1
|
de Oliveira PV, Sanaiotto O, Kuhn KZ, Oltramari A, Bortoluzzi AJ, Lanza M, Aguiar GPS, Siebel AM, Müller LG, Oliveira JV. Micronization of naringenin in supercritical fluid medium: In vitro and in vivo assays. J Drug Deliv Sci Technol 2023. [DOI: 10.1016/j.jddst.2023.104382] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/29/2023]
|
2
|
Sun ZY, Ma DL, Gu LH, Chen X, Zhang L, Li L. DHF-7 Ameliorates Behavioral Disorders and White Matter Lesions by Regulating BDNF and Fyn in a Mouse Model of Schizophrenia Induced by Cuprizone and MK-801. Int J Neuropsychopharmacol 2022; 25:600-612. [PMID: 35353146 PMCID: PMC9352181 DOI: 10.1093/ijnp/pyac022] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/16/2021] [Revised: 02/24/2022] [Accepted: 03/24/2022] [Indexed: 11/13/2022] Open
Abstract
BACKGROUND Schizophrenia is a psychiatric disorder including multiple clinical symptoms such as severe psychosis and cognitive dysfunction. DHF-7 is a novel dihydroflavanone derivative that was designed and synthesized to treat schizophrenia. This study aimed to investigate the effects and mechanisms of DHF-7 in a mouse model of schizophrenia induced by a combination of cuprizone and MK-801. METHODS After intragastric administration of DHF-7 for 7 weeks, open field, Y-maze, and novel object recognition tests were performed to detect behavioral changes in the mouse model. White matter lesions and myelin loss were determined using transmission electron microscopy and oil red O staining. Western blotting and immunohistochemistry were used to detect the expression of the related proteins. RESULTS The results showed that DHF-7 treatment significantly improved cognitive impairment and positive symptoms in the model mice. Moreover, DHF-7 alleviated white matter lesions and demyelination and promoted the differentiation and maturation of oligodendrocytes for remyelination in the corpus callosum of model mice. The mechanistic study showed that DHF-7 increased the expression of brain-derived neurotrophic factor and phosphorylated Fyn, thus activating the tyrosine kinase receptor B (Trk B)/Fyn/N-methyl-D-aspartate receptor subunit 2 B (NMDAR2B) and Raf/mitogen-activated protein kinase (MEK)/ extracellular signal-related kinase (ERK) signaling pathways. CONCLUSIONS Our results provide an experimental basis for the development of DHF-7 as a novel therapeutic agent for schizophrenia.
Collapse
Affiliation(s)
| | | | - Li-Hong Gu
- Department of Pharmacy, Xuanwu Hospital, Capital Medical University, Beijing, China,National Center for Neurological Disorders, Beijing, China,National Clinical Research Center for Geriatric Diseases, Beijing, China,Beijing Institute for Brain Disorders, Beijing, China,Beijing Engineering Research Center for Nerve System Drugs, Beijing, China,Key Laboratory for Neurodegenerative Diseases of Ministry of Education, Beijing, China
| | - Xi Chen
- Department of Pharmacy, Xuanwu Hospital, Capital Medical University, Beijing, China,National Center for Neurological Disorders, Beijing, China,National Clinical Research Center for Geriatric Diseases, Beijing, China,Beijing Institute for Brain Disorders, Beijing, China,Beijing Engineering Research Center for Nerve System Drugs, Beijing, China,Key Laboratory for Neurodegenerative Diseases of Ministry of Education, Beijing, China
| | - Lan Zhang
- Department of Pharmacy, Xuanwu Hospital, Capital Medical University, Beijing, China,National Center for Neurological Disorders, Beijing, China,National Clinical Research Center for Geriatric Diseases, Beijing, China,Beijing Institute for Brain Disorders, Beijing, China,Beijing Engineering Research Center for Nerve System Drugs, Beijing, China,Key Laboratory for Neurodegenerative Diseases of Ministry of Education, Beijing, China
| | - Lin Li
- Correspondence: Lin Li, MD, PhD, Department of Pharmacy, Xuanwu Hospital, Capital Medical University, 45 Chang-chun Street, Beijing 100053, China ()
| |
Collapse
|
3
|
Zemba Cilic A, Zemba M, Cilic M, Balenovic I, Strbe S, Ilic S, Vukojevic J, Zoricic Z, Filipcic I, Kokot A, Drmic D, Blagaic AB, Tvrdeic A, Seiwerth S, Sikiric P. Pentadecapeptide BPC 157 counteracts L-NAME-induced catalepsy. BPC 157, L-NAME, L-arginine, NO-relation, in the suited rat acute and chronic models resembling 'positive-like' symptoms of schizophrenia. Behav Brain Res 2020; 396:112919. [PMID: 32956773 DOI: 10.1016/j.bbr.2020.112919] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/26/2019] [Revised: 08/15/2020] [Accepted: 09/14/2020] [Indexed: 12/13/2022]
Abstract
In the suited rat-models, we focused on the stable pentadecapeptide BPC 157, L-NAME, NOS-inhibitor, and L-arginine, NOS-substrate, relation, the effect on schizophrenia-like symptoms. Medication (mg/kg intraperitoneally) was L-NAME (5), L-arginine (100), BPC 157 (0.01), given alone and/or together, at 5 min before the challenge for the acutely disturbed motor activity (dopamine-indirect/direct agonists (amphetamine (3.0), apomorphine (2.5)), NMDA-receptor non-competitive antagonist (MK-801 (0.2)), or catalepsy, (dopamine-receptor antagonist haloperidol (2.0)). Alternatively, BPC 157 10 μg/kg was given immediately after L-NAME 40 mg/kg intraperitoneally. To induce or prevent sensitization, we used chronic methamphetamine administration, alternating 3 days during the first 3 weeks, and challenge after next 4 weeks, and described medication (L-NAME, L-arginine, BPC 157) at 5 min before the methamphetamine at the second and third week. Given alone, BPC 157 or L-arginine counteracted the amphetamine-, apomorphine-, and MK-801-induced effect, haloperidol-induced catalepsy and chronic methamphetamine-induced sensitization. L-NAME did not affect the apomorphine-, and MK-801-induced effects, haloperidol-induced catalepsy and chronic methamphetamine-induced sensitization, but counteracted the acute amphetamine-induced effect. In combinations (L-NAME + L-arginine), as NO-specific counteraction, L-NAME counteracts L-arginine-induced counteractions in the apomorphine-, MK-801-, haloperidol- and methamphetamine-rats, but not in amphetamine-rats. Unlike L-arginine, BPC 157 maintains its counteracting effect in the presence of the NOS-blockade (L-NAME + BPC 157) or NO-system-over-stimulation (L-arginine + BPC 157). Illustrating the BPC 157-L-arginine relationships, BPC 157 restored the antagonization (L-NAME + L-arginine + BPC 157) when it had been abolished by the co-administration of L-NAME with L-arginine (L-NAME + L-arginine). Finally, BPC 157 directly inhibits the L-NAME high dose-induced catalepsy. Further studies would determine precise BPC 157/dopamine/glutamate/NO-system relationships and clinical application.
Collapse
Affiliation(s)
- Andrea Zemba Cilic
- Departments of Pharmacology and Pathology, School of Medicine, University of Zagreb, Zagreb, Croatia
| | - Mladen Zemba
- Departments of Pharmacology and Pathology, School of Medicine, University of Zagreb, Zagreb, Croatia
| | - Matija Cilic
- Departments of Pharmacology and Pathology, School of Medicine, University of Zagreb, Zagreb, Croatia
| | - Igor Balenovic
- Departments of Pharmacology and Pathology, School of Medicine, University of Zagreb, Zagreb, Croatia
| | - Sanja Strbe
- Departments of Pharmacology and Pathology, School of Medicine, University of Zagreb, Zagreb, Croatia
| | - Spomenko Ilic
- Departments of Pharmacology and Pathology, School of Medicine, University of Zagreb, Zagreb, Croatia
| | - Jaksa Vukojevic
- Departments of Pharmacology and Pathology, School of Medicine, University of Zagreb, Zagreb, Croatia
| | - Zoran Zoricic
- Departments of Pharmacology and Pathology, School of Medicine, University of Zagreb, Zagreb, Croatia
| | - Igor Filipcic
- Departments of Pharmacology and Pathology, School of Medicine, University of Zagreb, Zagreb, Croatia
| | - Antonio Kokot
- Departments of Pharmacology and Pathology, School of Medicine, University of Zagreb, Zagreb, Croatia
| | - Domagoj Drmic
- Departments of Pharmacology and Pathology, School of Medicine, University of Zagreb, Zagreb, Croatia
| | - Alenka Boban Blagaic
- Departments of Pharmacology and Pathology, School of Medicine, University of Zagreb, Zagreb, Croatia
| | - Ante Tvrdeic
- Departments of Pharmacology and Pathology, School of Medicine, University of Zagreb, Zagreb, Croatia
| | - Sven Seiwerth
- Departments of Pharmacology and Pathology, School of Medicine, University of Zagreb, Zagreb, Croatia
| | - Predrag Sikiric
- Departments of Pharmacology and Pathology, School of Medicine, University of Zagreb, Zagreb, Croatia.
| |
Collapse
|
4
|
Akagawa K, Kudo K. Iterative Polyketide Synthesis via a Consecutive Carbonyl-Protecting Strategy. J Org Chem 2018; 83:4279-4285. [PMID: 29509410 DOI: 10.1021/acs.joc.8b00497] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
To address the difficulty in protecting a β-polycarbonyl compound, a method for the sequential protection of elongating carbonyl groups was demonstrated. The iterative chain elongation of a carboxylic acid with malonic acid half thioester followed by the protection of the resulting β-ketothioester was performed via the stepwise formation of an isoxazole ring using an O-protected oxime functionality. Yangonin and isosakuranetin were synthesized according to this procedure.
Collapse
Affiliation(s)
- Kengo Akagawa
- Institute of Industrial Science , The University of Tokyo , 4-6-1 Komaba, Meguro-ku , Tokyo 153-8505 , Japan
| | - Kazuaki Kudo
- Institute of Industrial Science , The University of Tokyo , 4-6-1 Komaba, Meguro-ku , Tokyo 153-8505 , Japan
| |
Collapse
|
5
|
Sun ZY, Gu HS, Chen X, Zhang L, Li XM, Zhang JW, Li L. A novel flavanone derivative ameliorates cuprizone-induced behavioral changes and white matter pathology in the brain of mice. Psychiatry Res 2017; 257:249-259. [PMID: 28783571 DOI: 10.1016/j.psychres.2017.07.075] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/22/2017] [Revised: 07/04/2017] [Accepted: 07/30/2017] [Indexed: 11/24/2022]
Abstract
Recent studies have shown that white matter lesions play an important role in the pathogenesis of schizophrenia. DHF-6 is a novel flavanone derivative synthesized in our laboratory. The purpose of the present study was to investigate the effects of DHF-6 on behavioral changes and white matter pathology in a 0.2% cuprizone-fed C57BL/6 mice model. The results showed that cuprizone induced a decrease in spontaneous alternations in the Y-maze test, an increase in locomotor activity in the open field test, demyelination determined by electron microscopy, a decline in the expression of myelin basic protein (MBP), a decrease in the differentiation of oligodendrocyte precursor cells (OPCs) into mature oligodendrocytes (OLs), and an activation of microglia and astrocytes in the corpus callosum measured by western blot and/or immunocytochemical analyses. Intragastric administration of DHF-6 (25 and 50mg/kg) for 5-weeks increased the spontaneous alternations, reduced locomotor activity, reversed demyelination and MBP decrease, promoted OPCs differentiation into mature OLs, and inhibited the activation of microglia and astrocytes. These results suggest that DHF-6 may improve cognitive impairment and the positive symptoms of schizophrenia by alleviating white matter lesions via facilitating remyelination and inhibiting neuroinflammation, thus may be beneficial in the treatment of schizophrenia.
Collapse
Affiliation(s)
- Zheng-Yu Sun
- Department of Pharmacology, Xuanwu Hospital of Capital Medical University, Beijing Institute for Brain Disorders, Beijing Engineering Research Center for Nerve System Drugs, Key Laboratory for Neurodegenerative Diseases of Ministry of Education, Beijing 100053, China
| | - Hong-Shun Gu
- Department of Pharmacology, Xuanwu Hospital of Capital Medical University, Beijing Institute for Brain Disorders, Beijing Engineering Research Center for Nerve System Drugs, Key Laboratory for Neurodegenerative Diseases of Ministry of Education, Beijing 100053, China
| | - Xi Chen
- Department of Pharmacology, Xuanwu Hospital of Capital Medical University, Beijing Institute for Brain Disorders, Beijing Engineering Research Center for Nerve System Drugs, Key Laboratory for Neurodegenerative Diseases of Ministry of Education, Beijing 100053, China
| | - Lan Zhang
- Department of Pharmacology, Xuanwu Hospital of Capital Medical University, Beijing Institute for Brain Disorders, Beijing Engineering Research Center for Nerve System Drugs, Key Laboratory for Neurodegenerative Diseases of Ministry of Education, Beijing 100053, China
| | - Xin-Min Li
- Department of Psychiatry, University of Alberta, Edmonton, Alberta, Canada T6G 2R3
| | - Jian-Wei Zhang
- School of Chemical Biology and Pharmaceutical Sciences, Capital Medical University, Beijing 100069, China.
| | - Lin Li
- Department of Pharmacology, Xuanwu Hospital of Capital Medical University, Beijing Institute for Brain Disorders, Beijing Engineering Research Center for Nerve System Drugs, Key Laboratory for Neurodegenerative Diseases of Ministry of Education, Beijing 100053, China.
| |
Collapse
|