1
|
Zhang K, Zhang YJ, Li M, Pannecouque C, De Clercq E, Wang S, Chen FE. Deciphering the enigmas of non-nucleoside reverse transcriptase inhibitors (NNRTIs): A medicinal chemistry expedition towards combating HIV drug resistance. Med Res Rev 2024. [PMID: 39188075 DOI: 10.1002/med.22080] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2023] [Revised: 06/11/2024] [Accepted: 08/13/2024] [Indexed: 08/28/2024]
Abstract
The pivotal involvement of reverse transcriptase activity in the pathogenesis of the progressive HIV virus has stimulated gradual advancements in drug discovery initiatives spanning three decades. Consequently, nonnucleoside reverse transcriptase inhibitors (NNRTIs) have emerged as a preeminent category of therapeutic agents for HIV management. Academic institutions and pharmaceutical companies have developed numerous NNRTIs, an essential component of antiretroviral therapy. Six NNRTIs have received Food and Drug Administration approval and are widely used in clinical practice, significantly improving the quality of HIV patients. However, the rapid emergence of drug resistance has limited the effectiveness of these medications, underscoring the necessity for perpetual research and development of novel therapeutic alternatives. To supplement the existing literatures on NNRTIs, a comprehensive review has been compiled to synthesize this extensive dataset into a comprehensible format for the medicinal chemistry community. In this review, a thorough investigation and meticulous analysis were conducted on the progressions achieved in NNRTIs within the past 8 years (2016-2023), and the experiences and insights gained in the development of inhibitors with varying chemical structures were also summarized. The provision of a crucial point of reference for the development of wide-ranging anti-HIV medications is anticipated.
Collapse
Affiliation(s)
- Kun Zhang
- Department of Chemistry, Engineering Center of Catalysis and Synthesis for Chiral Molecules, Fudan University, Shanghai, China
- Shanghai Engineering Center of Industrial Asymmetric Catalysis for Chiral Drugs, Shanghai, China
- Institute of Pharmaceutical Research and School of Pharmaceutical Sciences, Zhengzhou University, Zhengzhou, China
| | - Yu-Jie Zhang
- Department of Chemistry, Engineering Center of Catalysis and Synthesis for Chiral Molecules, Fudan University, Shanghai, China
- Shanghai Engineering Center of Industrial Asymmetric Catalysis for Chiral Drugs, Shanghai, China
- Institute of Pharmaceutical Research and School of Pharmaceutical Sciences, Zhengzhou University, Zhengzhou, China
| | - Min Li
- Institute of Pharmaceutical Research and School of Pharmaceutical Sciences, Zhengzhou University, Zhengzhou, China
| | - Christophe Pannecouque
- Laboratory of Virology and Chemotherapy, Rega Institute for Medical Research, KU Leuven, Leuven, Belgium
| | - Erik De Clercq
- Laboratory of Virology and Chemotherapy, Rega Institute for Medical Research, KU Leuven, Leuven, Belgium
| | - Shuai Wang
- Department of Chemistry, Engineering Center of Catalysis and Synthesis for Chiral Molecules, Fudan University, Shanghai, China
- Shanghai Engineering Center of Industrial Asymmetric Catalysis for Chiral Drugs, Shanghai, China
| | - Fen-Er Chen
- Department of Chemistry, Engineering Center of Catalysis and Synthesis for Chiral Molecules, Fudan University, Shanghai, China
- Shanghai Engineering Center of Industrial Asymmetric Catalysis for Chiral Drugs, Shanghai, China
- Institute of Pharmaceutical Research and School of Pharmaceutical Sciences, Zhengzhou University, Zhengzhou, China
| |
Collapse
|
2
|
Tam EH, Peng Y, Cheah MXY, Yan C, Xiao T. Neutralizing antibodies to block viral entry and for identification of entry inhibitors. Antiviral Res 2024; 224:105834. [PMID: 38369246 DOI: 10.1016/j.antiviral.2024.105834] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2023] [Revised: 02/01/2024] [Accepted: 02/07/2024] [Indexed: 02/20/2024]
Abstract
Neutralizing antibodies (NAbs) are naturally produced by our immune system to combat viral infections. Clinically, neutralizing antibodies with potent efficacy and high specificity have been extensively used to prevent and treat a wide variety of viral infections, including Severe Acute Respiratory Syndrome Coronavirus 2 (SARS-CoV-2), Human Immunodeficiency Virus (HIV), Dengue Virus (DENV) and Hepatitis B Virus (HBV). An overwhelmingly large subset of clinically effective NAbs operates by targeting viral envelope proteins to inhibit viral entry into the host cell. Binding of viral envelope protein to the host receptor is a critical rate limiting step triggering a cascade of downstream events, including endocytosis, membrane fusion and pore formation to allow viral entry. In recent years, improved structural knowledge on these processes have allowed researchers to also leverage NAbs as an indispensable tool in guiding discovery of novel antiviral entry inhibitors, providing drug candidates with high efficacy and pan-genus specificity. This review will summarize the latest progresses on the applications of NAbs as effective entry inhibitors and as important tools to develop antiviral therapeutics by high-throughput drug screenings, rational design of peptidic entry inhibitor mimicking NAbs and in silico computational modeling approaches.
Collapse
Affiliation(s)
- Ee Hong Tam
- School of Biological Sciences, Nanyang Technological University 637551, Singapore; Institute of Structural Biology, Nanyang Technological University 636921, Singapore
| | - Yu Peng
- School of Biological Sciences, Nanyang Technological University 637551, Singapore; Institute of Structural Biology, Nanyang Technological University 636921, Singapore
| | - Megan Xin Yan Cheah
- Institute of Molecular and Cell Biology, A*STAR (Agency of Science, Technology and Research) 138673, Singapore
| | - Chuan Yan
- Institute of Molecular and Cell Biology, A*STAR (Agency of Science, Technology and Research) 138673, Singapore
| | - Tianshu Xiao
- School of Biological Sciences, Nanyang Technological University 637551, Singapore; Institute of Structural Biology, Nanyang Technological University 636921, Singapore.
| |
Collapse
|
3
|
Laidi S, Haraj NE, El Aziz S, Chadli A. Have we forgotten the non-COVID-19 diabetic patients? Impact of lockdown on daily life, sleep and mental health: cross-sectional study in Moroccan diabetic patients. Pan Afr Med J 2022; 42:134. [PMID: 36060852 PMCID: PMC9429985 DOI: 10.11604/pamj.2022.42.134.30475] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2021] [Accepted: 05/28/2022] [Indexed: 11/24/2022] Open
Abstract
The main objective of this work is to describe the impact of lockdown on daily life, sleep and the mental health of Moroccan diabetics patients. The secondary objective is to study the factors affecting compliance with lockdown and deterioration of sleep in diabetic patients while lockdown. It´s a cross-sectional study including diabetic patients followed up at the Endocrinology department of Casablanca. Patients answered a questionnaire about Socio-demographic characteristics, Sleep-related characteristics and predominant activities during the lockdown. The psychological impact was assessed by the score of Anxiety and Depression Assessment Scale (HDAS). Statistical analysis was carried out using SPSS 20 software. Bedtime was shifted by 53 minutes during the lockdown. Waking time was also 1 hour 18 minutes later, while sleep duration increased from 8 hours 20 minutes before lockdown to 8 hours 30 minutes during it (p=0.24) with a deterioration in sleep quality reported by 53 patients. Sleep deterioration was not correlated with anxiety or duration of screen exposure, but was more related to age between 50 and 65 years old. HAD score showed anxiety in 29 patients which were correlated to the female gender. The study included 100 patients with an average age of 48 years. 38 patients had a professional activity before lockdown, 5 of them kept working face-to-face, 3 teleworked and 30 were unemployed. Only 59 % of them respected lockdown. This respect was correlated with female gender, educational level and the number of members under the same roof when it is more than 6. Deterioration in sleep, a change in bedtime and waking time and an increase in anxiety was observed in diabetic patients during the lockdown. Therefore, the psychiatric care system needs to adapt to provide psychological support not only to infected persons but also to other vulnerable communities including diabetic patients.
Collapse
Affiliation(s)
- Soukaina Laidi
- Mohammed VI University of Health Sciences, Casablanca, Morocco,,Corresponding author: Soukaina Laidi, Mohammed VI University of Health Sciences, Casablanca, Morocco.
| | - Nassim Essabah Haraj
- Endocrinology, Diabetology and Metabolic Diseases Department, CHU Ibn Rochd, Casablanca, Morocco,,Laboratory of Neurosciences and Mental Health, Casablanca, Morocco,,Faculty of Medicine and Pharmacy-University Hassan II, Casablanca, Morocco
| | - Siham El Aziz
- Endocrinology, Diabetology and Metabolic Diseases Department, CHU Ibn Rochd, Casablanca, Morocco,,Laboratory of Neurosciences and Mental Health, Casablanca, Morocco,,Faculty of Medicine and Pharmacy-University Hassan II, Casablanca, Morocco
| | - Asma Chadli
- Endocrinology, Diabetology and Metabolic Diseases Department, CHU Ibn Rochd, Casablanca, Morocco,,Laboratory of Neurosciences and Mental Health, Casablanca, Morocco,,Faculty of Medicine and Pharmacy-University Hassan II, Casablanca, Morocco
| |
Collapse
|
4
|
|
5
|
Trivedi J, Alam A, Joshi S, Kumar TP, Chippala V, Mainkar PS, Chandrasekhar S, Chattopadhyay S, Mitra D. A novel isothiocyanate derivative inhibits HIV-1 gene expression and replication by modulating the nuclear matrix associated protein SMAR1. Antiviral Res 2019; 173:104648. [PMID: 31706900 DOI: 10.1016/j.antiviral.2019.104648] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2019] [Revised: 10/24/2019] [Accepted: 11/04/2019] [Indexed: 12/30/2022]
Abstract
The essential role of SMAR1 in HIV-1 transcription and LTR driven gene expression suggests SMAR1 as an HIV dependency factor (HDF) and a potential anti-HIV therapeutic target. Here, we report for the first time, anti-HIV activity of 8 novel isothiocyanate (ITC) derivatives that differentially stabilise SMAR1. Out of 8 novel ITC derivatives, SCS-OCL-381 was observed to inhibit HIV-1 replication most significantly at the noncytotoxic concentration in reporter T-cell line, CEM-GFP. Further, the highly conserved anti-HIV activity of SCS-OCL-381 is a cell type, virus isolate and viral load independent phenomena and is approximately 3 fold more effective than the representative ITC, Sulforaphane (SFN). Further, SCS-OCL-381 does not hamper the activity of viral enzymes reverse transcriptase, integrase and protease. Mechanistically, SCS-OCL-381 stabilises SMAR1 which, otherwise undergoes proteasomal degradation upon HIV-1 infection in T-cells. This stabilisation results in the recruitment of repressor complex on HIV-1 LTR resulting in repression of LTR mediated transcription and gene expression. These inhibitory consequences were further confirmed by reporter based LTR activity assays in different cell lines. Taken together, these findings highlight the anti-HIV potential of novel ITC derivatives by the stabilisation of SMAR1 and strongly support further in vivo characterisation and potential translational applications of SCS-OCL-381.
Collapse
Affiliation(s)
- Jay Trivedi
- National Centre for Cell Science, Pune University Campus, Pune, India.
| | - Aftab Alam
- National Centre for Cell Science, Pune University Campus, Pune, India.
| | - Shruti Joshi
- National Centre for Cell Science, Pune University Campus, Pune, India.
| | | | | | - Prathama S Mainkar
- CSIR-Indian Institute of Chemical Technology, Tarnaka, Hyderabad, India.
| | | | - Samit Chattopadhyay
- National Centre for Cell Science, Pune University Campus, Pune, India; CSIR-Indian Institute of Chemical Biology, Jadavpur, Kolkata, India.
| | - Debashis Mitra
- National Centre for Cell Science, Pune University Campus, Pune, India; Centre for DNA Fingerprinting and Diagnostics, Uppal, Hyderabad, India.
| |
Collapse
|