than the standard drug against multidrug-resistant Gram-negative and Gram-positive bacteria (including Escherichia coli, Pseudomonas aeruginosa, and Staphylococcus aureus). This review summarizes the ever changing information on antibacterial activity of flavonoids since 2005, with a special focus on the structure-activity relationship and mechanisms of actions of this broad class of natural compounds.
Collapse
Affiliation(s)
- Faegheh Farhadi
- Department of Pharmacognosy, School of Pharmacy, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Bahman Khameneh
- Department of Pharmaceutical Control, School of Pharmacy, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Mehrdad Iranshahi
- Biotechnology Research Center, Pharmaceutical Technology Institute, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Milad Iranshahy
- Department of Pharmacognosy, School of Pharmacy, Mashhad University of Medical Sciences, Mashhad, Iran.,Biotechnology Research Center, Pharmaceutical Technology Institute, Mashhad University of Medical Sciences, Mashhad, Iran
| |
Collapse
|
10
|
González-Montiel S, Valdez-Calderón A, Vásquez-Pérez JM, Torres-Valencia JM, Martínez-Otero D, López JA, Cruz-Borbolla J. Palladium(II) complexes bearing di-(2-picolyl)amine functionalized chrysin fragments. An experimental and theoretical study. J Mol Struct 2017. [DOI: 10.1016/j.molstruc.2017.05.076] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
|
11
|
Matos AM, Cristóvão JS, Yashunsky DV, Nifantiev NE, Viana AS, Gomes CM, Rauter AP. Synthesis and effects of flavonoid structure variation on amyloid-β aggregation. PURE APPL CHEM 2017. [DOI: 10.1515/pac-2017-0201] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/01/2023]
Abstract
AbstractDietary flavonoids and synthetic derivatives have a well-known potential for biomedical applications. In this perspective, we report herein new methodologies to access chrysin and 5,7-dihydroxychromone, and these structures were combined with those of naturally occurring quercetin, luteolin, (+)-dihydroquercetin and apigenin to assemble a set of polyphenols with structure variations for in vitro testing over the aggregation of Alzheimer’s disease (AD) amyloid peptide Aβ1−42. Using thioflavin-T (ThT) monitored kinetics and subsequent mechanistic analysis by curve fitting, we show that catechol-type flavonoids reduce Aβ1−42 fibril content by 30% at molar ratios over 10. Without affecting secondary nucleation, these compounds accelerate primary nucleation events responsible for early primary oligomer formation, putatively redirecting the latter into off-pathway aggregates. Atomic force microscopy (AFM) imaging of reaction end-points allowed a comprehensive topographical analysis of amyloid aggregate populations formed in the presence of each compound. Formation of Aβ1−42 small oligomers, regarded as the most toxic amyloid structures, seems to be limited by flavonoids with a C2 phenyl group, while flavonol 3-OH is not a beneficial structural feature. Overall, the diversity of structural variations within flavonoids opens avenues for their development as chemical tools in the treatment of AD by tackling the formation and distribution of neurotoxic oligomers species.
Collapse
Affiliation(s)
- Ana M. Matos
- Centro de Química e Bioquímica, Faculdade de Ciências, Universidade de Lisboa and Departamento de Química e Bioquímica, Faculdade de Ciências, Universidade de Lisboa, Ed. C8, Campo Grande, 1749-016 Lisboa, Portugal
- CEDOC Chronic Diseases, Nova Medical School, Rua Câmara Pestana n° 6, 6-A, CEDOC II, 1150-082, Lisboa, Portugal
| | - Joana S. Cristóvão
- Biosystems and Integrative Sciences Institute, Faculdade de Ciências, Universidade de Lisboa, 1749-016 Lisboa; Departamento de Química e Bioquímica, Faculdade de Ciências, Universidade de Lisboa, Campo Grande, 1749-016 Lisboa, Portugal
| | - Dmitry V. Yashunsky
- Laboratory of Glycoconjugate Chemistry, N. D. Zelinsky Institute of Organic Chemistry, Russian Academy of Sciences, Leninsky, Prospect 47, 119991 Moscow, Russian Federation
| | - Nikolay E. Nifantiev
- Laboratory of Glycoconjugate Chemistry, N. D. Zelinsky Institute of Organic Chemistry, Russian Academy of Sciences, Leninsky, Prospect 47, 119991 Moscow, Russian Federation
| | - Ana S. Viana
- Centro de Química e Bioquímica, Faculdade de Ciências, Universidade de Lisboa and Departamento de Química e Bioquímica, Faculdade de Ciências, Universidade de Lisboa, Ed. C8, Campo Grande, 1749-016 Lisboa, Portugal
| | - Cláudio M. Gomes
- Biosystems and Integrative Sciences Institute, Faculdade de Ciências, Universidade de Lisboa, and Departamento de Química e Bioquímica, Faculdade de Ciências, Universidade de Lisboa, Campo Grande, 1749-016 Lisboa, Portugal
| | - Amélia P. Rauter
- Centro de Química e Bioquímica, Faculdade de Ciências, Universidade de Lisboa and Departamento de Química e Bioquímica, Faculdade de Ciências, Universidade de Lisboa, Ed. C8, Campo Grande, 1749-016 Lisboa, Portugal
| |
Collapse
|